
Variable Precision Multiplication for
Software-Based Neural Networks

Richa Singh
Virginia Tech

richas@vt.edu

Thomas Conroy
Virginia Tech

tconroy@vt.edu

Patrick Schaumont
WPI

pschaumont@wpi.edu

Abstract—As the number of applications of neural networks
continues to grow, so does the need to efficiently perform
inference computations on highly constrained devices. In this
paper, we propose a methodology to accelerate neural networks in
software. We exploit the limited-precision requirements of typical
neural networks by formulating recurring operations in a bit-slice
computation format. Bit-slice computation ensures that every bit
of an M -bit processor word contributes useful work even while
computing a limited-precision n-bit (with n < M ) operation.
This paper brings the following contributions. We first present an
environment to efficiently create bitslice descriptions in software,
by synthesizing them from Verilog. We then develop bitsliced
designs of matrix multiplication and evaluate their performance.

Our target is a small microcontroller, and we rely solely
on software optimization. Our driving application is a neural
network classifier for the MNIST database. Range-Based Linear
Quantization in symmetric mode quantizes pre-trained 32-bit
floating point weights and activation to low-precision data-widths.
Experiments on RISC-V with varying levels of hardware-support
show that for data-widths common to neural network applica-
tions, the bit-sliced code produces a speedup over traditional
methods, which leads to faster and efficient inference without
incurring significant loss in accuracy. For example, 8-bit matrix
multiplications are sped up by a factor of 2.62× when compared
with non-bitsliced rv32i ISA implementation with no hardware
multiplier.

Index Terms—Bitslice compilation, Neural networks, Software
Acceleration

I. INTRODUCTION

The advent of the neural network computing paradigm
in embedded context has opened a wealth of applications
in inference and feature extraction from complex data. A
Neural Network implements progressive feature extraction
of data using layers of neurons. Each neuron requires the
multiplication of input data with coefficients to obtain the
output. The number of layers and the size of the dot products
varies according to the type of neural network (NN). A
common observation in most neural networks is that the
required numerical precision for each layer is limited. Previous
work in hardware-accelerated NN has used this property
to create optimized fixed-point hardware implementations,
such as 16-bit operations in DADIANNAO [4] and variable-
precision bitserial operations in STRIPES [7]. The STRIPES
project demonstrated that many NN can operate at reduced
precision (3 to 13 bits) with negligible loss in classification
accuracy. A custom-hardware implementation with reduced
computation accuracy may improve performance and reduce

31 30 012

processor word

32 single‐bit threads

*
+

for (..)
  if (..)

Word‐level Program Boolean Program Bitslice Program

and(a, e, q);
and(b, e, r);
or(..);Logic

Synthesis

Code
Generation

32

int
32

1 1

1

=x

thread 1
thread 2
thread 3
thread 4
thread 5
thread 6
thread 7
thread 8

Li Li+1 Li Li+1
c1i

Wi = {cki}

(a)

(b)

Fig. 1: (a) Bitslice Software Generation and Execution (b)
Layers in a neural network are evaluated using matrix
operations

energy consumption. Moreover, this improvement is achieved
with every additional bit of precision reduction. Converting
the precision of computations in a hardware design from 16-
bit precision to p-bit precision may provide a performance
improvement of up to 16/p times for computation-dominated
designs [7].

In software implementations, adapting the precision of com-
putations to the application requirements is not as straightfor-
ward. Standard processor architectures do not offer the same
per-bit performance improvement as in hardware. Processor
architectures are optimized for a few different wordlengths
(say 32-bit, 16-bit and 8-bit, for a 32-bit embedded processor).
Therefore, the arbitrary shortening of the wordlength in fixed-
point precision applications does not offer a commensurate
performance improvement. Some processors provide sub-
vector operations (e.g. ARM NEON). However, such SIMD
extensions are generally unavailable on small microcontrollers.

