Biomedical Signal Processing and Control 64 (2021) 102249

Contents lists available at ScienceDirect

Biomedical
Signal Processing
and Control

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

ELSEVIER

Check for

Detection of mild cognitive impairment and Alzheimer’s disease using e
dual-task gait assessments and machine learning

Behnaz Ghoraani ®*, Lillian N. Boettcher ?, Murtadha D. Hssayeni °, Amie Rosenfeld ",
Magdalena I. Tolea”, James E. Galvin"

& Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
Y Comprehensive Center for Brain Health, Department of Neurology, University of Miami, Miami, FL, 33136, USA

ARTICLE INFO ABSTRACT

Keywords:

Cognitive decline
Machine learning
Gait data
Alzheimer’s disease
Dual-task assessment

Objective: Early detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) can increase access
to treatment and assist in advance care planning. However, the development of a diagnostic system that d7oes
not heavily depend on cognitive testing is a major challenge. We describe a diagnostic algorithm based solely on
gait and machine learning to detect MCI and AD from healthy.

Methods: We collected “single-tasking” gait (walking) and “dual-tasking” gait (walking with cognitive tasks) from
32 healthy, 26 MCI, and 20 AD participants using a computerized walkway. Each participant was assessed with
the Montreal Cognitive Assessment (MoCA). A set of gait features (e.g., mean, variance and asymmetry) were
extracted. Significant features for three classifications of MCI/healthy, AD/healthy, and AD/MCI were identified.
A support vector machine model in a one-vs.-one manner was trained for each classification, and the majority
vote of the three models was assigned as healthy, MCI, or AD.

Resuits: The average classification accuracy of 5-fold cross-validation using only the gait features was 78% (77%
F1-score), which was plausible when compared with the MoCA score with 83% accuracy (84% F1-score). The
performance of healthy vs. MCI or AD was 86% (88% F1-score), which was comparable to 88% accuracy (90%
F1-score) with MoCA.

Conclusion: Our results indicate the potential of machine learning and gait assessments as objective cognitive
screening and diagnostic tools.

Significance: Gait-based cognitive screening can be easily adapted into clinical settings and may lead to early
identification of cognitive impairment, so that early intervention strategies can be initiated.

1. Introduction

Alzheimer’s disease (AD), the most common cause of dementia, is
one of the most prevalent causes of mortality in the United States. In
2018, AD accounted for 30.5 deaths per 100,000 people nationwide [1].
Mild cognitive impairment (MCI) is abnormal cognitive decline beyond
expected decline of normal aging that represents a prodromal stage of
AD with an estimated community prevalence of 21% for those over age
65 [2]. The rate of progression to AD in people with MCI is an estimated
10-15% per year, which is much higher than the rate of 1%-2% seen in
general population [3,4]. However, early diagnosis remains a difficult
task. By the time AD is diagnosed, sufficient neuronal injury has
occurred to the extent that reversal of the disease is unlikely [5]. In this
paper, we developed a new method for early diagnosis of MCI and AD
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that coupled with emerging therapies, could help intervene and slow, or
perhaps even halt, the progression [6].

Current clinical practices typically use cognitive tests, such as
Montreal Cognitive Assessment (MoCA) [7], to screen patients for MCI
and AD. The challenge with these cognitive tests is that they may not be
efficient at identifying early-stages of cognitive impairment because
when applied to general populations, the cutoff scores have to be
adjusted for each individual according to education level and cultural
background and may be less sensitive to subtle cognitive changes and
activities of daily living in the earlier stages of cognitive impairment [8].
Moreover, these tests require training for proper administration and are
usually performed after cognitive decline becomes noticeable or is
offered as a complaint by the patient or a family member. Less than half
of older adults are currently screened and diagnosed for cognitive
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decline, and impairment is most frequently diagnosed at the
mild-to-moderate stages of disease [9]. The focus of this study was to
develop an MCI and AD detection method that can be performed by
primary providers who may be untrained or uncomfortable performing
cognitive assessments [10].

