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Abstract—In a multi-tenant cloud, a number of Virtual Machines (VMs)
are collocated on the same physical machine to optimize performance,
power consumption and maximize profit. This, however, increases the
risk of a malicious VM performing side-channel attacks and leaking sen-
sitive information from neighboring VMs. As such, this paper develops
and analyzes a game-theoretic framework for the VM migration timing
problem in which the cloud provider decides when to migrate a VM to
a different physical machine to reduce the risk of being compromised
by a collocated malicious VM. The adversary decides the rate at which
she launches new VMs to collocate with the victim VMs. Our formulation
captures a data leakage model in which the cost incurred by the cloud
provider depends on the duration of collocation with malicious VMs. It
also captures costs incurred by the adversary in launching new VMs
and by the defender in migrating VMs. We establish sufficient conditions
for the existence of Nash equilibria for general cost functions, as well
as for specific instantiations, and characterize the best response for
both players. Furthermore, we extend our model to characterize its
impact on the attacker’s payoff when the cloud utilizes intrusion detection
systems that detect side-channel attacks. Our theoretical findings are
corroborated with extensive numerical results in various settings as well
as a proof-of-concept implementation in a realistic cloud setting.

Index Terms—Cloud security, game theory, VM migration.

1 INTRODUCTION

One of the main characteristics of the cloud that allows
scalable and cost-effective operation is multi-tenancy. Multi-
tenancy is achieved through virtualization to enable cloud
providers to host multiple virtual machines (VMs) on the
same physical machine while providing isolation between
them. Recent attacks, however, have been shown to bypass
such isolation [1]. A malicious VM collocating on the same
physical machine with a victim VM can seek unauthorized
access to sensitive and private data and/or intellectual prop-
erty, or can render some of its computational functionality
unusable.

This has prompted cloud providers to develop various
strategies for VM placement, migration and reconfiguration
to mitigate some of these attacks. Moving target defense
(MTD) strategies aim to dynamically shift the attack surface,
making it more difficult for attackers to launch effective
attacks [2]. When developing an MTD strategy, two main
questions generally arise: which targets should be moved?

and when should they be moved? The answers to these
questions largely depend on the context of the problem
and the nature of the attack. For example, if an attacker
contemplates to infer the underlying topology of the cloud,
then the target is the machine connectivity that should then
be adapted over time. However, if the attacker seeks to crack
system credentials that protect the users’ databases, then the
target are the keys that should be constantly reconfigured
(i.e., moved). In this paper, we consider collocation attacks
whereby an attacker can access sensitive data from a tar-
geted victim by running a VM on the same physical node
(e.g., through launching a side-channel attack). Thus, for se-
curing such systems, VMs should be periodically migrated,
i.e., moved to different physical machines. While much
work focused on the scheduling and placement aspect of
VM migration, the timing problem is largely understudied.
This motivates the work in this paper, which is primarily
focused on the second question, that is, when to move the
identified targets.

In the MTD literature, this question is usually referred to
as the timing problem of the MTD strategy. In this paper, we
study this question in a game-theoretic framework seeking
an understanding of the interplay of the strategies of the
cloud provider (i.e., the defender) and the adversary. In
our formulation, the adversary seeks to prolong the collo-
cation time with the victim VMs to maximize the amount
of information she can access. Since the adversary has no
guarantees for being successfully collocated on the same
node with the victim (different cloud providers implement
different placement algorithms according to different cri-
teria that the attacker has no control over), her best-effort
is to increase the number of VMs to launch (which is a
cost metric we capture). After the adversary is placed on
given physical machines, she can check whether she had
a successful collocation or not [3]. The cloud provider, on
the other hand, migrates VMs between physical machines
to minimize the collocation times between VMs. VM live
migration, while efficient at not significantly disrupting the
tasks running on a VM in the event of migration, is not
free [4]. In practice, the number of cache pages read by
an adversary from shared memory pages is proportional
to the duration of a side-channel attack. It also depends on
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the technique used to access the last level cache (LLC) (e.g,
PRIME+PROBE and FLUSH+RELOAD attacks) as shown in
[5]. To read the cache, an attacker would need to adjust the
time of the PROBE phase, which in turn affects the error rate
of the attack covert channel. Thus, the question as to when
to migrate is crucial. At the same time, the defender controls
the migration time in order to mitigate the collocation attack
threats while not burdening the system with significant
overhead, e.g., due to VM downtime and undue memory
usage.
Contributions: While VM migration strategies have been
proposed as defense mechanisms against collocation attacks
in various studies, such work focused on the VM assign-
ment problem (mapping VMs to physical nodes) as a single
player scheduling problem. In this paper, however, we con-
sider the timing problem of the MTD as a game between the
attacker and the cloud provider. Our work contributes to the
theory of timing games [6], [7], which is largely unexplored
in cloud computing settings. We leverage the results of the
leakage model in the FlipIt game considered previously in
[8], [9], [10], [11], [12], [13] to develop a novel formulation
to study the VM collocation problem in an extended FlipIt
game-theoretic framework. To the best of our knowledge,
this is the first work to investigate the following aspects of
timing games.

• We provide a new game-theoretic formulation for the
VM collocation timing problem.

• Unlike [14], [15], [16], we do not assume the defender
has prior knowledge of the exact location of the
attacker, thereby allowing for realistic threat and
defense models. The defender has to migrate the
VMs at the right time(s) to defend against malicious
collocating users.

• We analytically characterize the Nash equilibrium
(NE) for the studied game model and derive suffi-
cient existence conditions.

• We study the behavior of the adversary when the
defender adopts an intrusion detection system (IDS).
In this case, the adversary not only takes attack
actions, but also decides when to stop her attack to
reduce the risk of being detected.

• We provide extensive numerical experiments to sup-
port our theoretical findings. In our numerical evalu-
ation, we consider several reward functions to reflect
the degree of the attack and the severity of the data
breach. As a proof of concept, we also implement the
migration defense approach on a realistic cloud setup
using the Xen hypervisor.

This paper is organized as follows. In Section 3, we
present the system model and the game formulation. In
Section 4, we provide a theoretical analysis and establish
existence conditions of NE for the formulated game. Section
5 studies an extension of the game model in the presence of
an IDS. Our numerical results are presented in Section 6 and
we conclude the paper in Section 7.

2 RELATED WORK

This work is at the intersection of two areas focused on
securing cloud computing: Cross-VM side-channel attacks

and mitigation, and game-theoretic modeling and tech-
niques in cloud security. In this section, we put our work
in context within these two areas.

2.1 Cross-VM side channel attacks and mitigation
strategies
Cloud security has received considerable attention recently
[1], [17]. Various studies have investigated the impact of
cross-VM side-channel attacks [18], [19], [20], [3], [21], [5],
[22]. Users’ cryptographic keys have been shown to be
vulnerable to exfiltration attacks when adversaries perform
Prime+Probe attacks on the square-and-multiply implemen-
tation of GnuPG [21]. The authors in [3], [22], [5] have shown
that some side-channel attacks can extract cryptographic
keys by exploiting the last-level shared caches of the mem-
ory. Other attacks have identified pages that a VM shares
with its collocated neighboring VMs revealing information
about the victim’s applications [19] and OS [20].

