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Abstract

Atomic-level three-dimensional (3D) structure data for biological macromolecules often prove
critical to dissecting and understanding the precise mechanisms of action of cancer-related
proteins and their diverse roles in oncogenic transformation, proliferation, and metastasis. They
are also used extensively to identify potentially druggable targets and facilitate discovery and
development of both small-molecule and biologic drugs that are today benefiting individuals
diagnosed with cancer around the world. 3D structures of biomolecules (including proteins,
DNA, RNA, and their complexes with one another, drugs, and other small molecules) are freely
distributed by the open-access Protein Data Bank (PDB). This global data repository is used by
millions of scientists and educators working in the areas of drug discovery, vaccine design, and
biomedical and biotechnology research. The US Research Collaboratory for Structural
Bioinformatics Protein Data Bank (RCSB PDB) provides an integrated portal to the PDB archive
that streamlines access for millions of worldwide PDB data consumers. Herein, we review online
resources made available free of charge by the RCSB PDB to basic and applied researchers,
healthcare providers, educators and their students, patients and their families, and the curious
public. We exemplify the value of understanding cancer-related proteins in 3D with a case study

focused on human papillomavirus.



Introduction

Function follows form in biology. Knowing the structure of a protein (or nucleic acid) is crucial for
understanding how it works in nature, how it may affect plant, animal, or human health, and how
it could be targeted (or harnessed) to improve the human condition. The Protein Data Bank
(PDB) is the global archive of three-dimensional (3D) biomolecular structure data (1,2).
Founded in 1971 with just seven protein structures as the first open-access digital data resource
in all of biology, the PDB today houses more than 166,000 structures of proteins, DNA, RNA,
macromolecular machines, viruses, and virus-like particles. The US-funded Research
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB; RCSB.org), a
founding member of the Worldwide Protein Data Bank (wwPDB) partnership (3), integrates the
entire corpus of PDB data with ~40 external biodata resources, and provides easy-to-use web-
based search and molecular visualization tools to assist many millions of PDB data consumers
worldwide in finding, analyzing, and visualizing 3D structures of macromolecules and their

complexes with one another, drugs, antibodies, enzyme cofactors, efc.

This wealth of structural information is particularly useful in the field of cancer biology, wherein
changes in DNA sequence that manifest themselves at the level of protein 3D structure and
biochemical function can have extreme consequences for human health and disease (4).
Structural information is also central in the search for new approaches to diagnostics and
therapeutic interventions, as we seek to block or modify these changes and their oncogenic
effects (5,6). The PDB archive currently holds structural information covering all aspects of
cancer biology, ranging from the molecular details of oncogenic mutations, to mechanisms of
important cellular processes such as apoptosis, to structural characterization of the molecular
machines underlying organism-scale processes such as neovascularization and metastasis. For
the avoidance of doubt, current PDB holdings include 3D structures of the protein targets for

>90% of the 79 new anti-neoplastic agents [54 small molecules, 25 biologics] approved by US



Food and Drug Administration 2010-2018 (6). In this review article, we use human
papillomavirus as a case study to highlight several diverse examples from this continuously
growing corpus of 3D biostructure information, and the powerful tools available from the RCSB

PDB for making effective use of them in the field of cancer research.

Fundamental Biology: Revealing and Understanding the HPV Proteome

Human papillomaviruses (HPV) are non-enveloped double-strand DNA viruses that infect
epithelial cells. Infections with most HPV types lead to self-limiting benign lesions (a.k.a. warts),
but several sexually-transmitted genital high risk types (e.g., HPV16 and HPV18) cause cervical
carcinomas — the leading cause of death among female cancer patients worldwide (7,8) and
some head and neck cancers (9). The HPV genome encodes two classes of proteins: six early
non-structural regulatory proteins (denoted with “E” names), and two late structural proteins L1
and L2 (10). Macromolecular crystallography (MX), NMR spectroscopy (NMR), and,
increasingly, cryo-electron microscopy (3DEM) have all been used to determine 3D structures of
viral proteins of HPV and related papillomaviruses, and their interactions with host proteins
(Table 1). Some of these structures provide critical insights into the architecture of the
papillomavirus capsid, composed of the L1 and L2 proteins, and explain how HPV virus-like
particles can elicit an immune response and be recognized by antibodies that neutralize the
virus. Other 3D structures reveal the atomic details pertaining to the function of the HPV early
proteins, including those of E1 and E2 and their roles in viral replication, and those of E6 and E7
as they recognize and bind to intracellular proteins and frustrate host tumor suppressors,

leading to oncogenic transformation.

