
Forecaster: A Graph Transformer for Forecasting
Spatial and Time-Dependent Data

Yang Li and José M. F. Moura1

Abstract. Spatial and time-dependent data is of interest in many
applications. This task is difficult due to its complex spatial depen-
dency, long-range temporal dependency, data non-stationarity, and
data heterogeneity. To address these challenges, we propose Fore-
caster, a graph Transformer architecture. Specifically, we start by
learning the structure of the graph that parsimoniously represents the
spatial dependency between the data at different locations. Based on
the topology of the graph, we sparsify the Transformer to account for
the strength of spatial dependency, long-range temporal dependency,
data non-stationarity, and data heterogeneity. We evaluate Forecaster
in the problem of forecasting taxi ride-hailing demand and show that
our proposed architecture significantly outperforms the state-of-the-
art baselines.

1 Introduction

Spatial and time-dependent data describe the evolution of signals
(i.e., the values of attributes) at multiple spatial locations across time
[39, 14]. It occurs in many domains, including economics [8], global
trade [10], environment studies [15], public health [20], or traffic net-
works [16] to name a few. For example, the gross domestic product
(GDP) of different countries in the past century, the daily temperature
measurements of different cities for the last decade, and the hourly
taxi ride-hailing demand at various urban locations in the recent year
are all spatial and time-dependent data. Forecasting such data allows
to proactively allocate resources and take actions to improve the ef-
ficiency of society and the quality of life.

However, forecasting spatial and time-dependent data is challeng-
ing — they exhibit complex spatial dependency, long-range temporal
dependency, heterogeneity, and non-stationarity. Take the spatial and
time-dependent data in a traffic network as an example. The data at a
location (e.g., taxi ride-hailing demand) may correlate more with the
data at a geometrically remote location than a nearby location [16],
exhibiting complex spatial dependency. Also, the data at a time in-
stant may be similar to the data at a recent time instant, say an hour
ago, but may also highly correlate with the data a day ago or even
a week ago, showing strong long-range temporal dependency. Addi-
tionally, the spatial and time-dependent data may be influenced by
many other relevant factors (e.g., weather influences taxi demand).
These factors are relevant information, shall be taken into account.
In other words, in this paper, we propose to perform forecasting with
heterogeneous sources of data at different spatial and time scales and
including auxiliary information of a different nature or modality. Fur-
ther, the data may be non-stationary due to unexpected incidents or
traffic accidents [16]. This non-stationarity makes the conventional

1 Carnegie Mellon University, USA
Email: {yangli1, moura}@andrew.cmu.edu

time series forecasting methods such as auto-regressive integrated
moving average (ARIMA) and vector autoregression (VAR), which
usually rely on stationarity, inappropriate for accurate forecasting
with spatial and time-dependent data [16, 40].

Recently, deep learning models have been proposed for forecast-
ing for spatial and time-dependent data [16, 35, 11, 36, 7, 38, 34, 40].
To deal with spatial dependency, most of these models either use pre-
defined distance/similarity metrics or other prior knowledge like ad-
jacency matrices of traffic networks to determine dependency among
locations. Then, they often use a (standard or graph) convolutional
neural network (CNN) to better characterize the spatial dependency
between these locations. These ad-hoc methods may lead to errors in
some cases. For example, the locations that are considered as being
dependent (independent) may actually be independent (dependent)
in practice. As a result, these models may encode the data at a loca-
tion by considering the data at independent locations and neglecting
the data at dependent locations, leading to inaccurate encoding. Re-
garding temporal dependency, most of these models use recurrent
neural networks (RNN), CNN, or their variants to capture the data
long-range temporal dependency and non-stationarity. But it is well
documented that these networks may fail to capture temporal depen-
dency between distant time epochs [9, 29].

To tackle these challenges, we propose Forecaster, a new deep
learning architecture for forecasting spatial and time-dependent data.
Our architecture consists of two parts. First, we use the theory of
Gaussian Markov random fields [24] to learn the structure of the
graph that parsimoniously represents the spatial dependency between
the locations (we call such graph a dependency graph). Gaussian
Markov random fields model spatial and time-dependent data as a
multivariant Gaussian distribution over the spatial locations. We then
estimate the precision matrix of the distribution [6].2 The precision
matrix provides the graph structure with each node representing a
location and each edge representing the dependency between two lo-
cations. This contrasts prior work on forecasting — we learn from
the data its spatial dependency. Second, we integrate the depen-
dency graph in the architecture of the Transformer [29] for fore-
casting spatial and time-dependent data. The Transformer and its ex-
tensions [29, 3, 33, 4, 22] have been shown to significantly outper-
form RNN and CNN in NLP tasks, as they capture relations among
data at distant positions, significantly improving the learning of long-
range temporal dependency [29]. In our Forecaster, in order to better
capture the spatial dependency, we associate each neuron in differ-
ent layers with a spatial location. Then, we sparsify the Transformer
based on the dependency graph: if two locations are not connected in

2 The approach to estimate the precision matrix of a Gaussian Markov ran-
dom field (i.e., graphical lasso) can also be used with non-Gaussian distri-
butions [23].

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200231

1293

the graph, we prune the connection between their associated neurons.
In this way, the state encoding for each location is only impacted by
its own state encoding and encodings for other dependent locations.
Moreover, pruning the unnecessary connections in the Transformer
avoids overfitting.

To evaluate the effectiveness of our proposed architecture, we ap-
ply it to the task of forecasting taxi ride-hailing demand in New York
City [28]. We pick 996 hot locations in New York City and fore-
cast the hourly taxi ride-hailing demand around each location from
January 1st, 2009 to June 30th, 2016. Our architecture accounts for
crucial auxiliary information such as weather, day of the week, hour
of the day, and holidays. This improves significantly the forecast-
ing task. Evaluation results show that our architecture reduces the
root mean square error (RMSE) and mean absolute percentage error
(MAPE) of the Transformer by 8.8210% and 9.6192%, respectively,
and also show that our architecture significantly outperforms other
state-of-the-art baselines.

