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Abstract

Summary: In many areas of biological research, hypotheses are tested in a sequential manner,

without having access to future P-values or even the number of hypotheses to be tested. A key

setting where this online hypothesis testing occurs is in the context of publicly available data repo-

sitories, where the family of hypotheses to be tested is continually growing as new data is accumu-

lated over time. Recently, Javanmard and Montanari proposed the first procedures that control the

FDR for online hypothesis testing. We present an R package, onlineFDR, which implements these

procedures and provides wrapper functions to apply them to a historic dataset or a growing data

repository.

Availability and implementation: The R package is freely available through Bioconductor (http://

www.bioconductor.org/packages/onlineFDR).

Contact: david.robertson@mrc-bsu.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple hypothesis testing is a common feature of genome bioinfor-

matics and computational biology, and appropriately correcting for

this multiplicity is crucial when it comes to making statistical infer-

ence from the data. Indeed, uncorrected hypothesis testing has been

highlighted as one of the contributing factors to the reproducibility

crisis in scientific research (Ioannidis, 2005). The false discovery

rate (FDR), which was introduced by Benjamini and Hochberg

(1995), has become the error criterion of choice for large-scale mul-

tiple hypothesis testing. The FDR is defined as the expected propor-

tion of the discoveries (i.e. rejections) made that are false. To

control the FDR, procedures (such as the well-known Benjamini–

Hochberg procedure) have been developed which require that all the

P-values are available to be tested at once.

However, modern data analysis often has a further complexity

in that hypotheses are tested sequentially, with the family of hypoth-

eses continually growing due to the temporal accumulation of data.

This introduces the challenge of online hypothesis testing, where at

each step the investigator must decide whether to reject the current

null hypothesis without knowing the future P-values or even the

total number of hypotheses to be tested, but only knowing the his-

toric decisions to date.

This setting occurs in the context of publicly available data repo-

sitories, which are becoming increasingly common and important

for biological research. Currently, multiple testing in growing data

repositories is managed by using a fixed conservative threshold or

through the recalculation of significance as new hypotheses are

tested. However, the fixed threshold approach fails to adapt to the

data, while the recalculation approach can lead to the decisions for

an individual hypothesis changing over time.

The online FDR concept is based around hypothesis testing and

decisions being made in a sequential manner, with the aim being to

control the FDR across the family of hypothesis tests considered. In
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some biological databases, the family of hypotheses is clearly

defined, and a centralized analysis pipeline has been constructed

upon which the online FDR method can be implemented. For exam-

ples, see the application datasets used in this manuscript. In contrast,

in other databases independent research groups may carry out mul-

tiple hypothesis testing and generate distinct families of hypothesis

tests, and so overall FDR control is not necessarily appropriate.

Javanmard and Montanari (2015, 2018) recently proposed the

first procedures that control the FDR for online hypothesis testing,

which were the basis for further procedures by Ramdas et al.

(2017). The R package onlineFDR, available through Bioconductor,

implements these procedures and provides wrapper functions to

apply them to a historic dataset or a growing data repository.

2 Materials and methods

Consider a series of null hypotheses H1, H2, H3, . . . with corre-

sponding P-values (p1, p2, p3, . . .). A testing procedure provides a

sequence of adjusted significance thresholds ai, with corresponding

decision rules

Ri ¼

�

1 if pi � ai ðreject HiÞ
0 otherwise

A distinction needs to be made between methods appropriate for

independent versus dependent P-values. As a brief practical ex-

ample, suppose p1 corresponds to testing the null hypothesis H1 that

genotype X has no association with lean mass, using data Y col-

lected on a group of mice. If p2 corresponds to testing the null hy-

pothesis H2 that genotype X has no association with fat mass using

the same data Y, then p1 and p2 would be dependent due to the asso-

ciation between lean and fat mass for the same mice. However, if in-

stead we testedH2 using new data Y’ from a different group of mice,

or replaced genotype X with an unassociated genotype X’, then p1

and p2 would be independent.

