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Introduction

Thermostabilization of Viruses via Complex Coacervation

Xue Mi,"™® Whitney C. Blocher McTigue,' Pratik U. Joshi,®® Mallory K. Bunker,® Caryn L. Heldt**"
and Sarah L. Perry*“*

Widespread vaccine coverage for viral diseases could save the lives of millions of people each year. For viral vaccines to be
effective, they must be transported and stored in a narrow temperature range of 2-8°C. If temperatures are not
maintained, the vaccine may lose its potency and would no longer be effective in fighting disease; this is called the cold
storage problem. Finding a way to thermally stabilize a virus and end the need to transport and store vaccines at
refrigeration temperatures will increase access to life-saving vaccines. We explore the use of polymer-rich complex
coacervates to stabilize viruses. We have developed a method of encapsulating virus particles in liquid complex
coacervates that relies on the electrostatic interaction of viruses with polypeptides. In particular, we tested the
incorporation of two model viruses; a non-enveloped porcine parvovirus (PPV) and an enveloped bovine viral diarrhea
virus (BVDV) into coacervates formed from poly(lysine) and poly(glutamate). We identified optimal conditions (i.e., the
relative amount of the two polypeptides) for virus encapsulation, and trends in this composition matched differences in
the isoelectric point of the two viruses. Furthermore, we were able to achieve a ~10® - 10"-fold concentration of virus into
the coacervate phase, such that the level of virus remaining in the bulk solution approached our limit of detection. Lastly,
we demonstrated a significant enhancement of the stability of non-enveloped PPV during an accelerated aging study at
60°C over the course of a week. Our results suggest the potential for using coacervation to aid in the purification and
formulation of both enveloped and non-enveloped viruses, and that coacervate-based formulations could help limit the
need for cold storage throughout the transportation and storage of vaccines based on non-enveloped viruses.

There are three major types of viral-based vaccines
licensed for human use: live attenuated, inactivated, and
. . 6,7
subunit vaccines.”

According to the World Health Organization (WHO),
millions of people die from viral infectious diseases each year.1
One of the most effective methods to prevent viral infection is
with vaccines. In order for viral vaccines to be effective, they
must be transported and stored in a “cold chain.”? A cold chain
is a system of transporting and storing vaccines at the
recommended temperature, typically 2-8°C, from the
manufacturer until the point of use.”® If temperatures are not
maintained, the vaccine may lose its potency and could no
longer be effective in fighting disease.” Approximately half of
the vaccines produced each year are discarded due to poor
thermal stability.5 The unreliable cold chain system is one of
the major causes of inadequate immunization coverage in
developing countries.*  Therefore, developing robust,
thermostable viral vaccines that are less dependent on the
cold chain is urgent and crucial for universal access to
immunizations.
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Live-attenuated vaccines are usually
produced by extended passage of a disease-causing (wild)
virus in non-human cell culture to weaken the wild virus.®™
The attenuated virus can still replicate and stimulate high
immunity, but has lost the ability to cause disease. Inactivated
vaccines are typically treated by chemical or heat inactivation
to stop virus replication.g'10 In contrast, the inactivated virus
cannot replicate, but can still produce immunogenicity.
Subunit vaccines use a component of the virus, such as a
surface polysaccharide, capsid protein, or nucleic acid, to
stimulate an immune response.g'10 Typically, live attenuated
viruses raise the strongest immune response, followed by
inactivated viruses, and then subunit vaccines; however, the
stability of these three types of vaccines is in reverse order.®”
Thus, live attenuated viral vaccines tend to be the most
sensitive to temperature changes, and tight temperature
control is required for them to remain immunogenic.6 There is
a need to develop versatile methods to improve the thermal
stability of live attenuated vaccines.

Various methods have been developed to create
thermostable viral vaccines, ranging from direct genetic
modification™*? to changes in the formulation*>** However,
genetically modifying a viral vaccine is labour-intensive, virus-
specific, and may not be accessible for some targets.ll’12 A
more standard method to stabilize vaccine formulations is to
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add stabilizing excipients.B' example, high molar
concentrations of sucrose were able to maintain the infectivity
and in vivo immunogenicity of an adenovirus serotype 5 at
37°C for 10 days.13

