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Abstract—Existing power analysis techniques rely on strong adversary models with prior knowledge of the leakage or training data.
We infroduce side-channel analysis with unsupervised learning (SCAUL) that can recover the secret key without requiring prior
knowledge or profiling (training). We employ an LSTM auto-encoder to extract features from power traces with high mutual information
with the data-dependent samples of the measurements. We demonstrate that by replacing the raw measurements with the auto-encoder
features in a classical DPA attack, the efficiency, in terms of required number of measurements for key recovery, improves by 10X.
Further, we employ these features to identify a leakage modelwith sensitivity analysis and multi-layer perceptron (MLP) networks. SCAUL
uses the auto-encoder features and the leakage model, obtained in an unsupervised approach, to find the correct key. On a lightweight
implementation of AES on Artix-7 FPGA, we show that SCAUL is able to recover the correct key with 3, 700 power measurements with
random plaintexts, while a DPA attack requires atleast 17, 400 measurements. Using misaligned traces, with an uncertainty equal to 20
percent of the hardware clock cycle, SCAUL is able to recover the secret key with 12, 300 measurements while the DPA attack fails to

detect the key.

Index Terms—LSTM auto-encoder, power analysis, sensitivity analysis, side-channel analysis, unsupervised leaming

1 INTRODUCTION

DE-CHANNEL Analysis (SCA) using power consumption

or electromagnetic (EM) emanations from electronic
devices is a powerful tool for inferring information about
hardware/software characteristics and processed data in a
computing platform. Side-channel analysis refers to a tech-
nique in which behavior of a computing platform, including
power consumption, EM radiation, timing and memory
access, are observed to retrieve secret information. An SCA
attack that analyzes the power traces or EM signals is usu-
ally referred to as power/EM analysis.

Power analysis (PA) has especially been employed to
compromise the security of different crypto-systems run-
ning on a computing platform. Examples include secret key
recovery from elliptic-curve cryptography (ECC) running
on i0S and Android devices [1] and McEliece cryptosystem
implemented on FPGA [2], attacks on Xilinx bitstream
encryption [3], recovering the secret key of postquantum
key exchange protocols [4], [5], key recovery of Advanced
Encryption Standard (AES) [6], symmetric encryption sys-
tems [7], [8] and breaking the security of smart cards [9].

Existing power analysis techniques can be categorized
into two groups of model-based and profiling attacks. In
model-based attacks, prior knowledge of the leakage model
is assumed that defines a relationship between the power
consumption of a device and the processed data. In
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differential power analysis (DPA) [10], the measurements
are clustered into two or more classes of similar traces,
according to the leakage model. Statistics of the traces, e.g.,
the mean of power samples in first-order DPA, represent
the traces in each cluster. The inter-cluster difference of the
statistics is used as a measure to identify the correct data. In
correlation power analysis (CPA) [11], the correlation coeffi-
cient between the power samples and the leakage model is
used as the statistic to identify the correct data.

A commonly used leakage model is Hamming Weight
(HW), according to which the power consumption of a
logic block is correlated with the HW of the processed data
[12]. Hamming Distance (HD) is also a popular model for
power consumption corresponding to memory transitions,
e.g., registers of microprocessors, in which the power is
correlated with the HD between the initial and final values
of memory elements [13]. Additionally, particular features
of measured power traces might also be correlated with
single bits of the data, e.g., the most significant bit (MSB) as
used in [14]. Switching glitches in hardware implementa-
tion of logic functions and toggling activity of internal
nodes of the circuit are also shown to depend on data
[6], [15].

Model-based power analysis relies on a significant
amount of prior knowledge of the details of the hardware
including the hardware architecture, CMOS technology, the
specific implementation of cipher operations, power deliv-
ery drcuitry, and even the layout of interconnects in inte-
grated circuits [16]. Profiling techniques use actual power
measurements of a device corresponding to known proc-
essed data to develop more accurate leakage models. In
[17], a stochastic model is employed in which a polynomial
function of data with random coefficients represents the
mean of the leakage signal assumed to follow a Gaussian
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distribution. The coefficients are estimated using linear or
ridge regression [17], [18].

Machine learning has been employed to develop leakage
models in a profiling-based approach. Support vector
regression (SVR) and multi-layer perceptron (MLP) neural
networks are used in [19] and [20], respectively, to develop
a mapping from the bitwise representation of data to the
power samples. A partition-based approach is introduced
in [21], in which a set of power traces corresponding to
known data are clustered using an unsupervised clustering
algorithm such as k-means. The clusters constitute the leak-
age model; the sets of data at each cluster have similar
power consumption.

Whether a leakage model is obtained a priori or through
profiling, power analysis also requires suitable statistics of
the power traces as distinguishers. Classical techniques
such as DPA and CPA use predefined statistics such as first
or higher order moments and the correlation coefficient of
power samples with a leakage model. Mutual information
and KolmogorovSmirnov statistics are also used as alterna-
tive distinguishers [22], [23]. More recent techniques use
profiling to extract suitable statistics. In template attacks
[24], multivariate Gaussian distribution is assumed for the
power traces. The mean and covariance of the distribution
depends on the data and are estimated in a profiling step.
More advanced techniques exploit supervised learning
algorithms, such as support vector machine (SVM), decision
tree (DT) and random forest (RF) [25], and deep learning
[14], [26], to extract relevant features of power traces used
as distinguishers.

While profiling and supervised learning techniques are the
most powerful SCA attacks on cryptographic implementa-
tions, their success rate rapidly degrades if the training set,
captured during profiling on a reference device, slightly devi-
ates from the measurements on the target device under attack.
Itis shown in [27] that the accuracy of an MLP neural network
in attacking AES running on an ATxmegal28D4 microcon-
troller drops from 88.5 percent to less than 13.7 percent if the
MLP is trained with power measurements on one board, and
used to attack the same microcontroller, but on a different
board. Having access to the identical hardware as the target is
a major limitation of profiling-based techniques.