In this paper, we present critical innovation:
• Forecaster combines the theory of Gaussian Markov random fields

with deep learning. It uses the former to find the dependency graph
among locations, and this graph becomes the basis for the deep
learner forecast spatial and time-dependent data.

• Forecaster sparsifies the architecture of the Transformer based on
the dependency graph, allowing the Transformer to capture better
the spatiotemporal dependency within the data.

• We apply Forecaster to forecasting taxi ride-hailing demand and
demonstrate the advantage of its proposed architecture over state-
of-the-art baselines.

2 Methodology

In this section, we introduce the proposed architecture of Forecaster.
We start by formalizing the problem of forecasting spatial and time-
dependent data (Section 2.1). Then, we use Gaussian Markov ran-
dom fields to determine the dependency graph among data at dif-
ferent locations (Section 2.2). Based on this dependency graph, we
design a sparse linear layer, which is a fundamental building block
of Forecaster (Section 2.3). Finally, we present the entire architecture
of Forecaster (Section 2.4).

2.1 Problem Statement

We define spatial and time-dependent data as a series of spatial sig-
nals, each collecting the data at all spatial locations at a certain time.
For example, hourly taxi demand at a thousand locations in 2019
is a spatial and time-dependent data, while the hourly taxi demand
at these locations between 8 a.m. and 9 a.m. of January 1st, 2019
is a spatial signal. The goal of our forecasting task is to predict the
future spatial signals given the historical spatial signals and histori-
cal/future auxiliary information (e.g., weather history and forecast).
We formalize forecasting as learning a function h (·) that maps T
historical spatial signals and T +T ′ historical/future auxiliary infor-
mation to T ′ future spatial signals, as Equation (1):[

xt−T+1, · · · , xt;
at−T+1, · · · , at+T ′

]
h(·)−→ [xt+1, · · · , xt+T ′] (1)

where xt is the spatial signal at time t, xt =[
x1
t , · · · , xN

t

]T ∈ R
N , with xi

t the data at location i
at time t; N the number of locations; at the auxiliary information at
time t, at ∈ R

P , P the dimension of the auxiliary information;3 and
R is the set of the reals.
3 For simplicity, we assume in this work that different locations share the

same auxiliary information, i.e., at can impact xi
t, for any i. However, it

2.2 Gaussian Markov Random Field

We use Gaussian Markov random fields to find the dependency graph
of the data over the different spatial locations. Gaussian Markov ran-
dom fields model the spatial and time-dependent data {xt} as a mul-
tivariant Gaussian distribution over N locations, i.e., the probability
density function of the vector given by xt is

f (xt) =
|Q|

(2π)
N/2

exp

(
−1

2
(xt − μ)T Q (xt − μ)

)
(2)

where μ and Q are the expected value (mean) and precision matrix
(inverse of the covariance matrix) of the distribution.

The precision matrix characterizes the conditional dependency be-
tween different locations — whether the data xi

t and xj
t at the ith

and jth locations depend on each other or not given the data at all
the other locations x−ij

t (x−ij
t =

{
xk
t | k �= i, j

}
). We can measure

the conditional dependency between locations i and j through their
conditional correlation coefficient Corr

(
xi
t, x

j
t | x−ij

t

)
:

Corr
(
xi
t, x

j
t | x−ij

t

)
= − Qij√

QiiQjj

(3)

where Qij is the ith, jth entry of Q. In practice, we set a threshold
on Corr

(
xi
t, x

j
t | x−ij

t

)
, and treat locations i and j as conditionally

dependent if the absolute value of Corr
(
xi
t, x

j
t | x−ij

t

)
is above the

threshold.
The non-zero entries define the structure of the dependency graph

between locations. Figure 1 shows an example of a dependency
graph. Locations 1 and 2 and locations 2 and 3 are conditionally de-
pendent, while locations 1 and 3 are conditionally independent. This
principle example illustrates the advantage of Gaussian Markov ran-
dom field over ad-hoc pairwise similarity metrics — the former leads
to parsimonious (sparse) graph representations.

�

�

�

Figure 1. An example of a simple dependency graph.

We estimate the precision matrix by graphical lasso [6], an L1-
penalized maximum likelihood estimator:

min
Q

tr (SQ)− log det (Q) + λ ‖Q‖1
s.t., Q ∈ {

Q = QT , Q � 0
} (4)

where S is the empirical covariance matrix computed from the data:

S = 1
M−1

∑M
t=1 (xt − μ)T (xt − μ)

μ = 1
M

∑M
t=1 xt

(5)

where M is the number of time samples used to compute S.

is easy to generalize our approach to the case where locations do not share
the same auxiliary information.

Y. Li and J.M.F. Moura / Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data1294

2.3 Building Block: Sparse Linear Layer

We use the dependency graph to sparsify the architecture of the
Transformer. This leads to the Transformer better capturing the spa-
tial dependency within the data. There are multiple linear layers in
the Transformer. Our sparsification on the Transformer replaces all
these linear layers by the sparse linear layers described in this sec-
tion.

We use the dependency graph to build a sparse linear layer. Fig-
ure 2 shows an example (based on the dependency graph in Figure 1).
Suppose that initially the lth layer (of five neurons) is fully connected
to the l + 1th layer (of nine neurons). We assign neurons to the data
at different locations (marked as ”1”, ”2”, and ”3” for locations 1, 2,
and 3, respectively) and to the auxiliary information (marked as ”a”)
as illustrated next. How to assign neurons is a design choice for users.
In this example, assign one neuron to each location and two neurons
to the auxiliary information at the lth layer and assign two neurons
to each location and three neurons to the auxiliary information at the
l + 1th layer. After assigning neurons, we prune connections based
on the structure of the dependency graph. As locations 1 and 3 are
conditionally independent, we prune the connections between them.
We also prune the connections between the neurons associated with
locations and the auxiliary information to further simplify the archi-
tecture.4 This way, the encoding for the data at a location is only im-
pacted by the encodings of itself and of its dependent locations, better
capturing the spatial dependency between locations. Moreover, prun-
ing the unnecessary connections between conditionally independent
locations helps avoiding overfitting.

