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A B S T R A C T   

Objective: Early detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) can increase access 
to treatment and assist in advance care planning. However, the development of a diagnostic system that d7oes 
not heavily depend on cognitive testing is a major challenge. We describe a diagnostic algorithm based solely on 
gait and machine learning to detect MCI and AD from healthy. 
Methods: We collected “single-tasking” gait (walking) and “dual-tasking” gait (walking with cognitive tasks) from 
32 healthy, 26 MCI, and 20 AD participants using a computerized walkway. Each participant was assessed with 
the Montreal Cognitive Assessment (MoCA). A set of gait features (e.g., mean, variance and asymmetry) were 
extracted. Significant features for three classifications of MCI/healthy, AD/healthy, and AD/MCI were identified. 
A support vector machine model in a one-vs.-one manner was trained for each classification, and the majority 
vote of the three models was assigned as healthy, MCI, or AD. 
Results: The average classification accuracy of 5-fold cross-validation using only the gait features was 78% (77% 
F1-score), which was plausible when compared with the MoCA score with 83% accuracy (84% F1-score). The 
performance of healthy vs. MCI or AD was 86% (88% F1-score), which was comparable to 88% accuracy (90% 
F1-score) with MoCA. 
Conclusion: Our results indicate the potential of machine learning and gait assessments as objective cognitive 
screening and diagnostic tools. 
Significance: Gait-based cognitive screening can be easily adapted into clinical settings and may lead to early 
identification of cognitive impairment, so that early intervention strategies can be initiated.   

1. Introduction 

Alzheimer’s disease (AD), the most common cause of dementia, is 
one of the most prevalent causes of mortality in the United States. In 
2018, AD accounted for 30.5 deaths per 100,000 people nationwide [1]. 
Mild cognitive impairment (MCI) is abnormal cognitive decline beyond 
expected decline of normal aging that represents a prodromal stage of 
AD with an estimated community prevalence of 21% for those over age 
65 [2]. The rate of progression to AD in people with MCI is an estimated 
10–15% per year, which is much higher than the rate of 1%–2% seen in 
general population [3,4]. However, early diagnosis remains a difficult 
task. By the time AD is diagnosed, sufficient neuronal injury has 
occurred to the extent that reversal of the disease is unlikely [5]. In this 
paper, we developed a new method for early diagnosis of MCI and AD 

that coupled with emerging therapies, could help intervene and slow, or 
perhaps even halt, the progression [6]. 

Current clinical practices typically use cognitive tests, such as 
Montreal Cognitive Assessment (MoCA) [7], to screen patients for MCI 
and AD. The challenge with these cognitive tests is that they may not be 
efficient at identifying early-stages of cognitive impairment because 
when applied to general populations, the cutoff scores have to be 
adjusted for each individual according to education level and cultural 
background and may be less sensitive to subtle cognitive changes and 
activities of daily living in the earlier stages of cognitive impairment [8]. 
Moreover, these tests require training for proper administration and are 
usually performed after cognitive decline becomes noticeable or is 
offered as a complaint by the patient or a family member. Less than half 
of older adults are currently screened and diagnosed for cognitive 
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decline, and impairment is most frequently diagnosed at the 
mild-to-moderate stages of disease [9]. The focus of this study was to 
develop an MCI and AD detection method that can be performed by 
primary providers who may be untrained or uncomfortable performing 
cognitive assessments [10]. 

Gait has been shown to have a robust relationship with cognition 
[11,12]. Unlike cognitive tests, gait assessment is a common component 
of physical examinations across a variety of medical disciplines. Walking 
is a process that requires memory, executive function, motor coordina
tion, and attention, and hence dual-task gait, which refers to walking 
while performing an attention-demanding task, has shown to be affected 
more in individuals with cognitive impairment than in those without 
cognitive deficits [13]. Therefore, the dual-task assessment has been 
used to detect individuals with an abnormal cognitive decline via 
assessment of decline in performance from single- (e.g. walking) to 
dual-task walking tests (e.g., walking while subtracting) [14]. However, 
most studies investigated the association between gait performance and 
cognitive decline using statistical approaches [15,16]. They used 
methods such as analysis of variance to identify aspects of gait that 
significantly change with increased cognitive load without providing an 
aggregated model to discriminate AD or MCI subjects from the healthy 
controls. We hypothesize that using machine learning approaches we 
could translate automatically and objectively the gait data from the 
dual-task assessments into clinically actionable knowledge about an 
individuals’ cognitive state. Our rationale is that developing a model 
that does not require cognitive testing and is solely based on gait as
sessments may lead to more effective cognitive screening and diagnostic 
tools that can be easily adapted into the clinical care setting [17]. 