In this work, we introduce an unsupervised learning
technique for side-channel analysis, called SCAUL, which
does not require any training set for profiling or a prior
knowledge of the leakage model. We employ a Long Short-
Term Memory (LSTM) auto-encoder to extract features
from power traces. An MLP neural network is used to map
the power features to the processed data for a key candi-
date. Using sensitivity analysis, a leakage model is estimated
for each key candidate. The power features are clustered
based on the identified leakage model, and the correct key
is chosen as the candidate that exhibits the maximum inter-
cluster difference. We demonstrate the success of SCAUL
on a lightweight implementation of AES on FPGA, even
with non-aligned power traces.

The contributions of this work include: 1) We introduce
an LSTM auto-encoder that extracts data-dependent fea-
tures from measurements in an unsupervised approach. It
allows for a horizontal processing of power traces which
improves the efficiency of an attack significantly. 2) We
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develop sensitivity analysis with MLP neural networks to
detect a leakage model in an unsupervised approach. 3) We
introduce the SCAUL technique for power analysis which
recovers the secret key without requiring prior knowledge
on a leakage model or profiling, even when data-dependent
features are distributed over random time samples.

The rest of the paper is organized as follows. In Section 2,
an overview of prior work and different classes of existing
power analysis techniques is presented. Section 3 provides
the mathematical description of the SCAUL methodology.
The realization of SCAUL with neural networks, including
the LSTM auto-encoder for feature extraction and sensitivity
analysis with MLP networks, is shown in Section 4. A case
study of the SCAUL attack on an FPGA implementation of
AES is discussed in Section 5. Experimental results are pre-
sented in Section 6 and the paper concludes in Section 7.

2 BACKGROUND

2.1 Attack Model

A general model for power analysis involves a key-dependent
cipher operation Fj() : F;' — F3, a known input data to the
operation as Z € F3' and an unknown variable at the output
of the operationas X € T} called the intermediate or sensitive
variable. In most block ciphers the operation under attack is
the nonlinear S-box function S() while m and n are the num-
ber of bits at the input and output of the operation. The input
Z and the intermediate variable X are m,n-bit subsets of the
input plaintext and the cipher state, respectively. Further, the
secret parameter k is an m-bit subset of the entire secret key.
Under this model, the S-box operation can be represented
as X = Fi(Z) = S(Z@® k), in which & is the bitwise XOR
operation.

The fundamental property of a cipher operation
exploited in power analysis to detect the secret key is inde-
pendence of the output bits of the operation from the input.
Formally, using the binary representation of the intermedi-
ate variable X as X = (2;),_q, _,» wehave H(x.|Z) = H(x,),
in which H () is the Shannon Entropy and X, is any combina-
tion of r € [1, m] bits of x. However, H(X.|Z, k) = 0; ie., hav-
ing the secret key, the cipher operation is a deterministic
relation while without knowledge on k, the operation is a
random transformation. In power analysis, the power con-
sumption of the hardware implementation of the cipher
operation is given as a vector of N samples denoted by T €
RY. It is assumed that I(T;%) > 0, in which I(a;b) is the
mutual information between random variables a and b.

Using the above properties, the primary idea of a power
analysis technique is as follows. Having a set of input values
to the cipher operation and the corresponding power traces
during execution of the operation, an attacker calculates the
values of the intermediate variable for all possible values of
the secret key k. Let X3+ = Fj-(Z) denote the output of the
cipher operation with the input Z and a key candidate k*. If
k" is the correct key, I(T;X;+) > 0 since I(T;x) > 0, other-
wise, I(T;X;») = 0. Hence, the mutual information between
the power traces and the intermediate variable calculated
for a key candidate can be considered as a metric to rank
key candidates. The highest rank belongs to the correct key.

To implement a power attack in practice, the mutual
information between the intermediate variable and power
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Fig. 1. Conceptual description of model-based power analysis techniques using a leakage model.

traces is usually expressed in the form of a leakage model.
Let the function L() : FI* — RY denote the leakage model
which maps the m-bit intermediate variable X to the vector
of power trace T with N samples. A generic nonlinear leak-
age model can be expressed as the following algebraic nor-
mal form [18]

T=L(X)=ay+ ap XY + ¢, (1
UeFz\{0}

in which T is the data-dependent component of the leakage
power, ¢ is a noise and XV =[], ;" is a monomial of
degree d = HW(U) representing the product of bits of X at
the positions where the corresponding bits of U are 1.

22 Model-Based Attacks

In classical model-based power analysis, including DPA
and CPA, it is assumed that there is at least one sample of
the power trace T which is correlated with the intermediate
variable X according to (1), with fixed coefficients «ys for all
samples. The power sample which exhibits the highest cor-
relation with the leakage model is chosen as the point of
interest (POI) for ranking the key candidates. In profiling-
based attacks, different coefficients might be estimated for
every sample of the power trace.

The overall procedure of a model-based attack is shown
in Fig. 1. A set of S power traces each with N samples,
denoted by T_] = (tj‘]_, tj‘g_, — tj‘_j\u'),j= 1,2, — ,S, with the
corresponding inputs Z; to a cipher operation Fj() is avail-
able. For every key candidate k*, the corresponding inter-
mediate variable X for a power trace j is calculated as
Xjw = Fi» (Z;). The power traces are grouped into C clus-
ters, in general, according to the calculated intermediate
values and the leakage model. For example, in an HW
model, it is assumed that the power traces corresponding to
the intermediate variables with the same HW are similar.
Hence, the clusters are H, = {X ;. |[HW(X ) = c} with e €
{0,1,2,...,m} for an m-bit X, and HW(X) = 3.7" ; is the
Hammjng weight of X.