Further improvements in the thermal stability of virus
formulations are often achieved via drying by lyophilization,
spray drying, or foam drying.l‘:"16 Drying aims to slow down the
physical and chemical degradation of the vaccine. However,
these methods typically require the presence of sugars (e.g.,
sucrose, mannitol, and trehalose), amino acids, and/or other
cryoprotectants and bulking agents that tend to hydrogen
bond with viral capsid proteins and/or viral envelopes to
entrain surface-bound water and form a stabilizing matrix.”>*°
For example, lyophilized rotavirus vaccines formulated in
optimized buffer conditions with polyvinyl pyrrolidone as a
bulking agent, sucrose as a cryoprotectant, and L-arginine and
glycine as osmolytes, can retain potency for 20 months at 37°C
and 7 months at 45°C."® An analogous strategy where viral
encapsulation in hydrated silica was used in place of an organic
matrix slowed the infectivity loss of the human enterovirus
type 71 by six-fold at 37°C for 20 days, or at 40°C for 36
hours.?® Although such formulation methods show promise for
thermostabilizing vaccines, the outcomes tend to be the result
of large-scale trial and error experiments, and there is a need
for a simple, low-cost, and versatile approach for stabilizing
viruses.

We propose the use of complex coacervation as a strategy
for improving the thermal stability of viral vaccines. Complex
coacervation is an associative liquid-liquid phase separation
phenomena that results from the electrostatic and entropic
interactions between oppositely charged macro-ions.”*?*
Complex coacervation has a strong history of use as a method
of encapsulation in the food and personal care industries,”>°
and has gained recent attention for use in the fields of drug
delivery31'35 and gene therapy.%'38 A number of reports have
focused specifically on the incorporation of proteins into
complex coacervates, with a goal of protecting proteins
against degradationw’40 and potentially enhancing protein
thermal stability. a
We recently demonstrated the ability of two-polymer
coacervates to effectively encapsulate proteins with a range of
different size and charge characteristics.*” Here, we adapt our
approach, to study the encapsulation and potential for thermal
stabilization of two model viruses (Figure 1). We characterized
the complex coacervation of cationic poly(L-lysine)soo (Kaoo)
and negatively charged poly(D,L-glutamic acid)sgo (Esgo) in the
presence of a non-enveloped porcine parvovirus (PPV) and an
enveloped bovine viral diarrhea virus (BVDV) as a function of
the charge ratio of the two polymers present in solution, and
quantified the uptake of virus into the coacervate phase.
Lastly, we perform accelerated aging studies to characterize
the thermal stability of our coacervate-virus formulations as a
proof-of-concept for thermostabilizing vaccines of
attenuated viruses.
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Figure 1. Schematic depiction of virus encapsulation via complex coacervation with two
oppositely charged polypeptides.

Materials and Methods
Materials

Potassium phosphate monobasic (molecular biology grade,
299.0%) and sodium chloride (NaCl, ACS grade, 299.0%) were a
gift from Millipore Sigma (Burlington, MA). Sodium phosphate
dibasic heptahydrate (ACS grade, 98.0-102.0%), sodium
hydroxide (NaOH, ACS grade, 297.0%), sodium dodecyl sulfate
(SDS) and dimethyl sulfoxide (DMSO, BioReagent, >99.7%)
were purchased from Sigma-Aldrich (St. Louis, MO).
Hydrochloric acid (HCI, ACS grade, 36.5-38.0%) and (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES)
(299.0%) were purchased from Fisher Scientific (Pittsburgh,
PA). Pierce fluorescent dye 5-(and 6)-carboxy-tetramethyl-
rhodamine  succinimidyl ester (NHS-Rhodamine)
purchased from Thermo Fisher Scientific (Waltham, MA).
Thiazolyl blue tetrazolium bromide (MTT) (98%)
purchased from Alfa Aesar (Haverhill, MA). Medium essential
medium (MEM) and Dulbecco’s modified eagle medium
(DMEM) were purchased from Life Technologies (Carlsbad,
CA). Polypeptides with a degree of polymerization of 400,
poly(D,L-glutamic acid) (Eso0) and poly(L-lysine) (Kaqo), were
purchased from Alamanda Polymers (Huntsville, AL). The
polypeptides used as received without further
purification. Characterization information for the polypeptides
is given in Supplemental Table S1.

