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Abstract—One important aspect in protecting Cyber Physical
System (CPS) is ensuring that the proper control and measure-
ment signals are propagated within the control loop. The CPS
research community has been developing a large set of check
blocks that can be integrated within the control loop to check
signals against various types of attacks (e.g., false data injection
attacks). Unfortunately, it is not possible to integrate all these
“checks” within the control loop as the overhead introduced
when checking signals may violate the delay constraints of the
control loop. Moreover, these blocks do not completely operate
in isolation of each other as dependencies exist among them
in terms of their effectiveness against detecting a subset of
attacks. Thus, it becomes a challenging and complex problem
to assign the proper checks, especially with the presence of a
rational adversary who can observe the check blocks assigned
and optimizes her own attack strategies accordingly. This paper
tackles the inherent state-action space explosion that arises in se-
curing CPS through developing DeepBLOC (DB) – a framework
in which Deep Reinforcement Learning algorithms are utilized
to provide optimal/sub-optimal assignments of check blocks to
signals. The framework models stochastic games between the
adversary and the CPS defender and derives mixed strategies for
assigning check blocks to ensure the integrity of the propagated
signals while abiding to the real-time constraints dictated by the
control loop. Through extensive simulation experiments and a
real implementation on a water purification system, we show
that DB achieves assignment strategies that outperform other
strategies and heuristics.

I. INTRODUCTION

Major transformations are underway in a wide variety of
domains owing to the integration of Cyber-Physical Systems
(CPS) as critical components in their operations. From trans-
portation to health-care and from the power-grid to manufac-
turing systems, CPS are becoming a necessity for efficient,
intelligent, autonomous and adaptive operation. Such a wide
range of adoption has also made these systems subject to new
vectors of cyber-attacks whose impact would cross from the
cyber realm into the physical one.

Cyber-attacks on such infrastructure do not just come
with a high price tag due to the economical loss of
data/equipment/operation (e.g., due to DoS or ransomware),
but can be sophisticated enough to slowly drive the system
into unsafe operational stages putting human life in danger.
The list of such incidents keeps growing (e.g., [22], [31])
suggesting that we will soon encounter more instances of
these attacks that cause autonomous vehicles to veer off the
road, manipulate devices responsible for power generation and

consumption and exploit robotics/drone systems for malicious
and terrorism-related activities.

One class of cyber-attacks that has received a lot of attention
aims to target the control and/or measurement signals that
are propagated over the network in a CPS. Since the proper
operation of CPS relies on integral and timely transmission of
signals, it has been shown that delaying/dropping signals can
push the system outside its stability margins and injecting false
data can steer the system into catastrophic states (e.g., [21],
[25]). These attacks have prompted a large body of research
focusing on developing resilient defense through the use of
stateless and state-full checks to detect attacks (e.g., [28]).
These checks range from the simple threshold and CUSUM
checks to more sophisticated ones that rely on state estimation,
model predictors and machine learning to detect anomalies
(e.g., [26]).

Problem statement: In this paper, we consider the problem
of strategic assignment of checks in the control loop to detect
attacks through a deep reinforcement learning approach based
on a game-theoretic formulation. We consider a two-player
zero-sum stochastic game model between the adversary and
the defender. The adversary seeks to choose different attack
methods to mount on signals while attempting to minimize
their risk of detection. The defender, on the other hand,
seeks a non-stagnant policy to assign stateless and stateful
checks to signals to detect attacks. This involves capturing the
effectiveness of every check, the warm-up periods for checks
to be effective, the importance of every signal, and the delay
constraints on the control loop. Every sub-game is represented
by a state that captures the evolution of the assigned checks
and dictates the players’ available actions.

Illustrative example: Consider a stage in a multi-stage water
purification system (as an example of a CPS) with 5 different
types of control and measurement signals (e.g., inlet/outlet
pumps and valves, and level sensors). Assume the attacker
can mount different types of attacks on these signals and that
the defender has 6 checks – with varying effectiveness and
warm-up periods – to assign to signals. For each signal, there
are 26 possible assignments ranging from not assigning any
check to assigning all of them. With 5 types of signals, the
state space of (26)5 exceeds 1 billion. Moreover, the action
spaces of the players grow exponentially with more checks
and attack methods. Given the varying effectiveness of checks
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against attacks, their warm-up periods, the importance of every
signal, and the delay constraints, it becomes quite complex to
obtain potent assignments of checks to signals to detect attacks
for practical CPS.