� � � � � � � � �

� � � � �

� � ��� 	�
��

��� 	�
��

Figure 2. An example of a sparse linear layer based on the dependency
graph in Figure 1 (neurons marked as ”1”, ”2”, ”3”, and ”a” are for locations

1, 2, and 3, and auxiliary information, respectively).

Our sparse linear layer is similar to the state-of-the-art graph con-
volution approaches such as GCN [12] and TAGCN [5, 26] — all of
them transform the data based on the adjacency matrix of the graph.
The major difference is our sparse linear layer learns the weights for
non-zero entries of the adjacency matrix (equivalent to the weights
of the sparse linear layer), considering that different locations may
have different strengths of dependency between each other.

2.4 Entire Architecture: Graph Transformer

Forecaster adopts an architecture similar to that of the Transformer
except for substituting all the linear layers in the Transformer with
our sparse linear layer designed based on the dependency graph. Fig-
ure 3 shows its architecture. Forecaster employs an encoder-decoder
architecture [27], which has been widely adopted in sequence gen-
eration tasks such as taxi demand forecasting [16] and pose predic-
tion [30]. The encoder is used to encode the historical spatial signals
and historical auxiliary information; the decoder is used to predict
the future spatial signals based on the output of the encoder and the

4 However, our architecture still allows the encodings for the data at different
locations (i.e., the encoding for the spatial signal) to consider the auxiliary
information through the sparse multi-head attention layers in our architec-
ture, which we will illustrate in the Section 2.4.

future auxiliary information. We omit what Forecaster shares with
the Transformer (e.g., positional encoding, multi-head attention) and
emphasize only on their differences in this section. Instead, we pro-
vide a brief introduction to multi-head attention in the appendix.

2.4.1 Encoder

At each time step in the history, we concatenate the spatial signal
with its auxiliary information. This way, we obtain a sequence where
each element is a vector consisting of the spatial signal and the aux-
iliary information at a specific time step. The encoder takes this se-
quence as input. Then, a sparse embedding layer (consisting of a
sparse linear layer with ReLU activation) maps each element of this
sequence to the state space of the model and outputs a new sequence.
In Forecaster, except for the sparse linear layer at the end of the de-
coder, all the layers have the same output dimension. We term this di-
mension dmodel and the space with this dimension as the state space
of the model. After that, we add positional encoding to the new se-
quence, giving temporal order information to each element of the se-
quence. Next, we let the obtained sequence pass through N stacked
encoder layers to generate the encoding of the input sequence. Each
encoder layer consists of a sparse multi-head attention layer and a
sparse feedforward layer. These layers are the same multi-head at-
tention layer and feedforward layer as in the Transformer, except that
sparse linear layers, which reflect the spatial dependency between lo-
cations, to replace linear layers within them. The sparse multi-head
attention layer enriches the encoding of each element with the infor-
mation of other elements in the sequence, capturing the long-range
temporal dependency between elements. It takes each element as a
query, as a key, and also as a value. A query is compared with other
keys to obtain the similarities between an element and other ele-

�
����������������
���������

�
��������������

�����������
��������

�
�����������������

	��

���� 	
��� � �
� � �� � � �

�
��������������

�����������
��������

������ 	
��� � � �� � ���

�
�������� ���
��������������������

�
����������������
���������

�
�����������������

�
�����
�����

���� � � �� � ���

	��

�
�������� ��
��������������������

�
���������������
���������

�
�����������������

�
���������������
���������

�
�����������������

!���� �" #���"

#���" �"!����

#���" �"!����

������� �������

Figure 3. Architecture of Forecaster
(a ‖ b represents concatenating vector a with vector b).

Y. Li and J.M.F. Moura / Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data 1295

ments, and then these similarities are used to weight the values to
obtain the new encoding of the element. Note each query, key, and
value consists of two parts: the part for encoding the spatial signal
and the part for encoding the auxiliary information — both impact
the similarity between a query and a key. As a result, in the new en-
coding of each element, the part for encoding the spatial signal takes
into account the auxiliary information. The sparse feedforward layer
further refines the encoding of each element.

2.4.2 Decoder

For each time step in the future, we concatenate its auxiliary infor-
mation with the (predicted) spatial signal one step before. Then, we
input this sequence to the decoder. The decoder first uses a sparse
embedding layer to map each element of the sequence to the state
space of the model, adds the positional encoding, and then passes it
through N stacked decoder layers to obtain the new encoding of each
element. Finally, the decoder uses a sparse linear layer to project
this encoding back and predict the next spatial signal. Similar to the
Transformer, the decoder layer contains two sparse multi-head atten-
tion layers and a sparse feedforward layer. The first (masked) sparse
multi-head attention layer compares the elements in the sequence,
obtaining a new encoding for each element. Like the Transformer,
we put a mask here such that an element is compared with only ear-
lier elements in the sequence. This is because, in the inference stage,
a prediction can be made based on only the earlier predictions and the
past history — information about later predictions are not available.
Hence, a mask needs to be placed here such that in the training stage
we also do the same thing as in the inference stage. The second sparse
multi-head attention layer compares each element of the sequence in
the decoder with the history sequence in the encoder so that we can
learn from the past history. If non-stationarity happens, the compari-
son will tell the element is different from the historical elements that
it is normally similar to, and therefore we should instead learn from
other more similar historical elements, handling this non-stationarity.
The following sparse feedforward layer further refines the encoding
of each element.