All aqueous solutions and buffers were prepared using
purified water with a resistivity of 218 MQ-cm from a
Nanopure filtration system (Thermo Scientific, Waltham, MA)
and filtered with a 0.2 um bottle top filter (VWR, Radnor, PA)
or a 0.2 um syringe filter (VWR) prior to use. Phosphate
buffered saline (PBS) (pH 7.20 + 0.03) was prepared by
dissolving 0.21 g potassium phosphate monobasic, 0.73 g
sodium phosphate dibasic heptahydrate, and 9.0 g NaCl into
1000 mL Nanopure water. Stock solutions of 10 mM
polypeptide solutions were prepared on a charged monomer
basis and adjusted with 1 M HCl and 1 M NaOH to the desired
pH 8.00 £ 0.03 pH units. Zwitterionic buffer solution of 0.4 M
HEPES was also adjusted with 1 M HCl and 1 M NaOH to the
desired pH 8.00 + 0.03 pH units.
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Virus production, purification, and titration

Porcine kidney cells (PK-13, CRL-6489) and bovine
turbinate cells (BT-1, CRL-1390) were purchased from ATCC.
Porcine parvovirus (PPV) strain NADL-2, was a gift from Dr.
Ruben Carbonell (North Carolina State University, Raleigh, NC).
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Bovine viral diarrhea virus (BVDV) strain NADL was purchased
from USDA APHIS. PPV was propagated in PK-13 cells, and
BVDV was propagated in BT-1 cells, as described
previously,“’44 and stored at —80°C until further use. PPV or
BVDV were further purified with a Biotech Cellulose Ester
1,000 kDa dialysis tubing (Rancho Dominguez, CA) and a
BioRad Econo-Pac 10DG desalting column (Hercules, CA) in PBS
buffer, as previously described,45 and stored at 4°C until
further use.

To determine the concentration of the infectious virus, an
MTT assay was used. Briefly, either 8 x 10* cells/mL PK-13 cells
in completed MEM media (to titrate PPV)46 or 2.5 x 10°
cells/mL BT-1 cells in completed DMEM media (to titrate
BVDV)47 were seeded in a clear, flat-bottom, 96-well plate in a
volume of 100 uL/well. After one day of incubation, 25 uL/well
of virus sample was added to the corresponding host cells in
quadruplicate and serially diluted across the plate. After 6 days
post-inoculation, 10 pL/well of 5 mg/mL MTT reagent in PBS
(pH 7.2) was added to the plate. After 4 hours, 100 pL/well of
solubilizing agent, 10% SDS in 0.01 M HCI (pH 2.5), was added
to the plate. After 12 to 24 hours, plates were read at 550 nm
in a Synergy Mx monochromator-based multimode microplate
reader (Winooski, VT). The virus dilution that killed 50% of the
cells is stated as the virus titer MTT50.44 A similar procedure
was used to quantify the cytotoxicity of the coacervates and
the individual peptides (see Sl for details).

Formation of virus-containing complex coacervates

Virus-containing complex coacervate samples were formed
by first pipetting water, and then HEPES buffer into a 1.7 mL
microcentrifuge tube, followed by the virus (PPV or BVDV),
Ka00, and Ezqo. The samples were vortexed for 5 seconds after
the addition of each polypeptide to ensure fast and complete
mixing. The recipes for each sample of PPV- and BVDV-
containing complex coacervates are detailed in Supplemental
Tables S2 and S3, respectively. A typical experiment contained
a total volume of 240 pL and maintained a constant total
polymer concentration of 7 mM (on a monomer basis) while
varying the ratio of K4o9 to E4g0. The concentration of virus was
also maintained constant at 4, 5, and 6 log (MTT5o/mL) for PPV
and 4 and 5 log (MTTse/mL) for BVDV, and all experiments
were performed in 10 mM HEPES buffer, pH 8.0. All virus-
containing complex coacervates were prepared immediately
before use and studied at room temperature. All experiments
were performed in triplicate.

Virus complex coacervates characterization and quantification

We used turbidity to qualitatively measure the formation
of the virus-containing complex coacervates. Briefly, turbidity
was measured by placing 100 pL of the sample into a clear,
flat-bottom, 96-well plate and measuring the absorbance at
562 nm using a Synergy Mx monochromator-based multimode
microplate reader (Winooski, VT).42’48
referenced against a control well containing only Nanopure

The measured signal was

water and HEPES buffer. Samples were then examined using
an Olympus IX51 microscope with a DP72 camera (Center

Valley, PA) to confirm the presence or absence of

This journal is © The Royal Society of Chemistry 20xx

coacervation, and the 100 plL aliquot was recovered for
subsequent the infectivity assay. Only
concentrations of BVDV coacervates were studied due to the
initial concentration of enveloped BVDV propagated being
lower than PPV.