In this contribution, we describe an acceleration technique
that depends only on software to improve performance of
the dot product, the most common operation in a NN. We
propose a bitslice formulation of an optimized fixed-point im-
plementation of the NN. Bitslice programming is a technique
that was originally proposed in the context of cryptographic
software acceleration [2]. It has been applied to a wide range

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 08,2021 at 21:39:59 UTC from IEEE Xplore.  Restrictions apply. 



of ciphers [9], [1] and countermeasures [12], [6]. Figure 1a
illustrates the design steps leading to a bitslice program. A
standard program with word-level operations is first converted
using logic synthesis into a Boolean program, a description
in terms of logic gates. Boolean programs can be created
using RTL synthesis from a hardware description [14], or else
through dedicated logic synthesis tools [10]. The complexity
of a Boolean program, i.e. the number of logic gates, is
proportional to the complexity of the word-level program.

A bitslice program is created out of a Boolean program
as a sequential execution of the gate-level description using
bitwise instructions (and,or,...). A bitslice program on an N -
bit processor thus consists of N parallel copies of the Boolean
program. The N -fold parallel nature of bitslice programs is of
great benefit to computing NN layers. Figure 1b illustrates the
evaluation of layer Li+1 of an NN as a matrix multiplication of
a vector Li with a coefficient matrix Wi. To map the operations
efficiently to a bitslice program, the elements of Li+1 are
evaluated in parallel by columnwise multiply-accumulating Wi

with Li.
In this paper, we describe a tool to generate bitslice pro-

grams from RTL word-level programs, and we apply the tool
to demonstrate acceleration of a quantized NN. The remainder
of the paper is organized as follows. In the next section, we
discuss related work in software acceleration of NN. In Section
III, we summarize an open-source tool to generate bitslice
software. Section IV describes how we implemented bitsliced
matrix multiplication, and section V summarizes the results
achieved. We then conclude the paper.

II. RELATED WORK

There is a rich body of work on neural network accelerator
architectures for the edge computing environment [11]. Our
efforts concentrate on software-only optimization for small
micro-controllers. Our key contribution is a technique to ex-
ploit the limited precision of multiply-accumulate operations,
the most frequently occurring operation in neural networks.

Earlier research demonstrated that full floating point pre-
cision is not required for most neural network architectures.
The precision of input weights and coefficients can be reduced
to fixed point precision with a limited range of n bits. This
leads to a smaller hardware footprint, as well as an improved
energy efficient for hardware and software. The reduction
in numerical complexity is potentially significant. In XOR-
Net [13], for example, the multiply-accumulate operation is
replaced with a bitwise XNOR operation and a population
bitcount. However, the challenge of such single-bit precision
network is to maintain sufficiently high classification accuracy.
The authors of the STRIPES accelerator architecture evaluated
the minimum required wordlength for several popular neural
network architectures to maintain their classification accu-
racy [7]. They find that typical network architectures require
wordlengths of between 3 bit (LeNet) and 10 bit (GoogleNet)
for full baseline accuracy. This is still much less than the
precision of the standard integer instruction set of a 32-bit
micro-controller (32-bit addition, 32-bit multiply).

Therefore, it remains a challenge to map these small-
wordlength neural network architectures efficiently into the
standard wordlength of a microcontroller. Clearly, a straight-
forward mapping is inefficient, as most of the bits in the 32-
bit datapath would remain unused in an 8-by-8 bit multiply-
accumulate.

A recent solution to this problem was realized in TF-
Net [15], which aims at small microcontrollers. The authors
propose a neural network architecture with two-bit weights and
four-bit activations. To optimize the multiply-accumulate op-
eration, TF-Net proposes a packed-MAC operation as follows.
TF-Net arranges four two-bit weights on the byte boundaries
of a word, and then multiplies these weights with a single
four-bit input to obtain four six-bit products aligned on the
byte boundaries of a word. These products can then be
accumulated (using standard integer add) with other products
resulting from the same packed-MAC. Thus, TF-Net exploits
a parallelism factor of four to compute the output activations.
In combination with other optimizations, the authors of TF-
Net show that this technique improves performance by a
factor of 1.83 compared to the baseline [15]. Although TF-
Net demonstrates how the micro-controller architecture can
be operated more efficiently, the solution is still limited to
specific wordlength combinations of weights and inputs.

CMIX-NN is another solution inspired by Digital Signal
Processing, and demonstrates a library optimized for short-
wordlength weights and activitations of 8, 4, 2 and 1 bit [3].
By developing optimized custom-instruction designs, CMIX-
NN minimizes the overhead of packing and unpacking smaller
wordlengths (1, 2, 4 and 8 bit) into regular wordlengths (16
bit). However, the computations are done using a standard
MAC16 multiply-accumulate, which means that performance
stays roughly constant when going to smaller wordlengths.