Gait has been shown to have a robust relationship with cognition
[11,12]. Unlike cognitive tests, gait assessment is a common component
of physical examinations across a variety of medical disciplines. Walking
is a process that requires memory, executive function, motor coordina-
tion, and attention, and hence dual-task gait, which refers to walking
while performing an attention-demanding task, has shown to be affected
more in individuals with cognitive impairment than in those without
cognitive deficits [13]. Therefore, the dual-task assessment has been
used to detect individuals with an abnormal cognitive decline via
assessment of decline in performance from single- (e.g. walking) to
dual-task walking tests (e.g., walking while subtracting) [14]. However,
most studies investigated the association between gait performance and
cognitive decline using statistical approaches [15,16]. They used
methods such as analysis of variance to identify aspects of gait that
significantly change with increased cognitive load without providing an
aggregated model to discriminate AD or MCI subjects from the healthy
controls. We hypothesize that using machine learning approaches we
could translate automatically and objectively the gait data from the
dual-task assessments into clinically actionable knowledge about an
individuals’ cognitive state. Our rationale is that developing a model
that does not require cognitive testing and is solely based on gait as-
sessments may lead to more effective cognitive screening and diagnostic
tools that can be easily adapted into the clinical care setting [17].

The contribution of this paper is twofold. First, we extract existing
and novel gait features from the single and dual-tasking gait data and
determine the gait features that are important in developing a machine
learning-based detection of healthy, MCI, and AD groups. Second, we
develop a machine learning technique that associates these significant
gait features from the single and dual-tasking gait to a clinical diagnosis:
AD, MCI, or healthy. Our approach is novel because to our best
knowledge, no research study has explored the advantage of machine
learning techniques on dual-task gait assessment data to detect MCI and
AD subjects. Machine learning has been shown to be successful in
detecting MCI subjects using different types of subjects’ data such as
MRI, diffusion tensor imaging, and electroencephalogram (EEG)
(reviewed in [18]). However, these methods rely on expensive clinical
protocols to collect data with extensive infrastructure and expensive
medical equipment. Our technique can objectively detect subjects with
AD or MCI from healthy subjects based on the gait data as the subjects
perform a series of single and dual-task assessments. This will enable
tools that can be performed by primary providers to detect MCI or AD
subjects without using subjective cognitive assessments

2. Materials and methods

Fig. 1 provides an illustrative description of our approach to detect
cognitive status based on gait assessments.
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2.1. Dataset

Data from a retrospective cohort of community-dwelling older adults
participating in dementia research in an academic research setting were
used in this study. The cohort consisted of 78 participants with 32
healthy, 26 MCI, and 20 AD. None of the participants had clinically
detectable mobility impairments. Various gait characteristics were
measured using a computerized walkway consisting of a pressure sen-
sitive mat with a size of 20 ft. long x 4 ft. wide and a gait analysis soft-
ware. For 35 subjects, a Zenomat system (ProtoKinetics LLC) was used
and a GAITRite system (CIR Systems, PA) for the other 43 participants.
Previous studies have shown that the two systems have minimal dif-
ferences in providing the gait characteristics that were used in our study
[19]. The study was approved by the Institutional Review Board at
Florida Atlantic University and was completed in accordance with the
Helsinki Declaration.

2.2. Procedures

2.2.1. Cognition

Each subject was assessed with the MoCA test, which assesses per-
formance on several cognitive domains including executive function,
memory, orientation, attention, language, and visuospatial abilities, and
is commonly used as a measure of global cognitive function. Total scores
are derived by summing up individual cognitive domain scores and
range from 0 to 30, with higher scores indicating better performance. It
takes approximately 10-12 min to complete.

2.2.2. Gait

Subjects performed a series of single and dual-task assessments as
their gait characteristics were measured and recorded using the
computerized walkway. Participants were instructed to complete three
trials of consecutive walking: single task normal speed walking (normal
walking), dual-task normal speed walking while performing a verbal
task (saying the alphabet out loud), and a second dual-task normal speed
walking while performing a working memory dual-task (counting
backward out loud from 100 by 3s). Table 1 provides the participants’
demographics.

