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Abstract: 21 

 22 

The cognitive-buffer hypothesis proposes that more harsh and unpredictable environments 23 

favor animals with larger brains and resulting greater cognitive skills.  Comparisons across taxa 24 

have supported the hypothesis, but it has rarely been tested within a species.  We measured 25 

brain size, as inferred from head dimensions, for 1141 cliff swallow specimens collected in 26 

western Nebraska, 1982-2018.  Cliff swallows starving to death during unusual late-spring cold 27 

snaps had significantly smaller brains than those dying from other causes, suggesting that brain 28 

size in this species can affect foraging success and that greater cognitive ability may confer 29 

advantages when conditions exceed normal environmental extremes.  Brain size declined 30 

significantly with the size of the breeding colony from which a specimen came.  Larger brains 31 

may be favored in smaller colonies that represent more unpredictable and more challenging 32 

social environments where there is less public information on food sources and less collective 33 

vigilance against predators, even in relatively normal conditions.  Our results provide 34 

intraspecific support for the cognitive-buffer hypothesis and emphasize the potential 35 

evolutionary impact of rare climatic events.  36 
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1.  INTRODUCTION 37 

 38 

The evolution of brain size in animals has attracted considerable attention, and evidence now 39 

suggests that unpredictable environments select for larger brains [1-5].  When environmental 40 

variation presents organisms with novel challenges, such as where to find food, a greater 41 

cognitive ability may aid in overcoming these problems by facilitating the adoption of new 42 

behavior [2,6,7].  This has led to the cognitive-buffer hypothesis that larger brains should be 43 

associated with more complex socioecological environments [8,9].  Interspecific studies have 44 

supported the association between brain size and extent of environmental variability [1-5,8,10], 45 

while other studies have shown that higher levels of cognition-driven problem-solving occur in 46 

harsher, more unpredictable environments [11,12].   47 

Empirical tests of the cognitive-buffer hypothesis have mostly involved cross-species 48 

comparisons, yet the same selective pressures on brain size should also apply within species 49 

whenever individuals are exposed to extreme conditions.  One component of environmental 50 

variability is unusually severe weather, which can lead to intense selection on morphological 51 

traits such as body size or behavioral traits such as spring arrival time [13-19], but occurs so 52 

rarely that often only long-term studies can detect its effects.  Consequently, little is known 53 

about how unusually harsh conditions might affect selection on cognitive abilities as reflected 54 

in brain size within a species. 55 

Here we examine brain size in the cliff swallow (Petrochelidon pyrrhonota) using a 56 

specimen collection spanning 37 years to investigate whether brain size varies among 57 

individuals in a manner predicted by the cognitive-buffer hypothesis.  We examined whether 58 
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brain size differed among birds that died during severe weather when food was scarce, relative 59 

to the population at large.  This allowed us to infer the degree to which foraging-related 60 

cognitive abilities [6,7,12] may have affected survival during these rare events.  Because cliff 61 

swallows breed in colonies of different sizes that present their own socioecological challenges 62 

[20,21], we also measured the effects of colony size (the social environment) that might have 63 

independently influenced brain size [22-24].   64 

 65 

2.  METHODS 66 

 67 

(a) Study animal and study site 68 

 69 

Cliff swallows build gourd-shaped nests out of mud, and place their nests underneath 70 

overhanging horizontal ledges on the sides of cliffs, bridges, buildings, and highway culverts 71 

[25].  The birds live in colonies that can vary in size in our study area from 2 to 6000 nests 72 

(mean ± SE = 404 ± 11 nests, n = 3277 colonies), with some birds nesting solitarily.  Cliff 73 

swallows feed exclusively on swarms of aerial insects that can be difficult to locate, and the 74 

birds often use one another to find food [20,26].  Our study site was in southwestern Nebraska 75 

near the University of Nebraska’s Cedar Point Biological Station (41.2097° N, 101.6480° W), 76 

encompassing parts of Keith, Garden, Lincoln, and Morrill counties, where we studied cliff 77 

swallows nesting mostly on highway bridges and culverts underneath roads or railroad tracks 78 