3 Evaluation

In this section, we apply Forecaster to the problem of forecasting
taxi ride-hailing demand in Manhattan, New York City. We demon-
strate that Forecaster outperforms the state-of-the-art baselines (the
Transformer [29] and DCRNN [16]) and a conventional time series
forecasting method (VAR [19]).

3.1 Evaluation Settings

3.1.1 Dataset

Our evaluation uses the NYC Taxi dataset [28] from 01/01/2009 to
06/30/2016 (7.5 years in total). This dataset records detailed infor-
mation for each taxi trip in New York City, including its pickup and
dropoff locations. Based on this dataset, we select 996 locations with
hot taxi ride-hailing demand in Manhattan of New York City, shown
in Figure 4. Specifically, we compute the taxi ride-hailing demand at
each location by accumulating the taxi ride closest to that location.
Note that these selected locations are not uniformly distributed, as
different regions of Manhattan has distinct taxi demand.5 We com-
pute the hourly taxi ride-hailing demand at these selected locations

5 We use the following algorithm to select the locations. Our roadmap has
5464 locations initially. Then, we compute the average hourly taxi demand

-74.02 -74 -73.98 -73.96 -73.94 -73.92
Longitude (degree)

40.7

40.72

40.74

40.76

40.78

40.8

40.82

40.84

40.86

40.88

La
tit

ud
e

(d
eg

re
e)

Selected Locations
Road

Figure 4. Selected locations in Manhattan.

across time. As a result, our dataset contains 65.4 million data points
in total (996 locations × number of hours in 7.5 years). As far as
we know, it is the largest (in terms of data points) and longest (in
terms of time length) dataset in similar types of study. Our dataset
covers various types of scenarios and conditions (e.g., under extreme
weather condition). We split the dataset into three parts — training
set, validation set, and test set. Training set uses the data in the time
interval 01/01/2009 – 12/31/2011 and 07/01/2012 – 06/30/2015; val-
idation set uses the data in 01/01/2012 – 06/30/2012; and the test set
uses the data in 07/01/2015 –06/30/2016.

Our evaluation uses hourly weather data from [32] to construct
(part of) the auxiliary information. Each record in this weather data
contains seven entries — temperature, wind speed, precipitation, vis-
ibility, and the Booleans for rain, snow, and fog.

3.1.2 Details of the Forecasting Task

In our evaluation, we forecast taxi demand for the next three hours
based on the previous 674 hours and the corresponding auxiliary in-
formation (i.e., use a history of four weeks around; T = 674, T ′ = 3
in Equation (1)). Instead of directly inputing this history sequence
into the model, we first filter it. This filtering is based on the fol-
lowing observation: a future taxi demand correlates more with the
taxi demand at previous recent hours, the similar hours of the past
week, and the similar hours on the same weekday in the past several
weeks. In other words, we shrink the history sequence and only input
the elements relevant to forecasting. Specifically, our filtered history
sequence contains the data for the following taxi demand (and the
corresponding auxiliary information):
• The recent past hours: xt−i, i = 0, ..., 5 ;
• Similar hours of the past week: xt+i−j×24, i = −1, ..., 5, j =

1, .., 6 ;
• Similar hours on the same weekday of the past several weeks:

xt+i−j×24×7, i = −1, ..., 5, j = 1, .., 4.

at each of these locations. After that, we use a threshold (= 10) and an it-
erative procedure to down select to the 996 hot locations. This algorithm
selects the locations from higher to lower demand. Every time when a lo-
cation is added to the pool of selected locations, we compute the average
hourly taxi demand at each of the locations in the pool by remapping the
taxi rides to these locations. If every location in the pool has a demand no
less than the threshold, we will add the location; otherwise, remove it from
the pool. We reiterate this procedure over all the 5464 locations. This pro-
cedure guarantees that all the selected locations have an average hourly taxi
demand no less than the threshold.

Y. Li and J.M.F. Moura / Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data1296

3.1.3 Evaluation Metrics

Similar to prior work [16, 7], we use root mean square er-
ror (RMSE) and mean absolute percentage error (MAPE) to
evaluate the quality of the forecasting results. Suppose that for
the jth forecasting job (j = 1, · · · , S), the ground truth
is

{
xi(j)

t | t = 1, · · · , T ′
, i = 1, · · · , N

}
, and the prediction is{

x̂i
t

(j) | t = 1, · · · , T ′
, i = 1, · · · , N

}
, where N is the number of

locations, and T ′ is the length of the forecasted sequence. Then
RMSE and MAPE are:

RMSE =

√
1

ST ′N

S∑
j=1

T ′∑
t=1

N∑
i=1

(
x̂i
t

(j) − xi(j)
t

)2

MAPE =
1

ST ′N

S∑
j=1

T ′∑
t=1

N∑
i=1

∣∣∣∣∣∣ x̂
i
t

(j) − xi(j)

t

xi(j)
t

∣∣∣∣∣∣
(6)

Following practice in prior work [7], we set a threshold on xi(j)

t

when computing MAPE: if xi(j)

t < 10, disregard the term associated
it. This practice prevents small xi(j)

t dominating MAPE.

3.2 Models Details

We evaluate Forecaster and compare it against baseline models in-
cluding VAR, DCRNN, and the Transformer.

3.2.1 Our model: Forecaster

Forecaster uses weather (7-dimensional vector), weekday (one-
hot encoding, 7-dimensional vector), hour (one-hot encoding, 24-
dimensional vector), and a Boolean for holidays (1-dimensional vec-
tor) as auxiliary information (39-dimensional vector). Concatenated
with a spatial signal (996-dimensional vector), each element of the
input sequence for Forecaster is a 1035-dimensional vector. Fore-
caster uses one encoder layer and one decoder layer (i.e., N = 1).
Except for the sparse linear layer at the end of the decoder, all the
layers of Forecaster use four neurons for encoding the data at each
location and 64 neurons for encoding the auxiliary information and
thus have 4048 neurons in total (i.e., dmodel = 4×996+64 = 4048).
The sparse linear layer at the end has 996 neurons. Forecaster uses
the following loss function:

loss (·) = η × RMSE2 + MAPE (7)

where η is a constant balancing the impact of RMSE with MAPE,
η = 8× 10−3.