Table 1
Participant Characteristics of the Healthy, MCI, and AD Groups.
Characteristic All (n=78) Healthy MCI AD (n=20)
(n=32) (n=26)
Sex, n (%)
Male 39 (50) 23 (71.88) 10 (38.46) 6 (30)
Female 39 (50) 9 (28.12) 16 (61.54) 14 (70)
Age, years, 73.30+10.63 65.13+10.53 76.81+6.03 81.40+5.88
mean+SD
MoCA score, 22.03+6.18  26.72+2.44 22.4242.33  14.00£5.71
mean+SD
Education, years, 15.07+2.50 16.67+1.15 15.17+2.56 14.00+2.83

mean+SD
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Fig. 1. The overall approach for detection of AD, MCI, and healthy subjects from their single and dual-task gait assessment data.
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2.3. Feature extraction

We used the ProtoKinetics Movement Analysis Software (PKMAS)
software to extract gait features from the Zenomat system and GAITRite
software for the GAITRite system. For every trial, we extracted the
mean, standard deviation (SD), and asymmetry for the following eight
gait characteristics: stride time, step time, single support time, swing
time, double support time, stance time, stride length, and step length.
Asymmetry was calculated as the ratio of the left to right leg mean
values. In addition, we calculated velocity (meters per second) and
cadence (number of steps per minute) from the gait data of each trial.
We also calculated the dual-task cost as the rate of change in each of the
above metrics from trial 1 to trial 2 and 3 as well as trial 2-3 as (trial i-
trial j)/trial i. This process resulted in a total of 108 gait features for
every participant.

2.4. Feature selection

We selected a set of uncorrelated significant features for each of the
three classification tasks of: healthy to MCI, healthy to AD, and MCI to
AD in two steps. For every classification task, in step 1, we calculated the
P-value using chi square (x2) or t tests (as deemed appropriate) between
the two comparison groups and identified the significant features as the
ones with a P-value < 0.05. Fig. 2 shows the step 1 process for identifi-
cation of the features with a P-value < 0.05 as indicated by a bracket for
the step time gait features.

However, given that some of the extracted gait features such as
double support and stance time or single support and swing time are
correlated, in step 2, we identified the set of significant features with a
correlation coefficient of greater than 90% and selected the significant
feature with the lowest P-value, which were then used for training the
classification model. Fig. 3 illustrates the step 2 process for selection of
the uncorrelated significant features. For visualization purposes, we are
only showing the selection step between the double support and stance
mean features in each trial for discrimination of the three classes;
however, the concept applies to all the features. To better visualize the
significance of each feature, we have shown one over the P-value as the
significance value of each feature. Hence, a higher significance value
indicates a lower P-value and a more significant feature.
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Fig. 2. Feature distribution of step time (A) mean, (B) standard deviation, and
(C) asymmetry at trials T1, T2, and T3 as well as (D) dual-task cost from trial T1
to T2 (T1T2), T1 to T3 (T1T3), and T2 to T3 (T2T3). The outliers are shown as
an asterisks. The significant features were identified by brackets.
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2.5. Machine learning with gait features

We used an SVM-based classification technique to detect healthy,
MCI, and AD subjects based on their gait features. SVM is a powerful
binary classification tool, which consists of a training and a testing stage.
In the training stage, SVM uses sample data from both classes to generate
a hyperplane in the data feature space, with each side of the hyperplane
representing one of the classes. In the testing stage, SVM uses the
generated hyperplane to classify new data points. When the data is not
linearly separable, SVM uses a kernel function to map the feature vectors
to a higher dimensionality space with a better separation. To avoid
overfitting, a regularization parameter, C, is introduced as a tradeoff
between misclassification and overfitting. The best hyperplane is chosen
to maximize the distance between the nearest points of each class to the
hyperplane and minimize any generalization errors when new data
points are presented to the SVM. In this work, we used three SVMs in a
one-vs-one manner. This design will enable the integration of the in-
formation learned about the significant features between two groups in
developing the classification model. We trained one model for each of
the following classification tasks: MCI vs. healthy, AD vs. healthy, and
AD vs. MCI. For each classification task, we used the selected gait fea-
tures for training the SVM classifier. In the testing stage, the three
trained SVMs were applied to the gait features of a new subject, and the
majority vote of the three SVMs was used to associate a diagnostic label
(healthy, MCI, or AD). To account for cases where the three diagnoses
are equally voted, we used the approach by Platt et al. [20] to assign a
posterior class probability to each classification. Hence, when a subject
was equally voted to healthy, MCI, and AD, we assigned the diagnosis
with the highest probability as the diagnostic label.

