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ABSTRACT

A hyperspectral beam-scanning microscope operating in the long wave infrared (LWIR) is demonstrated for future
application to stand-off imaging platforms. A 32-channel quantum-cascade laser (QCL) array enables rapid wavelength
modulation for fast hyperspectral imaging through sparse sampling in position and wavelength, which when coupled with
image reconstruction techniques can enhance frame rate. Initial measurements of dichloromethane and water mixtures are
shown, utilizing spectral information for classification across the field of view. Ongoing efforts aim to utilize co-
propagating visible and IR beams to enhance spatial resolution for the IR measurements by combining spatial information
retrieved from visible images obtained concurrently. Future work will leverage Lissajous trajectories for sparsely-sampled
beam-scanning and extend the image interpolation algorithms to arbitrary dimension for sparse sampling in the spectral
domain. Simulations of the error associated with various sparse-sampling methods are also presented herein which support
the use of Lissajous trajectories as a sparse-sampling method in beam-scanning microscopy.
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1. INTRODUCTION

Recent threats and attacks in mass-transit settings and at large public events have punctuated the need for development of
technologies that can rapidly screen for threats at a safe distance.! Ideally, such technologies would be capable of non-
invasive and rapid detection of threat compounds such as explosives.? These technologies could be employed to screen
vehicles in a parking lot or people before they enter a building or public event.’ IR detection of threat compounds has the
advantage of being a non-invasive, eye-safe, and sensitive stand-off technique.* Current technologies are capable of rapid
spectroscopy or relatively slow hyperspectral imaging for selective threat detection based on the spectral “fingerprint” of
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Figure 1. Comparison between beam-scanning sampling trajectories. Lissajous
scanning sparsely samples the entire field of view more efficiently than
conventional raster scanning.
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the threat compound.>!° However, conventional spectroscopy is not particularly useful in this application space since a
threat compound is typically concentrated in a particular spatial location. Imaging provides information about the spatial
location of the threat and improves the signal-to-noise of the measurement since a conventional spectroscopy approach
may drown out the spatially localized signal through signal averaging. Yet, current imaging approaches are too slow for
application in threat detection. A recently developed beam-scanning hyperspectral stand-off imaging system requires ~19
seconds for image acquisition.!! It is not realistic to expect that all threats could be detected with such a frame rate. In this
work, a hyperspectral microscope operating in the LWIR is demonstrated for future application to stand-off imaging
platforms. It is our aim to integrate sparse-sampling methods, into our imaging system to improve the accessible frame
rate. We hope to extend our current effort in microscopy to stand-off imaging to improve the frame rate of IR imaging for
remote threat detection.

A QCL array was chosen as the light source for this system. QCL sources emit light at IR wavelengths, operate at room
temperature, and produce milliwatts of radiation.!? QCL sources are also lightweight and have low power requirements,
making them ideal for systems that are being developed for security applications.'? In this work we demonstrate that our
hyperspectral microscope can use spectral information to distinguish between dichloromethane and water and that it is
able to acquire a merged IR-visible image by combining the hyperspectral IR image with a high-resolution bright-field
image generated with a visible laser source. We also present results of simulations and initial studies showing the benefit
of using sparse-sampling in future work.'*

Sparse sampling takes advantage of the high information redundancy in conventional images, such that much of the
essential information content can be mapped into a much smaller sized basis set by image compression. Similarly, full
images can often be reconstructed from a relatively small subsampling of pixels building on this inherent redundancy, with
the results varying considerably depending on the quality of the reconstruction algorithm used and the signal to noise ratio
of the sampled pixels. The advantages of Lissajous scanning are illustrated in Fig. 1, in which the trajectory used to sample
pixels can have a profound impact in the subsequent ability to perform image reconstruction from sparse sampling. The
bottlenecks for high-speed imaging can be reduced by orders of magnitude through maximizing the inherent information
content per measurement acquired by sparse sampling, rather than maximizing the sheer volume of data obtained.