In classical techniques, statistics of the power traces in a
cluster are calculated for every sample of the trace. In first
order DPA, the mean of samples of power traces, i.e., T. =
(te1,tea,---,ten), is used as the cluster statistic, in which
ten = Ex;pem.ltin],n =1,2,...,N. In a difference of means
(DoM) test, the difference between the means of power

samples between any two combinations of clusters is used as
the statistic to rank the key candidate k* [28]; the correct key
exhibits the maximum difference. Alternatively, in mutual
information analysis (MIA), the mutual information between
the measurements and the model is used as the decision
metric to rank the key candidates [29]. Higher order cluster
statistics can also be used to attack low-order masked imple-
mentations as in [30] and [31]. The profiling-based leakage
model can also be used in classical DPA attacks for the pur-
pose of clustering as exploited in [18], [21].

Rather than clustering, in correlation power analysis, a
mathematical model, as in (1), is used to characterize the
data-dependent leakage [32], [33]. Thus, CPA can be consid-
ered as a generalization of DPA and MIA in which the num-
ber of clusters is equal to the space size of the intermediate
variable X. The Pearson’s correlation coefficient between
the measured power and the estimated leakage according
to the model is used to rank the key candidates. The coeffi-
cients of the leakage model can be assumed a priori, as in an
HW or HD model, or obtained through profiling in a sto-
chastic model.

Profiling techniques are also used in identifying proper
cluster statistics and decision metrics in model-based
attacks. A popular profiling power analysis is template
attack (TA) in which the probability density function (pdf)
of a cluster is estimated in a profiling phase, given a set of
power traces corresponding to known intermediate variables
[34]. These traces should be collected from a reference hard-
ware, with known secret key, identical to the device under
attack. The pdf of clusters are called templates whose param-
eters depend on data. During the attack phase, a measured
power ftrace, from the device with unknown secret key, is
matched with the templates using decision statistics such as
maximum likelihood (ML) or Bayesian statistics, i.e., maxi-
mum a posteriori (MAP) estimation, to estimate the value of
the intermediate variable. Profiling can be used for both
leakage modeling and distribution estimation as in [19].

Classical model-based power analysis techniques assume
aligned measurements in which the data-dependent fea-
tures of power traces always appear at the same time sam-
ple which is a major limitation for two reasons: 1) timing of
the measurements might not be precise relative to the tim-
ing of the device under attack; and 2) simple countermeas-
ures such as addition of random clock jitters can result in
the attack failure. Deep learning has been employed to
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Fig. 2. Conceptual description of supervised power analysis techniques.

address the issue of misaligned power traces. In [14], a
convolutional neural network (CNN) is used to classify
power traces according to a leakage model, including HW
and MSB, for every key candidate. By adding a small per-
turbation to the weights of a trained neural network for a
key candidate, the sensitivity of cluster probabilities to the
perturbation is calculated. The correct key exhibits the high-
est sensitivity.

2.3 Supervised Learning Attacks

Modern profiling-based techniques employ supervised
learning to incorporate modeling of the leakage, extracting
the proper statistics and decision metrics into a single algo-
rithm, as shown in Fig. 2. In the terminology of supervised
learning, the profiling phase of the attack corresponds to
training and the attack or exploitation phase is equivalent to
inference or test.

In supervised learning attacks, a set of power traces with
known intermediate variables constitutes the training set.
The label of a power trace, used in training, is the value of
the corresponding intermediate variable. Supervised learn-
ing attacks have the flexibility to incorporate a leakage
model if available. For example, if it is known that the
power consumption is correlated with the HW of data, then
the training labels would be the HW of the intermediate var-
iable. Classical machine learning techniques use a leakage
model for dassification [35], [36]. Further, these techniques
usually require a dimension reduction algorithm, such as
principal component analysis (PCA), to select points of
interest of power traces [25].

Power analysis based on deep learning has been shown to
be the most powerful profiling attack. The major advantages
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of deep learning include: 1) dimension reduction algorithms
are not necessary to identify POIs; the neural networks can
learn the most relevant features and decision metrics for best
classification, 2) the data-dependent features can be identi-
fied even in misaligned traces, and 3) higher-order statistics
required to attack masked implementations can be identified
by neural networks. In [26], convolutional neural networks,
long short-term memory and a stacked auto-encoder are
employed for feature extraction and classification. The
results show that deep learning techniques outperform clas-
sical machine learning algorithms such as SVM and RF.
Multi-layer perceptron neural networks have also been
shown to outperform template attacks [37].

The SCA attacks based on supervised leamning require a
set of labelled training data collected from a reference device
with known secret key. The optimal parameters of the neural
networks are obtained to minimize the difference between
the output of the neural network and the labels of the train-
ing set. Hence, the neural networks learn the leakage of the
particular device from which the training set is collected. In
the following, we describe the SCAUL methodology to learn
the leakage of secret data withouta training set.

3 SCAUL MeETHODOLOGY

The overall procedure of the proposed side-channel analysis
with unsupervised learning (SCAUL) approach is shown in
Fig. 3. The steps of SCAUL are explained below.

1)  We encode the information content of all samples of
power traces into an intermediate neural representa-
tion in an unsupervised approach. We employ an
auto-encoder, realized with LSTM neural networks,
for this purpose.

2) We use a sensitivity analysis for estimating a proper
leakage model, using the features of the auto-
encoder, for every key candidate. For this purpose, a
multi-layer perceptron neural network is trained to
estimate the bits of the intermediate variable from
the power features for all key candidates.