To combat cross-VM side-channel attacks, various ap-
proaches have been proposed at the hypervisor [23], [24],
[21], [25], [26]), the guest OS [27], the hardware level [28],
[29], and the application layer [30]. These techniques, how-
ever, suffer from two fundamental limitations. First, they
cannot be generalized to different types of side-channel
attacks [31]. Second, they require major changes to the
hypervisor, OS, hardware, and applications [32]. VM live
migration, on the other hand, has been proposed as an
effective mechanism to combat side-channel attacks [4],
[33]. The authors in [34] provided a detection mechanism
known as CloudRadar that works as a real-time side-channel
attack detector based on monitoring hardware performance
counters. The authors in [35] proposed another detection
system that can differentiate between friendly and other
malicious activities of neighboring tenants. The authors in
[36] showed that by controlling the placement process, a
defense mechanism can mitigate the effect of cross-VM
attacks through reducing the co-run probability between
users. The approach, however, is only effective in the case
of time-sensitive attacks and when the number of assigned
virtual CPUs is large. Motivated by the MTD concept, the
authors in [37] presented a migration engine in which VMs
are migrated to balance the load between different nodes in
the cloud. Although MTD is a well-known defense method-
ology, the authors in [38] demonstrated that in certain
scenarios the migrated VMs can be tracked by adversaries.
Hence, they proposed a stealthy approach to migrate VMs
that can hide them on the network. In [39], the authors study
an MTD migration strategy against an attacker that seeks
to collocate with VMs of high rewards by solving a multi-
armed bandit problem.

2.2 Cloud security using game-theoretic techniques
The use of game theory has largely focused on the VM
allocation problem in the presence of adversaries [14], [15],
[40], [16], [41]. A common assumption in such formulations
is that the adversary is known, which may not hold in
practice. Additionally, existing formulations do not consider
the timing question for the VM migration problem, which is
a critical one for the cloud provider wishing to migrate VMs
for security. A more practical leakage model was considered
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Fig. 1: System model illustration for different placement
events.

in [42], [43], based on the FlipIt game model. FlipIt is a two-
player game in which a defender and an attacker compete
over the control of a given resource, which can only be
held by one player at a time. A flip is an action performed
by a player to gain control of the resource. The goal is to
hold the resource for the longest duration possible with
the least number of flips (i.e., flips are costly). Over time,
the resource generates rewards for the player holding the
resource. The state of the resource is obscured from each
player until they “flip”. Several variants of the FlipIt game
model were considered to study different security situations
[8], [9], [44], [45], [10], [11], [12], [13]. In [9], the authors
studied different strategies for each player and calculated
dominant strategies and Nash equilibria. In [44], the game
model was studied under the assumption that the players
know the state of the resource before taking actions. In
[45], [10] the game was extended to the case of a system
where insiders can work in favor of external adversaries.
The authors in [11] considered the game with both players
having limited budgets. Pawlick et al. investigated the game
model with characteristics of signaling games [12]. In [13],
Farhang et al. studied a variant of the FlipIt game with an
associated data leakage model in which the defender can
partially eliminate the foothold of the attacker. The attacker
exploits the system vulnerabilities that appear based on a
periodic process. The authors assume that the attacker’s
strategy is fixed since she always starts to attack right after
the defender takes his action. This, however, requires the
attacker to fully observe the defender’s strategy which we
do not assume here.

In this work, we consider a significantly different and
a realistic threat model that captures data leakage due to
cross-VM side-channel attacks and develop defense strate-
gies for identifying the best time(s) to migrate VMs. We
do this through a game-theoretic framework in which the
attacker only controls the attack rate and does not fully
observe the defender’s strategy. In addition, we assume that
the attacker controls the probability of a successful attack by
choosing the attack rate as opposed to the time to launch the
attack.

3 SYSTEM MODEL

3.1 The cloud
We model the cloud as a set of physical machines and each
machine can host a number of VMs from different users. The
cloud provider uses a placement strategy to initially assign
VMs to physical machines. The details of the placement
strategy do not affect our analysis and we assume that the
adversary (or any user) has no control over it. We assume
the adversary is interested in targeting a set of victim VMs
by collocating with them on the same physical machines. We
study the interaction between the cloud provider (defender)
and the adversary through a game-theoretic framework in
which the rewards are time-dependent. In particular, the
defender’s strategy is to choose the time to re-assign VMs
to different machines to defend against collocation attacks.
The adversary, on the other hand, chooses an attack rate
to launch more VMs to increase her chances for prolonged
collocation with her victims. Fig. 1 illustrates three pos-
sible placement scenarios for the game. In plot (a), the
attacker’s VM is successfully collocated at time τa with
her target VM on the same hypervisor before the target
VM is migrated to another node at time τd. This scenario
represents a successful collocation event, which results in
information leakage. In plot (b), the target VM is migrated
before the malicious VM is placed on the hypervisor, hence
the collocation event does not occur. Finally, the plot in
(c) illustrates a no-migration policy, where the collocation
duration is maximized. We define the game next.

3.2 The game
A game is defined as a tuple Γ(P,A,U), where

• P is the set of players. Here, P = {1, 2}, denoting
the defender (player 1) and the adversary (player 2).

• A = Ad×Aa is the action space for the defender and
adversary.

• U = {ud, ua} is the reward function, U : A → R2.

3.2.1 Defender’s action space
Since we are investigating the timing factor, the cloud
provider (referred to as the system defender) is assumed
to control the re-allocation period. Let τd ∈ Ad denote
the time instant at which the defender migrates a running
VM to a new physical node, such that Ad = [τmin, T ],
where T is a system parameter at which the credentials are
reset and τmin is the smallest reconfiguration time. Since
we assume a leakage model, at time T when the system
credentials are reset, the attacker can no longer benefit from
the side-channel attack. Therefore, the whole game will be
reset every T . The defender seeks to optimize the value of
τd to minimize chances for information leakage and avoid
loading the system with unnecessary migrations. Thus, the
defender’s goal is to optimize the tradeoff between security
and stability. In particular, a smaller τd ensures the system
is more secure since the co-residency times between any
two VMs will be small. However, the system’s overhead
increases due to frequent migration of the VMs between
the physical nodes. The overhead of VM live migration has
been investigated in [4], [46], and in general depends on the
VM workload. The work in [46] has shown that the main
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factors affecting the VM migration overhead are the VM
memory size and the network speed. On the other hand, a
larger τd leads to a more stable system. However, the co-
residency times between VMs on the same node will be
large making the system more susceptible to a data breach
through collocation attacks.