While Dynamic Programming-based approaches can be
used to obtain optimal policies through iterating over the
solutions of sub-games [16], it becomes computationally pro-
hibitive to track the players’ actions and solve each sub-
game in every state when the state/action spaces explode. To
this end, we develop a deep reinforcement learning approach
– which we term DeepBLOC (DB) – to tackle the high
dimensionality of our problem. DB provides an approximation
to the quality of the players’ actions in every state using a deep
network. Furthermore, DB approximates Nash equilibrium in
every sub-game through the use of fictitious play [4]. A unique
aspect of DB stems from the asymmetry between the players
(i.e., their actions spaces are different) and unlike traditional
approaches that require separate (or alternate) training for
each player, in DB the players are trained simultaneously.
We demonstrate that our approach yields potent strategies
that outperform other heuristics typically used in large-scale
systems and resemble the optimal strategies in small-scale
problems.
Contributions: We summarize our contributions below:

• We extend the game-theoretic framework presented in [8]
to account for a more comprehensive adversary model
with budget constraints as well as explicitly forcing the
defender to switch his assignment through a stagnancy
metric.

• We develop the DeepBLOC (DB) framework that obtains
optimal/sub-optimal policies on stochastic games for the
defender and the adversary. DB is capable of tackling
environments with exponentially large state and action
spaces in the presence of asymmetric players.

• We craft a set of features to provide effective approxi-
mation methods for solving a high-dimensional problem
that is otherwise computationally prohibitive to solve.

• We assess the effectiveness of our defense through exten-
sive simulations and compare our sub-optimal results to
optimal ones whenever feasible. We show that our poli-
cies outperform other strategies (e.g., random, greedy) by
13%-30%.

• We provide a real-experimental evaluation on a water-
treatment test-bed.

Paper organization: In Sec. II we discuss related works. We
present a stochastic game model for protecting CPS in Sec.
III. We present our DeepBLOC (DB) framework to solve the
game model in Sec. IV. We evaluate the performance of DB in
Sec. V and conclude the paper in Sec. VI.

II. RELATED WORK

This work is related to three major areas of research:
1) Secure control in networked control systems: A large body
of research has investigated the impact of cyber attacks on the
measurement and control signals on the stability of Networked

Control Systems (NCS) (e.g., [23]). The works in [25], [30],
[23] consider different attack models that result in signal
loss and/or delay (e.g., Bernoulli packet dropping process,
TCP/UDP packet drops, etc.).

The effects of false data injection attacks on CPS have been
investigated in various studies (e.g., [21], [17], [27]). All of
these studies show how well-crafted attacks can completely
cripple the operation of the system. To protect against cyber
attacks, the works in [18], [9], [2] develop various methods for
maintaining optimal control under cyber attacks and ensuring
resiliency through generating fresh signals.

2) Game-theoretic threat screening models: Game theory has
been utilized in a wide range of studies to analyze the security
of CPS and NCS [6], [33]. Researchers model and analyze
security issues as Security Games in which the attacker and the
defender have conflicting objectives. Some models consider
the attacks on measurement signals (e.g., [14]), control signals
(e.g., [7]), or both (e.g., [32]). Another class of security games
is those that screen for threats in various applications (e.g.,
[5], [24]). Their models, however, rely on one-shot games
under stateless assumptions. When deriving strategies over
time horizons, self-play can be used [11], [12], [13]. In self-
play agents are trained one at a time, in the way a player
approximates the best response on a Markov Decision Process
(MDP), which is made by the other players’ strategy profile.
Interchangeably, the problem can be framed in the context
of multi-agent reinforcement learning (MARL) on a Markov
game as suggested in [15]. It has been shown in [16] that
such systems can be proven to converge to Nash values under
certain settings and provide a reliable way to derive game-
theoretic and time-dependent policies.

3) Assigning stateless and stateful checks: Various defense
mechanisms have been proposed to detect/mitigate cyber at-
tacks in CPS (e.g., [17], [27], [26], [29], [3]). For example,
in [26], the authors construct a safety envelope from the
measurements obtained under the normal operation of the
system. Attack detectors are then constructed that compare
the measurements received to the ones maintained by the
safety envelope. The authors in [29] assume knowledge of
the state of the system and derive correlation graphs without
attacks to study how that information impacts decisions. In [3]
the authors prevent an adversary from finding attack vectors
by identifying two sets: a set of sensors to protect and a
set of state variables that can be independently verified. The
work in [28] and [8] investigate the combination and con-
figuration of various defense mechanisms using stateless and
stateful checks. The work in [28] does not consider a game-
theoretic approach while our previous work in [8] considers
a game-theoretic approach but is only applicable to small
scale problems and does not use deep reinforcement learning
mechanisms. Physics-based models have also been proposed
to ensure that the signals in the control loop reflect a legitimate
behavior of the system (e.g., [10], [29]). These models include
state predictors, estimators and threshold checks which can be
integrated in our framework as checks.
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To summarize, this work adopts a game-theoretic approach
to derive intelligent strategies that integrate the developed
checks and defenses to detect attacks coherently. The frame-
work tackles the large state and action spaces through the use
of deep reinforcement learning methodologies.