3.2.2 Baseline model: Vector Autoregression

Vector autoregression (VAR) [19] is a conventional multivariant time
series forecasting method. It predicts the future endogenous variables
(i.e., the spatial signal xt in our case) as a linear combination of the
past endogenous variables and the current exogenous variables (i.e.,
the auxiliary information at in our case):

x̂t+1 = A1xt + · · ·+Apxt−p+1 +Bat+1 (8)

where xt ∈ R
N , at+1 ∈ R

P , Ai ∈ R
N×N , i = 1, . . . , p, B ∈

R
N×P . Matrices Ai and B are estimated during the training stage.

Our implementation is based on Statsmodels[25], a standard Python
package for statistics.

3.2.3 Baseline model: DCRNN

DCRNN [16] is a deep learning model that models the dependency
relations between locations as a diffusion process guided by a pre-
defined distance metric. Then, it leverages graph CNN to capture
spatial dependency and RNN to capture the temporal dependency
within the data.

3.2.4 Baseline model: Transformer

The Transformer [29] uses the same input and loss function as Fore-
caster. It also adopts a similar architecture except that all the layers
are fully-connected. For a comprehensive comparison, we evaluate
two versions of the Transformer:

• Transformer (same width): All the layers in this implementation
have the same width as Forecaster. The linear layer at the end of
decoder has a width of 996; other layers have a width of 4048 (i.e.,
dmodel = 4048).

• Transformer (best width): We vary the width of all the layers (ex-
cept for the linear layer at the end of decoder which has a fixed
width of 996) from 64 to 4096, and pick the best width in perfor-
mance to implement.

3.3 Results

Our evaluation of Forecaster starts by using Gaussian Markov ran-
dom fields to determine the spatial dependency between the data at
different locations. Based on the method in Section 2.2, we can ob-
tain a conditional correlation matrix where each entry of the matrix
represents the conditional correlation coefficient between two loca-
tions. If the absolute value of an entry is less than a threshold, we will
treat the corresponding two locations as conditionally independent,
and round the value of the entry to zero. This threshold can be chosen
based only on the performance on the validation set. Figure 5 shows
the structure of the conditional correlation matrix under a threshold
of 0.1. We can see that the matrix is sparse, which means a location
generally depends on just a few other locations other than all the lo-
cations. We found that a location depends on only 2.5 other locations
on average. There are some locations which many other locations de-
pend on. For example, there is a location in Lower Manhattan which

1 200 400 600 800 996
Location ID

1

200

400

600

800

996

Lo
ca

tio
n

ID

Figure 5. Structure of the conditional correlation matrix
(under a threshold of 0.1; each dot represents a non-zero entry).

Y. Li and J.M.F. Moura / Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data 1297

Table 1. RMSE and MAPE of Forecaster and baseline models.

Metrics Model Average Next step Second next step Third next step

VAR 6.9991 6.4243 7.1906 7.3476
DCRNN 5.3750 ± 0.0691 5.1627 ± 0.0644 5.4018 ± 0.0673 5.5532 ± 0.0758

RMSE Transformer (same width) 5.6802 ± 0.0206 5.4055 ± 0.0109 5.6632 ± 0.0173 5.9584 ± 0.0478
Transformer (best width) 5.6898 ± 0.0219 5.4066 ± 0.0302 5.6546 ± 0.0581 5.9926 ± 0.0472

Forecaster 5.1879 ± 0.0082 4.9629 ± 0.0102 5.2275 ± 0.0083 5.3651 ± 0.0065

VAR 33.7983 31.9485 34.5338 34.9126
DCRNN 24.9853 ± 0.1275 24.4747 ± 0.1342 25.0366 ± 0.1625 25.4424 ± 0.1238

MAPE (%) Transformer (same width) 22.5787 ± 0.2153 21.8932 ± 0.2006 22.3830 ± 0.1943 23.4583 ± 0.2541
Transformer (best width) 22.2793 ± 0.1810 21.4545 ± 0.0448 22.1954 ± 0.1792 23.1868 ± 0.3334

Forecaster 20.1362 ± 0.0316 19.8889 ± 0.0269 20.0954 ± 0.0299 20.4232 ± 0.0604

16 other locations depend on. This may be because there are many lo-
cations with significant taxi demand in Lower Manhattan, with these
locations sharing a strong dependency. Figure 6 shows the top 400
spatial dependencies. We see some long-range spatial dependency
between remote locations. For example, there is a strong dependency
between Grand Central Terminal and New York Penn Station, which
are important stations in Manhattan with a large traffic of passengers.

-74.02 -74 -73.98 -73.96 -73.94 -73.92
Longitude (degree)

40.7

40.72

40.74

40.76

40.78

40.8

40.82

40.84

40.86

40.88

La
tit

ud
e

(d
eg

re
e)

Road
Top 400 Connections
Grand Central Terminal
New York Penn Station

Figure 6. Top 400 dependency relations between locations.