2.5.1. Parameter selection

There are several hyperparameters to control the shape of the hy-
perplane classifier in an SVM: whether a linear separation is sufficient or
a kernel is needed; regularization parameter (C); and any parameters
that are associated with the kernel. In this work, we used the Gaussian
radial basis function (RBF) with a gamma parameter (y) to control the
shape of the kernel. For every SVM, the hyperparameters (linear or an
RBF kernel, C € 2{-2 -2} and y € 2{-4 - 4}) were selected based on a
five-fold validation of the training data.

2.6. Machine learning with MoCA score

For comparison purposes, we developed a second SVM-based clas-
sifier to detect healthy, MCI, and AD subjects based on their MoCA
cognitive assessment scores only. All the training and testing stages as
well as the hyperparameters’ selection techniques described in section
2.5 were applied when using the MoCA score.

3. Results

We applied the developed gait feature selection and classification on
the single and dual-task gait assessment data explained in Section 2.
Presented in Fig. 2 are select results from step 1 of the feature identifi-
cation process. As the figure indicates, the step time mean in trial 3 was
larger for the MCI and AD subjects in comparison with the healthy
subjects and significant for the discrimination of healthy from the MCI
and AD subjects (Fig. 2A). However, step time SD significantly increased
from healthy to AD at all the three trials and to MCI at trial 1 and 3
(Fig. 2B). The step time asymmetry was significant between the healthy
and MCI subjects at trial 1 (Fig. 2C). There was also a significant decline
in the step time from trial 1 to trial 3 when healthy subjects were
compared to the MCI and AD groups (Fig. 2D). As a result, a total of 11
significant features were identified from the step time gait characteris-
tics, where five of them discriminate healthy vs. MCI, five healthy vs.
AD, and one for MCI vs. AD. Step 2 in the process of feature selection is
presented in Fig. 3, for a select pair of correlated features: double
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Fig. 3. The significance value of the double support mean and stance mean at trials 1, 2, and 3 for discrimination of (A) healthy from MCI subjects, (B) healthy from
AD subjects, and (C) MCI from AD subjects. The selected features are identified by a check mark. “r” stands for correlation coefficient.
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support and stance mean. As indicated in the figure, when separating the
healthy from MCI group (Fig. 3A), the stance mean-values of all the
three trials and the double support mean of trial 2 were significant.
However, the double support mean feature from trial 2 was not selected
as it has a correlation coefficient of greater than 0.9 with the stance
feature but its significance value is less than the stance feature. In a
similar process, the double support mean of trial 2 from the healthy vs.
AD discrimination was not selected either (Fig. 3B). A summary of all the
significant features and features selected for the three classification
groups is presented in Fig. 4. About 40-50% of the significant features
had a high correlation with the other features and were not selected for
developing the machine learning classifiers.

Further investigation as shown in Fig. 5 indicated that the correlated
features were mostly the mean values and were removed after consid-
ering the correlation. Fig. 5 shows the distribution of the significant
features (Fig. 5A) and selected features (Fig. 5B) per mean, SD, asym-
metry, and dual-task cost. We found that in some cases (healthy vs. AD),
over half of the significant features were correlated and not selected.
Fig. 6 provides the significance of the gait features extracted from every
trial as well as the ones representing the dual-task cost. The vertical axes
provide the average of the one over P-values of all the selected features
in the same category. We found that trial 3 provided the most significant
features for differentiating MCI from healthy subjects (Fig. 6A), dual-
task cost provided the most significant features for differentiating AD
from healthy subjects (Fig. 6B), while trial 1 was significant in sepa-
rating AD from MCI subjects (Fig. 6C).

