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ABSTRACT 

A hyperspectral beam-scanning microscope operating in the long wave infrared (LWIR) is demonstrated for future 

application to stand-off imaging platforms. A 32-channel quantum-cascade laser (QCL) array enables rapid wavelength 

modulation for fast hyperspectral imaging through sparse sampling in position and wavelength, which when coupled with 

image reconstruction techniques can enhance frame rate. Initial measurements of dichloromethane and water mixtures are 

shown, utilizing spectral information for classification across the field of view. Ongoing efforts aim to utilize co-

propagating visible and IR beams to enhance spatial resolution for the IR measurements by combining spatial information 

retrieved from visible images obtained concurrently. Future work will leverage Lissajous trajectories for sparsely-sampled 

beam-scanning and extend the image interpolation algorithms to arbitrary dimension for sparse sampling in the spectral 

domain. Simulations of the error associated with various sparse-sampling methods are also presented herein which support 

the use of Lissajous trajectories as a sparse-sampling method in beam-scanning microscopy. 
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1. INTRODUCTION 

Recent threats and attacks in mass-transit settings and at large public events have punctuated the need for development of 

technologies that can rapidly screen for threats at a safe distance.1 Ideally, such technologies would be capable of non-

invasive and rapid detection of threat compounds such as explosives.2 These technologies could be employed to screen 

vehicles in a parking lot or people before they enter a building or public event.3 IR detection of threat compounds has the 

advantage of being a non-invasive, eye-safe, and sensitive stand-off technique.4 Current technologies are capable of rapid 

spectroscopy or relatively slow hyperspectral imaging for selective threat detection based on the spectral “fingerprint” of 

                                                           
* gsimpson@purdue.edu 

Figure 1. Comparison between beam-scanning sampling trajectories. Lissajous 

scanning sparsely samples the entire field of view more efficiently than 

conventional raster scanning.  
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the threat compound.5-10 However, conventional spectroscopy is not particularly useful in this application space since a 

threat compound is typically concentrated in a particular spatial location. Imaging provides information about the spatial 

location of the threat and improves the signal-to-noise of the measurement since a conventional spectroscopy approach 

may drown out the spatially localized signal through signal averaging. Yet, current imaging approaches are too slow for 

application in threat detection.  A recently developed beam-scanning hyperspectral stand-off imaging system requires ~19 

seconds for image acquisition.11 It is not realistic to expect that all threats could be detected with such a frame rate. In this 

work, a hyperspectral microscope operating in the LWIR is demonstrated for future application to stand-off imaging 

platforms. It is our aim to integrate sparse-sampling methods, into our imaging system to improve the accessible frame 

rate. We hope to extend our current effort in microscopy to stand-off imaging to improve the frame rate of IR imaging for 

remote threat detection. 

A QCL array was chosen as the light source for this system. QCL sources emit light at IR wavelengths, operate at room 

temperature, and produce milliwatts of radiation.12 QCL sources are also lightweight and have low power requirements, 

making them ideal for systems that are being developed for security applications.13 In this work we demonstrate that our 

hyperspectral microscope can use spectral information to distinguish between dichloromethane and water and that it is 

able to acquire a merged IR-visible image by combining the hyperspectral IR image with a high-resolution bright-field 

image generated with a visible laser source. We also present results of simulations and initial studies showing the benefit 

of using sparse-sampling in future work.14 

Sparse sampling takes advantage of the high information redundancy in conventional images, such that much of the 

essential information content can be mapped into a much smaller sized basis set by image compression. Similarly, full 

images can often be reconstructed from a relatively small subsampling of pixels building on this inherent redundancy, with 

the results varying considerably depending on the quality of the reconstruction algorithm used and the signal to noise ratio 

of the sampled pixels. The advantages of Lissajous scanning are illustrated in Fig. 1, in which the trajectory used to sample 

pixels can have a profound impact in the subsequent ability to perform image reconstruction from sparse sampling. The 

bottlenecks for high-speed imaging can be reduced by orders of magnitude through maximizing the inherent information 

content per measurement acquired by sparse sampling, rather than maximizing the sheer volume of data obtained.  