After determining the spatial dependency between locations, we
use the graph Transformer architecture of Forecaster to predict the
taxi demand. Table 1 contrasts the performance of Forecaster to other
baseline models. Here we run all the evaluated deep learning models
six times (using different seeds) and report the mean and the stan-
dard deviation of the results. As VAR is not subject to the impact of
random initialization, we run it once. We can see for all the evalu-
ated models, the RMSE and MAPE of predicting the next step are
lower than that of predicting later steps (e.g., the third next step).
This is because, for all the models, the prediction of later steps is
built upon the prediction of the next step, and thus the error of the
former includes the error of the latter. Comparing the performance
of these models, we can see the RMSE and MAPE of VAR is higher
than that of the deep learning models. This is because VAR does not
model well the non-linearity and non-stationarity within the data; it
also does not consider the spatial dependencies between locations
in the structure of its coefficient matrices (matrices Ai and B in

Equation (8)). Among the deep learning models, DCRNN and the
Transformer perform similarly. The former captures the spatial de-
pendency within the data but does not capture well the long-range
temporal dependency, while the latter focuses on exploiting the long-
range temporal dependency but neglects the spatial dependency. As
for our method, Forecaster outperforms all the baseline methods at
every future step of forecasting. On average (over these future steps),
Forecaster achieves an RMSE of 5.1879 and a MAPE of 20.1362,
which is 8.8210% and 9.6192% better than Transformer (best width),
and 3.4809% and 19.4078% better than DCRNN. This demonstrates
the advantage of Forecaster in capturing both the spatial dependency
and the long-range temporal dependency.

4 Related Work

To our knowledge, this work is the first (1) to integrate Gaussian
Markov Random fields with deep learning to forecast spatial and
time-dependent data, using the former to derive a dependency graph;
(2) to sparsify the architecture of the Transformer based on the de-
pendency graph, significantly improving the forecasting quality of
the result architecture. The most closely related work is a set of pro-
posals on forecasting spatial and time-dependent data and the Trans-
former, which we briefly review in this section.

4.1 Spatial and Time-Dependent Data Forecasting

Conventional methods for forecasting spatial and time-dependent
data such as ARIMA and Kalman filtering-based methods [18, 17]
usually impose strong stationary assumptions on the data, which
are often violated [16]. Recently, deep learning-based methods have
been proposed to tackle the non-stationary and highly nonlinear na-
ture of the data [35, 38, 36, 7, 34, 16]. Most of these works consist
of two parts: modules to capture spatial dependency and modules
to capture temporal dependency. Regarding spatial dependency, the
literature mostly uses prior knowledge such as physical closeness be-
tween regions to derive an adjacency matrix and/or pre-defined dis-
tance/similarity metrics to decide whether two locations are depen-
dent or not. Then, based on this information, they usually use a (stan-
dard or graph) CNN to characterize the spatial dependency between
dependent locations. However, these methods are not good predic-
tors of dependency relations between the data at different locations.
Regarding temporal dependency, available works [35, 36, 7, 34, 16]
usually use RNNs and CNNs to extract the long-range temporal de-
pendency. However, both RNN and CNN do not learn well the long-
range temporal dependency, with the number of operations used to

Y. Li and J.M.F. Moura / Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data1298

relate signals at two distant time positions in a sequence growing at
least logarithmically with the distance between them [29].

We evaluate our architecture with the problem of forecasting taxi
ride-hailing demand around a large number of spatial locations. The
problem has two essential features: (1) These locations are not uni-
formly distributed like pixels in an image, making standard CNN-
based methods [35, 34, 38] not good for this problem; (2) it is de-
sirable to perform multi-step forecasting, i.e., forecasting at several
time instants in the future, this implying that the work mainly de-
signed for single-step forecasting [36, 7] is less applicable. DCRNN
[16] is the state-of-the-art baseline satisfying both features. Hence,
we compare our architecture with DCRNN and show that our work
outperforms DCRNN.

4.2 Transformer

The Transformer [29] avoids recurrence and instead purely relies on
the self-attention mechanism to let the data at distant positions in a
sequence to relate to each other directly. This benefits learning long-
range temporal dependency. The Transformer and its extensions have
been shown to significantly outperform RNN-based methods in NLP
and image generation tasks [29, 22, 3, 33, 4, 21, 13]. It has also been
applied to graph and node classification problems [1, 37]. However, it
is still unknown how to apply the architecture of Transformer to spa-
tial and time-dependent data, especially to deal with spatial depen-
dency between locations. Later work [31] extends the architecture of
Transformer to video generation. Even though this also needs to ad-
dress spatial dependency between pixels, the nature of the problem
is different from our task. In video generation, pixels exhibit spatial
dependency only over a short time interval, lasting for at most tens
of frames — two pixels may be dependent only for a few frames and
become independent in later frames. On the contrary, in spatial and
time-dependent data, locations exhibit long-term spatial dependency
lasting for months or even years. This fundamental difference of the
applications that we consider enables us to use Gaussian Markov ran-
dom fields to determine the dependency graph as basis for sparsifying
the Transformer. Child et al. [2] propose another sparse Transformer
architecture with a different goal of accelerating the multi-head atten-
tion operations in the Transformer. This architecture is very different
from our architecture.

5 Conclusion

Forecasting spatial and time-dependent data is challenging due to
complex spatial dependency, long-range temporal dependency, non-
stationarity, and heterogeneity within the data. This paper proposes
Forecaster, a graph Transformer architecture to tackle these chal-
lenges. Forecaster uses Gaussian Markov random fields to determine
the dependency graph between the data at different locations. Then,
Forecaster sparsifies the architecture of the Transformer based on
the structure of the graph and lets the sparsified Transformer (i.e.,
graph Transformer) capture the spatiotemporal dependency, non-
stationarity, and heterogeneity in one shot. We apply Forecaster to
the problem of forecasting taxi-ride hailing demand at a large number
of spatial locations. Evaluation results demonstrate that Forecaster
significantly outperforms state-of-the-art baselines (the Transformer
and DCRNN).

ACKNOWLEDGEMENTS

We thank the reviewers. This work is partially supported by NSF
CCF (award 1513936).