III. STOCHASTIC GAME MODEL

We consider a general Cyber-Physical System (CPS) com-
posed of the plant and controller (distributed or centralized)
that communicate over the network. Sensors attached to the
plant generate a set of measurements that are transmitted to
the controller. Based on these measurements and the goal of
the controller, a set of control signals are transmitted to the
actuators that change the behavior of the plant. We refer to
the measurement and/or control signals as Targets, denoted by
the set G. Figure 1 shows a block diagram of a general CPS.

Fig. 1: Block diagram for a CPS with check blocks.

Adversary Model: We assume the adversary has a set of
attack methods M (e.g., false-data injection, jamming, delay)
available to mount on different targets. The attacks can be
mounted directly on the network as in man-in-the-middle
attacks, or through malware that compromises the sensors and
actuators and/or through manipulating the physical environ-
ment. These attacks would result in different target signals than
the intended ones. We let Ug denote the utility the adversary
gains after a successful attack on target g, and thus Ug reflects
the influence of that target signal. Furthermore, we assume
the adversary can probe the system to know which checks
are in place, but the checks themselves are implemented on a
separate system so the adversary cannot manipulate them.

The defender has at his disposal a set of check blocks
B that can check the target signals within the control loop.
These checks are implemented as bump-in-the-wire (BITW)
intercepting signals and checking them on a separate system
along four locations as depicted in Figure 1. We let Em

b denote
the effectiveness (i.e., probability) of block b in detecting
attack m. Due to the real-time constraints, it is not possible
for the defender to assign all of the check blocks on all of the
targets, and thus we let Cg denote the capacity in terms of the
number of blocks that can be assigned on target g. We assume
check blocks could be stateless or stateful (i.e., they need to
observe the signal over time to detect attacks). We let Wb

denote the warm-up period for block b to be fully effective.
Stateless blocks have a Wb of 1. Also, we assume that a check
block that is warming-up has an effectiveness that is linearly
proportional to the time-steps spent warming-up.

We consider a game-theoretic formulation of a 2-player
stochastic game between the defender and the adversary over
an infinite horizon in which a zero-sum sub-game is played
at every time-step. This stochastic game is represented by the
tuple 〈S,Aa,Ad, T ,R, β〉 where:

• S is the finite set of system states, where each s ∈ S
describes the following:

– Block assignment N : represents the current assign-
ment matrix of blocks on targets. Each entry, nb,g ,
denotes the number of times steps still needed by b
to be fully effective on g. An entry of 0 indicates that
the block is operating at its maximum effectiveness.

– Attacker budget ψ: is an integer bounded by Ψ that
represents the resources available to the attacker in
mounting attacks whereby each target signal attacked
incurs a cost. This conceptually represents the risk
the attacker is willing to take.

• Aa is a finite set of actions the attacker can choose from
in order to attack the system. An action a ∈ Aa contains
an attack method m and a subset of the targets, which
we denote by the vector v of length G that specifies for
every target whether it is attacked (1) or not (0).

• Ad is a finite set of actions the defender can choose from.
An action d ∈ Ad includes adding or removing one block,
or making no changes to the block assignment, subject
to the capacity constraints.

• T : S × Aa × Ad× ⇒ Π(S) is the state evolution
function based on the players action pair, where Π is a
discrete probability distribution over S. Accordingly, we
let T (s, a, d, s′) denote the probability of transitioning
into state s′ from state s when the attacker and the
defender take actions a ∈ Aa and d ∈ Ad, respectively.
Based on the adversary’s action a, her budget ψ is either
decremented based on the number of attacked targets,
or incremented by a unit value ψ0, under no attack.
Similarly, based on the defender’s action d, deploying
a new block requires setting the corresponding element
in N to Wb, whereas removing a block deactivates a
block. Partially active blocks would have the current
warm-up period decremented by 1. We also account for
environmental uncertainty to capture infrequent transient
instabilities on the physical part of the CPS (e.g., up-
grades and failures that make the assigned check blocks
impractical). Thus, with a small probability λ, the as-
signment matrix is altered randomly by assigning fresh
blocks and unassigning effective ones.