3.2.2 Attacker’s action space
Here, we assume that the attacker does not know the system
placement algorithms, hence only tries to increase her co-
residency chances via increasing the number of requests
submitted to the cloud provider. Let λa ∈ Aa denote the
rate of requests (rate of attack) submitted to the cloud, where
Aa = [λmin, λmax] is an interval of non-negative attack rates.
The game is assumed to start at time t = 0, and let τa denote
the actual time at which the attacker successfully collocates
with her targeted victim. Hence, τa > 0 is a non-negative
random variable with a probability density function (pdf)
fa(.;λa) parametrized by λa. Since the attacker pays a cost
for each submitted job, she needs to optimize over the attack
rate λa. Hence, the attacker’s tradeoff can be summarized
as follows. When λa is very small, it is less probable for
the attacker to successfully co-reside with her victim and
in turn steal any information before VMs are migrated.
When λa is very large, the attacker increases her chances of
successful collocation at the expense of a higher attack cost.
Therefore, the pdf fa should be such that fa(τa;λa1) yields
a higher probability of early collocation than fa(τa;λa2),
when λa1 > λa2 . Mathematically, this requirement is ex-
pressed through the following assumption.

Assumption 1. Fa(t;λa1) ≥ Fa(t;λa2) for λa1 ≥ λa2 , where
Fa(t;λa) := Pr(τa ≤ t) denotes the cumulative distribution
function (CDF) of the collocation time.

If λmin = 0, then the attacker can choose to back off
(i.e., not attack). In such case, fa(τa; 0) is a degenerate
deterministic distribution such that Fa(T ; 0) = 0 since the
probability of collocation is 0.

We focus only on the timing factor of the problem,
and the mapping of VMs to physical nodes is carried
out through the placement engine. The separation of the
placement and timing strategies allows for layered func-
tionality highly desirable in practice. In particular, the de-
veloped timing policies can be implemented on any ex-
isting platform without modifying the existing placement
engine. This is especially true since allocation decisions are
typically developed around widely differing load balanc-
ing and power reduction objectives, and other operational
constraints. Next, we define the players’ reward (payoff)
functions in a nonzero-sum two-person game.

3.2.3 Attacker’s reward
Once the attacker’s VM is successfully placed on the same
node where the victim VM resides, she immediately starts
accumulating rewards by reading out data from the target
VM. The amount of information leakage depends in prac-
tice on the duration of collocation as shown in [5]. Let
G(τd, τa) denote the reward accumulated by the attacker
capturing the relation between the collocation duration and
the amount of the data leaked.

Assumption 2. G(τd, τa) is a stationary function and mono-
tonically non-decreasing in the collocation duration t = τd − τa.
Therefore, G(τd, τa) = G(τd − τa, 0) = G(t), where G(t) is an
abbreviated notation indexed by one variable.

Stationarity signifies that the attacker’s accumulated re-
ward depends on the collocation and migration times only
through their difference, i.e., the duration of collocation. The
accumulated reward is assumed to be zero if τa ≥ τd. The
attacker incurs a cost Ca for launching an attack. Hence, the
total cost is scaled by the rate of attack λa. Therefore, the
attacker’s expected payoff is given by

ua(τd, λa) =

∫ τd

0
G(τd, τa)fa(τa, λa) dτa − Caλa. (1)

3.2.4 Defender’s reward
The defender, on the other hand, incurs a loss due to
the collocation of a victim VM with the attacker equal
in magnitude to the gain of the attacker. In addition, the
defender pays a cost per migration denoted by Cd. This
cost captures the migration overhead, which stems from
the VM downtime, performance degradation of the running
applications (e.g., due to successive iterations of memory
pre-copying [47]), and the amount of memory and cache
usage. Accordingly, the defender’s expected payoff can be
written as

ud(τd, λa) = −
∫ τd

0
G(τd, τa)fa(τa, λa) dτa −

Cd
τd

. (2)

4 THEORETICAL ANALYSIS

A NE characterizes a solution for non-cooperative games
in which no player can gain by deviating from his own
equilibrium strategy while the other players’ strategies are
fixed [48], [49]. In this section, we establish sufficient con-
ditions for the existence of a NE for the formulated game
model in Theorems 3 and 8. We characterize the players’
best responses (c.f. Definition 1) in Theorem 5 and Lemma
9. By definition, a NE secures a minimum reward for the
cloud admin since the defender’s reward cannot decrease if
only the adversary deviates from her best response. Since
the rewards for both players depend on the cost parameters
Ca and Cd (c.f. Section 3), the role of these parameters is
also analyzed in Lemmas 6, 7 and Theorems 10 and 11.

Existence of NE depends on the properties of the payoff
functions. First, we derive existence conditions for a general
accumulated reward function G(τd, τa) and pdf fa(τa;λa)
of collocation time, then we provide analysis for a special in-
stantiation of the payoff functions. We also characterize the
best response curves for both players and derive existence
conditions for the corresponding NE strategies. First, we
restate a general theorem from [49] that provides sufficient
conditions for N -person nonzero-sum games to admit a
pure strategy NE.

Theorem 1. [49] For each player i in the set N of N players,
let the action space Ui of player i be a closed, bounded and
convex subset of a finite-dimensional Euclidean space, and the
cost functional Ji : U1 × · · · × UN → R be jointly continuous
in all its arguments and strictly convex in ui ∈ Ui, for every
uj ∈ Uj , j ∈ N , j 6= i. Then, the associated N -person nonzero-
sum game admits a Nash equilibrium in pure strategy.
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4.1 General reward functions

For the general payoff formulation described in equations
(1) and (2), the following lemma proved in Appendix A
establishes sufficient conditions for the concavity of the
payoff functions.

Lemma 2. For the 2-person nonzero-sum game defined in Section
3.2 with payoff functions defined in equations (1) and (2) under
Assumptions 1 and 2, if E

[
G(τd, τa)1{τa<τd}

]
is strictly con-

cave in λa ∈ Aa for any τd, then ua(τd, λa) is strictly concave
in λa for any τd ∈ Ad, and if E

[
G(τd, τa)1{τa<τd}

]
is convex

in τd ∈ Ad, then ud(τd, λa) is strictly concave in τd for any
λa ∈ Aa, where 1{.} is an indicator function.

Therefore, we can readily state sufficient conditions for
our game to admit a pure strategy NE.

Theorem 3. The 2-person nonzero-sum game defined in Sec-
tion 3.2 under Assumptions 1 and 2 with the payoff func-
tions in (1) and (2) admits a NE in pure strategy if
E
[
G(τd, τa)1{τa<τd}

]
is continuous and strictly concave in

λa ∈ Aa, and E
[
G(τd, τa)1{τa<τd}

]
is convex and G is

continuous in τd ∈ Ad.

The proof of Theorem 3 follows directly from Lemma
2, which establishes strict concavity of the payoff functions
under the conditions in the statement of the theorem, and
Theorem 1 from [49].