As the PDB archive is growing at the rate of about 10% per year, it has become increasingly
challenging to navigate and utilize the available holdings. To ensure that the PDB archive is

maximally utilized, the wwPDB and the RCSB PDB are committed to the FAIR (Findability,



Accessibility, Interoperability, and Reusability) principles (11) emblematic of responsible data
resource management. Of critical importance, PDB structural information is available open
access from members of the wwPDB partnership with no limitations on usage. Building on this
freely-available data repository, the RCSB PDB provides a wide range of search, analysis, and
molecular visualization tools to provide nimble, multimodal access to >166,000 structures. All
3D structures coming into the PDB are processed by the wwPDB global deposition, validation,
and biocuration system known as OneDep (12). Every one of these structures is validated
against both experimental data and established stereochemistry to provide users with
quantitative estimates of structure quality and accuracy (13,14). In addition, every one of these
structures is annotated by a professional wwPDB biocurator to a common data standard that
was established by the wwPDB in consultation with community stakeholders (15). Strict
compliance to the PDBx/mmCIF data standard (16), rigorous structure validation, and expert
biocuration ensures that our data consumers who are not experts in structural biology can rely
on the information they download. The PDB has been recognized as a Core Certified
Repository by CoreTrustSeal (coretrustseal.org). This international, community-based, non-
governmental, non-profit organization promotes sustainable and trustworthy data infrastructures

of which the PDB is widely regarded as a gold-standard exemplar.

Search tools are optimized to help PDB data consumers (hereafter users) find molecules that
are relevant to a given research question. These tools are hierarchical, allowing users to apply
increasing levels of specificity as needed. Most begin with the general search box that is
prominently displayed at the top of the RCSB PDB website home page (rcsb.org), which
combines the open source Apache Solr platform with indexing of all PDB data. It provides a
listing of hits scored and ordered by relevance to the user’s search term. For example, a search
of “papillomavirus” in the “Source Organism Taxonomy Name” category yields 91 entries,

including HPV proteins and nucleic acids, molecules from related papillomaviruses, and host



proteins associated with HPV proteins. Users may then turn to Refinements to narrow this group
of search hits. In Figure 1, filtering by “Human papillomavirus type 16” narrowed the list to
structures related to this particular oncogenic subtype. A flexible Advanced Search Query
Builder allows interactive construction of Boolean Operator combinations of searches on a
variety of subject fields, including polymer sequence, sequence motif, structure similarity, and
chemical structure. This finer-grained searching for topics was used to obtain listings of each of
the viral proteins summarized in Table 1. Finally, the resultant lists may be examined using a
variety of textual and graphical reports, which are linked to detailed Structure Summary pages

for each PDB structure.

Given the state of structural biology and the enormity of the PDB archive, typical searches will
return dozens of structures related to a given topic. Each PDB structure has a dedicated
Structure Summary page that provides a telegraphic overview, which is particularly useful when
filtering a selection of structures for use in a given application. These pages deliver the major
features of each PDB structure, identified with a unique 4-character code (e.g., PDB ID 1abc),
including a static image created with the RCSB PDB Mol* web-native molecular graphics tool
(17); structure depositor(s), release date and primary publication; structure validation and
accuracy assessments; and basic information on the chemical and structural features of the
entry. For example, we used these pages to filter through many entries when researching a

feature on viral quasi-symmetry (http://pdb101.rcsb.org/motm/200). The “Global Stoichiometry”

field (18) underscores one of the mysteries of papillomaviruses that was revealed by the
structural biologists (e.g., PDB ID 3j6r (19)). They are “homo-360-mers”, which places a
surprising value of 6 subunits in the repeating unit of the icosahedral symmetric virus (Figure 2).
This multiple of 60 (i.e., 60x6=360) does not conform to the classic system of quasi-symmetry,
which would require 3, 4 or 7 subunits to be consistent with the conception of a distorted

triangular tessellation of a virus this size (20). The PDB ID 3j6r structure shows that this virus,



and similar polyoma viruses such as simian virus 40 (21), instead place pentamers at locations
normally occupied by hexamers, and use flexible polypeptide chain segments to resolve the
inconsistencies in sites of interaction between among pentamers. This information is directly
relevant to the design and engineering of second-generation virus-like particles that can be

formulated as HPV vaccines to prevent cervical cancers (22).