The bit-serial software implementations by Cowan et al. are
most similar to our proposed approach [5]. The authors hand-
optimize a matrix multiplication for low-precision evaluation,
and implement each multiply-accumulate operation as a bit-
serial design. Bits are then packed into processor words. Next,
they hand-optimize the schedule, for a matrix multiplication
based on these bit-serial designs. The main difference of this
approach with ours is that we automate the conversion to the
bit-serial implementation.

Our proposed solution, using bitslicing, is aimed at
small microcontrollers. We propose a bitslice version of the
multiply-accumulate (MAC). We create the bitslice program
automatically using logic synthesis from Verilog and code
generation in C [8]. Another solution, Usuba, is a recent effort
that offers a high-level specification and synthesis of bitsliced
software [10].

Bitslicing is a popular technique in the cryptographic com-
munity to build high-performance implementations of algo-
rithms [2], [9], as well as to build side-channel-protected and
fault-protected implementations [12], [6]. We are not aware
of its application to matrix multiplication and neural network
(NN) computation.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 08,2021 at 21:39:59 UTC from IEEE Xplore.  Restrictions apply. 



c

w

4

4

8

1616
a

uint32_t R[16];

void mac(uint32_t c[4],

   uint32_t w[4],

   uint32_t a[16], 

   uint32_t R[16]) {

  uint32_t         Rnext[16];

  uint32_t         n221;

  /* eval */

  AND2(c[0], w[0], n221);

  XOR2(...,  R[0], Rnext[0]);

  ...

  /* update */

  R[0] = Rnext[0];

  ...

}

R

(a) (b)

Fig. 2: (a) Multiply-accumulate in Verilog (b) Generated
bitsliced C code

III. BITSLICE COMPILATION

In this section, we describe our solution to create bitslice
software from a standard word-level description. We rely on a
technique that uses logic synthesis to create a bitsliced version
of the implementation [8].

Figure 2 illustrates an example. The input in Figure 2a is
a register-transfer level description of a multiply-accumulate
(MAC) function. The MAC multiplies 4-bit weights and in-
puts, and accumulates the 8-bit result using a 16-bit accumula-
tor. This MAC is a building block for the matrix multiplication
used in NN. Using logic synthesis, the MAC is converted into
a netlist of primitive gates including AND, OR, NOT, XOR
as well as a state element. The netlist is then converted into
C code by topologically sorting of the gates and replacing
each gate with an equivalent bitwise operation. Our C code
generation is implemented as a backend in the YOSYS open-
source synthesis environment [14]. Figure 2b illustrates the
generated C code. Each input or output is mapped into a
corresponding uint32_t representing 32 parallel slices. In
other words, the C program implements 32 parallel copies of
Figure 2a. The state element is mapped into a global variable to
preserve state across mac invocations. The function computes
synchronously and each call corresponds to one logical clock
cycle of the input description in Figure 2a.

Before a standard n-bit input can be processed by a bitsliced
function, the input has to be transposed. We convert 32 n-bit
inputs into n 32-bit inputs for the bitsliced function. When
bitslice processing is completed, the reverse operation is done:
m 32-bit outputs are reverse-transposed into 32 m-bit outputs.
Transposition introduces overhead similar to packing and
unpacking in other low-precision approaches [15]. However,
within the bitsliced domain, bitsliced functions are compatible
with each other. The transposition overhead can be ammortized
over multiple layers of a neural network.

IV. BITSLICED MATRIX MULTIPLICATION

Matrix-vector Multiplication forms the core of computa-
tional operation in the fully-connected (FC) layers of a NN.
In this section, we apply the bitsliced design of a MAC
operation to implement an optimized version of the matrix-

= x

ja cj
w
j

wa

+

Fig. 3: parallel MAC to compute the matrix multiplication.

vector multiplication. We assume the case of a standard fully-
connected multi-layer network.

We first explain how the matrix multiplication is mapped
into parallel MAC operations. Next, we present a storage
technique that minimizes address calculation overhead dur-
ing matrix multiplication. Our results, presented in the next
section, are based on this optimized implementation.