The contribution of this paper is twofold. First, we extract existing 
and novel gait features from the single and dual-tasking gait data and 
determine the gait features that are important in developing a machine 
learning-based detection of healthy, MCI, and AD groups. Second, we 
develop a machine learning technique that associates these significant 
gait features from the single and dual-tasking gait to a clinical diagnosis: 
AD, MCI, or healthy. Our approach is novel because to our best 
knowledge, no research study has explored the advantage of machine 
learning techniques on dual-task gait assessment data to detect MCI and 
AD subjects. Machine learning has been shown to be successful in 
detecting MCI subjects using different types of subjects’ data such as 
MRI, diffusion tensor imaging, and electroencephalogram (EEG) 
(reviewed in [18]). However, these methods rely on expensive clinical 
protocols to collect data with extensive infrastructure and expensive 
medical equipment. Our technique can objectively detect subjects with 
AD or MCI from healthy subjects based on the gait data as the subjects 
perform a series of single and dual-task assessments. This will enable 
tools that can be performed by primary providers to detect MCI or AD 
subjects without using subjective cognitive assessments 

2. Materials and methods 

Fig. 1 provides an illustrative description of our approach to detect 
cognitive status based on gait assessments. 

2.1. Dataset 

Data from a retrospective cohort of community-dwelling older adults 
participating in dementia research in an academic research setting were 
used in this study. The cohort consisted of 78 participants with 32 
healthy, 26 MCI, and 20 AD. None of the participants had clinically 
detectable mobility impairments. Various gait characteristics were 
measured using a computerized walkway consisting of a pressure sen
sitive mat with a size of 20 ft. long × 4 ft. wide and a gait analysis soft
ware. For 35 subjects, a Zenomat system (ProtoKinetics LLC) was used 
and a GAITRite system (CIR Systems, PA) for the other 43 participants. 
Previous studies have shown that the two systems have minimal dif
ferences in providing the gait characteristics that were used in our study 
[19]. The study was approved by the Institutional Review Board at 
Florida Atlantic University and was completed in accordance with the 
Helsinki Declaration. 

2.2. Procedures 

2.2.1. Cognition 
Each subject was assessed with the MoCA test, which assesses per

formance on several cognitive domains including executive function, 
memory, orientation, attention, language, and visuospatial abilities, and 
is commonly used as a measure of global cognitive function. Total scores 
are derived by summing up individual cognitive domain scores and 
range from 0 to 30, with higher scores indicating better performance. It 
takes approximately 10–12 min to complete. 

2.2.2. Gait 
Subjects performed a series of single and dual-task assessments as 

their gait characteristics were measured and recorded using the 
computerized walkway. Participants were instructed to complete three 
trials of consecutive walking: single task normal speed walking (normal 
walking), dual-task normal speed walking while performing a verbal 
task (saying the alphabet out loud), and a second dual-task normal speed 
walking while performing a working memory dual-task (counting 
backward out loud from 100 by 3 s). Table 1 provides the participants’ 
demographics. 

Fig. 1. The overall approach for detection of AD, MCI, and healthy subjects from their single and dual-task gait assessment data.  

Table 1 
Participant Characteristics of the Healthy, MCI, and AD Groups.  