3) Following the proposed sensitivity analysis, a slight
perturbation is added to the weights of the trained
MLP neural networks. The variation of data features
at the output of the MLP as a result of the perturbation
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Fig. 3. Conceptual description of the proposed unsupervised learning technique for power analysis (SCAUL).
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is measured. Data features with lowest variation con-
stitute the leakage model.

4) The power features, extracted by the auto-encoder,
are clustered based on the estimated leakage model
for all key candidates. The key candidate that results
in the highest inter-cluster difference is chosen as the
correct key.

The mathematical background, supporting the claims of
SCAUL, and the details on the structure of the neural net-
works used for realizing the SCAUL technique, are explained
in the following sections.

3.1 Unsupervised Feature Extraction

We employ an auto-encoder to extract features from raw
power measurements that include the information content of
all power samples. Auto-encoders are the most prominent
concepts of unsupervised learning in identifying data struc-
ture. Depending on the architecture of the encoder/decoder
and the optimization goal, auto-encoders can be considered
as generic nonlinear denoising filters and leaming algo-
rithms for estimating data distribution, identifying local
manifold structure of data, and dimensionality reduction.

The basic concept of auto-encoders is simple. The input to
the auto-encoder is T which is a corrupted, or noisy, version
of the original data T. The encoder is a function () : RY —
R that maps the input data into an internal representation
space and the decoder d() : R — R" maps the representa-
tion back into the input space to reconstruct the original
data. The encoder and decoder functions are obtained by
minimizing a loss function £(T, T) between the original and
reconstructed data. In a denoising auto-encoder (DAE) [38],
the optimization goal is to minimize the mean of the loss
function, i.e., E[£(T, T)]. The most popular loss functions are
the squared error and cross-entropy.

Auto-encoders with a proper optimization goal can also
be considered as manifold learning algorithms. A contractive
auto-encoder (CAEF) uses a regularization mechanism in the
optimization problem to restrict the space of encoder/
decoder functions. The optimization goal of CAE is

ey |20

.| @

e, d= a.rgmjil E

in which ||.||% is the Frobenius norm and A is a design param-
eter. The first term in the above loss function is the recon-
struction error and the second term is the regularization with
A providing a trade-off between them. If data is concentrated
on a low-dimensional manifold, the CAE will learn a sto-
chastic mapping from the input to the manifold. It is shown
in [38] that DAE can also learn the data manifold when the
dimension of the internal representation is constrained.

An altemative perspective to auto-encoders is an algo-
rithm that extracts features with maximum mutual informa-
tion with the data. Consider the encoder and decoder
functions e() and d() with parameters W, and Wj, respec-
tively. The goal is to find features f that have maximum
mutual information with the original data T. The mutual
information is

I(T;f) = H(T) — H(TIf). (3)
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Assume the measurement T = T + N is a corrupted ver-
sion of the original data T with additive Gaussian noise N ~
N(0,%), in which % is the covariance of the noise. We can
demonstrate that the auto-encoder with the following objec-
tive function extracts features with maximum mutual infor-
mation with the original data.

W, Wy =

arg min {Ep4, [{T =0 e T)} + H{T)}.
We, Wy

(4)

The proof is provided in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TC.2020.3013196. Assum-
ing the auto-encoder has converged to the optimal solution,
the first term in (4) is simply the mean-square error (MSE)
between the input and output of the auto-encoder while the
second term is the regularization on the entropy of the output.

By comparing the optimization goal of (4) with the generic
objective function in (2), we note that optimizing the max infor-
mation auto-encoder is a regularized maximum likelihood
problem. The loss function, for a Gaussian random process, is
simply the MSE between the measured and reconstructed
data and the regularization is minimizing the entropy of the
reconstruction. Minimizing the MSE for a Gaussian process is
equivalent to maximum likelihood objective.

In this paper, we assume a multivariate Gaussian distri-
bution for the measurements, and we employ MSE as the
loss function of the auto-encoder. Instead of the entropy, we
use the constraint on the dimensionality of the internal
representation f as the regularization. Since the distribution
of the output, i.e., p(T; W,, W), is constrained by the struc-
ture of the auto-encoder, lower dimensionality of the repre-
sentation implies lower entropy of the output. Hence, under
a Gaussian assumption for noise, the MSE auto-encoder can
be considered as a sub-optimal solution for the max infor-
mation auto-encoder.

According to the above discussion, the auto-encoder
attenuates measurement noises which have small mutual
information with the data-dependent features. The noisy
components of measurements, if not attenuated, might add
constructively, for an incorrect key candidate, which results
in a larger inter-cluster difference than data-dependent fea-
tures. Further, the auto-encoder encodes all data-related
information of power traces into a low-dimensional internal
representation. This is especially important with misaligned
measurements where information about data is distributed
over different samples.

3.2 Leakage Modeling With Sensitivity Analysis
Given the extracted features from power measurements, we
identify which data features are encoded into the auto-
encoder features using sensitivity analysis. We recall the
leakage model of (1) in which the individual terms consti-
tute the data features. We postulate that power traces with
similar features are related to the intermediate values with
similar data features.

For an m-bit intermediate variable X, the number of
monomials X" in (1) is equal to 2™ — 1 with U € F7"\{0}.
Let My() : RP? — U, be an unbiased estimator of a mono-
mial XY from power features, in which Uy is the field of
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values for a monomial of degree d = HW (U). The uncer-
tainty in the estimate of a data feature XV can be measured
by the information content of power traces about the data.