REFERENCES

[1] Benson Chen, Regina Barzilay, and Tommi Jaakkola, ‘Path-Augmented
Graph Transformer Network’, in Workshop on Learning and Reasoning
with Graph-Structured Data (ICML workshop), pp. 1–5, (2019).

[2] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever, ‘Gen-
erating Long Sequences with Sparse Transformers’, arXiv preprint
arXiv:1904.10509, (2019).

[3] Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov, ‘Transformer-XL: At-
tentive Language Models beyond a Fixed-Length Context’, in Annual
Meeting of the Association for Computational Linguistics (ACL), pp.
2978–2988, (2019).

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘Bert: Pre-training of Deep Bidirectional Transformers for Language
Understanding’, in Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), p. 4171–4186, (2019).

[5] Jian Du, Shanghang Zhang, Guanhang Wu, José M. F. Moura, and
Soummya Kar, ‘Topology Adaptive Graph Convolutional Networks’,
arXiv preprint arXiv:1710.10370, 1–13, (2017).

[6] Jerome Friedman, Trevor Hastie, and Robert Tibshirani, ‘Sparse Inverse
Covariance Estimation with the Graphical Lasso’, Biostatistics, 9(3),
432–441, (2008).

[7] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping
Ye, and Yan Liu, ‘Spatiotemporal Multi-Graph Convolution Network
for Ride-Hailing Demand Forecasting’, in AAAI Conference on Artifi-
cial Intelligence, pp. 3656–3663, (2019).

[8] Alfred Greiner, Willi Semmler, and Gang Gong, The Forces of Eco-
nomic Growth: A Time Series Perspective, Princeton University Press,
2016.

[9] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmid-
huber, Gradient Flow in Recurrent Nets: the Difficulty of Learning
Long-Term Dependencies, A Field Guide to Dynamical Recurrent Neu-
ral Networks. IEEE Press, 2001.

[10] Johannes Hofmann, Michael Größler, Manuel Rubio-Sánchez, P-P
Pichler, and Dirk Joachim Lehmann, ‘Visual Exploration of Global
Trade Networks with Time-Dependent and Weighted Hierarchical Edge
Bundles on GPU’, Computer Graphics Forum, 36(3), 273–282, (2017).

[11] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena,
‘Structural-RNN: Deep Learning on Spatio-Temporal Graphs’, in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5308–5317, (2016).

[12] Thomas N. Kipf and Max Welling, ‘Semi-Supervised Classification
with Graph Convolutional Networks’, in International Conference on
Learning Representations (ICLR), pp. 1–14, (2017).

[13] Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and
Hannaneh Hajishirzi, ‘Text Generation from Knowledge Graphs with
Graph Transformers’, in Annual Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pp. 2284–2293, (2019).

[14] Jie Li, Siming Chen, Kang Zhang, Gennady Andrienko, and Natalia
Andrienko, ‘Cope: Interactive Exploration of Co-Occurrence Patterns
in Spatial Time Series’, IEEE Transactions on Visualization and Com-
puter Graphics, 25(8), 2554–2567, (2019).

[15] Jie Li, Kang Zhang, and Zhao-Peng Meng, ‘Vismate: Interactive Visual
Analysis of Station-Based Observation Data on Climate Changes’, in
IEEE Conference on Visual Analytics Science and Technology (VAST),
pp. 133–142, (2014).

[16] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu, ‘Diffusion Convo-
lutional Recurrent Neural Network: Data-Driven Traffic Forecasting’,
in International Conference on Learning Representations (ICLR), pp.
1–16, (2018).

[17] Marco Lippi, Matteo Bertini, and Paolo Frasconi, ‘Short-Term Traffic
Flow Forecasting: An Experimental Comparison of Time-Series Anal-
ysis and Supervised Learning’, IEEE Transactions on Intelligent Trans-
portation Systems, 14(2), 871–882, (2013).

[18] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing, ‘Discov-
ering Spatio-Temporal Causal Interactions in Traffic Data Streams’, in
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 1010–1018, (2011).

[19] Helmut Lütkepohl, New Introduction to Multiple Time Series Analysis,
Springer, 2005.

[20] Daniel B Neill, ‘Expectation-Based Scan Statistics for Monitoring Spa-

Y. Li and J.M.F. Moura / Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data 1299

tial Time Series Data’, International Journal of Forecasting, 25(3),
498–517, (2009).

[21] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam
Shazeer, Alexander Ku, and Dustin Tran, ‘Image Transformer’, in In-
ternational Conference on Machine Learning (ICML), pp. 4055–4064,
(2018).

[22] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever,
‘Improving Language Understanding by Generative Pre-training’, Ope-
nAI, (2018).

[23] Pradeep Ravikumar, Martin J Wainwright, Garvesh Raskutti, and Bin
Yu, ‘High-Dimensional Covariance Estimation by Minimizing L1-
Penalized Log-Determinant Divergence’, Electronic Journal of Statis-
tics, 5, 935–980, (2011).

[24] Havard Rue and Leonhard Held, Gaussian Markov Random Fields:
Theory And Applications (Monographs on Statistics and Applied Prob-
ability), Chapman & Hall/CRC, 2005.

[25] Skipper Seabold and Josef Perktold, ‘Statsmodels: Econometric and
Statistical Modeling with Python’, in Python in Science Conference,
pp. 57–61, (2010).

[26] John Shi, Mark Cheung, Jian Du, and José M. F. Moura, ‘Classification
with Vertex-Based Graph Convolutional Neural Networks’, in Asilomar
Conference on Signals, Systems, and Computers (ACSSC), pp. 752–
756, (2018).

[27] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, ‘Sequence to Sequence
Learning with Neural Networks’, in Advances in Neural Information
Processing Systems (NIPS), pp. 3104–3112, (2014).

[28] NYC Taxi and Limousine Commission, ‘Trip Record Data’, (2018).
[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin, ‘Atten-
tion is All You Need’, in Advances in Neural Information Processing
Systems (NIPS), pp. 5998–6008, (2017).