Characteristic All (n = 78) Healthy 
(n = 32) 

MCI 
(n = 26) 

AD (n = 20) 

Sex, n (%)     
Male 39 (50) 23 (71.88) 10 (38.46) 6 (30) 
Female 39 (50) 9 (28.12) 16 (61.54) 14 (70) 
Age, years, 

mean±SD  
73.30±10.63  65.13±10.53  76.81±6.03  81.40±5.88  

MoCA score, 
mean±SD  

22.03±6.18  26.72±2.44  22.42±2.33  14.00±5.71  

Education, years, 
mean±SD  

15.07±2.50  16.67±1.15  15.17±2.56  14.00±2.83   
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2.3. Feature extraction 

We used the ProtoKinetics Movement Analysis Software (PKMAS) 
software to extract gait features from the Zenomat system and GAITRite 
software for the GAITRite system. For every trial, we extracted the 
mean, standard deviation (SD), and asymmetry for the following eight 
gait characteristics: stride time, step time, single support time, swing 
time, double support time, stance time, stride length, and step length. 
Asymmetry was calculated as the ratio of the left to right leg mean 
values. In addition, we calculated velocity (meters per second) and 
cadence (number of steps per minute) from the gait data of each trial. 
We also calculated the dual-task cost as the rate of change in each of the 
above metrics from trial 1 to trial 2 and 3 as well as trial 2–3 as (trial i- 
trial j)/trial i. This process resulted in a total of 108 gait features for 
every participant. 

2.4. Feature selection 

We selected a set of uncorrelated significant features for each of the 
three classification tasks of: healthy to MCI, healthy to AD, and MCI to 
AD in two steps. For every classification task, in step 1, we calculated the 
P-value using chi square (χ2) or t tests (as deemed appropriate) between 
the two comparison groups and identified the significant features as the 
ones with a P-value < 0.05. Fig. 2 shows the step 1 process for identifi
cation of the features with a P-value < 0.05 as indicated by a bracket for 
the step time gait features. 

However, given that some of the extracted gait features such as 
double support and stance time or single support and swing time are 
correlated, in step 2, we identified the set of significant features with a 
correlation coefficient of greater than 90% and selected the significant 
feature with the lowest P-value, which were then used for training the 
classification model. Fig. 3 illustrates the step 2 process for selection of 
the uncorrelated significant features. For visualization purposes, we are 
only showing the selection step between the double support and stance 
mean features in each trial for discrimination of the three classes; 
however, the concept applies to all the features. To better visualize the 
significance of each feature, we have shown one over the P-value as the 
significance value of each feature. Hence, a higher significance value 
indicates a lower P-value and a more significant feature. 

2.5. Machine learning with gait features 

We used an SVM-based classification technique to detect healthy, 
MCI, and AD subjects based on their gait features. SVM is a powerful 
binary classification tool, which consists of a training and a testing stage. 
In the training stage, SVM uses sample data from both classes to generate 
a hyperplane in the data feature space, with each side of the hyperplane 
representing one of the classes. In the testing stage, SVM uses the 
generated hyperplane to classify new data points. When the data is not 
linearly separable, SVM uses a kernel function to map the feature vectors 
to a higher dimensionality space with a better separation. To avoid 
overfitting, a regularization parameter, C, is introduced as a tradeoff 
between misclassification and overfitting. The best hyperplane is chosen 
to maximize the distance between the nearest points of each class to the 
hyperplane and minimize any generalization errors when new data 
points are presented to the SVM. In this work, we used three SVMs in a 
one-vs-one manner. This design will enable the integration of the in
formation learned about the significant features between two groups in 
developing the classification model. We trained one model for each of 
the following classification tasks: MCI vs. healthy, AD vs. healthy, and 
AD vs. MCI. For each classification task, we used the selected gait fea
tures for training the SVM classifier. In the testing stage, the three 
trained SVMs were applied to the gait features of a new subject, and the 
majority vote of the three SVMs was used to associate a diagnostic label 
(healthy, MCI, or AD). To account for cases where the three diagnoses 
are equally voted, we used the approach by Platt et al. [20] to assign a 
posterior class probability to each classification. Hence, when a subject 
was equally voted to healthy, MCI, and AD, we assigned the diagnosis 
with the highest probability as the diagnostic label. 

2.5.1. Parameter selection 
There are several hyperparameters to control the shape of the hy

perplane classifier in an SVM: whether a linear separation is sufficient or 
a kernel is needed; regularization parameter (C); and any parameters 
that are associated with the kernel. In this work, we used the Gaussian 
radial basis function (RBF) with a gamma parameter (γ) to control the 
shape of the kernel. For every SVM, the hyperparameters (linear or an 
RBF kernel, C ∈ 2{− 2, …, 2}, and γ ∈ 2{− 4, …, 4}) were selected based on a 
five-fold validation of the training data. 