A large amount of mutual information between the
observation f and a parameter # = X" means that the condi-
tional entropy H (£|d) is small, which implies that the condi-
tional log-likelihood function logp(f|6) is concentrated. The
first derivative of a concentrated log-likelihood function,
called the score, has large variations. The variance of the
score is defined as Fisher information, i.e.,

7(6) = Ef[(%logp(ftﬂ)) ] . ®)

The inverse of Fisher information sets a lower bound,
called the Cramer-Rao bound, on the mean-square error of
any unbiased estimate of the parameter 6. Hence, the uncer-
tainty in the estimate of a data feature X" is inversely pro-
portional to the information content of measurements about
data. If the power consumption is not correlated with a par-
ticular data feature X'", i.e,, small mutual information, the
estimate of X" has a large uncertainty. This is the basis of
sensitivity analysis to identify those data features which are
highly correlated with the power traces.

Assume we have the optimal estimator function 8 =
My (£) of the monomial XV. By adding a small perturbation
to the optimal estimator, we obtain the perturbed estimate 6.
Similar to the CRB, we can demonstrate that the MSE
between the optimal and the perturbed estimates is bounded
by the inverse of the Fisher information. Hence, we get

E, [(é £ 9)‘3] > 77(9). (6)

The proof is shown in Appendix B, available in the online
supplemental material. The left side of the inequality repre-
sents the sensitivity of an unbiased estimate of the parame-
ter to small perturbations.

The above analysis shows that if the observations f have
a large information content about a parameter 6, the sensi-
tivity of an estimate # = My (f) to slight perturbations in the
estimator function is small. This is consistent with the analy-
sis of shrinkage amount of coefficients in a stochastic leak-
age model as discussed in [18].

3.3 Inter-Cluster Difference
The auto-encoder features include information about all
processes running in parallel with the cipher operation
under attack. As an example, in an FPGA implementation,
the logic circuits corresponding to the state machine of the
algorithm, embedded processors and clock network, all con-
tribute to the power consumption of the FPGA chip. In
supervised learning, the labelled training sets help neural
networks identify the component of power consumption
directly related to the operation under attack. Since the
auto-encoder in SCAUL learns the information content of
measurements in an unsupervised approach, the extracted
features include the components of measurements relating
to various processes.

To filter out the components of auto-encoder features car-
rying information about the secret data, we estimate a
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leakage model, for a key candidate. According to the attack
model in Section 2.1, only the leakage model of the correct
key has a nonzero mutual information with the measure-
ments. The inter-cluster difference is a common metric in
SCA to indirectly evaluate the mutual information between
measurements and the leakage of secret data.

Assume the auto-encoder extracts features {f; } from a
nu_mber of § power traces. For a key candidate k, the values
(x5 ;1 of the intermediate variable corresponding to the §
power traces are calculated, and a leakage model L*)() is
estimated using the sensitivity analysis (as shown in the fol-
lowing section). Assume the mean of the estimated leakage
is denoted by u\ = [L("" (X;)]. We divide the power fea-
tures mtu two clusters C{fc = {§|L®(X;) < pP}and P =
{£ILP(X;) > ,'.LL )}. The mean of features in the clusters is
f”“ E f Cm[f} ¢ =0, 1. For a D-dimensional auto—encoder

k)
feature space, the mean features £ = {fia }2.e=0,1are
also D-dimensional. The correct key is the one with largest
inter-cluster difference, ie.,

k =arg max (m%axm)? - )‘_'ii] ) (1)

According to the above discussion, SCAUL is a method-
ology to evaluate the mutual information between power
measurements and the intermediate variable. In contrast,
supervised learning SCA employs neural networks as futc-
tion approximators that map the measurements to the space
of the intermediate variable. As explained in the following
section, SCAUL employs neural networks to extract infor-
mation content of measurements (LSTM auto-encoder), esti-
mate the leakage of the intermediate variable (sensitivity
analysis on MLP networks) and find the part of the informa-
tion that relates to the intermediate variable (inter-cluster
difference).

4 REeALIZING SCAUL WIiTH NEURAL NETWORKS

4.1 LSTM Auto-Encoder

Recurrent neural networks (RNN) are popular for learning
temporal models of time series in applications such as natu-
ral language processing (NLP) [39], speech recognition and
acoustic modeling [40]. A Long short-term memory neural
network is a special type of RNN that can learn both local
(short-term) and long-term temporal dependence of a sig-
nal. Convolutional neural networks (CNNs) have also been
employed for processing time series. While CNN's are pow-
erful in learning position invariance features, LSTM net-
works are stronger in learning temporal models [41].

The basic cell of an LSTM neural network is shown in
Fig. 4. It consists of internal states ¢ and h, the latter of
which is the output of the cell at every time instance. The
input to the cell is processed by a fully-connected (FC) net-
work with tanh activation. The internal state at each time
instant is a weighted sum of the previous state and the proc-
essed input. The weighting process, called gate, controls the
memory of the cell. The forget gate determines how much
information of previous states is preserved at the current
time instant and the input gate controls the amount of input
activation to be added to the state. The output of the cell at
time ¢, i.e., hy, is calculated by applying tanh activation to
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Fig. 4. The basic cell in long short-term memory (LSTM) neural network.

the internal state ¢; followed by the output gate. This gate
controls how much of the internal state activation flows to
the output. The weights used in the above three gates are
determined by three FC units with sigmoid activation. The
input to these FC units is the current input to the cell, i.e., x;,
and the previous output, i.e., hy_;.

The proposed LSTM auto-encoder for feature extraction
is shown in Fig. 5. The encoder and decoder are LSTM net-
works with two layers shown in a time-unrolled representa-
tion; each of the encoder and decoder consists of a stack of
two LSTM cells, as in Fig. 4, however, the processing steps
of the cell are unrolled through time with the corresponding
input to the cell shown explicitly at every time instant.