[30] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Martial Hebert,
‘The Pose Knows: Video Forecasting by Generating Pose Futures’, in
IEEE International Conference on Computer Vision (ICCV), pp. 3332–
3341, (2017).

[31] Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and Kaiming He,
‘Non-Local Neural Networks’, in IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 7794–7803, (2018).

[32] Weather Underground, ‘Historical Weather’, (2018).
[33] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Rus-

lan Salakhutdinov, and Quoc V Le, ‘XLNet: Generalized Autore-
gressive Pretraining for Language Understanding’, arXiv preprint
arXiv:1906.08237, (2019).

[34] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li,
‘Revisiting Spatial-Temporal Similarity: A Deep Learning Framework
for Traffic Prediction’, in AAAI Conference on Artificial Intelligence,
pp. 5668–5675, (2019).

[35] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu,
Pinghua Gong, Jieping Ye, and Zhenhui Li, ‘Deep Multi-View Spatial-
Temporal Network for Taxi Demand Prediction’, in AAAI Conference
on Artificial Intelligence, pp. 2588–2595, (2018).

[36] Bing Yu, Haoteng Yin, and Zhanxing Zhu, ‘Spatio-Temporal Graph
Convolutional Networks: A Deep Learning Framework for Traffic Fore-
casting’, in International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 3634–3640, (2018).

[37] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyun-
woo J Kim, ‘Graph Transformer Networks’, in Advances in Neural In-
formation Processing Systems (NeurIPS), pp. 11960–11970, (2019).

[38] Junbo Zhang, Yu Zheng, and Dekang Qi, ‘Deep Spatio-Temporal
Residual Networks for Citywide Crowd Flows Prediction’, in AAAI
Conference on Artificial Intelligence, pp. 1655–1661, (2017).

[39] Pusheng Zhang, Yan Huang, Shashi Shekhar, and Vipin Kumar, ‘Cor-
relation Analysis of Spatial Time Series Datasets: A Filter-and-Refine
Approach’, in Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), pp. 532–544, (2003).

[40] Ali Ziat, Edouard Delasalles, Ludovic Denoyer, and Patrick Gallinari,
‘Spatio-Temporal Neural Networks for Space-Time Series Forecasting
and Relations Discovery’, in IEEE International Conference on Data
Mining (ICDM), pp. 705–714, (2017).

Appendix: Multi-Head Attention

The multi-head attention layer is a core component of the Trans-
former for capturing long-range temporal dependency within data.

It takes a query sequence
{
qt | qt ∈ R

dmodel , t = 1, . . . , T
}

, a key
sequence

{
kt | kt ∈ R

dmodel , t = 1, . . . , T
}

, and a value sequence{
vt | vt ∈ R

dmodel , t = 1, . . . , T
}

as inputs, and outputs a new se-
quence

{
et | et ∈ R

dmodel , t = 1, . . . , T
}

where each element of
the output sequence is impacted by the corresponding query and all
the keys and values, no matter how distant these keys and values are
from the query in the temporal order, and thus captures the long-
range temporal dependency. The detailed procedure is as follows.

First, the multi-head attention layer compares each query qt with
each key kj to get their similarity α

(h)
tj from multiple perspectives

(termed as multi-head; H is the number of heads, h = 1, . . . , H):

α
(h)
tj = softmax

(〈
WQ

(h)qt, W
K
(h)kj

〉/√
dmodel

H

)

=

exp

(〈
WQ

(h)qt, W
K
(h)kj

〉/√
dmodel

H

)
T∑

i=1

exp

(〈
WQ

(h)qt, WK
(h)ki

〉/√
dmodel

H

) (9)

where α
(h)
ij ∈ (0, 1) is the similarity between qi and kj under head

h,
∑T

j=1 α
(h)
ij = 1; WQ

(h),W
K
(h) ∈ R

dmodel
H

×dmodel are parameter
matrices for head h that need to be learned; 〈·, ·〉 is the inner product
between two vectors.

In our work, to balance the impact of spatial signals and auxiliary
information on the prediction, we first scale qt and then use its scaled
version q′

t instead in Equation (9) for computing the similarity α
(h)
tj .

Suppose in qt and kt, the first dsignal dimensions are for encoding
spatial signals, and the next daux dimensions are for encoding auxil-
iary information, we compute q′

t as:

q′
t = r ◦ qt

r =
[√

1
2
+ daux

2dsignal
· 1dsignal ,

√
1
2
+

dsignal

2daux
· 1daux

]T
1d =

[
1 · · · 1

] ∈ R
1×d, d = dsignal or daux

(10)
where ◦ is the Hadamard product.

Second, the multi-head attention layer uses these
similarities as weights to generate a new sequence{
e
(h)
t | e(h)

t ∈ R
dmodel , t = 1, . . . , T

}
for each head h:

e
(h)
t =

T∑
j=1

α
(h)
tj WV

(h)vj (11)

where WV
(h) ∈ R

dmodel
H

×dmodel is another parameter matrix for
head h that needs to be learned.

Third, the sequence under each head is concatenated and then used
to generate the final output sequence:

et = WO
[
e
(1)
t

�
e
(2)
t

�
· · ·

�
e
(H)
t

]
(12)

where WO ∈ R
dmodel×dmodel is a parameter matrix that needs to

be learned; · � · represents a concatenation of two vectors.
In summary, the multi-head attention layer needs to learn the pa-

rameter matrices WQ
(h), W

K
(h), W

V
(h), h = 1, · · · , H , and WO , which

all can be treated as linear layers without bias. In our architecture, we
use sparse linear layers to replace these linear layers, capturing the
spatial dependency between locations.

Y. Li and J.M.F. Moura / Forecaster: A Graph Transformer for Forecasting Spatial and Time-Dependent Data1300