Structure and Function: HPV Form and Flexibility

Looking at the dozens of structures available for papillomavirus capsids and individual proteins,
we see many of the general themes that underlie biomolecular structure and function. For
example, mechanisms of hierarchical assembly and self-association guide the construction of
icosahedral capsids, as revealed in structures like that shown in Figure 2 (PDB ID 3j6r).
Transient association of viral proteins with host proteins and nucleic acids guide each step in
the viral lifecycle and have been revealed at atomic detail. For example, PDB ID 5w1o (23)
includes an L1 pentamer from HPV16 bound to oligosaccharides from the cellular heparin
receptor, with the surprising observation that multiple sites of virus-receptor interaction are
involved in viral attachment and entry. Intrinsically disordered proteins also play central roles in
several intracellular processes, notably the oncogenic interaction of E6 and E7 proteins with

disordered segments of host proteins, described in more detail below.

To explore these topics, the RCSB PDB website provides a collection of “Views” that leverage
information from related sequence and structural resources, allowing users to drill deeper into
the information held in each entry. The Protein Feature view, provided in summary form on the
Structure Summary page and in more detail with one click, gathers data from UniProt and other
external databases to assist users in understanding the context of each entry in the PDB
archive. Figure 3 shows one major use of the Protein Feature view. Structural biologists often

cut proteins into functional pieces when the full-length protein does not prove amenable to



structure determination in its entirety. It can, therefore, be difficult to parse out exactly which
polypeptide chain segments comprising a particular protein are present in a given PDB ID. The
Protein Feature view for HPV16 E6 shows that the protein contains several functional domains,
and structures are available for the whole protein and for two individual domains, as well as for

a short peptide bound to the PDZ1 domain of cellular protein MAGI-1 (24).

Similar “views” enable exploration of other important topics. The Small Molecule view provides
information on ligands bound to macromolecules in each structure. For example, we cite PDB
ID 2gxa (25), which provides an atomic-level direct look view at the nucleotide binding site of the
E1 hexameric helicase assembly bound to segment of single-stranded DNA. The Annotations
view includes third-party annotations relating to domain structure and gene ontology (e.g.,
CATH defines the two domains of E1 as zinc fingers, similar in structure to that found in the
large T-antigen D1 domain, and a so-called Rossmann fold (26)). Further details of the E1
protein sequence itself may be explored in the Sequence view, with annotations of secondary
structure and other features, such as the nucleotide binding site. Details concerning the
structure determination process are tabulated in the Experiment view. Finally, quantitative
analyses of structure quality can be found in the wwPDB Validation Report, which is
summarized graphically near the top of the Structure Summary page and available both in 3D

(click 3D Report) and downloadable pdf file (click Full Report).

Structure determinations typically provide “snapshots” of macromolecules adopting a single
conformational state. For relatively simple proteins consisting of a single globular domain (e.g.,
sperm whale myoglobin PDB ID 1mbn (27), the first atomic level protein structure to be
determined (28)), this is not a usually an major consideration. For more complicated
macromolecular systems consisting of more than one globular domain (e.g., the multi-domain

Abl protein kinase PDB ID 1fpu (29)) or multi-protein complexes (e.g., the CDK2/Cyclin A binary



complex PDB ID 1fin (30)) a conceptual model of conformational flexibility must be built up by
gathering structures in different states and comparing them. This challenge is further
complicated by the fact that structural biologists often gather information from multiple viral
strains and multiple host organisms, so the overall framework must be built using 3D structures
from disparate sources. The Protein Comparison Tool, accessible using Java Web Start
(http://www.rcsb.org/pdb/workbench/workbench.do?action=menu), is a critical tool for relating
and comparing different structures. It provides several turnkey methods for pairwise sequence
and structure alignments. For example, Figure 4 includes alignment of capsid L1 protein
structures from benign and high-risk strains, showing how small changes in the sequences of
polypeptide chain loops on the viral surface lead to conformational differences, and ultimately to

differences in the way they are recognized by the immune system (31).

Visualizing Functional Interactions: Oncogenesis and Epitopes

Structural biology allows us to overcome the limitations of the human eye to “see” directly the
molecular processes that underlie viral oncogenesis and immune response. A wide variety of
visualization systems are available to help researchers explore and make sense of such data.
These tools include highly-optimized stand-alone software packages such as Chimera (32) and
VMD (33), which typically have built-in options to fetch structures from the PDB archive based
on the PDB ID. The principal limitation of these molecular graphics systems is the need to

download software to the user's computer and keep pace with frequent updates.