In the setting of a growing data repository, the online methods

have the following baseline assumptions:

1. There is a family of hypothesis tests for which FDR control is

required.

2. The hypothesis tests are performed sequentially in time.

3. The P-values are all valid and finalized (i.e. will not be changed

at a later stage).

4. All of the P-values are analysed, and not just the statistically sig-

nificant P-values. An exception is if an orthogonal filter is

applied to reduce the dataset size; see Bourgon et al. (2010).

5. [For methods requiring independent P-values] A different hy-

pothesis is being tested at each step.

6. [For methods requiring independent P-values] If the P-values

come in batches, the ordering within a batch should be random

or ordered using independent information.

We now give a high-level overview of the online FDR methods

implemented in the package, with full details given in the package

vignette (https://www.bioconductor.org/packages/devel/bioc/vignettes/

onlineFDR/inst/doc/onlineFDR-vignette.html).

LOND stands for ‘significance Levels based On Number

of Discoveries’, and provably controls the FDR for independent

P-values. The values of the adjusted significance thresholds ai are

directly related to the number of discoveries (i.e. rejections) made in

the first i hypotheses tested. The higher the number of discoveries,

the larger the adjusted significance thresholds will be. LOND can be

modified to guarantee control FDR under dependent P-values, al-

though this can come at the expense of a substantial loss in power.

LORD stands for ‘significance Levels based On Recent

Discovery’, and also controls the FDR for independent P-values.

The LORD procedures are examples of generalized alpha-investing

rules, and hence have an intuitive interpretation: the procedure

starts with an error budget, or alpha-wealth, and there is a price to

pay each time a hypothesis is tested. When a new discovery is made,

some alpha-wealth is earned back (i.e. there is a ‘return’ on the

alpha-wealth invested). The adjusted significance thresholds ai for

LORD procedures thus depend on the alpha-wealth and the times of

previous discoveries.

Javanmard and Montanari (2018) presented three versions of

LORD, where LORD 1 and 2 provably control the FDR for inde-

pendent P-values, with this only shown empirically for LORD 3.

LORD 1 always has smaller significance thresholds (and hence a

lower power) than both LORD 2 and LORD 3. The authors also

presented an adjusted version of LORD that is valid for dependent

P-values, but this can lead to a large loss in power. Finally, Ramdas

et al. (2017) presented a modified version of LORD 2, called

LORDþþ, which always has at least as large significance thresholds

(and hence will have an equal or higher power).

Bonferroni-like procedure: This controls the FDR for a stream of

P-values using a Bonferroni-like test. Given a target significance

level a, the adjusted significance thresholds are chosen as ai ¼ aci,

where ci is a sequence of non-negative numbers that sum to one.

This procedure is also valid for dependent P-values. Note that for in-

dependent P-values, the equivalent LOND procedure will always

have an equal or higher power.

3 Application examples

In practice, using the onlineFDR package on a data repository with

a growing family of hypotheses involves the following steps:

1. A dataset is passed to an onlineFDR wrapper function.

2. For each hypothesis test, the adjusted significance threshold ai is

calculated.

3. Using the P-values provided and the adjusted significance thresh-

old ai, an indicator of discoveries Ri is calculated.

4. As the dataset grows, the new larger dataset is passed to the

wrapper function, and then ai and Ri are calculated for the new

hypothesis tests (with the previous results remaining the same).

In the Supplementary Material, we apply the procedures to simu-

lated data where the number of false discoveries is a known quan-

tity. This analysis demonstrates that the empirical FDR is correctly

controlled over time. We have also applied the procedures to two

real-life data repositories (all data and code are available as a

Zenodo repository at https://doi.org/10.5281/zenodo.1343578).