Proposition 4. For the game defined in Section 3.2 with λmin =
0, there exists an equilibrium in which the attacker backs off (i.e.,
does not attack) and the defender does not migrate if the reward
function G(t) satisfies

Eλa
[G(T − τa)] ≤ λaCa, (3)

for every λa ∈ Aa, where Eλa [.] denotes the expectation w.r.t. the
measure induced by fa(.;λa).

Proof. If the attacker backs off, i.e., chooses λa = λmin = 0,
then the defender’s payoff in (2) becomes

ud(τd, 0) =
−Cd
τd

,

which attains its maximum at τd = T for any Cd > 0.
Hence, the defender’s best response is to not migrate over
the game interval. Also, if condition (3) in the statement of
Proposition 4 is satisfied, then the attacker’s best response
to the defender’s action τd = T is λa = 0. To see that note
that if

Eλa
[G(T, τa)] =

∫ ∞
0

G(T, τa)fa(τa;λa)dτa ≤ λaCa ,

then ∫ τd

0
G(τd, τa)fa(τa;λa)dτa ≤ λaCa

since G(t) is monotonically non-decreasing in t per As-
sumption 2. Recalling the attacker’s payoff function in (1),
the attacker’s decision to back off is at least as good as
launching an attack at an alternative non-vanishing rate
since the cost of the attack upper bounds the leakage reward
for any λa 6= 0.

Definition 1. In an N-person nonzero sum game, let
ui(a1, . . . , ai, . . . , aN ) be the reward function of player i. For
each player i ∈ {1, . . . , N}, assume that the maximum reward of
ui with respect to ai ∈ Ai can be attained for any players’ action
profile a−i ∈ A−i, where a−i := {a1, . . . , ai−1, ai+1, . . . , aN}
and A−i ≡ A1× . . .×Ai−1×Ai+1× . . .×AN . Then, the set
Ri(a−i) ⊂ Ai defined by

Ri(a−i) = {ζ ∈ Ai : ui(ζ, a−i) ≥ ui(ai, a−i), ∀ai ∈ Ai} ,

is called the optimal (or best) response of player i. If Ri is a
singleton for every a−i ∈ A−i, then it is called the reaction curve
[49].

Accordingly, it follows from the definition of a NE (in
that no player can gain by a unilateral change of strategy if
the strategies of the other players remain unchanged) that
the intersection points of the best responses are NE. In the
following theorem, we characterize the best response for
both players.

Theorem 5. For the 2-person nonzero-sum game defined in
Section 3.2, if the attacker’s payoff function in (1) is strictly
concave in λa, then the attacker’s best response λ∗a to any defense
strategy can be described as

• λ∗a = λmax, if ∂ua

∂λa
> 0, ∀ λa ∈ Aa

• λ∗a = λmin , if ∂ua

∂λa
< 0, ∀ λa ∈ Aa

• λ∗a ∈
{
λa | ∂

∂λa
Eλa

[G(τd, τa)1{τa<τd}] = Ca
}
, if

∂ua

∂λa
= 0, for any λa ∈ Aa.

Also, if the defender’s payoff function in (2) is strictly concave in
τd, then the best response τ∗d can be described as

• τ∗d = T , if ∂ud

∂τd
> 0, ∀ τd ∈ Ad

• τ∗d = τmin , if ∂ud

∂τd
< 0, ∀ τd ∈ Ad

• τ∗d ∈
{
τd | τ2d ∂

∂τd
Eλa [G(τd, τa)1{τa<τd}] = Cd

}
, if

∂ud

∂τd
= 0, for any τd ∈ Ad.

Proof. Given the concavity of the payoff function ua in λa ∈
Aa, the derivative ∂ua

∂λa
is monotone. Hence, there exist three

possibilities for the behavior of ua. If ∂ua

∂λa
> 0, then ua is

strictly increasing in λa for all λa ∈ Aa, thus the payoff is
maximized by λ∗a = λmax. If ∂ua

∂λa
< 0, ∀λa ∈ Aa, then

ua is strictly decreasing in λa for all λa ∈ Aa, thus the
payoff is maximum at λ∗a = λmin. Otherwise, ua attains
its maximum when ∂ua

∂λa
= 0, hence the best response λ∗a

belongs to the set Λa =
{
λa |

∫ τd
0

∂fa
∂λa

G(τd, τa)dτa = Ca
}

at which ∂ua

∂λa
= 0. The second part of Theorem 5 which

characterizes the defender’s best response can be proven
similarly.

Next, we study the effect of the attack cost Ca and
the moving cost Cd and state bounds on the costs beyond
which no player is interested in the game. When the cost Ca
exceeds a certain threshold, the cost of the attack dominates
the attacker’s tradeoff, i.e., the attacker is better off back-
ing off over attempting to access the victim’s information.
Similarly, if Cd is too high, the defender incurs a cost for
migration that exceeds any benefit he would get at any
migration rate.

In the following lemma, we derive a lower bound on the
attack cost Ca beyond which the attacker is always better
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off attacking with the minimum rate λmin. If λmin = 0, then
the attacker will back off.

Lemma 6. For the two person nonzero-sum game Γ defined in
Section 3.2, if E

[
G(τd, τa)1{τa<τd}

]
is strictly concave in λa ∈

Aa, and Ca > ∂
∂λa

Eλa
[G(τd, τa)1{τa<τd}] |λa=λmin

, then the
attacker’s best response to any defense strategy τd is to attack at
the minimum permissible rate λmin.

Proof. We argue that under the condition stated in the
lemma, the attacker’s payoff is monotonically decreasing in
λa. Hence, λ∗a = λmin is the attacker’s best response to any
τd. To show that λmin is the unique best response, assume
for contradiction there exists λ∗ = λ1 6= λmin. If Ca >∫ τd
0 Gf ′a(λa) dτa |λa=λmin , where f ′a(λa) = ∂fa

∂λa
, then ua

is monotonically decreasing, therefore ua(λmin) > ua(λ1)
since λ1 > λmin. Hence, λ1 is not in the best response set.

Similarly, the following lemma establishes a lower
bound on the migration cost Cd of the defender, beyond
which it is more advantageous not to migrate before the
system reconfiguration cycle T .

Lemma 7. For the two person nonzero-sum game Γ defined
in Section 3.2, if Eλa

[
G(τd, τa)1{τa<τd}

]
is strictly con-

vex in λa and G is continuous in τd ∈ Ad, and Cd >
T 2 d

dτd
Eλa

[
G(τd, τa)1{τa<τd}

]
|τd=T , then the action of not

migrating any VM before T is the defender’s unique best response
regardless of the attacker’s strategy λa, where Eλa

[.] is the
expectation with respect to fa(τa;λa).

Proof. By an argument similar to the proof of Lemma 6,
under the condition in the statement of the lemma, the
defender’s payoff is monotonically increasing in τd. Hence,
T ∈ R1(λa) for any λa. Establishing the uniqueness of T as
a best response action follows the same argument used in
the proof of Lemma 6.