2. EXPERIMENTAL
2.1. Experimental instrumentation

The hyperspectral microscope is depicted in Fig. 2. In brief, a custom 32-channel LWIR QCL array with a wavenumber
range of 1190-1340 cm™! (Pendar Technologies) was used as the absorption light source. A 640 nm laser diode (Thorlabs)
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Figure 2. Instrument schematic of the LWIR hyperspectral microscope. 640 nm
beam is emitted from the diode laser and is combined with 32-channel LWIR
beam emitted from the QCL.
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was used as the bright-field light source. The two laser beams were combined using a germanium window (Thorlabs). The
640 nm laser diode beam was 4f coupled to a germanium window with two lenses to enable fine adjustment of the
collimation at the point of beam combination to correct for chromatic aberration. The copropagating beams were expanded
twice with two sets of lenses and scanned across the sample using a pair of galvanometer mirrors (ScannerMAX). A 15 x
0.4 NA reflective Cassegrain objective (Edmund Optics) was used to focus the beams onto the sample. Light from the
sample plane was recollimated using a collection lens and a germanium window was used to separate the 640 nm beam
from the LWIR beam. 640 nm light was detected using a photomultiplier tube (Hamamatsu). LWIR light was detected
using an LWIR-sensitive photodiode (Vigo System). IR compatible lenses (Thorlabs) were used when focusing the LWIR
beam. Responses of the detectors were digitized synchronously with a 10 MHz clock using a digital oscilloscope card
(AlazarTech). Custom software (MATLAB) was used to down-sample raw data to coincide with LWIR laser pulses and
remap the down-sampled data onto a set of 256 pixel x 256 pixel LWIR images (one for each QCL channel) and one 256
pixel x 256 pixel 640 nm bright-field image. K-means clustering was used to assign chemical identity in images of
mixtures. The high-resolution 640 nm image and the low-resolution LWIR images were combined using custom software
(MATLAB) to create a merged image containing IR spectral information encoded in an RGB color map.

2.2. Sample preparation

Dichloromethane was purchased from Mallinckrodt. Dichloromethane was mixed with water and imaged on an IR-
transparent calcium-fluoride slide. A 5 um pig liver section was obtained from the Histology Research Laboratory at
Purdue University and was imaged on an IR-transparent calcium-fluoride slide.

2.3. Sparse-sampling

Lissajous scan patterns for simulations were selected based on the available bandwidths of the corresponding scan mirrors.
A 10223:11527 Lissajous trajectory was found to be an optimal sampling trajectory for image reconstruction. Experimental
demonstration of sparse sampling was performed using an interleaved raster trajectory with 0.1% sampling of the field of
view for each wavelength channel. In-painting of the unsampled pixels was performed using an in-painting algorithm
based on the discrete cosine transform designed for applicability with data sets of arbitrary dimensionality developed by
Garcia et al., with 1000 smoothness parameters between 6 and -6 used to reconstruct images using this algorithm. !> 10
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Figure 3. Spectroscopic imaging of water/dichloromethane mixture. A set of
images are acquired representing 32 wavelengths of light. Chemical identity
is assigned by at each pixel using k-means clustering.
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3. RESULTS AND DISCUSSION
3.1. LWIR hyperspectral imaging

A water/dichloromethane mixture was used to assess the hyperspectral imaging of the system and the accuracy of the
classification algorithm. Images were acquired using conventional raster scanning without sparse sampling. Fig. 3 shows
some of the IR images that were acquired, representing 32 wavelengths of LWIR light. The images are correlated so that
each pixel contains a spectrum. Each pixel was assigned a chemical identity based on its spectral information using k-
means clustering. The strong absorption band of dichloromethane at 1250 cm™ easily distinguishes it from water in the
spectral domain. The classified image matches qualitatively with the LWIR images and the spectra shown match the
literature IR spectrum for dichloromethane.!” The LWIR imaging system can acquire a spectrum in 9.6 ps and a signal-
averaged spectrum (using 50 spectra) in 1.6 ms. This corresponds to a total image acquisition time of approximately two
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Figure 4. Merged IR-visible imaging. 640 nm bright-field
image contained high-resolution features and LWIR images
contain spectral information. Merged image retains
information from both images.

seconds using conventional raster scanning for a 256 pixel X 256 pixel x 32 channel hyperspectral image stack. These
results demonstrate that the LWIR imaging system can rapidly acquire hyperspectral images and use spectral information
to distinguish between chemical entities.