Viruses were also labelled with a fluorescent dye NHS-
Rhodamine that absorbs visible green light at a wavelength of
552 nm and emits orange-red visible light at 575 nm to
confirm the presence of the virus in the coacervate phase. 1
mL of purified virus solutions (8 log PPV or 7 log BVDV) were
incubated with 10 mg/mL NHS-Rhodamine in DMSO solution
(2.15 pL for PPV and 6.5 uL for BVDV) for 1 hour at room
temperature. Excessive non-tagged fluorescent dye was
removed with a BioRad Econo-Pac 10DG desalting column. The
fluorescently labelled virus was used immediately to form the
virus coacervate, as described above. An aliquot of 100 pL of
tagged virus coacervates was transferred to one well of a 96-
well plate and examined with an Olympus IX51 microscope.
The coacervates droplets were imaged using both brightfield
and fluorescence modes and analysed with ImageJ.

An MTT virus infectivity assay was used to quantify the
amount of virus present in both the coacervate and the
supernatant phases.44 The 240 pL sample containing the
complex coacervate and virus in the microcentrifuge tube was
centrifuged using an ST16R Centrifuge (Thermo Scientific,
Asheville, NC) at 14,000 rpm (21,475 x g) for 20 min at 15°C to
separate the supernatant from the dense coacervate phase.
Following centrifugation, the supernatant
carefully measured and transferred into a new microcentrifuge
tube via pipetting. A volume of 220 pL of 2 M NaCl solution
was added to the dense coacervate phase (transparent gel) to
dismantle the coalesced virus coacervate, followed by
vortexing. The concentration of virus in both the supernatant
and dismantled coacervate was then titrated by the MTT
assay. The volume of the coacervate phase was neglected,
though we estimated that the maximum volume of coacervate
formed was approximately ~1 uL. These values were then used
to calculate the partitioning of the virus into the complex
coacervate phase. The partition coefficient (K) was calculated
as:

use in two

volume was

(1)

where C. is the virus concentration in the coacervate phase,
and C; is the virus concentration in the supernatant phase.

Virus thermal stability study

Thermal stability studies were performed using samples
where maximal virus partitioning was observed, (i.e., a charge
fraction of 0.5 for PPV and 0.6 for BVDV). A microcentrifuge
tube containing either the PPV dense coacervate phase or
purified PPV was capped and wrapped in Parafilm and put in a
digital dry bath (USA Scientific, Ocala, FL) at 60°C. The BVDV
complex coacervate and purified BVDV were similarly put in
the dry bath at 40°C. At each time point, a tube containing
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Table 1. Model virus properties, including size, isoelectric point (pl), and related human viruses.

) A A Nucleic ) Related human
Virus Capsid Family ) Size (nm) pl i References
acid viruses

Porcine Non- . B-19 human
X Parvoviridae ssDNA 18-26 4.8-5.1 . 43,49,50

parvovirus (PPV) enveloped parvovirus

Bovine viral

diarrhea virus Enveloped Flaviviridae ssRNA 40-60 4.3-4.5 Hepatitis C 43,49,51

(BVDV)

~1 pL of the dense, virus-containing coacervate sample was
removed from the heating block and dismantled in 220 pL of 2
M NaCl. A purified virus sample was also removed from the
heat at the same time. The experiment was performed in
triplicate. Both samples were then titrated with the MTT assay
to determine the remaining infectious virus concentrations. A
log reduction value (LRV) of the virus was calculated as:

LRV = —logy, (%) 2)

where C; is the final virus concentration after heat treatment,
and the C; is the initial virus concentration.

The lifetime of infectious PPV particles T was determined
using a simple model for infectivity loss:™

n(t) = nge™ /" (3)

where t is the length of thermal treatment, n(t) is virus titer at
t, ny is the initial virus titer, and 7 is the inverse decay rate
corresponding to the mean lifetime of an infectious viral
particle.
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Statistical Analysis

Statistical analysis was performed using an unpaired, two-
tailed Student’s t test. An asterisk (*) denotes p < 0.05
between samples.