4.2 Special instantiation analysis
In Section 4.1, we provided conditions for the existence of
an equilibrium for generic reward functions. The conditions
imposed were the strict concavity of fa in addition to the
non-negativity, monotonicity and stationarity of G (station-
arity in that the accumulated reward depends on the col-
location and migration times only through their difference,
i.e., the duration of collocation). In this section, we study
existence conditions for equilibrium and characterize the
best response sets of both players for specific choices of
the reward function G and the collocation pdf fa(τa;λa).
Since the amount of information leakage depends in practice
on the duration of collocation, here we provide an analysis
for the case where G(t) increases linearly in the collocation
duration t. Hence, we analyze the formulated timing game
for the following choice of G,

G(τd, τa) =

{
α (τd − τa) , τa ≤ τd ≤ T
0, otherwise.

(4)

In Section 6.4, we provide numerical results on the best
response for other (non-linear) functions, including when
G scales sublinearly and quadratically in t. Without loss
of generality, we always consider α = 1. The case α 6= 1

corresponds to the case α = 1 with the migration cost Cd
replaced by Cd

α .
In our numerical evaluation we consider an exponential

pdf fa for the collocation time, i.e.,

fa(τa;λa) = λae
−λaτa , τa ≥ 0. (5)

This choice of fa(.;λa) is motivated by the interpretation
of λa as the rate of attacks launched by the adversary. In
other words, the attacker controls the rate of the submitted
requests to the cloud server. Her requests are served within
the queue of the placement engine and hence assigned to
different physical machines according to a Poisson arrival
process justifying the exponential arrival time.

Next, we derive sufficient conditions for the existence of
a NE for the choice of functions in (4) and (5).

Theorem 8. The 2-person nonzero-sum game defined in Section
3.2 with G(t) and fa(τa;λa) defined in (4) and (5) admits a pure
strategy NE.

The proof of Theorem 8 provided in the appendix rests
upon proving the strict concavity of ua and ud, which
translates into existence of a NE in pure strategy from [49,
Theorem 1]. To characterize NE for both players, we start off
by characterizing the best response set for each player in the
following lemma whose proof follows the same argument
used in the proof of Theorem 5.

Lemma 9. For the 2-person game defined in Section 3.2 with
the reward function G(t) and the probability density function
fa(τa;λa) defined in (4) and (5), the attacker’s best response pure
strategy is characterized as

• λ∗a = λmax , if 1− λaτde−λaτd − e−λaτd − Caλ2a > 0
• λ∗a = λmin , if 1− λaτde−λaτd − e−λaτd − Caλ2a < 0
• λ∗a =

{
λa | 1− λaτde−λaτd − e−λaτd = Caλ

2
a

}
, oth-

erwise,

for any action τd by the defender.
The best response strategy for the defender is characterized as

• τ∗d = T , if Cd − τ2d
(
1− e−λaτd

)
> 0

• τ∗d = τmin , if Cd − τ2d
(
1− e−λaτd

)
< 0

• τ∗d =
{
τd | τ2d

(
1− e−λaτd

)
= Cd

}
, otherwise,

for any action λa by the attacker.

Remark 1. The optimal NE strategies can be obtained analyt-
ically using the players’ best response curves derived in Lemma
9 (c.f. Section 6). In situations where an analytical solution is
intractable, they can be obtained numerically as the equilibrium
solution of convex optimization problems associated with each
player. Specifically, for λa ∈ Aa, λ∗a = arg maxua and for
τd ∈ Ad, τ∗d = arg maxud. Since both objective functions were
shown to be convex and differentiable, each player is guaranteed
to converge to his optimal action for every action by the opponent.
The equilibrium (τ∗d , λ

∗
a) satisfies the Lagrangian equations cor-

responding to both problems [50] and can be obtained by solving
both problems simultaneously using standard techniques such as
Newton’s method with convergence guarantees [51], [52].

The following two theorems whose proof is provided
in Appendix B establish bounds on both the attack cost
Ca and the migration cost Cd beyond which the players’
best response strategies are on the boundaries of their action
intervals.
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Theorem 10. For the two person nonzero-sum game defined in
Section 3.2 with the reward function in (4) and the exponentially
distributed collocation time τa in (5), if

Ca >
1− (1 + λmaxτd)e

−λmaxτd

λ2min

,

then the attacker’s best response to the action τd of the defender is
λ∗a(τd) = λmin.

Theorem 11. For the two person nonzero-sum game defined in
Section 3.2 with the reward function in (4) and the exponentially
distributed collocation time τa in (5), if

Cd > T 2(1− e−λaT ) ,

then the defender’s best response to the action λa of the attacker is
to stop migrations, i.e, τ∗d (λa) = T .

5 GENERALIZATION: GAME MODEL WITH IDS

In the aforementioned model, the attacker’s goal is to be
collocated with her victim as soon as possible before the
victim is migrated. Evidently, upon collocation with her
victim, the attacker will choose to reside there until τd since
no detection mechanism is in place to urge her to evade.
In this section, we extend the existing system model and
consider the case in which the cloud data center is equipped
with an IDS. The IDS monitors suspicious activities and
captures malicious behavior of any user after a sufficient
period of time δ, which is a random variable with distribu-
tion y(δ), δ ∈ [0, T ]. For useful detection, δ < τd. Hence,
the attacker may need to stop her collocation attacks before
being detected. This introduces another control variable s to
be optimized by the attacker, namely how long she should
continue to carry on the attack after successful collocation.
The distribution y(δ) accounts for the entire range of priors
between the extreme of an uninformative prior (a uniform
distribution) in which the players do not have useful infor-
mation about the time-to-detection δ, and the extreme of a
fully degenerate distribution in which the players know δ
exactly. For the latter case, the attacker will surely choose
to stop after a duration δ from the onset of successful
collocation, i.e., right before τa + δ.

Next, we modify the attacker’s payoff function ua in
order to account for the probability of detection. In the
event of detection, the attacker incurs a cost D (since this
user will be black-listed), but her gain is in the amount
of data read out until detection. Therefore, we redefine the
attacker’s expected reward by averaging over both the time-
to-detection δ and the collocation time τa,

ua(τd, λa, s) =

∫ T

δ=s
G(s)y(δ)dδ

∫ τd−s

τa=0
fa(τa;λa)dτa

+

∫ s

δ=0
(G(δ)−D)

(∫ τd−δ

0
fa(τa;λa)dτa

)
y(δ)dδ

+

∫ s

δ=0

(∫ τd

τd−δ
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ

+

∫ T

δ=s

(∫ τd

τd−s
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ − Caλa.

(6)

0

Game Time

  
τa τd Tτ τ

Placement Migration
Reconfiguration

TTs+τa

Attack stopped 

before detection

s+ δ+τaδ

IDS

Fig. 2: Attacker evades IDS by early stopping of malicious
activity.

0

Game Time

  
τa τd T τ τ

Placement Migration
Reconfiguration

TTs+τa

Attack  detected

+δ+τaδδ+

IDS

Fig. 3: Attacker detected by the IDS.