A. Mapping of matrix multiplication into parallel MAC oper-
ations

A bitslice design needs fewer operations for low-precision
operations because a bitslice program is formulated in terms
of bit-operations. When fewer bits have to be computed, a
commensurate reduction in bit-operations can be expected.
However, the Boolean programs at the basis of bitslice designs
compute on only one single bit. Bitslice designs still have to
agressively parallelize the Boolean program over every slice
of the processor. We discuss how this is achieved for matrix
multiplication. The matrix multiplication takes coefficients wij

and multiplies them with inputs cj to obtain outputs ai.

ai =
31∑
j=0

wij · cj (1)

This loop can be implemented as a multiply accumulate
operation over the column index j. To parallelize the MAC
operation over the matrix multiplication, all ai are computed in
parallel. We thus compute 32 MACs at the same time. Figure 3
visualizes the parallel MAC as it iterates through each column
of the weights wij . We obtain the following formulation,
where a indicates the result vector and wj column j from
the weight matrix.

a = MAC31
j=0(a,wj , cj) (2)

This formulation computes 32 NN activations in parallel.
Large dimensions are supported through repeated application
of this 32-parallel MAC.

B. Memory organization

An important consideration in the implementation of bitslice
design is the memory organization of inputs. Bitslicing tends
to be demanding on memory, because these programs handle
parallel copies of a Boolean program. Thus, for an n bit
processor, the storage requirements tend to increase n fold.
We applied two optimizations to implement the scheme of
Figure 3 in a performance-effective way. Both optimizations
exploit the fact that the data organization of coefficients can

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 08,2021 at 21:39:59 UTC from IEEE Xplore.  Restrictions apply. 



32 columns

32 bit

Compaction
16 bit

16 columns

Col 0:

Col 1:

Bitslicing

Fig. 4: Compaction to minimize storage cost of bitslice
designs; example illustrates case of 16-bit coefficients.

be optimized at compile time, and with the full knowledge of
coefficient widths.

First, we produce compact representations of the bitsliced
coefficients as follows (Figure 4). A given 32-by-32 array with
k bit coefficients is compacted into a k-by-32 array. Assuming
k ∈ {2, 4, 8, 16, 32}, this will allocate an integer multiple
coefficients in each uint32_t. Next, the resulting array is
bitsliced. This leads to a compact representation with efficient
address computation. The bitsliced target address for bit v1 of
coefficient v2 will be v1 + v2 ∗ k rather than v1 + v2 ∗ 32,
leading to contiguous memory use and simplified addressing.

Second, one can observe that in the parallel MAC scheme
of Figure 3, the elements of the weight matrix are accessed
columnwise. The traditional storage order of arrays (eg. in C)
follows a row-major storage order. This makes the address
computation challenging, since there will be row-sized jumps
to go from one element in column wj to the next one below
it. To avoid this addressing overhead, we adopted a column-
major storage order of coefficients.

The combination of the two optimizations leads to a very
compact and efficient form for the bitsliced matrix multiplica-
tion. The following shows the code that is used for a k-bit bit-
sliced multiply accumulate loop. In this code, trans_coef
and trans_c are bitsliced inputs, trans_mac_out is the
bitsliced output, and state is the bitsliced MAC state.

uint32_t trans_coef[32 * k];
uint32_t trans_c[32 * k];
uint32_t trans_mac_out[32];
uint32_t state[16];
for (j=0; j<32; j++)

mac_top(&(trans_coef[j*k]),
trans_c[j*k],
trans_mac_out,
&state);

V. RESULTS

a) Experimental Setup: In our experiments, we pro-
grammed an FPGA Zedboard with 20MHz RISC-V core-based
PULPissimo SoC. We generated the bitslice program from the
Verilog code using a bitslice generator integrated in YOSYS

TABLE I: PERFORMANCE OF BITSLICED, NON-BITSLICED INTE-
GER WITHOUT HARDWARE MULTIPLIER AND WITH HARDWARE
MULTIPLIER IMPLEMENTATIONS OF MATRIX-VECTOR MULTIPLI-
CATION AT DIFFERENT BIT PRECISIONS

Bit
Precision

Number of cycles in matrix-vector multiplication

Bitsliced
Non-Bitsliced

Integer without
Hardware
Multiplier

Non-Bitsliced
Integer with

Hardware
Multiplier

2-bit 2613 119711 10418
4-bit 12309 149667 10418
8-bit 66870 175594 10418
16-bit 345174 212845 10418
32-bit 1492374 282649 10418

[14]. Our driver design is a small four-layer network with a
784-32-32-10 structure trained for the MNIST database. We
generate bitsliced C code for MAC at a particular bit-length by
synthesising the Verilog model with a BITWIDTH parameter
appropriately chosen using YOSYS. The C code is compiled
using the open-source RISC-V GNU Compiler Toolchain for
PULP.