Results and Discussion

The goal of this work was to determine if complex
coacervation could be used to encapsulate and thermally
stabilize viruses. To this end, we studied the encapsulation and
stabilization of two model viruses, non-enveloped PPV and
enveloped BVDV. This approach allowed us to explore
potential differences between enveloped and non-enveloped
viruses.

Encapsulation of virus

Previous reports protein encapsulation using

coacervates emphasized the importance of electrostatic

on

Merged

Figure 2. (a,d) Brightfield, (b,e) fluorescence, and (c,f) merged optical micrographs of (a-c) PPV- and (d-f) BVDV-containing coacervate droplets, demonstrating virus encapsulation.
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Figure 3. Turbidity of the encapsulated virus as a function of the polymer charge
fraction associated with cationic Ky for coacervates prepared with different
concentrations of (a) PPV and (b) BVDV. All data points are the average of three
separate tests, and error bars represent the standard deviation.

. . . . L . 42,52-57
interactions in driving protein incorporation.

Therefore,
it is important to consider the charge state of the viruses used
in our study. Table 1 outlines some of the physical properties
of the chosen viruses. Notably, both viruses have an acidic
isoelectric point,43 meaning that the particles will carry a net
negative charge at most physiologically-relevant solution
conditions, and will become more negatively charged at higher
pH conditions.

However, in the context of complex coacervation, we must
balance the charge state of our viruses with that of the two
complexing polypeptides.42 Therefore, because both PPV*® and
BVDV are stable at pH 8.0,° we elected to perform our
experiments at a solution pH of 8.0 using 10 mM HEPES as a
neutral, zwitterionic buffer. This solution condition maximizes the
negative charge of the virus particles while limiting the loss of
charge from the poly(lysine). Furthermore, our previous efforts

with proteins had
decreased

indicated that protein encapsulation
dramatically at higher ionic strength
42,53,54 - ;
Therefore, experiments were performed in

the absence of added salt.
In order to

conditions.

conditions for viral

encapsulation, we performed coacervation experiments at

identify optimal

levels of constant virus concentration and constant total
polypeptide concentration while varying the relative amounts
of the polycation Kso and polyanion E4qo. Figure 2 shows the
characteristic optical micrographs of the resulting samples,
prepared with the fluorescently labelled virus. Colocalization
of the fluorescent signal with the droplets confirmed the
successful incorporation of both PPV and BVDV into our
complex coacervates. It should be noted that our study did not
aim to create a coacervate formulation with a specified droplet
size, and the coacervate droplets in our samples coalesce over
time. Careful consideration of these types of physical
properties would be necessary for translation of this method
into actual practice, but are beyond the scope of the current
work.

Turbidity measurements, along with visual inspection via
optical microscopy, were used to identify the presence or
absence of phase separation (Figure 3). We observed a general
increase in the turbidity signal with increasing virus
concentration, consistent with an increase in the total volume
of coacervate present, although the qualitative nature of
turbidity is such that we cannot decouple an increase in the
number of coacervate droplets from changes in droplet size.

The maximum turbidity signal for all samples was observed
at a cationic polymer charge fraction below 0.50,
corresponding to “net negative” conditions. This result is
somewhat unexpected, as the acidic pl of both viruses would
suggest that optimal coacervation would be expected at a “net
positive” polymer ratio.*>*>*” However, the turbidity signal for
all but one of our samples also showed a bimodal shape, with
the second peak located at higher charge fractions. This
bimodal signal likely indicates a heterogeneous population of
viruses, where each turbidity peak represents a distinct virus
population, which is common,’® and could explain the
unexpected results.

While optical microscopy and turbidity confirmed the
successful formation of virus-containing coacervates, it did not
provide quantitative information on the amount of virus
sequestered in the coacervates. Therefore, we employed an
MTT cell viability assay to quantify the concentration of
infectious virus in both the supernatant and coacervate
phases. The plots of virus titer as a function of coacervate
charge stoichiometry in Figure 4 showed strong extraction of
both PPV and BVDV into the coacervate phase that was
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matched by a commensurate decrease in the virus titer for the Interestingly, we only observed a single peak in our virus
supernatant phase. titer data, corresponding to the second peak in the turbidity
measurements (i.e., the peak at higher, “net positive” charge
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fractions). For PPV, this maximum sequestration was observed
near a charge ratio 0.5 (Figure 4a-c), while for BVDV, the
maximum occurred near a charge ratio of 0.6 (Figure 4d,e).
This difference in the peak location is likely explained by the
fact that pl of BVDV is more acidic than PPV (Table 1),
suggesting the potential for a higher net charge at our
experimental conditions of pH = 8.0.