The first term in (6) accounts for the attacker’s expected
payoff in the event of no detection as the attacker stopped
malicious activities before the IDS alarm, i.e., s < δ, as
illustrated in Fig. 2. The second term represents the event
of detection, hence collocation ends at τa + δ, i.e., after a
collocation duration δ as δ < s, as shown in Fig. 3. Therefore,
the attacker incurs a detection loss D. The third and fourth
terms account for the event of no detection but due to
the migration mechanism. In other words, the attacker is
not identified because τd − τa < min(δ, s). The last term
accounts for the cost of launching the attack.

Similarly, we redefine the defender’s expected payoff
function,

ud(τd, λa, s) = −
∫ T

δ=s
G(s)y(δ)dδ

∫ τd−s

τa=0
fa(τa;λa)dτa

−
∫ s

δ=0
(G(δ)−D)

(∫ τd−δ

0
fa(τa;λa)dτa

)
y(δ)dδ

−
∫ s

δ=0

(∫ τd

τd−δ
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ

−
∫ T

δ=s

(∫ τd

τd−s
G(τd − τa)fa(τa;λa)dτa

)
y(δ)dδ − Cd

τd
.

(7)

6 NUMERICAL ANALYSIS

In this section, we provide numerical analysis of the pro-
posed game model. To characterize the payoff functions for
both players, we need to specify G(t) and fa(τa;λa). For
the linear reward function G(t) and the exponential density
function fa(τa;λa) described in (4) and (5), the reward
functions can be readily expressed as

ua(τd, λa) =
λaτd + e−λaτd − Caλ2a − 1

λa
, (8)

ud(τd, λa) =
1− λaτd − e−λaτd

λa
− Cd
τd
, (9)

for τd ∈ Ad, λa ∈ Aa. In the following analysis, we study
the behavior of the payoff functions for both players. We
illustrate the reward of the defender as a function of the
migration time τd for a range of attack rates λa. For the
attacker, we plot her reward as a function of λa for different
τd. Afterwards, we investigate the effect of the migration
cost Cd and the attack cost Ca on the reward functions
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1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

λ
a

u a(λ
a)

Attacker Payoff for C
a
 = 0.10

 

 

τ
d
 = 0.1

τ
d
 = 2

Fig. 5: At τd = 0.1, the attacker payoff is monotonically
decreasing, but not for τd = 2, in agreement with the
bound on Ca in Theorem 10.

and the players’ best response curves. We also demonstrate
existence of NE when the game satisfies the concavity
conditions. Finally, we generalize our analysis to investigate
different scaling regimes of the reward function, including
sublinear and superlinear regimes.

We start our numerical analysis by reflecting on the
theoretical analysis in Section 4.2. In Fig. 4, we plot the NE
existence region that satisfies strict concavity of both ua and
ud. Per Theorem 8, for G and fa as defined in (4) and (5),
the game played over the illustrated action space admits a
NE in pure strategies circled in Fig. 4. The figure illustrates
the best response curves along with the game action space
at Cd = 0.3 and Ca = 0.3. Fig. 4 verifies our analytical
results of NE existence. An equilibrium point lies at the
intersection of the two best response curves for both players.
By definition, this point is a NE at which each player
makes the best decision taking into account the opponent’s
best fixed strategy. In this setting, the NE is unique – the
unique intersection point of the best response curves for
both players at τ∗d = 0.93 and λ∗a = 0.48. Theorems 10
and 11 established lower bounds on Ca and Cd beyond
which ua and ud are monotone. Fig. 5 shows the attacker’s
reward function at different migration rates, verifying The-
orem 10. We numerically verify the monotonicity of ua for

τd = 0.1 and τd = 2. Let λmin = 1 and λmax = 3, hence
according to Theorem 10, ua is monotonically decreasing
when Ca > 0.04 when τa = 0.1. However, at τd = 2,
the attack cost Ca > 0.98 ensures that ua is monotonically
decreasing in λa. In Fig. 5 where Ca = 0.1, it is shown
that the corresponding ua is monotonically decreasing for
all λa ∈ [1, 3] for τd = 0.1. At τd = 2 when the condition
on Ca is not satisfied, the payoff ua is not monotonically
decreasing. Next, we study and discuss the effect of different
system parameters on the players’ payoff and best response
in comparison to other defense and attack policies.

6.1 Payoff functions
Fig. 6a shows the payoff function of the defender ud versus
the migration time τd for Cd = 0.3, τmin = 0.1, and
T = 3. The figure highlights the tradeoff of the defender
as he seeks to optimize τd to secure the system through
VM migration while avoiding a large overhead. Evidently,
the optimal migration time τ∗d depends on the attacker’s
strategy λa. The tradeoff shown in Fig. 6a agrees with our
intuition based on the game model. Specifically, a very small
τd signifying a high VM migration rate is associated with a
high migration cost that dominates the payoff function ud.
On the other hand, with a larger τd, the VMs dwell for a
longer duration on the same physical node leaving more
room for the attacker to collocate and steal data from her
target VM. In Fig. 6a, we compare the defender’s reward at
different attack rates λa. Clearly, when the attack is more
aggressive, the defender is able to maximize his payoff by
reducing the migration time τd at the expense of higher
migration cost. Therefore, when λa increases from 1 to 2.5,
the optimal τd reduces from 0.8 to 0.6.

In Fig. 6b, we plot the attacker’s expected payoff ua
versus the attack rate λa for different defense actions τd
for an attack cost Ca = 0.2. As shown, the optimal attack
rate depends on the defender’s action. As the attack rate
increases, the cost of attack increases and eventually be-
comes the dominant term in the payoff function. Moreover,
as the defender reduces his time to migrate τd, the attacker’s
reward decreases. This is due to the fact that when τd
is small (a higher migration rate), there is a shorter time
window for the attacker to successfully collocate with her
victim. Contrariwise, when the migration rate is not too
high (i.e., τd is fairly large), the attacker can maximize her
reward by increasing the attack rate λa. For example, when
τd is reduced from τd = 3.5 to τd = 1.5, the optimal attack
rate that maximizes the payoff ua decreases from λ∗a = 2.21
to λ∗a = 2. However, if the defender is migrating the VMs
at a very high rate, i.e., τd is very small, the attacker’s
best response is to attack at the minimum possible rate
or completely back-off since the attack is useless. To better
understand the effect of the migration (attack) cost on the
optimal migration (attack) rate for the defender (attacker),
in the following two subsections we study the behavior of
the payoff functions at different values of the cost. We also
study the behavior of the best response curves to gain more
insight into the tradeoffs associated with this game.

