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Abstract

Summary: In many areas of biological research, hypotheses are tested in a sequential manner,
without having access to future P-values or even the number of hypotheses to be tested. A key
setting where this online hypothesis testing occurs is in the context of publicly available data repo-
sitories, where the family of hypotheses to be tested is continually growing as new data is accumu-
lated over time. Recently, Javanmard and Montanari proposed the first procedures that control the
FDR for online hypothesis testing. We present an R package, onlineFDR, which implements these
procedures and provides wrapper functions to apply them to a historic dataset or a growing data

repository.

Availability and implementation: The R package is freely available through Bioconductor (http://

www.bioconductor.org/packages/onlineFDR).
Contact: david.robertson@mrc-bsu.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple hypothesis testing is a common feature of genome bioinfor-
matics and computational biology, and appropriately correcting for
this multiplicity is crucial when it comes to making statistical infer-
ence from the data. Indeed, uncorrected hypothesis testing has been
highlighted as one of the contributing factors to the reproducibility
crisis in scientific research (Ioannidis, 2005). The false discovery
rate (FDR), which was introduced by Benjamini and Hochberg
(1995), has become the error criterion of choice for large-scale mul-
tiple hypothesis testing. The FDR is defined as the expected propor-
tion of the discoveries (i.e. rejections) made that are false. To
control the FDR, procedures (such as the well-known Benjamini-
Hochberg procedure) have been developed which require that all the
P-values are available to be tested at once.

However, modern data analysis often has a further complexity
in that hypotheses are tested sequentially, with the family of hypoth-
eses continually growing due to the temporal accumulation of data.

©The Author(s) 2019. Published by Oxford University Press.

This introduces the challenge of online hypothesis testing, where at
each step the investigator must decide whether to reject the current
null hypothesis without knowing the future P-values or even the
total number of hypotheses to be tested, but only knowing the his-
toric decisions to date.

This setting occurs in the context of publicly available data repo-
sitories, which are becoming increasingly common and important
for biological research. Currently, multiple testing in growing data
repositories is managed by using a fixed conservative threshold or
through the recalculation of significance as new hypotheses are
tested. However, the fixed threshold approach fails to adapt to the
data, while the recalculation approach can lead to the decisions for
an individual hypothesis changing over time.

The online FDR concept is based around hypothesis testing and
decisions being made in a sequential manner, with the aim being to
control the FDR across the family of hypothesis tests considered. In
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some biological databases, the family of hypotheses is clearly
defined, and a centralized analysis pipeline has been constructed
upon which the online FDR method can be implemented. For exam-
ples, see the application datasets used in this manuscript. In contrast,
in other databases independent research groups may carry out mul-
tiple hypothesis testing and generate distinct families of hypothesis
tests, and so overall FDR control is not necessarily appropriate.

Javanmard and Montanari (2015, 2018) recently proposed the
first procedures that control the FDR for online hypothesis testing,
which were the basis for further procedures by Ramdas et al.
(2017). The R package onlineFDR, available through Bioconductor,
implements these procedures and provides wrapper functions to
apply them to a historic dataset or a growing data repository.

2 Materials and methods

Consider a series of null hypotheses Hy, H,, H3, ... with corre-
sponding P-values (py, p2, P3, --.). A testing procedure provides a
sequence of adjusted significance thresholds o; with corresponding

decision rules

1
o {1

A distinction needs to be made between methods appropriate for

if pi < o (reject H;)
otherwise

independent versus dependent P-values. As a brief practical ex-
ample, suppose p; corresponds to testing the null hypothesis H; that
genotype X has no association with lean mass, using data Y col-
lected on a group of mice. If p, corresponds to testing the null hy-
pothesis H, that genotype X has no association with fat mass using
the same data Y, then p; and p, would be dependent due to the asso-
ciation between lean and fat mass for the same mice. However, if in-
stead we tested H, using new data Y’ from a different group of mice,
or replaced genotype X with an unassociated genotype X, then p;
and p, would be independent.

In the setting of a growing data repository, the online methods
have the following baseline assumptions:

1. There is a family of hypothesis tests for which FDR control is
required.

2. The hypothesis tests are performed sequentially in time.

3. The P-values are all valid and finalized (i.e. will not be changed
at a later stage).

4. All of the P-values are analysed, and not just the statistically sig-
nificant P-values. An exception is if an orthogonal filter is
applied to reduce the dataset size; see Bourgon et al. (2010).