Figure 5 plots the logarithmic value of the partition
coefficient In(K), where a positive value indicates that the viral
particles favoured the coacervate phase, while a negative
indicates that the viral particles remained in the
supernatant phase. While the trends in partition coefficient
derive from those already described in terms of viral titer,
what is particularly noteworthy is the magnitude of the
partition coefficient. We observed a trend of increasing
maximum partition coefficient with the initial viral
concentration that achieved 6.2x10” fold increase for PPV and
2.4x10° fold increase for BVDV. This ability to both sequester
and potential for
applications related to virus purification and formulation. For
example, an aqueous two-phase system of poly(ethylene
glycol) and salt was only able to achieve an approximate 10-
fold partitioning of bacteriophage M13.5

value

concentrate virus has tremendous

These observed trends in virus titer and partitioning are
also matched by a calculation of the virus recovery into the
coacervate phase (Supplemental Figure S1). While our results
indicate 100% recovery of PPV into the coacervate phase, we
were only able to recover approximately 50% of BVDV. This is
likely due to the lower stability of the enveloped BVDV in the
high ionic strength conditions used to dissolve the coacervate,
as high concentrations of salt can cause leakage in the viral
envelope membrane.®” Alternative strategies for destabilizing
the coacervate could potentially circumvent this challenge, but
are beyond the scope of the current work.

Thermal stability of encapsulated vs. free virus

To demonstrate the effect of complex coacervates on the
stability of viruses against high temperatures, we sought to
identify accelerated aging conditions for a stability study, using
conditions where the viruses would become completely
inactivated over a reasonable experimental lifetime. Literature
reports on the stability of purified solutions of virus suggested
the use of 60°C for PPV, as a 1 log loss of infectivity was
observed for this non-enveloped virus after 1 hour.®® For
BVDV, we selected temperature of 40°C, having observed a
50% loss of infectivity at 37°C for 6 hours.®*

We performed stability studies, comparing solutions of
free virus in aqueous solution with an equivalent amount of
total virus encapsulated in coacervate

our optimum

conditions. At each time point, a sample of both free and
encapsulated virus was removed from heat, the coacervate
phase was disassembled by the addition of 2 M NaCl to the
coacervate sample, and the viral titer was determined
(Supplemental Figure S2). From these data, we calculated the
loss of activity over time as a log reduction value (LRV).

For PPV, we observed significant retention of activity due
to encapsulation (Figure 6a). After 1 day at 60°C, encapsulated
PPV effectively maintained its viral titer, only losing 1.0 log +
0.1 log (MTTso/mL). In comparison, free PPV showed a LRV of
2.9 log + 0.3 log (MTTs¢/mL) after 1 day. Moreover, free PPV in
solution was found to be completely inactivated after 7 days
under 60°C, with an LRV of 5.9 + 0.5 log (MTTso/mL), while
encapsulated PPV only suffered a titer loss of 2.7 log + 0.1 log
(MTTso/mL) after 7 days.
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Figure 6. Thermal stability defined as the log reduction value (LRV) as a function of time
for free and encapsulated (a) PPV and (b) BVDV. All data points are the average of
three separate tests, and error bars represent the standard deviation. Lines are a guide
for the eye. An asterisk (%) denotes p < 0.05 comparing encapsulated and free samples
at the same time point.



We can further use a simple lifetime model to calculate
infectivity loss (Eg. 3). This model assumes the infectious viral
particles degraded from infectious to a disrupted state at a
constant rate and was fit to the titer data (Supplemental
Figure S2a). Based on this model, we determined a lifetime for
our encapsulated PPV to be 14 days at 60°C, which is
significantly longer than the 4-day lifetime of free PPV at 60°C.
Using the Simonelli and Dresback’s Qi factor for shelf-life
determination and a Q9 value of 2, 7 days at 60°C is
equivalent to 3 months at 22°C. While a 2 LRV lose would be
too much for an FDA approved vaccine, this method shows
promise as a method to thermally stabilize non-enveloped
viruses at room temperature.ss’66

We hypothesize that the enhanced thermal stability of
encapsulated PPV compared to the free PPV could be
attributed to crowding effects associated with the high
concentrations of polymer and virus present in the coacervate.
These types of excluded volume effects typically disfavour
protein unfolding and denaturation events that could be
associated with loss of viral activity.m’67 The main driving force
for viral capsid protein unfolding is believed to be the high
conformational entropy of the denatured state,® as the
flexible unfolded state has more conformational degrees of
freedom than the compact folded state. The limited volume of
the crowded therefore
minimize the number of accessible conformational degrees of
freedom for the unfolded state, and hence stabilize the native
state of the viral protein.‘sg'70 While there is also the potential
for enthalpic protein stability,M'H’72
exploration of these effects would require modulation of the
coacervate materials, and is beyond the scope of the current
work.