The first is from the International Mouse Phenotyping

Consortium (IMPC). As described in Karp et al. (2017), the IMPC

coordinates a large study to functionally annotate every protein cod-

ing gene by exploring the impact of the gene knockout on the result-

ing phenotype for up to 234 traits of interest. Data are uploaded to

a public database where phenodeviants are identified using a fixed

significance threshold (P<0.0001). The dataset and resulting family

of hypotheses constantly grow as new knockouts are studied. As

part of their analysis, Karp et al. tested both the role of genotype

and the role of sex as a modifier of genotype effect. Hence, the ana-

lysis resulted in two sets of P-values, one for testing genotype effects

and the other for testing sexual dimorphism.

onlineFDR R package 4197
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The second dataset, described by Wildenhain et al. (2016), con-

tains phenotypic growth data for 240 diverse yeast gene deletion

strains grown in the presence of about 5500 unique compounds.

This collection has been generated to investigate how small molecule

chemical-genetic fingerprints could be used to predict synergistic

chemical–chemical combinations that induce lethal phenotypes.

Significant phenotypic responses are identified as those with an ab-

solute z-score greater than 4 (or equivalently, P<0.000032).

Visually, we can compare the different procedures by visualizing

the adjusted significance thresholds over time (Fig. 1).

We see that for LOND, the adjusted significance thresholds fall

away quickly and then remain roughly constant at a very low level.

The Bonferroni-like procedure continues to monotonically decrease

towards zero and will always have lower significance thresholds than

LOND. In contrast, the LORD procedures recover relatively high

adjusted significance thresholds when discoveries are made. Visually

this can be seen in Figure 1a and b as the adjusted significance thresh-

olds that are elevated due to recent discoveries. This explains why the

LORD procedures will typically have a higher power than LOND,

which in turn has a higher power than the Bonferroni-like procedures.

Table 1 gives the number of discoveries made by the proposed

procedures when applied to the two datasets. As benchmark compari-

sons, we used the fixed thresholds currently used by the associated

databases and the Benjamini and Hochberg (BH) procedure [as well

as the adjusted BH that is valid for arbitrary dependencies between

P-values; see Benjamini and Yekutieli (2001)]. The BH procedure is

an offline procedure (i.e. requiring all P-values to be available at

once), and so in practice could not be applied to a growing data re-

pository, but we include it as a ‘gold-standard’ comparison. The fixed

thresholds do not provably control the FDR or adapt to the data over

time.

We see that the LORD procedures make more discoveries than

the fixed thresholds and (for LORD 2 and LORDþþ) are recom-

mended as they provably control the FDR. LORD also makes

substantially more discoveries than LOND, as seen in Figure 1 above

for the IMPC data for example. While LOND makes fewer

discoveries than the fixed threshold for the IMPC data, the latter pro-

cedure does not guarantee control of the FDR. For the yeast data, the

LORD procedures even achieved a similar number of discoveries (93–

96%) as the offline BH procedure. Some loss in power is expected

when controlling the FDR in an online manner compared to offline

procedures. In general, the power of the LORD and LOND proce-

dures tends to increase with the fraction of non-null hypotheses. In

the Supplementary Material, we also compare the sets of discoveries

for the genotype effect data from the IMPC dataset.

Meanwhile, the Bonferroni-like procedure has a relatively low num-

ber of discoveries, particularly for the yeast dataset. There is a large

drop in the number of discoveries for both LORD and LOND when

using methods for dependent P-values. The relative power of these pro-

cedures compared with the Bonferroni-like one depends on the number

of hypothesis tests carried out and on the proportion of true nulls in the

dataset; see Robertson and Wason (2018). Further research is required

to characterize which dependencies (if any) inflate the FDR when using

the LORD and LOND procedures designed for independent P-values.

4 Conclusion

onlineFDR is an accessible and easy to use R package that controls

the FDR for online hypothesis testing. This new tool is particularly

useful in allowing bioinformaticians to control for multiplicity in

growing data repositories by controlling the FDR across a family of

hypotheses. Implementation of this formal framework to manage

multiple testing is a substantial improvement over the ad hocmethods

implemented to date and will help enable robust statistical analyses.
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