5. [For methods requiring independent P-values] A different hy-
pothesis is being tested at each step.

6. [For methods requiring independent P-values] If the P-values
come in batches, the ordering within a batch should be random
or ordered using independent information.

We now give a high-level overview of the online FDR methods
implemented in the package, with full details given in the package
vignette (https://www.bioconductor.org/packages/devel/bioc/vignettes/
onlineFDR/inst/doc/onlineFDR-vignette.html).

LOND stands for ‘significance Levels based On Number
of Discoveries’, and provably controls the FDR for independent
P-values. The values of the adjusted significance thresholds «; are
directly related to the number of discoveries (i.e. rejections) made in
the first i hypotheses tested. The higher the number of discoveries,
the larger the adjusted significance thresholds will be. LOND can be

modified to guarantee control FDR under dependent P-values, al-
though this can come at the expense of a substantial loss in power.

LORD stands for ‘significance Levels based On Recent
Discovery’, and also controls the FDR for independent P-values.
The LORD procedures are examples of generalized alpha-investing
rules, and hence have an intuitive interpretation: the procedure
starts with an error budget, or alpha-wealth, and there is a price to
pay each time a hypothesis is tested. When a new discovery is made,
some alpha-wealth is earned back (i.e. there is a ‘return’ on the
alpha-wealth invested). The adjusted significance thresholds o; for
LORD procedures thus depend on the alpha-wealth and the times of
previous discoveries.

Javanmard and Montanari (2018) presented three versions of
LORD, where LORD 1 and 2 provably control the FDR for inde-
pendent P-values, with this only shown empirically for LORD 3.
LORD 1 always has smaller significance thresholds (and hence a
lower power) than both LORD 2 and LORD 3. The authors also
presented an adjusted version of LORD that is valid for dependent
P-values, but this can lead to a large loss in power. Finally, Ramdas
et al. (2017) presented a modified version of LORD 2, called
LORD++, which always has at least as large significance thresholds
(and hence will have an equal or higher power).

Bonferroni-like procedure: This controls the FDR for a stream of
P-values using a Bonferroni-like test. Given a target significance
level o, the adjusted significance thresholds are chosen as o; = ay;,
where 7; is a sequence of non-negative numbers that sum to one.
This procedure is also valid for dependent P-values. Note that for in-
dependent P-values, the equivalent LOND procedure will always
have an equal or higher power.

3 Application examples

In practice, using the onlineFDR package on a data repository with
a growing family of hypotheses involves the following steps:

1. A dataset is passed to an onlineFDR wrapper function.
For each hypothesis test, the adjusted significance threshold o is
calculated.

3. Using the P-values provided and the adjusted significance thresh-
old «;, an indicator of discoveries R; is calculated.

4. As the dataset grows, the new larger dataset is passed to the
wrapper function, and then «; and R; are calculated for the new
hypothesis tests (with the previous results remaining the same).

In the Supplementary Material, we apply the procedures to simu-
lated data where the number of false discoveries is a known quan-
tity. This analysis demonstrates that the empirical FDR is correctly
controlled over time. We have also applied the procedures to two
real-life data repositories (all data and code are available as a
Zenodo repository at https://doi.org/10.5281/zenodo.1343578).

The first is from the International Mouse Phenotyping
Consortium (IMPC). As described in Karp ez al. (2017), the IMPC
coordinates a large study to functionally annotate every protein cod-
ing gene by exploring the impact of the gene knockout on the result-
ing phenotype for up to 234 traits of interest. Data are uploaded to
a public database where phenodeviants are identified using a fixed
significance threshold (P < 0.0001). The dataset and resulting family
of hypotheses constantly grow as new knockouts are studied. As
part of their analysis, Karp et al. tested both the role of genotype
and the role of sex as a modifier of genotype effect. Hence, the ana-
lysis resulted in two sets of P-values, one for testing genotype effects
and the other for testing sexual dimorphism.
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Fig. 1. Adjusted significance thresholds on the log10 scale. Applied to geno-
type effect data from the IMPC dataset, at a FDR level of 5%. (a) LORD 3, (b)
LORD++, (¢) LOND and (d) Bonferroni-like

The second dataset, described by Wildenhain et al. (2016), con-
tains phenotypic growth data for 240 diverse yeast gene deletion
strains grown in the presence of about 5500 unique compounds.
This collection has been generated to investigate how small molecule
chemical-genetic fingerprints could be used to predict synergistic
chemical-chemical combinations that induce lethal phenotypes.
Significant phenotypic responses are identified as those with an ab-
solute z-score greater than 4 (or equivalently, P < 0.000032).