• R : S × Aa × Ad × S ⇒ IR is the reward obtained
by the defender. We let R(st, at, dt, st+1) denote the
reward received when going from st to st+1 under actions
a ∈ Aa and d ∈ Ad as shown in Equation 1. The first
term captures the loss due to a successful attack on the
intended targets and the second term reflects the loss due
to a stagnant assignment, where γ is a constant weight
to punish the defender based on the level of stagnancy.
Stagnancy captures the degree unto which the assignment
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remains the same between two time-steps. A stagnant
assignment is more predictable and thus, can be exploited.

R(st, at, dt, st+1) = −
∑
g∈v

xm,gUg − γp(st, st+1) (1)

xm,g =
∏
b∈B

(1− Em
b × (1− nb,g

Wb
)) (2)

p(st, st+1) =
∑
b∈B

∑
g∈G

nb,t=0 in st and st+1
(3)

Equation 2 gives the probability of a successful attack in
which all the blocks assigned fail to detect attack m based
on the effectiveness Em

b (hence, the product). Notice
that the effectiveness are proportional to the number
of remaining time-steps before becoming fully effective.
Equation 3 gives the stagnancy p denoting the number
of blocks that remained fully active between two time-
steps where cond is an indicator function when condition
cond is true. Due to the zero-sum nature of the game, one
reward function suffices for both agents.

• β : is the discount factor such that 0 < β < 1.

In every time-step, a sub-game is generated based on the
current state and the available actions of the players. The
following Linear Program (LP) optimization problem aims
to maximize the defender’s worst-case payoff, z, over the
probability distribution π(s, d) of the defender’s actions in
state s:

max
π(s,d)∈Π(Ad)

z (4)

z ≤
∑
d∈Ad

π(s, d)Q(s, a, d), ∀a ∈ Aa (5)

∑
d∈Ad(s)

π(s, d) = 1 (6)

0 ≤ π(s, d) ≤ 1 ∀d ∈ Ad(s) (7)

Constraint 5 follows from the definition of Nash equilibrium
where the defender is constrained by the attacker’s best
response. Since the actions of the players in this sub-game
determine not just the reward received, but also expected
future rewards based on subsequent states, Q(s, a, d) gives
the expected quality of the action pair a, d in s (and will be
approximated in the next Section). Constraints 6 and 7 ensure
a valid probability distribution over the defender’s actions.

The complexity of this LP grows exponentially with the
players’ action spaces. Moreover, the large state space makes it
prohibitive to obtain optimal solutions with dynamic program-
ming. Next, we present our approximation framework based on
deep reinforcement learning incorporating Nash equilibrium.

IV. METHODOLOGY

In this section we present DeepBLOC (DB) for deriving
optimal/sub-optimal policies on multi-agent zero-sum stochas-
tic games. We also present an approximation method for
solving every sub-game in DB.

A. DeepBLOC

Deep Q-Network (DQN), is a reinforcement learning ap-
proach that has been successfully applied in environments with
huge state spaces (e.g., Atari games) [19], [20]. As a variant of
Q-learning, DQN can estimate Q-values using a deep neural
network over a small number of observations. This method
utilizes Bellman’s equation to iteratively update the Q-values
based on the best action to take in every state. In single player
environments, the best action is the one that maximizes the
current reward together with expected future ones. In multi-
agent environments, however, the best actions have a more
complicated meaning as the reward of one agent depends on
the actions chosen by the other ones. Therefore, depending on
the nature of the interactions, the typical max operator would
need to be replaced with more comprehensive ones.

Algorithm 1 DeepBLOC with Experience Replay

1: Initialize i = 0
2: Initialize learning network with random weights θi
3: Initialize target network weights θ− = θi
4: Initialize τ to desired update cycle
5: Initialize replay memory Z to capacity N
6: for episode = 1, E do
7: Randomize starting state s1 ∈ S
8: for t = 1, T do
9: With probability ε take random action pair 〈at, dt〉

10: otherwise
11: Qst = GetQMatrix(st, θi)
12: 〈πA, πD〉 = Nash(Qst )
13: Sample at ∼ πA and dt ∼ πD

14: Execute action pair 〈at, dt〉 in and observe reward
rt and next state st+1

15: Store transition (st, at, dt, rt, st+1) in Z
16: Sample random mini-batch of transitions