[20,27]. 79 

 80 
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(b) Specimen collection and weather events 81 

 82 

Cliff swallows were collected opportunistically in 1982-2018 whenever salvageable specimens 83 

were found in the course of our research, and preserved as skins.  These included birds dying in 84 

mist-netting accidents, on roads due to collisions with vehicles, during severe weather events, 85 

and due to other miscellaneous causes (e.g., drowning during fights, nest falls, killed by 86 

predators).  The colony at which a dead bird was found was used to designate the colony size 87 

for each specimen.  Colony size refers to the number of active nests at a site that year, and was 88 

determined from active nest counts or estimation from the number of birds present [20,27].  89 

For each colony where we had more than 50 specimens in a year (all in 1996 as a result of 90 

severe weather; see below), we randomly selected 50 from each site to measure.   91 

 Multiple-day periods of cold and rainy weather in late spring (when insects are not 92 

active) lead to cliff swallow mortality due to starvation that varies in severity depending on how 93 

long the cold weather lasts [14,19].  We documented cold weather caused mortality in 1988, 94 

1992, 1996, 2004, and 2017; that of 1996 was the most severe with at least 53% of the 95 

population perishing over a 6-day period [14].  We visited colonies immediately after the bad 96 

weather ended and salvaged all dead birds on the ground underneath nests. 97 

 98 

(c)  Measuring head (brain) size, endocranial volume, and body size 99 

 100 

Following Møller [28], we recorded head size on each specimen by using calipers to measure (i) 101 

head length from the cere to the back of the skull; (ii) head width at the widest point behind 102 
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each ear; and (iii) head depth from the base of the jaw to the top of the head.  Measurements 103 

were taken by one person only (GSW).  Brain size was inferred from the head volume, which 104 

was calculated using the formula for the volume (v) of an ellipsoid, v = 4/3πlwd (l = head length, 105 

w = head width, d = head depth).  To examine whether brain size might vary with measures of 106 

body size, right wing length was taken on each specimen with a stoppered wing ruler, and bill 107 

length from the cere to the tip of the bill was measured with calipers.  We measured 1141 108 

specimens, although some were missing information on colony size, cause of death, or sex, so 109 

sample sizes differ slightly between analyses.  Only adult birds ≥ 1 year old (known by their 110 

breeding plumage) were used in this study. 111 

 Endocranial volume correlates directly with brain size in multiple bird species [29], and 112 

head size as measured here strongly predicts brain size in barn swallows (Hirundo rustica; [28]).  113 

We assessed this relationship for cliff swallows using 10 randomly selected birds for which head 114 

size was measured as described above, the specimen was skinned, the interior of the skull 115 

cleared of brain matter, and the skull filled with #10 lead shot through the foramen [29].  The 116 

mass (m) of the lead shot and the density (d) of lead were used to calculate relative endocranial 117 

volume (v) using the equation, v = m/d.  Repeatability in measures of brain size was determined 118 

by randomly selecting 50 specimens and re-measuring them 3 months later while blind to the 119 

previous measures.  All specimens were from the collection at the University of Tulsa, except 120 

for 9 and 8 specimens from 1984 and 1985, respectively, that were from the American Museum 121 

of Natural History and the Peabody Museum of Natural History, respectively. 122 

 123 

(d)  Statistical analyses 124 
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 125 

We used mixed models to determine predictors of brain size, beginning with a model including 126 

sex, colony size, cause of death, year, wing length, and bill length; colony site was treated as a 127 

random effect.  Variables not significant at P ≤ 0.157 [30] were removed from the final model, 128 

as were all interaction terms because none was significant.  A repeatability analysis of brain size 129 

used the intraclass correlation coefficient [31].  All statistical tests were performed with SAS. 130 