The RCSB PDB website provides several options for on-demand visualization, to simplify
exploration of structures on-the-fly as the archive is being searched. The most powerful of these
tools is the RCSB PDB Mol* web-native molecular visualization tool with many options for
customizing views and molecular representations (17). It has been highly optimized to allow

interactive loading and viewing of the large structures that are increasingly being deposited to



the PDB archive. In Figure 5, Mol* was used to explore the mechanisms of oncogenesis in two
PDB structures, wherein viral proteins E6 and E7 are frustrating host defenses. HPV EG6 acts as
an adapter protein, bringing together defense proteins such as the p53 tumor suppressor and
E6AP, which leads to recruitment of the ubiquitin/proteasome system. PDB ID 4xr8 (34)
illuminates how the LxxLL motif of EGAP is recognized by HPV16 EB6, targeting the p53 protein
for degradation. Binding of the HPV16 E7 LxCxE motif to the Rb tumor suppressor paralog p107
is seen in a structure of an E7 peptide bound to the protein (PDB ID 4yoz (35)). This interaction
blocks the Rb binding site involved in cell cycle signaling, as seen in a complex with LIN52

peptide (PDB ID 4yos (35)). LIN52 has an LxSxExL motif and a phosphorylated serine.

JSmol is also provided at the RCSB PDB website as a lighter-weight visualization option with a
user-friendly natural language scripting language (36). This scripting capability was useful for
creation of Figure 6, which shows antibody-binding epitopes for two structures of HPV virus-like
particles. Information from the primary reports for two PDB structures (PDB IDs 6bsp and 6bt3)
of HPV16 with bound monoclonal antibodies U4 and V5, respectively, was used to define their
epitopes (37), and then scripted for display using JSmol. U4 has a discontinuous epitope (red in
Figure 6) occurring in a groove between pentamers at the five-fold axis (lighter blue in Figure. 6)
and one of the neighboring quasi-symmetrical pentamers. In contrast, V5 binds at several
positions around the quasi-symmetrical pentamers. Antibody-capsid complex structures can be
used to guide second-generation vaccine design efforts, building on the success of currently

approved anti-HPV vaccines (22).

Outreach/Education: Disseminating the Results of HPV Research

The PDB archive is a unique resource for science education and outreach, given that structural

information provides an intuitive and comprehensible window into more difficult functional
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concepts in biology and medicine. RCSB PDB hosts a web portal, PDB-101 (pdb101.rcsb.org),
that brings the results of structural biology to the education and lay communities (38). As with
the diverse user community of the main RCSB PDB portal, the educational and lay communities
have a broad collection of needs, so PDB-101 provides multiple modalities for engaging users.
A user-friendly browser is provided at the entry point that allows users to explore holdings based
on common topics, such as Biological Energy, Nanotechnology, or Viruses. The highly popular
Molecule of the Month feature presents a new topic each month, providing a short description of
the structure, function, and relevance of selected molecules (39). Links to structures in the PDB
archive invite users to extend their reading by exploring the actual data. Curriculum Modules
provide educational materials and lesson plans for popular topics in diabetes, immunology, and
virology. In addition, a variety of posters, interactive animations, molecular origami paper-folding
activities, and similar materials have been created to engage user communities at all levels of
expertise. For HPV, a Molecule of the Month feature was recently presented, describing the
connection to cancer and how an understanding of HPV proteins can help discover new ways to
fight viral infection. A molecular origami foldable paper model of the HPV16 virus-like particle
decorated with Fab fragments of the V5 antibody (PDB ID 6bt3 (37)) is downloadable as part of

this outreach effort (Figure 7).

The RCSB PDB and Cancer Research Writ Large

The RCSB PDB is committed to empowering cancer researchers, with advanced tools for
exploring biomedically-relevant structure holdings, and extensive introductory resources to
lower the barrier to entry for users who are new to structural biology
(https://www.rcsb.org/pages/help/index). For clinical researchers the RCSB PDB provides easy-
to-use tools that enable discovery of cancer-related proteins and biomarkers; support in-depth
3D analyses of mutational hotspots identified via comprehensive genomic sequencing/profiling;

and facilitate hypothesis generation regarding selection of targeted anti-neoplastic agents. The
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ability to combine 3D structure data with cancer-related information will complement well-
established approaches that principally utilize 1D genome/protein sequence data. One of the
most important challenges facing clinical researchers today is acquired resistance to targeted
anti-neoplastic agents. Resistance is observed in many tumor types and can appear during any
stage of cancer treatment through a variety of biochemical and cell biological mechanisms
(reviewed in (40)). The RCSB PDB website also provides tools for understanding acquired drug
resistance in 3D and developing testable hypotheses re alternative targeted therapies, as
demonstrated for osimertinib treatment failure due to emergence of a previously unreported
epidermal growth factor receptor mutation (Methionine 766->Glutamine) (41). PDB data and the
RCSB PDB website support early-stage oncology drug discovery (reviewed in (6)). Areas of
demonstrated impact include target validation; druggability assessment; characterization of
screening hits; medicinal chemistry optimization of pharmaceutically acceptable leads; and
design of novel proteins for diagnostic and therapeutic applications (e.g., chimeric antigen
receptors, bispecific antibodies). Finally, the RCSB PDB website supports basic and applied
cancer researchers, whose work can benefit significantly from “direct looks” at 3D structures of
human proteins, multi-protein complexes, and protein-nucleic acid complexes as they

characterize the biochemical and cell biological origins of human cancers (reviewed in (6)).
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Figure Captions