(sj , aj , dj , rj , sj+1) from Z
17: Qsj+1

= GetQMatrix(sj+1, θ−)
18: 〈πA, πD〉 = Nash(Qsj+1

)
19: Set yj = rj + β(πD ×Qsj+1

× π
′
A)

20: Take gradient descent step on(
yj−Q(sj , aj , dj ; θi)

)2
21: Set i = i+ 1
22: if i mod τ = 0, then
23: θ− = θi
24: end if
25: end for
26: end for

DB (presented in Algorithm 1) extends DQN for multi-
agent environments with a zero-sum reward function. We let
Q(φ(s, a, d); θ) denote the approximated quality of the action
pair a and d in state s based on the neural network with
weights θ. We rely on a set of features φ(s, a, d) that is a
function of the state and the action pair to present the input
to the network. Due to the non-cooperative nature of our
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setup between the attacker and defender, we use the maximin
function to compute Q(φ(s, a, d); θ).

The algorithm uses an experience replay memory Z to store
single transitions (i.e., current state, players’ actions, reward,
and next state) that is initialized with random transitions. The
algorithm stores transitions at every time step and randomly
samples a mini-batch from this memory to learn from a
diverse set of past experiences without being biased to recent
transitions that may exhibit high data correlation. This has
been shown to produce highly effective neural networks. The
algorithm also uses two identical neural networks – a learning
and a target network. The target network is a more stable
version of the training network that gets updated after τ steps
with the weights of the training network. Both networks are
typically initialized with the same random weights.

The algorithm proceeds by running E episodes starting
from random states, where each episode is T time steps
long. In every state, a sub-game matrix Qs gets generated
according to the actions available to players. Each element in
the game matrix is the estimation of the training network about
the quality of the corresponding action pair, Q(φ(s, a, d); θ).
Then, we solve the game matrix using Nash to compute Nash
equilibrium and the associated probability distribution over the
players’ actions, πA and πD. By considering an exploration
rate ε players sample πA and πD to observe the next state and
the corresponding reward, which will be stored in the replay
memory in the form of < st, at, dt, rt, st+1 >.

In the next phase, we randomly pick a mini-batch from
the replay memory in order to compute the loss (Equation 8)
between the prediction of the training network and the target
y that we are moving our approximation toward.

Li(θi) = Est,at,dt,st+1∼z

[(
y −Q(φ(st, at, dt); θi)

)2]
, (8)

where y is given by:

y = Est+1

[
R(st, at, dt, st+1)

+ β max
dt+1∈AD

min
at+1∈Aa

Q(φ(st+1, at+1, dt+1); θ
−)|st, at, dt

]
.

(9)

Then, we differentiate the loss function regarding the train-
ing network parameters to infer the gradient as follows:

∇θiLi(θi) = Est,at,dt,st+1

[
∇θiQ(φ(st, at, dt); θi)

·
(
R(st, at, dt, st+1)

+ β max
dt+1∈AD

min
at+1∈AA

Q(φ(st+1, at+1, dt+1); θ
−)

−Q(φ(st, at, dt); θi)
)]

.

(10)

Finally, after τ number of updates on the training network,
we clone the training network into the target network.

B. Fictitious Play

In every time-step, a sub-game is generated based on the
current state and the actions available to the players. This

sub-game is solved optimally via the LP outlined in Equation
4, which yields Nash equilibrium mixed strategies for both
players. Due to the large action spaces in our model, it is
computationally prohibitive to solve this LP at every time-step.
Thus, we approximate the Nash function in the DB using
fictitious play [4] as presented in Algorithm 2.

Algorithm 2 Iterative Fictitious Play

1: R is an m× n matrix of rewards
2: rowRew and rowCnt are m-length arrays of zeros
3: colRew and colCnt are n-length arrays of zeros
4: Initialize bestResponse to any random row action
5: for i = 1, Iteratoins do
6: colRew = colRew + R[bestResponse, : ]
7: bestResponse = argmin(colRew)
8: colCnt[bestResponse] + +
9: rowRew = rowRew + R[ : , bestResponse]

10: bestResponse = argmax(rowRew)
11: rowCnt[bestResponse] + +
12: end for
13: gameV alue =

(
max(rowRew) + min(colRew)

)
/(2×i)

14: rowMixedStrat = rowCnt / i
15: colMixedStrat = colCnt / i

Fictitious play is an iterative approach for approximating
Nash equilibrium in normal form games. In this algorithm,
players repeatedly play the game in an iterative fashion while
tracking the historical behavior of their opponents. In each
iteration, a player chooses the best response based on the
historical utility their opponent has accrued. This historical
utility is represented by rowRew and colRew, with a best
response being defined by a max or min over these vectors,
respectively. By tracking each player’s action counts (vectors
rowCnt and colCnt), we can obtain mixed strategies for both
players with the game value being represented by the average
of both player’s best response utilities. The accuracy of the
algorithm in approximating Nash equilibrium can be tuned by
adjusting the number of iterations.1

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our
DB check block assignment method in comparison to other
common heuristics through extensive simulation and a realistic
setup of a water purification system.