Given the promising improvements in stability seen for PPV
(a non-enveloped virus), we similarly explored the stability of
BVDV as a model non-enveloped virus (Figures 6b and S2b).
However, complex coacervates offered no protection for BVDV
against high temperatures. In fact, the data showed that
encapsulated samples inactivated faster than free BVDV. We
hypothesize that the lipid envelope surrounding the capsid
provides a similar entropic stabilization effect for BVDV, as was
described in the context of the coacervate for PPV. However,
interactions between the coacervate and the lipid bilayer
could adversely affect the stability of both the membrane and
the virus. Poly(lysine) is known to penetrate negatively
charged lipid bilayers,73 and can have cytotoxic effects at high
concentrations. However, while a dose-dependent poly(lysine)
cytotoxicity was observed for both the PK-13 and BT-1 cells
used in this study, it is interesting that the coacervate showed
no toxicity with the BT-1 cells used alongside BVDV, while
some toxicity was observed for PK-13 cells (Supplemental
Figure S3). However, viral envelopes do not play precisely the
same role as the membranes of more complex organisms, and
potential interference with the BVDV envelope could explain
the nearly 2 log difference in initial activity observed for BVDV,
as well as the 50% recovery levels of BVDV in coacervates
(Supplemental Figure S1). It is possible that these adverse
effects could be overcome by a change in coacervate materials

coacervate environment would

contributions to
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and/or experimental methodology. However, such

investigations are beyond the scope of the current work.

Conclusions

In summary, we explored the encapsulation of two model
viruses, a non-enveloped PPV and an enveloped BVDV, into
polypeptide-based complex coacervates. This first proof-of-
concept demonstration of viral encapsulation highlighted the
tremendous potential for using complex coacervation as a
strategy for extracting virus from aqueous solution with near
100% recovery for non-enveloped viruses. Furthermore, strong
partitioning of the viruses into the coacervate phase allowed
for an increase in virus concentration on the order of
6.2x10%*/2.4x10° fold for PPV/BVDV. While these two aspects
of downstream viral processing each have significant potential
to impact strategies for the purification, concentration, and
formulation of viruses, we also demonstrated a significant
enhancement in the thermal stability of the non-enveloped
PPV. Although more detailed studies on the intermolecular
interactions driving these effects is needed, across a range of
additional viruses, results suggest that complex
coacervation could help to improve the thermal stability of at
least non-enveloped viral vaccines, thereby decreasing the
need for a cold chain to maintain their efficacy, decreasing
costs, and improving accessibility.
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Table S1. Table of counter-ions, molecular weights and polydispersity index (PDI) of

polypeptides.
Counter Ion M,, (g/mol) PDI*
K00 TFA® 97,000 1.08
Ea00” Na' 60,000 1.01

* TFA is defined as trifluoroacetate.
® E, was purchased from Alamanda Polymers and is racemic, but without sequence control.
¢ PDI was determined using gel permeation chromatography, as reported by Alamanda Polymers.
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PPV Coacervate Formation Recipes:
Coacervate samples containing PPV were prepared by adding the components listed in Table S2

in order from right to left into 1.5 mL Eppendorf tubes.

Table S2. Table of volumes for preparing PPV-containing complex coacervates.