2.6. Machine learning with MoCA score 

For comparison purposes, we developed a second SVM-based clas
sifier to detect healthy, MCI, and AD subjects based on their MoCA 
cognitive assessment scores only. All the training and testing stages as 
well as the hyperparameters’ selection techniques described in section 
2.5 were applied when using the MoCA score. 

3. Results 

We applied the developed gait feature selection and classification on 
the single and dual-task gait assessment data explained in Section 2. 
Presented in Fig. 2 are select results from step 1 of the feature identifi
cation process. As the figure indicates, the step time mean in trial 3 was 
larger for the MCI and AD subjects in comparison with the healthy 
subjects and significant for the discrimination of healthy from the MCI 
and AD subjects (Fig. 2A). However, step time SD significantly increased 
from healthy to AD at all the three trials and to MCI at trial 1 and 3 
(Fig. 2B). The step time asymmetry was significant between the healthy 
and MCI subjects at trial 1 (Fig. 2C). There was also a significant decline 
in the step time from trial 1 to trial 3 when healthy subjects were 
compared to the MCI and AD groups (Fig. 2D). As a result, a total of 11 
significant features were identified from the step time gait characteris
tics, where five of them discriminate healthy vs. MCI, five healthy vs. 
AD, and one for MCI vs. AD. Step 2 in the process of feature selection is 
presented in Fig. 3, for a select pair of correlated features: double 

Fig. 2. Feature distribution of step time (A) mean, (B) standard deviation, and 
(C) asymmetry at trials T1, T2, and T3 as well as (D) dual-task cost from trial T1 
to T2 (T1T2), T1 to T3 (T1T3), and T2 to T3 (T2T3). The outliers are shown as 
an asterisks. The significant features were identified by brackets. 
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Fig. 3. The significance value of the double support mean and stance mean at trials 1, 2, and 3 for discrimination of (A) healthy from MCI subjects, (B) healthy from 
AD subjects, and (C) MCI from AD subjects. The selected features are identified by a check mark. “r” stands for correlation coefficient. 

Fig. 4. The distribution of the (A) significant features and (B) selected features per different gait features and at different trials. Cost refers to dual-task cost between 
the trials. 
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support and stance mean. As indicated in the figure, when separating the 
healthy from MCI group (Fig. 3A), the stance mean-values of all the 
three trials and the double support mean of trial 2 were significant. 
However, the double support mean feature from trial 2 was not selected 
as it has a correlation coefficient of greater than 0.9 with the stance 
feature but its significance value is less than the stance feature. In a 
similar process, the double support mean of trial 2 from the healthy vs. 
AD discrimination was not selected either (Fig. 3B). A summary of all the 
significant features and features selected for the three classification 
groups is presented in Fig. 4. About 40–50% of the significant features 
had a high correlation with the other features and were not selected for 
developing the machine learning classifiers. 

Further investigation as shown in Fig. 5 indicated that the correlated 
features were mostly the mean values and were removed after consid
ering the correlation. Fig. 5 shows the distribution of the significant 
features (Fig. 5A) and selected features (Fig. 5B) per mean, SD, asym
metry, and dual-task cost. We found that in some cases (healthy vs. AD), 
over half of the significant features were correlated and not selected. 
Fig. 6 provides the significance of the gait features extracted from every 
trial as well as the ones representing the dual-task cost. The vertical axes 
provide the average of the one over P-values of all the selected features 
in the same category. We found that trial 3 provided the most significant 
features for differentiating MCI from healthy subjects (Fig. 6A), dual- 
task cost provided the most significant features for differentiating AD 
from healthy subjects (Fig. 6B), while trial 1 was significant in sepa
rating AD from MCI subjects (Fig. 6C). 