A. Environments, Features and Hyperparameters

Environments: We assessed the performance of DB on differ-
ent environments with different sizes to show its applicability
across them. Env-Small is a moderately simple environment,
on which we could calculate the optimal policies using dy-
namic programming (DP) and demonstrate that the policies
derived from DB are almost identical to the optimal ones.
Env-Medium and Env-Large are larger environments in which

1This sub-optimality can be regarded as a degree of exploration in the same
manner as ε-greedy approaches aim to explore the environment by choosing
random actions (line 9 in Algorithm 1).

������������	
���	
���	������	�
����	���	������������
�����������

Authorized licensed use limited to: Texas State University. Downloaded on December 16,2020 at 14:39:47 UTC from IEEE Xplore.  Restrictions apply. 



obtaining optimal policies is computationally prohibitive. In
Env-Medium, we experimented with hand-crafted effective-
ness in which some blocks are more effective against certain
attack methods than others (rather than being random across all
of them). This enabled us to track and interpret the defender’s
actions. Env-Medium also resembles our experimental setup
of the water purification system. Env-Large is a massive
environment with 3× 1089 state space.

Name Env-Small Env-Medium Env-Large
|G| 3 5 8
|B| 3 6 10
|M | 3 6 10
CG×1 [2, 2, 1] [4, 3, 6, 2, 5] [4, 8, 6, 4,

8, 5, 9, 7]
[35, 25, 40, [36, 16, 47,

UG×1 [25, 15, 40] 30, 32] 10, 20, 30,
15, 8]

[1, 12, 6, [2, 12, 1, 12,
WB×1 [1, 2, 4] 2, 10, 5] 1, 6, 14, 13,

10, 4]
EB×M Random(0, 1) Hand Crafted Random(0, 0.4)

Ψ 9 15 48
|S| ∼ 3E + 5 ∼ 7E + 18 ∼ 3E + 89
λ 0 0.1 0.1

TABLE I: Parameters used in our Evaluation environments.
Features: We orchestrated a set of features, indicated by
φ(s, a, d), based on the state s, and the action pair a, d as an
input to the neural network. Based on the state, the assignment
N is represented such that each entry describes the extent to
which an assigned check block is effective (i.e., 1 − nt,b

Wb
).

The attacker’s budget ψ is used directly as a feature. Based
on the defender’s action, we designed features that capture
the type of action (e.g., assignment, removal or no change)
along with the utility of the affected target signal and a vector
showing the effectiveness of the chosen block b against all
attack methods (i.e., Eb). Based on the attacker’s action, we
used features capturing the chosen attack method along with
the attacked targets vector v that is element-wise multiplied
by the corresponding targets utilities.
Hyperparameters: One of the main challenges was identi-
fying a consistent neural network architecture and hyperpa-
rameters that are effective across different environment of
various sizes. Due to the complexity of DB, a pure trial-
and-error process in identifying quality features and proper
hyperparameters is not feasible. Therefore, we designed an
initial supervised learning method to bootstrap the approx-
imation of the reward function. We generate a data-set by
letting the players interact with the environment according to
a random policy, where the starting state of each episode was
biased to capture special transitions (e.g., significant number
of blocks are assigned and/or the attacker has enough budgets
to attack). In every transition we store the state and action
pair taken in the feature format φ(si, ai, di) in set Φ and the
observed reward ri in set ρ. Then, we trained a neural network,

n : Φ → ρ to predict the associate reward with a transition
n(φ(si, ai, di)) � R(si, ai, di, si+1), which is very similar to
what happens in DB before the first target network update.

We fine-tuned the architecture with a trial-and-error process
and decided on a fully connected neural network with 6
layers with the following number of neurons in each layer:
[30, 30, 20, 20, 60, 1]. We chose the activation function, loss
function, optimizer, batch size and learning factor to be
rectified linear unit (ReLU), mean square error, Adam, 32 and
0.005, respectively. This architecture outperformed other ones
consistently across all of our experiments and environments.