For the comparison between bitsliced and non-bitsliced
implementations of matrix multiplication, we generated pseu-
dorandom coefficients matrixes and input vectors, having
various bit-lengths (using the Mersenne Twister pseudorandom
number generator). The performance was measured in CPU
cycles by reading the hardware performance counters on the
CPU before and after the matrix multiplication. Each experi-
ment for the non-bitsliced integer implementation was repeated
100 times (randomizing the input arrays each iteration), and
the performance was determined as the average cycle count
for matrix multiplication. For bitsliced experiments, only one
iteration was needed since the bitsliced design’s performance
is data-independent due to its branch-free code structure. The
bitsliced MAC function can compute 32 multiply-accumulate
operations in parallel and internal accumulate registers are ze-
roed on reset. We have evaluated the different implementations
of Matrix-vector multiplication using a fixed 32x32 dimension
matrix and 32x1 vector. This implies that 32 iterations of
bitsliced MAC function will traverse all the 32 columns of
matrix with each iteration being computed in parallel. The
cycle count for the bitsliced implementation is calculated over
32 iterations of this bitsliced MAC function.

b) Performance Analysis: In Table I, we report the
performance numbers of the proposed bitslice implementa-
tion of matrix-vector multiplication against two non-bitsliced
integer implementations. The first non-bitsliced integer case
is generated using the rv32i RISC-V base integer ISA (no
hardware multiplier). The second case is generated for the
rv32im RISC-V ISA, which uses a hardware multiplier. As
the bit precision increases, the number of cycles in bitsliced
version increases (roughly quadratically) since the number of
logic gates in the the gate-level synthesis of Verilog code
for MAC are proportional to the required bit precision. The

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 08,2021 at 21:39:59 UTC from IEEE Xplore.  Restrictions apply. 



2 4 8 16 32
3

3.5

4

4.5

5

5.5

6

6.5

Fig. 5: Analysis of cross-over point in Matrix-Vector Multi-
plication

number of logic gates further translate into a proportional
count of bitwise instructions in the bitsliced program, thereby,
leading to slower performance at higher bit lengths. Cycle
counts for the rv32i architecture have been measured as an
average over 100 iterations because the software emulation of
integer multiplication, mulsi3, has a data-dependent execution
time. This multiplication technique is based on conventional
shift and add algorithm. Performance comparison of the bit-
sliced implementation with rv32i case clearly shows that the
bitsliced implementation is faster than the rv32i at 2-bit, 4-
bit and 8-bit precisions. It also highlights that the bitsliced
approach proves to be beneficial for the the most common low
numerical precision formats used for weights and activation
to maximize the throughput of matrix multiplication in a
Neural Network (NN). When comparing the speed of the
bitsliced implementation with the rv32im target architecture,
the bitsliced implementation is faster only for 2-bit precision.
This indicates that the architecture with built-in 32x32-bit
hardware multiplier has greater design efficiency than the
bitsliced software multiplication technique.

In Figure 5, CPU cycle count as a function of bit precision
is shown in order to determine the cross-over point of our pro-
posed bitsliced approach with different ISA implementations
for matrix multiplication. We observe that bitsliced approach
is faster than the other two implementations at smaller bit-
lengths. And the cost of extra data movement instructions with
the increase in bit-precision of bitsliced code imply a certain
threshold where bitsliced approach starts to perform better.
We get the first crossover point as approximately 13 bits below
which bitsliced approach performs better than the non-bitsliced
integer with no hardware multiplier support. Second crossover
point is present at approximately 3 bits below which bitsliced
approach is faster than the non-bitsliced integer with hardware
multiplier enabled.

c) Overhead Analysis: Table II shows our analysis of
bitsliced code at different bit precisions in terms of CPU

cycle count, instruction breakdown, overhead of load-store
instructions and code density. Bitslice code is compiled with
optimization for size (-Os) enabled since we are programming
for a small embedded microcontroller architecture. As a result,
numbers reported in table for code size of bitsliced code at
varying bit precision is small enough to fit in our benchmark
architecture. Additionally, due to the linear structure of the
bitsliced function, the smaller the code size, the fewer cycles
it takes to execute. This meant size optimization was both
smaller and performs better than the -O3 GCC compiler
option.