6.2 Cost effect and monotonicity
To show the effect of the migration and attack costs Cd
and Ca, we plot the players’ reward functions for different
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Fig. 6: (a) Defender’s reward versus migration time τd; (b)
Attacker’s reward versus attack rate λa.

values of the cost. In Fig. 7a, we plot the defender’s payoff
versus τd for different attack strategies for a fairly small
migration cost Cd = 0.03. At this small migration cost,
the defender’s best response is to always migrate at the
highest permissible rate, i.e., τ∗d = τmin regardless of the
attack rate λa. Hence, the leakage loss term dominates the
defender’s payoff function ud at this small migration cost.
Indeed, referring to (9), ud is monotonically decreasing in τd
whenCd → 0. On the other hand, when the migration cost is
too high as shown in Fig. 7b where Cd = 10, the defender’s
best response is τ∗d = T to reduce the associated migration
cost. We remark that the reward function is monotonically
increasing in τd for such high migration cost, a fact which
was established analytically in Theorem 11.

Similarly, the effect of the attack cost Ca can be shown in
Fig. 8. At a very small attack cost, Ca = 0.01, as shown
in Fig. 8b, the attacker’s best attack strategy is to attack
aggressively at λmax to maximize the chances of successful
collocation regardless of the defender’s action. Recalling
the attacker’s payoff function in (8), ua is monotonically
increasing in λa when Ca → 0. In case of a high attack cost,
the behavior of the payoff function is reversed as shown in
Fig. 8b where Ca = 6. In this case, the cost of the attack term
dominates the payoff function. Therefore, the best action for
the attacker is λmin regardless of the action of the defender.
This behavior is confirmed by the analysis in Theorem 10.
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Fig. 7: Defender’s reward versus migration time τd for (a)
Cd = 0.03, and (b) Cd = 10.

6.3 Best response curves

In this section, we study the best response curves for both
players based on Definition 1 to provide more insight into
the optimal action of a player as function of the action of the
opponent. The solid blue line in Fig. 9a shows the defender’s
best response curve τ∗d as function of λa. The attacker’s
best response curve λ∗a as function of the defender’s action
τd is shown in dashed red line. In this scenario, we set
T = 3, λmax = 3, Cd = 0.3, and Ca = 0.1. In Fig. 9a,
the intersection point of the two response curves is the
unique NE. The point(s) of equilibria depend on the values
of Ca and Cd as detailed next. The best response curves
also underscore the tradeoff for each player. For example,
at equilibrium the defender migrates with τd = 0.66 while
the attacker uses rate λa = 1.8 for the attack. Clearly, at low
attack rate, VM migration at a very small migration rate, i.e,
larger τd, is more favorable. As the attack rate increases,
the defender is urged to migrate the VMs at faster rate,
wherefore τ∗d decreases as λa increases. On the attacker’s
side, a similar tradeoff is observed. The attacker attacks the
system at the minimum rate λmin as long as the VM stays
on the same physical node for a duration τd < 0.4 since it
is very hard to collocate when migration is taking place at
such high rates. If the defender increases the time before
migrating, i.e τd > 0.4, the attacker is enticed to attack the
system at higher rates to increase the amount of data leaked
out to the attacker as long as the defender is reducing the
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Fig. 8: Attacker’s reward versus attack rate λa for (a) Ca =
0.01, and (b) Ca = 6.

migration rate. The best response curves also demonstrate
the monotonicity of the payoff functions with respect to Ca
and Cd as explained earlier in Section 6.2. To show this, Fig.
9b, 9c and 9d illustrate the best response curves at extreme
cost values. In particular, in Fig. 9b, both Cd and Ca are set
to zero. It is obvious that the defender is migrating with
the highest permissible frequency such that, τ∗d = τmin for
any attack rate. In response, the attacker’s best action is
λa = λmax regardless of the defender’s action. Hence, when
the costs of migration and attack are zero, both players do
not face any tradeoffs and the game is zero-sum. Fig. 9c
shows another extreme scenario where only the defender
faces a very high cost for migration. His best response is
τ∗d = T = 3, which corresponds to the lowest migration
rate possible. In Fig. 9d, the attack cost Ca = 6 while the
defender incurs zero cost for migration. Hence, the defender
adopts the highest migration rate at τ∗d = τmin against any
attack rate. In response, it is more rewarding for the attacker
to attack at λmin for any τd.

6.4 Different reward scaling regimes

In the numerical analysis above, we considered the reward
function G to be linearly increasing in the collocation du-
ration. However, the reward function need not be linear. In
this section, we study other scaling regimes. In particular,
we consider the scenario where the reward G(τd, τa) scales
sub-linearly, quadratically or cubically with the collocation
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Fig. 9: Players best response curves for different cost values.
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Fig. 10: Defender’s (a) and Attacker’s (b) best response
curves for different reward scaling regimes.

duration. In other words, G(τd, τa) = max{0, (τd − τa)n},
where n = {0.2, 1, 2, 3}. The scaling of the reward function
relates to the power of the attack as well as the vulnerability
of the system under attack. The more powerful the attacker,
the more data she is able to read out for a given duration
of collocation. The power of the attack also depends on the
side-channel technique used. The authors in [5] have shown
that the amount of data leaked practically depends on the
technique used to access the last level cache (LLC) (e.g.,
PRIME+PROBE and FLUSH+RELOAD attacks [18], [21]).
For example, to read the cache, an attacker would need to
adjust the time of the PROBE phase, which in turn affects
the error rate of the attack covert channel.

In Fig. 10a, we plot the defender’s best response curves
for sub-linear, linear, quadratic, and cubic reward functions.
Intuitively, higher order reward functions are more disposed
to dominate the payoff functions than for the linear and
sub-linear scaling. In Fig. 10a, the migration cost is set to
Cd = 1. For the sub-linear regime, the defender’s payoff
function is more dominated by the migration cost. As the
attack rate λa increases, the defender is urged to migrate
the VMs at a faster rate (wherefore τ∗d decreases), but only
until a certain point where faster migration becomes futile.
Indeed, when the attack rate is overwhelming, it is more
rewarding for the defender to use a large τd to alleviate
high migration costs. For the linear regimes, the defender is

facing exactly the same tradeoff discussed earlier in Section
6.3. Similarly, for the higher order reward regimes, the
leakage term dominates the payoff over the entire range of
attack rates. Therefore, the defender is consistently urged
to increase the migration rate as the attacker increases her
attack rates. With the quadratic and cubic reward functions
the defender’s best response is shown to exhibit a similar
behavior, but conceivably the cubic reward incentivizes a
faster increase in the rate of migration.

In Fig. 10b, the attacker’s best response curves are plot-
ted for different reward functions. The higher the order of
the reward regime, the more is the attacker enticed to attack.
For the sub-linear regime, the attacker attacks at rates higher
than λmin when τd > 0.6. However, in the linear regime, the
attacker’s best response rate is non-vanishing and increasing
in τd for τd > 1, reaches λa = 1.4 as soon as the cost of the
attack starts to dominate the attacker’s payoff. Evidently,
the higher the order of the reward, the more is the attacker
willing to attack at higher rates. As shown in Fig. 10b, the
cubic regime is extremely rewarding to the attacker, and
as a result the attacker affords to attack at the maximum
permissible rate as the reward term dominates her payoff
function.