To find proper values for the hyperparameters in DB, we
run many instances of this expensive algorithm. Eventually,
we set the size of the replay buffer to 3200, ψ0 to 1 and
the discount factor β to 0.99. We also found that fixing the
number of iterations in the fictitious play algorithm to 500
gave us a good balance between accuracy and running time.
In particular, we were able to get a speed-up of 7 to 20 times
with an accuracy of 94% and above compared to LP.

B. Training and Convergence

Based on our selection of the features and hyperparameters,
we trained the attacker and defender on the 3 described
environments. It was only feasible to obtain optimal strategies
on Env-Small through the use of Dynamic Programming (DP)
[16]. Figure 2 shows the convergence of the Q-values in DP
while Figure 3 shows the convergence of the loss function
of DB through the training process where the periodic spikes
indicate the updates to the target network.
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Fig. 2: Convergence of average Q value in DP.
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Fig. 3: Convergence of the loss function of DB in Env-Small.

C. Policy Evaluation Results

After training the players, we assess their policies by
simulating their interaction with players that follow random
and greedy strategies. A random strategy picks actions at
random from the set of feasible actions (i.e., subject to the
capacity constraints for the defender and budget constraints
for the adversary). We introduce two greedy defenders; G1
chooses the target with the highest utility and least protection
and mounts the block with the highest average effectiveness
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Fig. 4: Defender polices’ payoff vs. DB attacker in Env-Small.
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Fig. 5: DB defender’s Payoff vs. attacker policies in Env-Small.

� �� ��� ��� 
��  �� ��� ˘ �� ���
�����	ˆ�


	
���

	����

	����

	���

�

�
��
��
��

��
�
�˝
��
�

��������	
��

�ˆ ����
����������
������
� ����

Fig. 6:Defender polices’ payoff vs. DB attacker in Env-Medium.
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Fig. 7: DB defender’s Payoff vs. attacker policies in Env-Medium.
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Fig. 8: Defender polices’ payoff vs. DB attacker in Env-Large.

�� ��� ��� 
��  �� ��� ��� 
��
������˙��

	����

	
���

	����

�



��
��
��
��
�
�˛
��
�

������������

���˙˙
��������˙˙
��������˙˙

Fig. 9: DB defender’s Payoff vs. attacker policies in Env-Large.

relative to its maximum warm-up period. G2 considers the
stagnancy along with the threshold on the number of blocks
that can be fully effective. G2 assigns blocks with the same
approach as G1, however in the case that the limit is reached,
G2 removes a block with the least weighted effectiveness from
the lowest utility most protected target. A greedy attacker, on
the other hand, chooses the action that achieves the highest
immediate reward.

To compare policies, we ran 500 simulations with 400
time steps for each policy pair and averaged the achieved
cumulative discounted reward (i.e., payoff) in every time step.
Figures 4 and 5 show the defender’s payoff on Env-Small for
DB players. In Figure 5 we can observe that the DB attacker
can inflict more damage (i.e., lower defender’s payoff) on the
system when the defender deviates from DB. This implies that
our framework protects the system the most in comparison to
other methods. In Figure 5, we show that the DB defender
would gain if the attacker deviates from a DB policy. Since
Env-Small is a simple environment, the attacker’s task is
straightforward and thus can also achieve a payoff similar to
DP. Notice that DB players have almost similar behaviors as
DP ones ensuring that DB is a good approximator for DP.

As shown in Figures 6 and 7, both DB players in Env-
Medium have a significantly better performance than other
heuristics. We noticed that the DB defender intelligently does
not allow the number of assigned check blocks to reach
the capacity constraints (as opposed to the greedy defender).
This keeps the DB defender with more open options and

allows him to hedge against the need to remove blocks as
the capacity is reached. This also allows him to recover easier
when uncertainty happens. On the other hand, the DB attacker
typically (and intelligently) accumulates her budget and strikes
the system right after the occurrence of the uncertainty in con-
secutive time steps. Recall that the uncertainty is introduced to
account for system upgrades and instabilities which present an
opportune moment to attack the system from the perspective
of the adversary.