We observe that the number of OR, NOT, XOR and AND
instructions which perform the MAC computation are in-
creased by a factor of about 5× with doubling bit precision.
Furthermore, we observe that moving data from memory to
processor becomes expensive with increasing bit precision.
The increased register pressure leads to a larger proportion of
load-store instructions at 16-bit and 32-bit precisions, which
explains the slower performance of the bitsliced approach at
16-bit and 32-bit precisions. The overhead related to spilling
is about 30-50% in terms of instruction count.

The number and composition of logical bitwise instructions
originates directly from the Boolean netlist generated from
the the original description. The overhead of loads and stores,
however, are introduced by the compiler because the width
the netlist (i.e., in this case the number of active variables in
the code) exceeds the number of registers available, causing
register spilling into memory.

To investigate how effective the register use is, and to put
it in perspective with spilling, we analyzed the lifetime of
variables for a 4-bit bitsliced MAC (Figure 6) and for an 8-bit
bitsliced MAC (Figure 7). In this figure, the X-axis indicates
instruction count and the Y axis indicates storage resources.
The top-half of the Y axis corresponds to the 27 general-
purpose registers of RISC-V. The bottom-half of the Y axis
corresponds to stack memory locations. Colored bars indicate
active variables stored in a register or on the stack. Each color
change indicates a different variable.

We conclude that the compiler has obtained a tight register
allocation, as there is hardly any register space/time left
unutilized. The stack utilization is less uniform. The deepest
positions in the stack are used for callee-saved registers. The
space utilization of the shallow stack positions is non-uniform
over the execution time of the algorithm. Figure 7 reveals a
faint inverted pyramid shape. This is expected as the number of
live variables in a multiplication grows when partial products
are created, and subsequently shrinks when the partial products
are added and accumulated.

d) Classification Accuracy: Finally, we evaluated 8-bit
precision bitsliced matrix multiplication on a 4-layer Neural
Network architecture using hand-written digits classification
dataset, MNIST, in terms of Top-1 accuracy as shown in
the Table III. MNIST database consists of 60,000 training
and 10,000 test images. We pre-trained the network with
hard sigmoid activation function and during inference, linear
symmetric Quantization scheme is applied to represent full-

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 08,2021 at 21:39:59 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: EVALUATION OF MATRIX-VECTOR MULTIPLICATION AT DIFFERENT BIT-WIDTHS ON 20MHZ RISC-V SOFT CORE SOC.
OVERHEAD IS CALCULATED AS THE NUMBER LW/SW INSTRUCTIONS AS A PERCENTAGE OF THE TOTAL

Bit Precision Number of cycles in
matrix-vector
multiplication

Instruction Mix Overhead
(%)

Code Size
(KB)

OR NOT XOR AND ADD ADDI LUI LW SW
2-bit 2613 5 6 9 15 0 0 0 17 8 41.67 9.932
4-bit 12309 77 23 36 100 0 2 0 82 43 34.44 10.98
8-bit 66870 451 119 196 489 0 2 0 605 192 38.80 16.52

16-bit 345174 2211 394 848 2109 0 2 0 3885 1227 47.88 47.664
32-bit 1492374 9499 1968 3009 8727 0 2 0 17369 5729 49.88 183.564

Fig. 6: Variable lifetime analysis over the registerfile and
the stack for bitsliced 4-bit matrix multiplication

Fig. 7: Variable lifetime analysis over the registerfile and
the stack for bitsliced 8-bit matrix multiplication

precision weights and activation using signed 8-bit integers.
This quantization is performed for the matrix multiplication
phase of NN layer in order to evaluate the bitsliced matrix
multiplication of signed 8-bit precision weights matrix with
8-bit input activations. On comparison with 32-bit floating-
point arithmetic, the evaluation demonstrated that there is
an increase in model accuracy with reduced bit-precision as
indicated by the accuracy corresponding to bitsliced and non-
bitsliced integer-only arithmetic.