3.2. Merged IR-visible imaging

A 5 pm pig liver section was analyzed to assess the imaging capabilities of the hyperspectral microscope when using
both the LWIR beam and the 640 nm visible beam. Conventional raster scanning was used during the acquisition of
these images. Fig. 4 shows that data from both light sources were used to produce the merged images. The 640 nm bright
field image contains high-resolution features and the LWIR transmittance image contains spectral information, but with
low spatial resolution. These two images were merged using custom software to produce an image with the high-spatial
resolution of the 640 nm image encoded with spectral information from the LWIR images in an RGB color map. This
image demonstrates the ability of this microscope to simultaneously capture high-resolution detail and spectral content in
the LWIR.

3.3. Sparse-sampling simulations

To evaluate the advantage of sparse sampling with the LWIR hyperspectral microscope, image reconstructions with known
ground-truth results were performed for three different beam-scanning trajectories: random-access sampling, Lissajous
scanning, and interleaved raster scanning. For the random-access sampling, random pixels within the field of view were
chosen to be sampled. For Lissajous scanning, sinusoidal functions with optimized phases and periods on both axes were
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used to map the trajectory of the beam across the field of view. For the interleaved raster scanning, the trajectories were
assumed to be bidirectional (i.e., the trace and retrace recorded on separate lines) with no dead time associated with the
slow-axis repositioning between lines. Quantitative analysis of the errors arising in the reconstructions as a function of the
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Figure 5. Simulation of the reconstruction error associated with
various sparse sampling methods. (A) Plot of reconstruction
error versus sampling percentage. (B) Still frames selected from
in-painting based on a discrete cosine transformation for
different assumed sampling trajectories.

percentage of sampling is shown in Fig. SA. Consistent with the qualitative expectations from inspection of the images in
Fig. 5B, the random-access trajectory provides the least reconstruction errors, followed by Lissajous, and then interleaved
raster. The performances of the different trajectories illustrated in Fig. 5 are generally weighed against the practical
constraints associated with beam-scanning hardware. For example, the potential advantages of random-access sampling
are tempered by the difficulties in practically achieving full random-access sampling with negligible dead-time for beam
repositioning. Continuous line-scanning trajectories represented by the Lissajous and approximated by the interleaved
sampling strategies are considerably simpler to achieve in practice using simple and common mirror assemblies.

3.4. Sparse-sampling measurements

Initial measurements utilizing sparse-sampling trajectories were acquired with the LWIR hyperspectral microscope. Fig.
6 shows sparsely-sampled and reconstructed images of a 1951 USAF resolution test target. An interleaved raster
trajectory was used with 0.1% sampling of the field of view for each wavelength channel. The sparse image is so under-
sampled that it is difficult to detect by eye any signal. A zoom-in of the sparse image reveals pixels that have been
sampled. In-painting of the sparse image was performed using an algorithm based on the discrete cosine transform to
produce the reconstructed image. The reconstructed image qualitatively resembles the test target, blurred due to the
diffraction limit. This interpolated image demonstrates that frame rate can be significantly increased by reducing
sampling without significant reduction in image quality.
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4. CONCLUSIONS

A LWIR hyperspectral microscope was developed with 32 spectral channels with a wavenumber range of 1190—1340
cm’! and a total image acquisition time of approximately two seconds using conventional raster scanning for a 256 pixel
x 256 pixel x 32 channel hyperspectral image stack. K-means clustering enabled classification of spectra and assignment
of chemical identity with no prior knowledge of the sample. Good agreement was observed between the recovered
spectra and those in the literature. Merging LWIR images with 640 nm bright field images enhanced the resolution of
features in the images while retaining spectral information. Simulations of sparse-sampling methods suggest that
Lissajous scanning can improve frame rate and result in less reconstruction error than interleaved raster scanning. Initial
measurements demonstrate that sparse sampling can reduce image acquisition time without significant reduction in

Reconstructed
Sparse

Figure 6. Sparse sampling and in-painting of 1951 USAF resolution test target. A sparse
raster trajectory was used to sample the test target. Sparse image shows signal at a low
percentage of discrete pixels in the field of view. Reconstructed image demonstrates that
frame rate can be significantly increased by reducing sampling without significant reduction
in image quality.

image quality by using in-painting. Future work will involve improving algorithms for merging visible and LWIR
images and implementing Lissajous scanning into the LWIR hyperspectral microscope for leveraging all four accessible
dimensions (X, y, time, wavelength) during image reconstruction to further improve frame rate.
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