Similar intelligent behaviors are observed on Env-Large and
likewise, Figures 8 and 9 show that DB achieves the highest
payoff in all cases. This environment is a fairly challenging
one, especially for the defender as he needs to consider the
uncertainty while keeping his behavior unpredictable on a very
large state space. These results demonstrate the scalability of
our approach. Overall, DB achieved between 13% - 30% better
protection than other approaches.
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Fig. 10: Average number of assigned blocks.
Our next set of results delve deeper into the way DB assigns

checks. Figure 10 represents the average number of fully
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assigned, partially assigned and unassigned blocks across de-
fense policies on Env-Large. Each bar represents a target with
the leftmost bar being the target with the highest utility. We
observe that the DB defender strategically utilizes a smaller
portion of targets’ capacity compared to other polices. This
allows for faster recovery when uncertainty occurs. Figure 11
shows the detection probability of the most frequent attack
method across various policies over time on Env-Large. The
top, middle, and bottom plots show the detection probability
for high utility, medium utility and low utility target, respec-
tively. One can observe that DB strategically assigns check
blocks that provide the highest detection probability on the
most important target (top figure) and provides less protection
as the target utility decreases. The vertical lines indicate the
point in time when uncertainty events happen and we can see
that the DB defender is resilient against those events and in
most cases can recover faster than other strategies.
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Fig. 11: Probability of detecting attacks across policies on
the target with a highest utility (top), medium utility

(middle), and lowest utility (bottom).

D. Evaluation on a Water Treatment System

As a case study, we evaluated DB on a six stage water
treatment system called SWaT [1]. We focused on stage 1 of
SWaT, which is called “Raw Water”, and it is responsible for
holding the water to be treated in the upcoming stages.

As shown in Figure 12, stage 1 is constituted of a water
tank, level (LIT101) and flow (FIT101) sensors. Besides these
components, it has an inlet motorized valve (MV101) and
two outlet pumps (P101 and P102), which are controlled by a
Programmable Logic Controllers (PLC) regarding the sensor
measurements. Attacks on stage 1 would cause Tank-3 to

overflow; Tank-3 is in stage 3, which handles ultra-filtration
(UF).
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Fig. 12: Stage-1 of the water treatment system.
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Fig. 13: Impact of cyber attacks on level sensor (LIT101).
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Fig. 14: Detection events over time for the DB defender.

We consider 6 attack methods: (1) random spoofing attack,
(2) clamp attack that would fix the signal on a particular level
beyond a particular value, (3) offset attack that would offset a
signal by a positive or a negative value, (4) spoofing a signal
with its log value (i.e., diminishing its value), (5) inverting the
signal and (6) flipping a constrained set of bits. We also utilize
a set of 6 check blocks: (1) cumulative sum (stateful), (2)
checksum, (3) parity checks with previous signals (stateful),
(4) maximum delta change over a window of values (stateful),
(5) count of on/off changes (stateful) and (6) minimum delta
change over a window of values (stateful).

We trained the DB players and conducted our experiments
over 100 seconds (a time-step is 1 second). Since DB only
detects attacks (i.e., an alarm is raised), their impact would
continue on the physical plant. Figure 13 shows the impact of
attacks (the attacker selects an attack method or none at every
time step) on the water level sensor LIT101. The difference
between the steady water levels (i.e., 527 and 800) was not
due to the attack, but just the initial conditions. Since the water
was being pumped from the first stage, we observed that the
tank was being filled in stage 3 and would ultimately overflow.

We assess the success of DB in detecting attacks comparing
it to the greedy approach (G1). Figure 14 shows the P101
signal value along with the attack detection events over 100
time steps. The vertical solid lines indicate attack detection
events and the dashed ones indicate attacks that are not
detected. DB defender was able to detect 55% of the attacks
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whereas the greedy approach was able to detect 39%. It is
worth mentioning that these detection percentages depend
on the effectiveness matrix which had an overall average
effectiveness of 46% across all of its elements.

VI. CONCLUSIONS

Protecting CPS against cyber attacks requires the careful
selection and integration of checks within the control loop.
Despite the recent development of a wide selection of stateless
and stateful checks to detect anomalies, a coherent approach
to integrate such checks in a preventative manner is lacking.
In this work, we develop a stochastic game model that
captures the interaction between the defender and the adver-
sary and present a deep reinforcement learning framework
that provides optimal and sub-optimal policies that we coin
DeepBLOC (DB). DB derives strategies that randomizes the
assignment of checks based on their effectiveness, statefulness,
warm-up periods, the importance of the target signals and the
capabilities of the adversary. Through engineering efforts and
trial-and-error approaches, we identify an architecture (along
with its hyperparameters) that consistently captures the quality
of the actions of the defender and adversary based on the
current state. Through DB we are able to obtain policies that
are Nash equilibrium conformant in environments with large
state and action spaces. Through our extensive evaluation we
show that the policies obtained with DB are very close to
optimal polices that are obtained using dynamic programming
on small environments and outperform other policies – with
improvements reaching 30% – on larger environments.
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