Next, we trained three SVMs based on the selected gait features from
80% of the subjects in each of the healthy, MCI, and AD groups, and
tested them on the remaining 20% subjects. For implementation, we
used LIBSM toolbox in MATLAB [21]. Repeating this process five times,
every time with a different set of training and testing subsets, resulted in
an average classification accuracy of 78% and F1-score of 77%. The
average classification accuracy and Fl-score when using the MoCA
scores only were 83% and 84%, respectively. The SVM selected the
MoCA cut off of <26 for classifying MCI from healthy, <19 for AD from
MCI, and <22 for AD from healthy. Table 2 provides the classification
distribution using the MoCA score. For comparison purposes, we
repeated the experiment using all the gait features instead of the selected
significant features. This experiment resulted in a much lower average
accuracy of 69% indicating the importance of one-vs-one classification
design used in our approach. In addition to the three classification ac-
curacy results, we combined the MCI and AD as one group and in Table 2
reported the classification results for healthy vs. MCI/AD subjects when
using only the gait features and only the MoCA scores.

A. Signiﬁcant features
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4. Discussion

Early detection of persons with MCI and AD remains a great chal-
lenge, both in primary care and specialty practices. We developed an
approach based on dual-tasking gait assessments and machine learning
that can detect MCI and AD and discriminate them from healthy sub-
jects. As hypothesized, we were able to use dual-tasking gait assessment
data and a machine learning approach and developed the first auto-
mated and objective algorithm to detect healthy vs. MCI vs. AD subjects
based on only their gait data. Our approach resulted in a plausible
average classification accuracy of 78% using only gait assessments
(Table 2). We performed a comprehensive investigation of the gait
characteristics with respect to the disease stage at MCI and AD and made
several interesting observations.

4.1. Change in single- and dual-task gait

Our investigations showed that most of the gait features from single
and dual-task gait were significant in discriminating between healthy vs.
MCI, healthy vs. AD, and MCI vs. AD subjects. As shown in Fig. 4A, more
significant changes were associated when comparing the healthy gait to
the AD gait (with 50 features) in comparison to the healthy to MCI gait
(43 features) and MCI to AD gait (22 features). Velocity was previously
reported to have a significant decline in all the three classifications
(healthy to MCI or AD [22] and MCI to AD [23]), and we observed a
similar behavior (Fig. 4A). However, more complex cognitive tasks seem
to be required to elicit the gait speed differences between healthy from
cognitively declined subjects. The dual-task cost in velocity from trial 1
to trial 2 was not significant in differentiating healthy from MCI or AD,
while it was significant from trial 1-3. Also, we did not find any sig-
nificant decline in the velocity from single to dual tasking between the
MCI and AD subjects although the velocity was consistency lower for the
AD subjects.

4.2. Important gait features

An interesting observation after removing the correlated features is
that about 50% of the significant features were correlated, resulting in
25 uncorrelated significant features for healthy vs. MCI and healthy vs.
AD and only 13 for MCI vs. AD (Fig. 4B). This was expected as some of
the extracted features (e.g., stance and double support time, swing and
single support time) quantify a similar gait characteristic. Step time,
swing time, double support, stance, and step length were the gait
characteristics with the most number of features for healthy vs. MCI or
AD plus stride time for healthy vs. AD classification. The gait features

B. Selected features
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Fig. 5. The distribution of the (A) significant features and (B) selected features per feature type of mean, SD, asymmetry, and dual-task cost from one trial to another.
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Table 2
Classification accuracy of the Healthy, MCI, and AD Groups.

A. Classification based on only gait assessment data

Diagnosis Healthy MCI AD

Healthy 85 13 2
MCI 10 70 20
AD 5 20 75

Diagnosis Healthy MCI/AD

Healthy 85 15
MCI/AD 13 87

B. Classification based on MoCA scores

Diagnosis Healthy MCI AD

Healthy 85 15 0
MCI 16 84 0
AD 0 20 80

Diagnosis Healthy MCI/AD

Healthy 85 15
MCI/AD 9 91

with the most number of features were velocity, double support, stance,
stride length, and step length for MCI vs. AD.

4.3. Gait variability

Gait variability was the most significant feature in detecting cogni-
tive decline (Fig. 5). In case of healthy vs. AD, 60% (15 out of 25) of the
selected features were from the gait standard deviation, 46% (6 out of
13) for MCI vs. AD and 44% (11 out of 25) for healthy vs. MCIL Beauchet
et al. [24] have also shown gait variability increases significantly for
cognitively declined subjects, and the work by Sheridan et al. [25] has
shown that the effect of cognitive decline on gait variability is larger
than the gait mean performance.