TABLE III: CLASSIFICATION ACCURACY OF NEURAL NETWORKS
ON MNIST DATASET WITH BITSLICED MATRIX MULTIPLICATION

Neural
Network
Structure

Classification accuracy

32-bit
floating-point

matrix
multiplication

8-bit integer
non-bitsliced

matrix
multiplication

8-bit integer
bitsliced
matrix

multiplication
784-32-32-10 93.38% 93.67% 93.67%
784-50-32-10 93.6% 94.12% 94.12%

VI. CONCLUSION

We demonstrated that bitslicing is a viable strategy to op-
timize the reduced precision needs in neural networking. The
most important contribution of the bitslicing technique is that
it removes the limitations of wordlength-specific instructions.
On the other hand, we conclude that there is a significant
amount of spilling created through bitslicing. Also, our current
experiments have focused on the matrix multiplication. In our
future work we plan to investigate the spilling overhead in
further depth. We will extend bitslicing to the full neural
network, and we plan to evaluate additional NN topologies
and data-sets.

ACKNOWLEDGEMENTS

Support for this research was provided in part through
National Science Foundation Award 1931639.

REFERENCES

[1] Zhenzhen Bao, Peng Luo, and Dongdai Lin. Bitsliced implementations
of the PRINCE, LED and RECTANGLE block ciphers on AVR 8-
bit microcontrollers. In International Conference on Information and
Communications Security, pages 18–36. Springer, 2015.

[2] Eli Biham. A fast new DES implementation in software. In International
Workshop on Fast Software Encryption, pages 260–272. Springer, 1997.

[3] Alessandro Capotondi, Manuele Rusci, Marco Fariselli, and Luca
Benini. Cmix-nn: Mixed low-precision CNN library for memory-
constrained edge devices. IEEE Trans. Circuits Syst. II Express Briefs,
67-II(5):871–875, 2020.

[4] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia
Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier
Temam. Dadiannao: A machine-learning supercomputer. In 47th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO
2014, Cambridge, United Kingdom, December 13-17, 2014, pages 609–
622. IEEE Computer Society, 2014.

[5] Meghan Cowan, Thierry Moreau, Tianqi Chen, and Luis Ceze. Au-
tomating generation of low precision deep learning operators. CoRR,
abs/1810.11066, 2018.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 08,2021 at 21:39:59 UTC from IEEE Xplore.  Restrictions apply. 



[6] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order
masking be in software? In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 567–597.
Springer, 2017.

[7] Patrick Judd, Jorge Albericio, and Andreas Moshovos. Stripes: Bit-Serial
Deep Neural Network Computing. IEEE Computer Architecture Letters,
16(1):80–83, January 2017.

[8] P. Kiaei and P. Schaumont. Synthesis of parallel synchronous software.
IEEE Embedded Systems Letters, pages 1–1, 2020.

[9] Seiichi Matsuda and Shiho Moriai. Lightweight cryptography for the
cloud: exploit the power of bitslice implementation. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages
408–425. Springer, 2012.

[10] Darius Mercadier and Pierre-Évariste Dagand. Usuba: high-throughput
and constant-time ciphers, by construction. In Kathryn S. McKinley
and Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 157–173. ACM,
2019.

[11] M. G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan,
Ganesh Ananthanarayanan, and Faraz Hussain. Machine learning at the
network edge: A survey, 2019.

[12] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick
Schaumont. Lightweight fault attack resistance in software using intra-
instruction redundancy. In International Conference on Selected Areas
in Cryptography, pages 231–244. Springer, 2016.

[13] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. CoRR, abs/1603.05279, 2016.

[14] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.
[15] Jiecao Yu, Andrew Lukefahr, Reetuparna Das, and Scott A. Mahlke.

Tf-net: Deploying sub-byte deep neural networks on microcontrollers.
ACM Trans. Embedded Comput. Syst., 18(5s):45:1–45:21, 2019.

978-1-7281-9219-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on January 08,2021 at 21:39:59 UTC from IEEE Xplore.  Restrictions apply. 