 

2. EXPERIMENTAL 

2.1. Experimental instrumentation 

The hyperspectral microscope is depicted in Fig. 2. In brief, a custom 32-channel LWIR QCL array with a wavenumber 

range of 1190–1340 cm-1 (Pendar Technologies) was used as the absorption light source. A 640 nm laser diode (Thorlabs) 

Figure 2. Instrument schematic of the LWIR hyperspectral microscope. 640 nm 

beam is emitted from the diode laser and is combined with 32-channel LWIR 

beam emitted from the QCL. 
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was used as the bright-field light source. The two laser beams were combined using a germanium window (Thorlabs). The 

640 nm laser diode beam was 4f coupled to a germanium window with two lenses to enable fine adjustment of the 

collimation at the point of beam combination to correct for chromatic aberration. The copropagating beams were expanded 

twice with two sets of lenses and scanned across the sample using a pair of galvanometer mirrors (ScannerMAX). A 15 × 

0.4 NA reflective Cassegrain objective (Edmund Optics) was used to focus the beams onto the sample. Light from the 

sample plane was recollimated using a collection lens and a germanium window was used to separate the 640 nm beam 

from the LWIR beam. 640 nm light was detected using a photomultiplier tube (Hamamatsu). LWIR light was detected 

using an LWIR-sensitive photodiode (Vigo System). IR compatible lenses (Thorlabs) were used when focusing the LWIR 

beam. Responses of the detectors were digitized synchronously with a 10 MHz clock using a digital oscilloscope card 

(AlazarTech). Custom software (MATLAB) was used to down-sample raw data to coincide with LWIR laser pulses and 

remap the down-sampled data onto a set of 256 pixel × 256 pixel LWIR images (one for each QCL channel) and one 256 

pixel × 256 pixel 640 nm bright-field image. K-means clustering was used to assign chemical identity in images of 

mixtures. The high-resolution 640 nm image and the low-resolution LWIR images were combined using custom software 

(MATLAB) to create a merged image containing IR spectral information encoded in an RGB color map. 

2.2. Sample preparation 

Dichloromethane was purchased from Mallinckrodt. Dichloromethane was mixed with water and imaged on an IR-

transparent calcium-fluoride slide. A 5 μm pig liver section was obtained from the Histology Research Laboratory at 

Purdue University and was imaged on an IR-transparent calcium-fluoride slide. 

2.3. Sparse-sampling 

Lissajous scan patterns for simulations were selected based on the available bandwidths of the corresponding scan mirrors. 

A 10223:11527 Lissajous trajectory was found to be an optimal sampling trajectory for image reconstruction. Experimental 

demonstration of sparse sampling was performed using an interleaved raster trajectory with 0.1% sampling of the field of 

view for each wavelength channel. In-painting of the unsampled pixels was performed using an in-painting algorithm 

based on the discrete cosine transform designed for applicability with data sets of arbitrary dimensionality developed by 

Garcia et al., with 1000 smoothness parameters between 6 and -6 used to reconstruct images using this algorithm.15, 16 

 

Figure 3. Spectroscopic imaging of water/dichloromethane mixture. A set of 

images are acquired representing 32 wavelengths of light. Chemical identity 

is assigned by at each pixel using k-means clustering.    

Single Spectrum – 9.6 μs Averaged Spectrum – 1.6 ms 
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3. RESULTS AND DISCUSSION 

3.1. LWIR hyperspectral imaging 

A water/dichloromethane mixture was used to assess the hyperspectral imaging of the system and the accuracy of the 

classification algorithm. Images were acquired using conventional raster scanning without sparse sampling. Fig. 3 shows 

some of the IR images that were acquired, representing 32 wavelengths of LWIR light. The images are correlated so that 

each pixel contains a spectrum. Each pixel was assigned a chemical identity based on its spectral information using k-

means clustering. The strong absorption band of dichloromethane at 1250 cm-1 easily distinguishes it from water in the 

spectral domain. The classified image matches qualitatively with the LWIR images and the spectra shown match the 

literature IR spectrum for dichloromethane.17 The LWIR imaging system can acquire a spectrum in 9.6 μs and a signal-

averaged spectrum (using 50 spectra) in 1.6 ms. This corresponds to a total image acquisition time of approximately two 

seconds using conventional raster scanning for a 256 pixel × 256 pixel × 32 channel hyperspectral image stack. These 

results demonstrate that the LWIR imaging system can rapidly acquire hyperspectral images and use spectral information 

to distinguish between chemical entities.  