The inputs to the encoder are the samples of the power
traces provided by a sliding window of length w and a
stride of s;i.e., at every time instant, the input is a vector of
w consecutive samples of the trace and the window is offset
by s samples relative to the previous time instant. This is
similar to a convolutional layer in CNNSs. The first input to
the decoder is zero while the following inputs are the indi-
vidual samples of the power trace in the reverse order. The
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outputs of the decoder are the samples of the filtered power
traces in the reverse order.

The loss function for optimizing the parameters of the
auto-encoder is the MSE between the input of the encoder
and output of the decoder. A constraint on the internal state
of the encoder/decoder cells is considered as a regulariza-
tion. After training the auto-encoder with all available
power traces, the internal state ¢ of the top-layer encoder
cell is chosen as the features of power traces. We point out
that the c state contains most of the information about the
data. According to Fig. 4, the h state is derived from the ¢
state. Further, the c state of the top layer also contains infor-
mation processed by the preceding layers.

4.2 Leakage Modeling With MLP

After extracting data-dependent features from power traces
with the auto-encoder, we estimate the intermediate vari-
able from the features with a multi-layer perceptron neural
network. We train an MLP network for every key candidate
in which the input is the power features, and the output is
the bits of the intermediate variable calculated for the key
candidate.

The architecture of the MLP used in this work is shown in
Fig. 6. It consists of three hidden layers with ReLU activation.
The output layer is a set of m neurons, corresponding to m
bits of the intermediate variable, with sigmoid activation.
The number of neurons at each layer, used in our experi-
ments for power analysis of AES, is shown in the figure. The
size of power features, that is equal to the size of the ¢ state of
the LSTM auto-encoder, is 100, and the intermediate variable
is one byte (8 bits) of the AES state at the output of an S-box.

To facilitate training of the MLP, the input power fea-
tures are normalized over all measurements. Let c_?), i=
1,2,...,S denote the power features, extracted at the top-
layer encoder cell of the auto-encoder in Fig. 5, correspond-
ing to S power measurements. The input to the MLP is then

(2)

i ()
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Fig. 5. Proposed LSTM auto-encoder for extracting features of power traces, with sliding window processing of input power traces and ¢ state of top

encoder cell selected as power feature.
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Fig. 6. Multi-layer perceptron (MLP) neural network for estimating bits of
intermediate variable from power features and sensitivity analysis.

in which the normalization is carried out element-wise.
Hence, the inputs to the MLP are within [0,1]. The outputs
are the bits of the intermediate variable corresponding to
the jth measurement denoted by x; = (x;p, T3, - -
with values in {0,1}.

After training the MLP with the normalized power fea-
tures in (8) and the corresponding intermediate variable x;,
a small perturbation is added to the weights of the MLP.
The perturbation is added at the first layer as shown in
Fig. 6. Let Wy denote the weights of the trained MLP from
input to the first hidden layer. The perturbed network has
the weights Wy, = Wy, + 8 in which & is a small constant.
The estimated intermediate variable at the output of the per-
turbed network is X; = (%0, 1, .., %jm-1). We calculate
the variation of the perturbation in a monomial )Zj.f -

::'61 ."f.‘j‘.,' - U forU € FE”\{D} as

.3 ﬂ"‘_;i,'l'n—l)

Au = K[| XY - xV]], ©)

in which the expectation is over all measurements.

According to the analysis of Section 3.2, the lower varia-
tion of (9) implies that the data feature has a more signifi-
cant contribution to the power consumption. Hence, in the
leakage model of (1), we set

Ay

. S (10)
maxy Ay

&U =1-

We cluster the coefficients based on the variations of (9), and
select the coefficients in the cluster with smallest variations
as the leakage model. This is similar to the constraint on the
degree of the model in the ridge regression technique of [18].

The power features are divided into two clusters based on
the leakage model, obtained in an unsupervised approach.
The correct key is chosen as the key candidate with the high-
est inter-cluster difference, as explained in Section 3.3. Inter-
cluster difference is an indirect measure for the information
content of power features about the secret data.

5 CaAse StupY ON AES

Advanced encryption standard is a worldwide standard for
secret-key cryptography. Several block ciphers have also
adopted structures similar to AES. In this section, we dem-
onstrate the SCAUL attack on an FPGA implementation of
AES. The principles of the attack are the same for any cipher
with a key-dependent operation in which the input or
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Fig. 7. Horizontal processing of power measurements during round 1 of
AES by the auto-encoder.

output is known, and its power consumption is dependent
on the processed data.

The secret state of AES consists of 128 bits arranged in
4 x 4 bytes. The cipher operations are carried out in 10
rounds with a composition of four transformations:
AddRoundKey, SubBytes, ShiftRows and MixColumns. At the
beginning, the plaintext is loaded into the state and the
secret key is added. The next operation is S-box, or SubBytes,
which is a nonlinear transformation operating on individual
bytes of the state. Next, ShiftRows and MixColumns opera-
tions follow to complete one round.

The target of a typical power attack on AES is the S-box
operation in round 1. By denoting ith byte of the plaintext
and the secret key as P, and K;, respectively, the key-depen-
dent cipher operation under attack is X; = S(P & K;) in
which 5() is the S-box function. The intermediate variable is
X; which is unknown but correlated with the power con-
sumption during the operation of S(). Using the power
measurements, the intermediate variable can be estimated.
Hence, the input to the S-box, i.e., P, @ K;, can be calculated
using the inverse S-box operation. Given the plaintext byte
P,, the corresponding byte of the secret key, ie., K;, will be
recovered.