Visually, we can compare the different procedures by visualizing
the adjusted significance thresholds over time (Fig. 1).

We see that for LOND, the adjusted significance thresholds fall
away quickly and then remain roughly constant at a very low level.
The Bonferroni-like procedure continues to monotonically decrease
towards zero and will always have lower significance thresholds than
LOND. In contrast, the LORD procedures recover relatively high
adjusted significance thresholds when discoveries are made. Visually
this can be seen in Figure 1a and b as the adjusted significance thresh-
olds that are elevated due to recent discoveries. This explains why the
LORD procedures will typically have a higher power than LOND,
which in turn has a higher power than the Bonferroni-like procedures.

Table 1 gives the number of discoveries made by the proposed
procedures when applied to the two datasets. As benchmark compari-
sons, we used the fixed thresholds currently used by the associated
databases and the Benjamini and Hochberg (BH) procedure [as well
as the adjusted BH that is valid for arbitrary dependencies between
P-values; see Benjamini and Yekutieli (2001)]. The BH procedure is
an offline procedure (i.e. requiring all P-values to be available at
once), and so in practice could not be applied to a growing data re-
pository, but we include it as a ‘gold-standard’ comparison. The fixed
thresholds do not provably control the FDR or adapt to the data over
time.

We see that the LORD procedures make more discoveries than
the fixed thresholds and (for LORD 2 and LORD++) are recom-
mended as they provably control the FDR. LORD also makes
substantially more discoveries than LOND, as seen in Figure 1 above
for the IMPC data for example. While LOND makes fewer

Table 1. Number of discoveries made by the online FDR proce-
dures (and benchmark comparisons) for the IMPC and yeast data-
sets, at a FDR level of 5%

Method Genotype SD  Yeast  Method details

Fixed 4158 969 41767 IMPC < 0.0001
Yeast < 0.000032
BH 12907 2084 55982 Benjamini and Hochberg
LORD 3 9685 1343 53766 Based on recent discoveries
LORD++ 8517 1193 52352 Modified version of LORD 2
LORD 2 8049 1088 51864 Based on recent discoveries
LOND 2905 206 44418 Based on number of
discoveries
BH (dep) 4078 315 46 486 BH for arbitrary dependence
LOND (dep) 1475 76 40325 LOND for dependent
P-values
LORD (dep) 780 25 36 833 LORD for dependent
P-values
Bonferroni 795 60 34 363 Bonferroni-like procedure
N 172 328 172328 417026

SD, sexual dimorphism; dep, dependent; N, total number of P-values.

discoveries than the fixed threshold for the IMPC data, the latter pro-
cedure does not guarantee control of the FDR. For the yeast data, the
LORD procedures even achieved a similar number of discoveries (93—
96%) as the offline BH procedure. Some loss in power is expected
when controlling the FDR in an online manner compared to offline
procedures. In general, the power of the LORD and LOND proce-
dures tends to increase with the fraction of non-null hypotheses. In
the Supplementary Material, we also compare the sets of discoveries
for the genotype effect data from the IMPC dataset.

Meanwhile, the Bonferroni-like procedure has a relatively low num-
ber of discoveries, particularly for the yeast dataset. There is a large
drop in the number of discoveries for both LORD and LOND when
using methods for dependent P-values. The relative power of these pro-
cedures compared with the Bonferroni-like one depends on the number
of hypothesis tests carried out and on the proportion of true nulls in the
dataset; see Robertson and Wason (2018). Further research is required
to characterize which dependencies (if any) inflate the FDR when using
the LORD and LOND procedures designed for independent P-values.

4 Conclusion

onlineFDR is an accessible and easy to use R package that controls
the FDR for online hypothesis testing. This new tool is particularly
useful in allowing bioinformaticians to control for multiplicity in
growing data repositories by controlling the FDR across a family of
hypotheses. Implementation of this formal framework to manage
multiple testing is a substantial improvement over the ad hoc methods
implemented to date and will help enable robust statistical analyses.
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