 131 

3.  RESULTS 132 

 133 

Head measurements (from which we inferred brain size) were significantly associated with 134 

endocranial volume in cliff swallows (rs = 0.70, P = 0.025, n = 10).  Repeatability of head size 135 

measurements was highly significant (rI = 0.439, F1,49 = 2.62, p = 0.0005).  Brain size varied from 136 

10.33 to 25.09 cm3, representing a range of about 6 standard deviation units.   137 

 Brain size in cliff swallows was predicted by sex (F1,829 = 12.24, P = 0.0005; figure 1), 138 

cause of death (F3,829 = 20.52, P < 0.0001; figure 1), and colony size (F1,829 = 68.63, P < 0.0001; β 139 

± SE = -0.00162 ± 0.000196; figure 2), but there was no significant effect of year (F1,828 = 0.85, P 140 

= 0.36; β ± SE = 0.0133 ± 0.0145).  Wing length had no significant association with brain size 141 

(F1,827 = 0.49, P = 0.49; β ± SE = 0.0317 ± 0.0455), but there was a weak inverse relationship 142 

between bill length and brain size (F1,829 = 4.08, P = 0.044; β ± SE = -6.497 ± 3.215).  Males (n = 143 

590) averaged (± SE) 16.18 (± 0.097) cm3 in brain size and females (n = 524) 15.85 (± 0.11) cm3, 144 

a difference of 0.134 standard deviation units.  The sex difference applied to birds regardless of 145 

cause of death (figure 1).   146 
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 Cliff swallows killed in cold weather had smaller brains than birds dying due to all other 147 

causes (figure 1).  Male and female weather fatalities had brain sizes 0.89 and 0.93 standard 148 

deviation units, respectively, smaller than the next closest cause of death category.  Among the 149 

other causes of death, there were no significant differences: for example, net casualties and 150 

road kills did not differ in brain sizes for either males (Z = 0.075, P = 0.94, Wilcoxon test) or 151 

females (Z = 0.775, P = 0.44). 152 

 Brain size declined as colony size increased for both weather fatalities and non-weather 153 

fatalities (figure 2).  This relationship was the same regardless of cause of death, with no 154 

significant interaction between cause of death and colony size (F1,826 = 0.50, P = 0.68). 155 

 156 

4.  DISCUSSION 157 

 158 

Our results provide intraspecific support for the cognitive-buffer hypothesis [8,9], in that 159 

smaller brained cliff swallows were more likely to succumb during harsh conditions that 160 

exceeded normal environmental extremes.  These kinds of unusual events are relatively rare, 161 

with only 5 of them occurring during the 37-year duration of the study, but the more severe can 162 

impose strong selection for traits that help individuals avoid starvation [14].  Greater cognitive 163 

abilities could allow cliff swallows to innovate, for example, by foraging in different places 164 

where insects gather in inclement conditions (e.g., on warmer asphalt road surfaces) or by 165 

feeding in different ways (e.g., picking insects off a shoreline from the ground rather than in the 166 

air).  Birds with larger brains that can better problem-solve in novel situations should be at an 167 
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advantage in these more extreme conditions [11,12], and the smaller brains of weather 168 

fatalities (figure 1) support that inference.   169 

 If the frequency of bad-weather events in the Nebraska study area increases with global 170 

climate change as predicted [19,32], more frequent episodic selection for larger brains could 171 

lead to permanent microevolutionary change in brain size over time, as we have seen for other 172 

traits [16].  However, such a directional shift is so far not evident in our data: year had no 173 

significant effect on brain size over the 37 years of our study.  This result could be partly 174 

because brain size can be constrained by energetic costs [33], especially in species like cliff 175 

swallows that are long-distance migrants [5]. 176 

 Our finding that larger brained cliff swallows tended to settle in smaller colonies also 177 

supports the cognitive-buffer hypothesis, because residents of small cliff swallow colonies likely 178 

encounter greater ecological challenges than do birds settling in large colonies, even when 179 