In our experiments, we use a lightweight implementation
of AES (236 slices) on Artix-7 FPGA. The S-box function is
implemented with a look-up table (LUT). At every clock
cycle, the S-box is applied on one byte of the state. Hence,
the power trace of round 1 corresponds to 16 S-box opera-
tions, as shown in Fig. 7. The power traces corresponding to
S-box operations are selected using measurement windows
of length [ at positions r;,i =0, 1,...,15. The length of the
windows are chosen based on the uncertainty in the timing
of the measurements. If there is an uncertainty of Al
between the measurements and the clock signal of the hard-
ware, the length I must be at least [ + Al, in which [ is the
length of a clock cycle, so that the power traces include all
power samples of the corresponding S-box operation.

Processing of power traces as in Fig. 7 is similar to the
horizontal attacks of [2], [4] in which similar patterns of
power consumption through time, corresponding to the
same key subset, are analyzed to recover the key. However,
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LSTM auto-encoder.

in the SCAUL attack on AES, the power traces correspond
to different key subsets. The main mechanism enabling
such horizontal processing of power traces in AES is the fea-
ture extraction via auto-encoders. The auto-encoder can
identify data-dependent features irrespective of the value of
the intermediate variable. Using all power traces through
time improves the accuracy of feature detection, hence, sig-
nificantly reduces the required number of power measure-
ments to recover the key, as shown in the next section.

The filtering effect of the LSTM auto-encoder on power
measurements is shown in Fig. 8. It is observed that while
the underlying patterns of the power consumption are pre-
served at the output of the auto-encoder, strong noisy sam-
ples are filtered. The auto-encoder learns the patterns that
repeat in most traces and filters out instantaneous variations
that have low mutual information with the measurements.
The extracted features from the power traces with an LSTM
auto-encoder with 100 neurons in its FC components are
also shown Fig. 9.

Since the LSTM auto-encoder has 100 neurons in the FC
components, the extracted features also have a dimension
of 100. The features are shown in the 2-dimensional plot of
Fig. 9 using t-SNE algorithm [42]. Each point in the plot rep-
resents the mean of all features corresponding to the same
intermediate variable. The non-uniform distance between
the points reflects data-dependency; the intermediate values
with similar power features result in similar power con-
sumption. However, this similarity is not necessarily on
individual samples of power traces. Instead, the data-
dependent features of the traces, which might happen at dif-
ferent time samples, are similar.
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Fig. 9. Extracted features from power consumption of S-box operations
in AES plotted in 2 dimensions using t-SNE algorithm.
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The power features extracted by the auto-encoder are
mapped to the bits of intermediate variable using the MLP
network of Fig. 6. According to the sensitivity analysis of
Section 3.2, the coefficients of the leakage model are esti-
mated. The variation of the monomials in (1) as a result of
small perturbation on the weights of the trained MLP for
the correct key candidate, calculated according to (9), is
shown in Fig. 10. The curve labeled with “HW model” is
obtained for actual power measurements on FPGA. It is
observed that the variation of monomials corresponding
to degree d =1 are similar and lower than higher degree
terms. This implies a HW leakage model; individual bits
have the largest contribution to the power consumption
with the same weights. This model can be verified using a
DPA attack with an HW model, as shown in the next
section.

To further verify the capability of the sensitivity analysis
with MLP, we conduct a hypothetical experiment as follows.
We group the power features into two clusters as shown in
Fig. 9. Then, we assign the values of the intermediate variable
with the most significant bit of 1 to one cluster and the values
with MSB of 0 to the other cluster. We train an MLP with the
power features and this hypothetical intermediate variable.
The variation of the data features as a result of perturbation
on the MLP weights is also shown in Fig. 10 labeled with
“MSB model”. It is observed that the variation correspond-
ing to MSB (the first data feature) has the lowest variation. It
implies that the power consumption is correlated with the
MSB of the intermediate variable.

6 EXPERIMENTAL RESULTS

We demonstrate the SCAUL attack on an FPGA implemen-
tation of AES using the Flexible Open-source workBench
fOr Side-channel analysis (FOBOS) [43]. The FOBOS
instance uses a NewAE CW305 Artix-7 FPGA target for the
AES implementation, and Digilent Nexys 7 as the control
board for synchronization with a host PC and target FPGA.
We measure the power consumption of the target FPGA
during encryption of multiple random plaintexts with 125
samples per clock cycle.

In all our experiments, we use the LSTM auto-encoder of
Fig. 5 with 100 neurons in the FC components of both
encoder and decoder cells. The sliding window at the input
of the encoder has a length of 10 samples and a stride of 2.
The LSTM auto-encoder and MLP neural network of Fig. 6,
for sensitivity analysis, are implemented in Tensorflow. The
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Fig. 11. Rank of key candidates versus number of traces in a DPA attack
with HW leakage model; (a) maximum difference of power samples, (b}
maximum difference of power features.

Adaptive moment estimation (Adam) algorithm is used for
training all neural networks.

On a PC with Intel Core-i7 CPU, 16 GB RAM, and Nvidia
GeForce GTX 1080 GPU, the LSTM auto-encoder takes
around 20 minutes to train with more than 20K traces.
Training of the MLP network with sensitivity analysis
requires around 25 seconds for a key candidate and around
1.8 hours for all 256 possible values of the key candidate.
The auto-encoder and the extracted leakage model are re-
used for all bytes of the entire secret key. Including cluster-
ing, the overall time for a SCAUL attack would take around
2.5 hours for recovering the entire 128-bit key of AES.

6.1 Power Analysis With Leakage Model

In the first experiment, we conduct a model-based power
attack using the HW leakage model as a basis for comparing
the performance of the proposed unsupervised learning
approach in recovering the leakage model and the correct
key. We employ a DPA attack using both the individual
power samples, as in classical techniques, and the power
features extracted by the LSTM auto-encoder. The latter
reveals the capability of the auto-encoder in extracting data-
dependent features.