3.2. Merged IR-visible imaging 

A 5 μm pig liver section was analyzed to assess the imaging capabilities of the hyperspectral microscope when using 

both the LWIR beam and the 640 nm visible beam.  Conventional raster scanning was used during the acquisition of 

these images. Fig. 4 shows that data from both light sources were used to produce the merged images. The 640 nm bright 

field image contains high-resolution features and the LWIR transmittance image contains spectral information, but with 

low spatial resolution.  These two images were merged using custom software to produce an image with the high-spatial 

resolution of the 640 nm image encoded with spectral information from the LWIR images in an RGB color map. This 

image demonstrates the ability of this microscope to simultaneously capture high-resolution detail and spectral content in 

the LWIR.  

3.3. Sparse-sampling simulations 

To evaluate the advantage of sparse sampling with the LWIR hyperspectral microscope, image reconstructions with known 

ground-truth results were performed for three different beam-scanning trajectories: random-access sampling, Lissajous 

scanning, and interleaved raster scanning. For the random-access sampling, random pixels within the field of view were 

chosen to be sampled. For Lissajous scanning, sinusoidal functions with optimized phases and periods on both axes were 

 

 

 
Figure 4. Merged IR-visible imaging. 640 nm bright-field 

image contained high-resolution features and LWIR images 

contain spectral information.  Merged image retains 

information from both images. 
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used to map the trajectory of the beam across the field of view. For the interleaved raster scanning, the trajectories were 

assumed to be bidirectional (i.e., the trace and retrace recorded on separate lines) with no dead time associated with the 

slow-axis repositioning between lines. Quantitative analysis of the errors arising in the reconstructions as a function of the 

percentage of sampling is shown in Fig. 5A. Consistent with the qualitative expectations from inspection of the images in 

Fig. 5B, the random-access trajectory provides the least reconstruction errors, followed by Lissajous, and then interleaved 

raster. The performances of the different trajectories illustrated in Fig. 5 are generally weighed against the practical 

constraints associated with beam-scanning hardware. For example, the potential advantages of random-access sampling 

are tempered by the difficulties in practically achieving full random-access sampling with negligible dead-time for beam 

repositioning. Continuous line-scanning trajectories represented by the Lissajous and approximated by the interleaved 

sampling strategies are considerably simpler to achieve in practice using simple and common mirror assemblies. 

3.4. Sparse-sampling measurements 

Initial measurements utilizing sparse-sampling trajectories were acquired with the LWIR hyperspectral microscope. Fig. 

6 shows sparsely-sampled and reconstructed images of a 1951 USAF resolution test target. An interleaved raster 

trajectory was used with 0.1% sampling of the field of view for each wavelength channel. The sparse image is so under-

sampled that it is difficult to detect by eye any signal. A zoom-in of the sparse image reveals pixels that have been 

sampled. In-painting of the sparse image was performed using an algorithm based on the discrete cosine transform to 

produce the reconstructed image. The reconstructed image qualitatively resembles the test target, blurred due to the 

diffraction limit. This interpolated image demonstrates that frame rate can be significantly increased by reducing 

sampling without significant reduction in image quality.  

Random access 

Lissajous Interleaved 

raster 

Ground truth 

Figure 5. Simulation of the reconstruction error associated with 

various sparse sampling methods. (A) Plot of reconstruction 

error versus sampling percentage. (B) Still frames selected from 

in-painting based on a discrete cosine transformation for 

different assumed sampling trajectories. 
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4. CONCLUSIONS 

A LWIR hyperspectral microscope was developed with 32 spectral channels with a wavenumber range of 1190–1340 

cm-1 and a total image acquisition time of approximately two seconds using conventional raster scanning for a 256 pixel 

× 256 pixel × 32 channel hyperspectral image stack. K-means clustering enabled classification of spectra and assignment 

of chemical identity with no prior knowledge of the sample. Good agreement was observed between the recovered 

spectra and those in the literature. Merging LWIR images with 640 nm bright field images enhanced the resolution of 

features in the images while retaining spectral information. Simulations of sparse-sampling methods suggest that 

Lissajous scanning can improve frame rate and result in less reconstruction error than interleaved raster scanning. Initial 

measurements demonstrate that sparse sampling can reduce image acquisition time without significant reduction in 

image quality by using in-painting. Future work will involve improving algorithms for merging visible and LWIR 

images and implementing Lissajous scanning into the LWIR hyperspectral microscope for leveraging all four accessible 

dimensions (x, y, time, wavelength) during image reconstruction to further improve frame rate. 
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