conditions are not severe.  For example, individuals in large colonies frequently use public 180 

information from conspecifics on where food can be found, information that is more readily 181 

available because of the many birds present; those in smaller groups engage in almost no 182 

information transfer and often hunt solitarily [20].  Thus, smaller colonies may select for 183 

cognitively superior cliff swallows that have greater foraging ability and select against those 184 

smaller brained birds that are less creative foragers.  Being prone to feeding innovations could 185 

partly compensate for the lack of foraging information from conspecifics in smaller cliff swallow 186 

colonies.   187 

 In addition, the heightened awareness of predators in large colonies, due to greater 188 

vigilance because of many eyes [20], provides more protection for birds that do not invest in 189 
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the cognitive capacity to better detect or predict predator attacks.  Given that in some animals 190 

brain size is positively associated with the likelihood of avoiding predators [34,35], differing 191 

predation risk among groups might favor smaller brained cliff swallows that settle in the safer, 192 

larger colonies.  Cognitively superior individuals with bigger brains who are more competent at 193 

avoiding predators and/or finding food should prefer smaller colonies where they minimize the 194 

inevitable costs of coloniality [20,36].   195 

Our finding smaller-brained cliff swallows settling in larger colonies contrasts with 196 

results from barn swallows, in which brain size varied directly with colony size [28].  Møller [28] 197 

argued that larger barn swallow colonies represented more complex social environments 198 

where bigger brains and greater cognitive abilities might be important in tracking social 199 

relationships among residents.  This “social-brain” hypothesis [22-24] has attracted 200 

considerable interest, but applies best to species that establish long-term social bonds among 201 

group members.  Because cliff swallows mostly interact with a relatively small subset of close 202 

neighbors within a colony regardless of colony size and do not form any long-term social bonds 203 

with specific colony members [20,37], the social-brain hypothesis probably does not apply to 204 

cliff swallows.   205 

 Unlike most studies that use a measure of relative brain size corrected for body size, we 206 

used absolute brain size because in cliff swallows brain size did not increase significantly with 207 

body size.  Bill length was our measure of body size for cliff swallows, with bill length correlating 208 

directly with other skeletal metrics such as tarsus length [16].  Interestingly, larger brained cliff 209 

swallows had shorter bills.  This indicates that larger brained birds were not favored simply 210 

because they had larger body size.  Wing length was not a predictor of brain size in cliff 211 
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swallows, and thus any selection on brain size occurs independently of selection on wing 212 

length.  For example, while wing length in cliff swallows is under selection brought about by 213 

road-associated mortality [38], we found no differences in brain size between birds killed on 214 

roads versus ones dying due to other non-weather-related causes.  This suggests that mortality 215 

from vehicles is not selecting for greater cognitive abilities in cliff swallows, and does not 216 

support an analysis [39] suggesting that birds in general killed by vehicles have smaller brains 217 

than those dying for other reasons.  While we found a significant sex difference in brain size, 218 

the difference was slight and less than that reported for barn swallows [28].  In cliff swallows 219 

the cognitive advantages that may lead to innovative foraging should apply to both sexes, and 220 

the bad-weather and colony-size relationships were the same for the sexes.   221 

  222 
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Figure 1.  Mean (± 1 SE) brain size (in cm3) of male and female cliff swallows in relation to cause 331 

of death.  Numbers above bars indicate number of specimens measured (sample size).  “Other” 332 

category includes birds killed by predators and nest falls, drownings, and presumed natural 333 

causes.  Brain size of weather fatalities was significantly smaller than that of net fatalities, road 334 

kills, and other causes of death. 335 

 336 

Figure 2.  Brain size (in cm3) of cliff swallows in relation to colony size for birds killed by weather 337 

versus all other causes.  Each dot represents one bird, although points overlap extensively in 338 

some cases.  Brain size declined significantly with colony size (see text).  Sexes are combined 339 

here. 340 
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