Next, we trained three SVMs based on the selected gait features from 
80% of the subjects in each of the healthy, MCI, and AD groups, and 
tested them on the remaining 20% subjects. For implementation, we 
used LIBSM toolbox in MATLAB [21]. Repeating this process five times, 
every time with a different set of training and testing subsets, resulted in 
an average classification accuracy of 78% and F1-score of 77%. The 
average classification accuracy and F1-score when using the MoCA 
scores only were 83% and 84%, respectively. The SVM selected the 
MoCA cut off of <26 for classifying MCI from healthy, <19 for AD from 
MCI, and <22 for AD from healthy. Table 2 provides the classification 
distribution using the MoCA score. For comparison purposes, we 
repeated the experiment using all the gait features instead of the selected 
significant features. This experiment resulted in a much lower average 
accuracy of 69% indicating the importance of one-vs-one classification 
design used in our approach. In addition to the three classification ac
curacy results, we combined the MCI and AD as one group and in Table 2 
reported the classification results for healthy vs. MCI/AD subjects when 
using only the gait features and only the MoCA scores. 

4. Discussion 

Early detection of persons with MCI and AD remains a great chal
lenge, both in primary care and specialty practices. We developed an 
approach based on dual-tasking gait assessments and machine learning 
that can detect MCI and AD and discriminate them from healthy sub
jects. As hypothesized, we were able to use dual-tasking gait assessment 
data and a machine learning approach and developed the first auto
mated and objective algorithm to detect healthy vs. MCI vs. AD subjects 
based on only their gait data. Our approach resulted in a plausible 
average classification accuracy of 78% using only gait assessments 
(Table 2). We performed a comprehensive investigation of the gait 
characteristics with respect to the disease stage at MCI and AD and made 
several interesting observations. 

4.1. Change in single- and dual-task gait 

Our investigations showed that most of the gait features from single 
and dual-task gait were significant in discriminating between healthy vs. 
MCI, healthy vs. AD, and MCI vs. AD subjects. As shown in Fig. 4A, more 
significant changes were associated when comparing the healthy gait to 
the AD gait (with 50 features) in comparison to the healthy to MCI gait 
(43 features) and MCI to AD gait (22 features). Velocity was previously 
reported to have a significant decline in all the three classifications 
(healthy to MCI or AD [22] and MCI to AD [23]), and we observed a 
similar behavior (Fig. 4A). However, more complex cognitive tasks seem 
to be required to elicit the gait speed differences between healthy from 
cognitively declined subjects. The dual-task cost in velocity from trial 1 
to trial 2 was not significant in differentiating healthy from MCI or AD, 
while it was significant from trial 1–3. Also, we did not find any sig
nificant decline in the velocity from single to dual tasking between the 
MCI and AD subjects although the velocity was consistency lower for the 
AD subjects. 

4.2. Important gait features 

An interesting observation after removing the correlated features is 
that about 50% of the significant features were correlated, resulting in 
25 uncorrelated significant features for healthy vs. MCI and healthy vs. 
AD and only 13 for MCI vs. AD (Fig. 4B). This was expected as some of 
the extracted features (e.g., stance and double support time, swing and 
single support time) quantify a similar gait characteristic. Step time, 
swing time, double support, stance, and step length were the gait 
characteristics with the most number of features for healthy vs. MCI or 
AD plus stride time for healthy vs. AD classification. The gait features 

Fig. 5. The distribution of the (A) significant features and (B) selected features per feature type of mean, SD, asymmetry, and dual-task cost from one trial to another.  
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with the most number of features were velocity, double support, stance, 
stride length, and step length for MCI vs. AD. 

4.3. Gait variability 

Gait variability was the most significant feature in detecting cogni
tive decline (Fig. 5). In case of healthy vs. AD, 60% (15 out of 25) of the 
selected features were from the gait standard deviation, 46% (6 out of 
13) for MCI vs. AD and 44% (11 out of 25) for healthy vs. MCI. Beauchet 
et al. [24] have also shown gait variability increases significantly for 
cognitively declined subjects, and the work by Sheridan et al. [25] has 
shown that the effect of cognitive decline on gait variability is larger 
than the gait mean performance. 

4.4. Gait asymmetry 

In some studies, gait asymmetry properties have suggested to be 
useful only in detecting gait pathology with a unilateral onset [26] and 
have been used in detecting different dementia subtypes [27]. However, 
our study agrees with the work by Maquet et al. [28], which suggested 
that healthy subjects have a significantly better symmetry than MCI and 
AD subjects. In our cohort, we found that the gait asymmetry increases 
with cognitive decline (Fig. 5). Step length asymmetry significantly 
increased from healthy to MCI and MCI to AD. Stance and swing 
asymmetry were also significantly higher in AD compared to MCI. 