Charge Volume Volume Volume Volume Volume
Sample # Fraction K(+) E400(-) K400(+) Stock Buffer Water
(mol/mol) (nL) (pL) Virus (pL) (nL) (nL)
1 0.100 151.2 16.8 4.4 6.00 61.6
2 0.300 117.6 50.4 4.4 6.00 61.6
3 0.425 96.6 71.4 4.4 6.00 61.6
4 0.475 88.2 79.8 4.4 6.00 61.6
5 0.500 84.0 84.0 4.4 6.00 61.6
6 0.525 79.8 88.2 4.4 6.00 61.6
7 0.550 75.6 92.4 4.4 6.00 61.6
8 0.600 67.2 100.8 4.4 6.00 61.6
9 0.700 50.4 117.6 4.4 6.00 61.6
10 0.900 16.8 151.2 4.4 6.00 61.6
Total sample volume (puL) 240
Concentration Stock PPV (logjo (MTTs¢/mL)) 7.74 for 6 log PPV coacervates
6.74 for 5 log PPV coacervates
5.74 for 4 log PPV coacervates
Concentration Stock HEPES Buffer (M) 0.40
Concentration Stock Kago (+) (mM) 10.0
Concentration Stock E4g (-) (mM) 10.0
Final Polymer Concentration (mM) 7.00

S2



BVDYV Coacervate Formation Recipes:
Coacervate samples containing BVDV were prepared by adding the components listed in Table

S3 in order from right to left into 1.5 mL Eppendorf tubes.

Table S3. Table of volumes for preparing BVDV-containing complex coacervates.

Charge Volume Volume Volume Volume Volume
Sample # Fraction K(+) E400(-) K400(+) Stock Buffer Water

(mol/mol) (nL) (nL) Virus (pL) (nL) (nL)

1 0.100 151.2 16.8 25.7 6.00 40.3

2 0.300 117.6 50.4 25.7 6.00 40.3

3 0.425 96.6 71.4 25.7 6.00 40.3

4 0.475 88.2 79.8 25.7 6.00 40.3

5 0.500 84.0 84.0 25.7 6.00 40.3

6 0.525 79.8 88.2 25.7 6.00 40.3

7 0.550 75.6 92.4 25.7 6.00 40.3

8 0.600 67.2 100.8 25.7 6.00 40.3

9 0.700 50.4 117.6 25.7 6.00 40.3

10 0.900 16.8 151.2 25.7 6.00 40.3
Total sample volume (puL) 240

Concentration Stock BVDV (log;o (MTTs¢/mL)) 5.97 for 5 log BVDV coacervates

4.97 for 4 log BVDV coacervates
Concentration Stock HEPES Buffer (M) 0.40
Concentration Stock Kagp (+) (mM) 10.0
Concentration Stock E4g (-) (mM) 10.0
Final Polymer Concentration (mM) 7.00
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The recovery of the virus was calculated as:

where,

Recovery (%) = <<% %100 (S1)

Ci XVj

C. is the virus concentration in the coacervate phase, V. is the virus volume in the

coacervate phase, C; is the initial virus concentration, and ¥; is the initial virus volume in the

overall system.
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Figure S1. Recovery of live (a-¢) PPV and (d-e) BVDV in the coacervate phase at different total
virus loadings. All data points are the average of three separate tests and error bars represent the
standard deviation.
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Figure S2. The infectivity loss of free and encapsulated (a) PPV and (b) BVDV. All data points
are the average of three separate tests and error bars represent the standard deviation. The lifetime
of encapsulated and free PPV at 60°C is 14 and 4 days, respectively. The lifetime of encapsulated
and free BVDV at 40°C is 24 and 92 hrs, respectively. Encapsulated PPV is prepared at charge
fraction 0.5, while encapsulated BVDV is prepared at charge fraction 0.6.
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Cytotoxicity experiments were performed using the same approach as described in the
experimental section to test the cytotoxicity of the various individual peptides and the resulting
coacervate. Cells were seeded in a 96-well plate in 100 pL. of media well. Stock solutions of 35
mM Kygo and E4po on a monomer basis were made in 50 mM HEPES at pH 8.0 + 0.03. A similar
stock coacervate solution of a 1:1 mixture of Kugpo/E400 Was also prepared. After one day of
incubation, 25 pL of the relevant stock solution was added to the first well, and mixed (a 1:5
dilution). Subsequent samples were prepared via serial dilution, transferring 25 pL from one well
to the next for a total of 8 conditions for each of the individual peptides and the coacervate. A
control sample of cells with HEPES buffer, and a blank consisting of media and buffer were also
run. The MTT assay was then run after 5 days of incubation. All samples were run in triplicate
with each biological replicate having three technical replicates, each of which were measured

three times at 550 nm.
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Figure S3. Cytotoxicity of polypeptides measured using an MTT assay in the (a) PK-13 cells used
to study PPV and (b) BT-1 cells used for BVDV. Polypeptide concentrations indicated are on a

monomer basis.
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