The results of a classical DPA attack with the HW model
are shown in Fig. 11a. For every key candidate the intermedi-
ate variable X is calculated based on which the power traces
are grouped into two clusters C; and C; power traces corre-
sponding to the intermediate variable X with HW(X) < 4
are in cluster Cjy and those with HW(X) > 4 belong to Ci.
The mean trace of each cluster is obtained by averaging all
traces in the cluster. The absolute values of the difference
between samples of the mean traces in two clusters are calcu-
lated. The rank of a key candidate is the maximum absolute
difference.
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Fig. 12. Rank of key candidates versus number of traces in a SCAUL
attack with a leakage model obtained with sensitivity analysis.

It is observed in Fig. 11a that with at least 17,400 power
traces, corresponding to the power measurement during the
encryption of 17,400 random plaintexts, the rank of the cor-
rect key is always larger than all incorrect key candidates in
a DPA attack. Considering the fact that the attack is success-
ful with the HW model also justifies the results of Fig. 10 in
which the sensitivity analysis with the MLP suggests an
HW leakage model.

To verify the effect of the auto-encoder, we repeat a DPA
attack similar to the above attack by replacing the raw
power traces with the power features of (8) extracted by the
auto-encoder. The rank of key candidates versus the num-
ber of power measurements (encryptions) is shown in
Fig. 11b. It is observed that using the power features, only
1,600 measurements are sufficient to identify the correct
key, i.e., an improvement of more than 10x in attack effi-
ciency compared to classical DPA.

The significant effect of the auto-encoder in improving
the performance of the DPA attack implies that the auto-
encoder extracts the most relevant features of the power
traces that depend on the processed data. The noisy samples
of the power measurements add constructively in a DPA
attack for some key candidates which results in large inter-
cluster difference and hinders detection of the correct key.
However, the auto-encoder has the ability to identify data-
dependent features even in the presence of noise.

6.2 SCAUL Attack

The data-dependent features of power measurements
extracted by the auto-encoder can also be used to identify
the leakage model efficiently. We repeat a similar DPA
attack with results shown in Fig. 11b but this time we
employ the leakage model identified by the sensitivity anal-
ysis of Section 3.2 instead of the HW model. The rank of key
candidates versus the number of power measurements is
shown in Fig. 12. We notice that the correct key takes the
highest rank if at least 3,700 measurements (encryptions)
are available. This is a degradation of around 2.3x in effi-
ciency compared to a model-based attack.

We point out that the power features used in the SCAUL
attack with the results in Fig. 12 are the same features as in
Fig. 11b. The larger amount of measurements required in
SCAUL compared to a model-based attack is the cost of
detecting a proper leakage model. In other words, if a prior
information is available, it can be used to achieve higher
efficiency with the auto-encoder features. Otherwise, more
measurements are required to retrieve the information.
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of power samples, (b) maximum difference of power features.

6.3 Misaligned Traces

In addition to unsupervised leakage detection and signifi-
cant efficiency improvement, another major advantage of
SCAUL over classical power analysis techniques is the abil-
ity to recover the secret key even with non-synchronous
measurements.

In this experiment, we let the measurement windows for
extracting power traces of individual S-box operations, as
shown in Fig. 7, take on a random shift. Specifically, we
locate the windows on positions r; + s;,4 =0,1,...,15 in
which s;’s are uniformly distributed random variables in
[-12.5,12,5] and /s are the accurate positions of S-box
operations. It simulates a scenario in which the timing of
the measurements is imprecise with an uncertainty equal to
20 percent of the hardware clock cycle. We set the length of
the windows to 150 samples to cover the entire duration of
a S-box operation amid the misalignment.

The result of a classical DPA attack with HW model and
misaligned traces is shown in Fig. 13a. As expected the cor-
rect key is not distinguishable with 20K measurements since
classical techniques assume data-dependent features appear
at the same time sample. However, by using the auto-
encoder power features, the correct key is recovered with
only 8500 measurements as shown in Fig. 13b. This experi-
ment demonstrates that the data-dependent features are
encoded into the internal representation of the auto-encoder
even if they are spread over different time samples.

The result of a SCAUL attack with misaligned measure-
ments and sensitivity analysis for leakage model detection
is shown in Fig. 14. Tt is observed that even without using
prior knowledge of a leakage model and with misaligned
traces, SCAUL is able to recover the correct key with 12,300
measurements. Hence, the exiracted features of the auto-
encoder contain all information about data-dependent sam-
ples of the power traces sufficient for leakage detection.
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7 CONCLUSION

We introduced an unsupervised leaming approach for side-
channel analysis, called SCAUL, capable of extracting infor-
mation about data processed on hardware without requiring
prior knowledge on the leakage model or training data. At the
heart of SCAUL, there is an auto-encoder that encodes the
data-dependent samples of the power measurements into a
neural representation with the highest mutual information
with the secret data, and which is used for identifying a
proper leakage model using sensitivity analysis. On a light-
weight implementation of AES on Artix-7 FPGA, we demon-
strated that an LSTM auto-encoder can improve the efficiency
of a classical model-based DPA attack by 10 x . We also
showed that SCAUL is able to identify a proper leakage model
from the auto-encoder features and recover the correct key
with less than 3,700 measurements, compared to 17,400 traces
required in a DPA attack. With imprecise measurements in
which the timing uncertainty is around 20 percent of the hard-
ware clock cycles, SCAUL can still recover the secret key with
12,300 measurements while classical DPA fails to detect the
key with more than 20K traces.
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