4.5. Change in gait performance with disease progression 

Our further investigation shows that there is a more significant 

decline in the single and dual-task performance as the disease pro
gresses. As shown in Fig. 6, the significance value of the healthy vs. AD 
gait features in all the three trials was higher than the healthy vs. MCI, 
suggesting that gait impairment as measured by dual-tasking may in
crease as individuals transition from MCI to AD. In addition, the per
formance decline of the MCI subjects becomes more evident with the 
increase of the cognitive load in trial 2 and then trial 3 (Fig. 6A), but as 
the disease advances to AD, the decline becomes more evident even in 
trial 1 without adding a cognitive load (Fig. 6B-C). Moreover, the dual- 
task cost from trail 1 to trial 2 and to trial 3 increases more for AD 
subjects than the MCI subjects (Fig. 6C). A similar behavior was reported 
by Montero-Odasso et al. [15], where the authors reported that a sig
nificant gait change is associated with AD. 

4.6. Comparisons with the state-of-the-art 

A few examples of the machine learning applications related to gait 
characterization and cognitive decline include age-sensitive classifica
tion of single vs. dual-task gait [29], estimation of the Mini-Mental State 
Examination cognitive score from gait [30], and detection of healthy 
from AD [31]. To the authors’ knowledge, the only machine learning 
approach directly related to our approach is the work by Costa et al. 
[31], where healthy subjects were distinguished from AD subjects with 
an average classification accuracy of 78.9% based on their postural ki
nematics. We compared our approach to a classification based on 
cognitive assessment scores. The machine learning algorithm picked a 
cutoff of 26 for detecting MCI from healthy, which is comparable to the 
reported 25–26 for screening MCI subjects [32,33]. The algorithm 
selected a cut off of 19 for detecting AD from MCI subjects; however, 
there is no set cutoff in the literature to compare to. The classifier based 
on MoCA resulted in 83% accuracy. As expected from the fewer selected 
features (Fig. 4), the discrimination of MCI from AD is more challenging 
using only the gait features. The average classification accuracy of 
healthy vs. MCI or AD subjects was increased to 86% with an F1-score of 
88% when using only the gait features, which is comparable to 88% 
average accuracy and 90% F1-score with MoCA (Table 2). 

5. Conclusion 

The aim of this study was to develop an automated and objective 
method for detecting MCI, and AD subjects and discriminating them 
from healthy controls. For this purpose, we collected gait data from a 
total of 78 elderly subjects as they performed a series of single and dual- 
task walking. We extracted a total of 108 gait features from each subject 
and identified the uncorrelated significant features. Next, we used a 
machine learning approach to detect the clinical diagnosis from the 
selected gait features. The approach resulted in 25 uncorrelated signif
icant gait features for discriminating healthy vs. MCI and healthy vs. AD, 
and 13 for MCI vs. AD. The five-fold classification accuracy was 78% 
using the selected gait features, which was slightly lower than 83% 

Fig. 6. The average significance value of the selected gait features from each trial as well as the dual-task cost in differentiating between (A) healthy from MCI, (B) 
healthy from AD, and (C) MCI from AD. 

Table 2 
Classification accuracy of the Healthy, MCI, and AD Groups.  

A. Classification based on only gait assessment data 

Diagnosis Healthy MCI AD 

Healthy 85 13 2 
MCI 10 70 20 
AD 5 20 75  

Diagnosis Healthy MCI/AD 

Healthy 85 15 
MCI/AD 13 87  

B. Classification based on MoCA scores 

Diagnosis Healthy MCI AD 

Healthy 85 15 0 
MCI 16 84 0 
AD 0 20 80  

Diagnosis Healthy MCI/AD 

Healthy 85 15 
MCI/AD 9 91  
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when using the cognitive assessment score. This work is the first work 
towards the selection of important gait features for a machine learning- 
based classification and developing an automated and objective tech
nique for detection of cognitive decline in MCI and AD subjects based on 
only gait assessments. Gait-based cognitive screening has practical value 
as gait assessments are more commonly done, compared with cognitive 
assessments, in primary care settings where the majority of patients are 
seen. Using gait as a screen for cognitive impairment can prompt clini
cians to conduct further evaluations for diagnosing MCI and AD. 
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