6.5 Game simulation and implementation

In this section, we compare the payoff of both players
playing NE strategies to the payoffs of other defense and
attack strategies. As per our theoretical analysis in Section
4, the players’ optimal (NE) policies depend on the values of
the associated costs Cd and Ca. Table 1 presents the results
of a simulation of the game for the linear reward regime
in which G(τd, τa) = (τd − τa)+ = max(τd − τa, 0) at
different values of Cd and Ca. For the numerical results,
the maximum collocation time is set to T = 3 and the
maximum attack rate is λmax = 3. The results underscore
that a rational attacker would adapt the attack rate to the
attack cost to avoid incurring high cost and/or launching
useless attacks. For example, when Ca = 8, the payoff
corresponding to the NE converges to that of the No Attack
strategy, which is substantially higher than the payoff of
an aggressive attacker of −23.68 due to a substantial attack
cost. Similarly, the defender should not resort to very high
frequency migration (equivalently, small τd), unless the mi-
gration cost is fairly low. For example, the results in the
table show that the payoff of the defender adopting the NE
policy tends to that of the No defense policy as Cd increases.
The last column designated as worst case (for the defender)
corresponds to the scenario where the attacker is attacking
at the highest rate while the defender does not adopt any
migration policy. The loss of the defender for not migrating
compared to the NE strategy is more pronounced when the
NE point has τ∗d < T , i.e., when the defender is in a position
to defend the system through VM migrations.

Real system implementation: To demonstrate the effec-
tiveness of the proposed approach, we implemented the
migration defense approach on a proof-of-concept cloud
setup using the Xen hypervisor [53], which allows us to run
many instances of an operating system on a single machine.
The setup is composed of five physical nodes in addition
to the orchestrating controller node. The specifications of
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the nodes are: Dell Inc. PowerEdge 1900 Intel(R) Xeon(R),
4-core CPU E5335 (2.00GHz) and 8GB Ram running Ubuntu
16.04.4 LTS with Xen 4.6. Each hypervisor initially runs
20 VMs. The number of VMs residing on each hypervisor
changes slightly over time due to live migration. Three tar-
get VMs are uniformly distributed over the five hypervisors.
We validate our results by comparing the performance of
the proposed defense approach to a no-defense approach
and to a random migration defense policy with a uniform
distribution over the interval [τmin, T ]. In Fig. 13, we plot
the collocation duration per target VM (left y-axis) and
the average number of collocation events (right y-axis).
As shown, the no-migration approach results in collocation
events of longer duration. The proposed defense approach
can reduce both the durations and number of occurrences of
collocation events. VM migration defense policies are shown
to reduce the duration of collocation events by half. In Fig.
14, we evaluate the defender’s reward at different migration
cost values. The proposed defense is shown to outperform
the random migration policy, which does not adapt to the
migration cost Cd as it chooses a random τd.

6.6 Extended model with IDS

In Fig 11, we compare the attacker’s payoff with and with-
out an IDS in place based on the analysis in Section 5. In
this experiment, we set D = 0.2, Ca = 0.2 for different
stop times s. It is clear that the IDS drastically reduces the
attacker’s reward. In addition, while the IDS is in place the
attacker can increase her expected reward by shortening
the attack duration. Hence, the defender’s reward increases
since the amount of data leaked out is reduced.

Fig. 12 illustrates the attacker’s payoff as function of the
attack stopping time s for different values of the detection
cost D. Obviously, the best time to stop the attack depends
on the detection costD. AsD increases, the attacker’s payoff
decreases and the optimal stopping time s (corresponding to
the highest payoff) is shown to decrease. At a certain point,
the attacker is forced to stop as soon as she collocates to
evade a high penalty if detected.

7 CONCLUSION

In this paper, we developed a MTD framework for the VM
migration timing problem. Live migration of VMs between
different physical nodes is studied in a game-theoretic
framework to defend multi-tenant clouds against side chan-
nel attacks launched by malicious users co-residing on the
same physical node. We characterized best strategies for
the players and established NE existence conditions. We
also considered an extended system model in which the
cloud is equipped with an IDS. The IDS is a reactive de-
fense approach which, combined with our proactive VM
migration defense approach, enhances the cloud security
against side channel attacks. We also verified our theoretical
results numerically for different settings of the game. The
theoretical and numerical analyses provided characterize
the performance of the migration defense approach against
collocation attacks. We also demonstrated the proposed mi-
gration defense on a cloud network implemented in a Xen-
based cluster. A large scale implementation in a public cloud
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TABLE 1
Players’ Payoff For Several Attack and Defense Strategies.

Cost NE No Defense No Attack Aggressive Attack Worst case
Cd Ca ud ua ud ua ud ua ud ua ud ua

0 0 -1.49E-04 1.49E-04 -2.6778 2.6778 -5.00E-07 5.00E-07 -1.47E-04 1.47E-04 -2.6722 2.6722
0.1 0 -0.4184 0.1745 -2.711 2.6778 -0.2447 8.39E-04 -0.4164 0.1725 -2.7054 2.6722
0.1 0.1 -0.292 0.0147 -1.9578 1.8396 -0.1937 3.50E-04 -0.447 -0.0414 -2.7054 2.3762
0 0.1 -5.00E-07 -1.00E-03 -0.0448 0.0438 -5.00E-07 -1.00E-03 -1.47E-04 -0.2959 -2.6722 2.3762

0.4 0.2 -0.7561 0.0603 -2.2234 1.8825 -0.4912 0.0014 -0.9998 -0.08 -2.8051 2.0802
0.4 0.4 -0.6141 0.0331 -1.5869 1.254 -0.3864 0.0015 -1.1082 -0.4567 -2.8051 1.4882
0.4 0.6 -0.5024 0.0158 -1.0553 0.7664 -0.3379 0.0013 -1.2121 -0.8944 -2.8051 0.8962
0.8 0.6 -0.9674 0.0732 -1.7374 1.1656 -0.5974 0.0032 -1.6164 -0.7478 -2.938 0.8962
0.8 1 -0.7914 0.0345 -1.1881 0.6624 -0.5098 0.0029 -1.7719 -1.685 -2.938 -0.2878
2 4 -0.9212 0.0145 -0.9206 0.0162 -0.7112 0.0046 -3.3289 -9.1778 -3.3367 -9.1678
10 0 -6 2.6667 -5.999 2.6767 -3.3779 0.0446 -5.9955 2.6622 -5.9945 2.6722
0 8 -5.00E-07 -0.08 -0.0448 -0.0352 -5.00E-07 -0.08 -1.47E-04 -23.6799 -2.6722 -21.0078

environment is subject of future work, along with a detailed
performance analysis quantifying actual costs of migra-
tion, including downtime, memory and cache usage, and
application-specific performance metrics. Other avenues for
future research include studying VM allocation dynamics
and jointly optimizing timing and allocation policies in
stochastic game model formulations.
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