4.4. Gait asymmetry

In some studies, gait asymmetry properties have suggested to be
useful only in detecting gait pathology with a unilateral onset [26] and
have been used in detecting different dementia subtypes [27]. However,
our study agrees with the work by Maquet et al. [28], which suggested
that healthy subjects have a significantly better symmetry than MCI and
AD subjects. In our cohort, we found that the gait asymmetry increases
with cognitive decline (Fig. 5). Step length asymmetry significantly
increased from healthy to MCI and MCI to AD. Stance and swing
asymmetry were also significantly higher in AD compared to MCL

4.5. Change in gait performance with disease progression

Our further investigation shows that there is a more significant

decline in the single and dual-task performance as the disease pro-
gresses. As shown in Fig. 6, the significance value of the healthy vs. AD
gait features in all the three trials was higher than the healthy vs. MCI,
suggesting that gait impairment as measured by dual-tasking may in-
crease as individuals transition from MCI to AD. In addition, the per-
formance decline of the MCI subjects becomes more evident with the
increase of the cognitive load in trial 2 and then trial 3 (Fig. 6A), but as
the disease advances to AD, the decline becomes more evident even in
trial 1 without adding a cognitive load (Fig. 6B-C). Moreover, the dual-
task cost from trail 1 to trial 2 and to trial 3 increases more for AD
subjects than the MCI subjects (Fig. 6C). A similar behavior was reported
by Montero-Odasso et al. [15], where the authors reported that a sig-
nificant gait change is associated with AD.

4.6. Comparisons with the state-of-the-art

A few examples of the machine learning applications related to gait
characterization and cognitive decline include age-sensitive classifica-
tion of single vs. dual-task gait [29], estimation of the Mini-Mental State
Examination cognitive score from gait [30], and detection of healthy
from AD [31]. To the authors’ knowledge, the only machine learning
approach directly related to our approach is the work by Costa et al.
[31], where healthy subjects were distinguished from AD subjects with
an average classification accuracy of 78.9% based on their postural ki-
nematics. We compared our approach to a classification based on
cognitive assessment scores. The machine learning algorithm picked a
cutoff of 26 for detecting MCI from healthy, which is comparable to the
reported 25-26 for screening MCI subjects [32,33]. The algorithm
selected a cut off of 19 for detecting AD from MCI subjects; however,
there is no set cutoff in the literature to compare to. The classifier based
on MoCA resulted in 83% accuracy. As expected from the fewer selected
features (Fig. 4), the discrimination of MCI from AD is more challenging
using only the gait features. The average classification accuracy of
healthy vs. MCI or AD subjects was increased to 86% with an F1-score of
88% when using only the gait features, which is comparable to 88%
average accuracy and 90% F1-score with MoCA (Table 2).

5. Conclusion

The aim of this study was to develop an automated and objective
method for detecting MCI, and AD subjects and discriminating them
from healthy controls. For this purpose, we collected gait data from a
total of 78 elderly subjects as they performed a series of single and dual-
task walking. We extracted a total of 108 gait features from each subject
and identified the uncorrelated significant features. Next, we used a
machine learning approach to detect the clinical diagnosis from the
selected gait features. The approach resulted in 25 uncorrelated signif-
icant gait features for discriminating healthy vs. MCI and healthy vs. AD,
and 13 for MCI vs. AD. The five-fold classification accuracy was 78%
using the selected gait features, which was slightly lower than 83%
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when using the cognitive assessment score. This work is the first work
towards the selection of important gait features for a machine learning-
based classification and developing an automated and objective tech-
nique for detection of cognitive decline in MCI and AD subjects based on
only gait assessments. Gait-based cognitive screening has practical value
as gait assessments are more commonly done, compared with cognitive
assessments, in primary care settings where the majority of patients are
seen. Using gait as a screen for cognitive impairment can prompt clini-
cians to conduct further evaluations for diagnosing MCI and AD.
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