Figure 1. Multiple options streamline searches of the PDB archive. Here, HPV16 holdings were
found by (A) searching for “papillomavirus” in the main search box, (B) selecting HPV16 in the
refinement options, and (C) choosing a gallery display. Advanced searches may be built in (D)
for more specific queries. The search returns several L1 capsid structures, some coated with

antibody Fab fragments, and structures of E2 and EG, some interacting with host cell proteins.

Figure 2. Structure Summary for a cryo-electron microscopy study of HPV16 capsid (PDB ID
3j6r (19)) provides an overview of the entry and many options to access detailed information

and analysis tools.

Figure 3. Protein Feature View for a complex of HPV16 E6 with guanylate kinase MAGI-1 (PDB
ID 2kpl (24)). The view helps users understand that only a small peptide from EG is included in
the PDB ID. A similar View is available for MAGI-1, showing that only one domain from that

protein is included in the entry.

Figure 4. Comparison of L1 proteins from pentamers of HPV11 (cyan, PDB ID 2r5k (31)) and
HPV18 (orange, PDB ID 2r5i (31)), using the Java Web Start “Structure Alignment” tool. Arrows
indicate sites with changes in the length of loops, seen as gaps in the sequence alignment at

the top.

Figure 5. Visualization of virus-host interactions with Mol*. Left. HPV E6 brings together EGAP
and p53 tumor suppressor (PDB ID 4xr8 (34)). Only portions of EGAP and p53 are included in
the structure determination, and E6AP was studied as a chimera with maltose binding protein.

Right. Interaction of p107 with E6 and with a suboptimal host partner (PDB IDs 4yos, 4yoz (35)).
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Figure 6. Epitopes (red) of antibodies U4 (left) and V5 (right) on HPV-16 capsids, visualized

with online JSmol scripting tools (PDB IDs 6bsp, 6bt3 (37)).

Figure 7. Outreach materials include a feature and a foldable paper model of HPV (red) bound

to antibody Fab fragments (blue) (PDB ID 6bt3 (37)).
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Human Papillomavirus and Vaccines

The capsid protein of papillomavirus is used in vaccines that prevent cervical cancer.

Papillomaviruses are annoying pests that occasionally turn into deadly dangers. They attack cells in our skin and mucous
membranes. When they infect cells, they ramp up the normal growth functions, often forming warts. Usually our defenses
are able to get the infection under control, but in some exceptional cases, the virus persists and the unwanted growth can
turn into cancer. Alarmingly, infection by a few particularly-virulent types of papillomavirus is the leading cause of cervical
cancer. Fortunately, by studying these viruses, scientists have discovered highly effective ways to fight them.

A Tiny Danger

Papillomavirus is a small virus, with a simple capsid surrounding a circular DNA genome. The capsid (PDB entry 3j6r)
includes 360 copies of the major capsid chain, called L1. A second capsid chain, called L2, is found on the inside and
may help with packaging the genome. The capsid structure, however, is not a typical quasisymmetrical virus. Instead, like
simian virus 40, the L1 chains form 72 pentameric “capsomeres”, which then interact with one another through long
flexible tails.
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Structures of papillomavirus capsid from cryoelectron microscopy.
Capsomeres in orange are surrounded by five other capsomeres, and
the ones in red are surrounded by six neighbors. The structure at the
bottom is covered with many virus-specific antibodies (blue, only the
Fab portion of the antibody is included in the structure).
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Table 1. Structures of Papillomavirus Biomolecules in the PDB.

Experimental Method

63 Macromolecular Crystallography (MX)
14 Solution NMR (NMR)

14 Electron Microscopy (3DEM)

Structures of Papillomavirus Proteins

28 L1 13 Icosahedral Capsids
10 Complexed with Monoclonal Antibody
8 E1 3 Complexed with DNA
25 E2 4 complexed with DNA
22 E6 17 Complexed with Host Protein

8 E7 3 Complexed with Host Protein

Structures Related to Oncogenic Subtypes

13 HPV16

11 HPV18

Results from advanced search (June 08 2020) of “papillomavirus” in “Source Organism

Taxonomy Name,” with Boolean AND of additional “Full Text” terms such as “L1”
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