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Abstract— This work proposes a new automatic model
parameter selection approach for determining the optimal
configuration of high-speed analog-to-digital converters (ADCs)
using a combination of particle swarm optimization (PSO) and
stochastic gradient descent (SGD) algorithm. The proposed hybrid
method first initializes the PSO algorithm to search for optimal
neural-network configuration via the particles moving in finite
search space with coarse quantization. Using the PSO estimates,
the SGD algorithm then finds the global optimum solution. The
global search ability of the PSO algorithm and the local search
ability of the SGD are thus exploited to determine an optimal
solution that is close to the global optimum with reduced latency.
Several experiments were constructed to optimize the non-
linearities in Nyquist flash and pipeline ADC datasets to show that
the neural networks trained by the PSO-SGD algorithm
outperform the random search-based performance optimization.
Comparative resource analysis of the proposed algorithm is also
conducted against the state-of-the-art that highlights improved
latencies and performance with similar area and implementation
complexity.

Index Terms— Analog-to-digital converter (ADC), stochastic
gradient descent (SGD), particle swarm optimization (PSO),
neural-network (NN), artificial intelligence, bias optimization.

I. INTRODUCTION

rocess, voltage and temperature (PVT) variations

affect the overall performance of many data converters
leading to severe degradation in their performance.
Widely used numerical optimization techniques such as
gradient descent (GD) [1]-[6] are targeted for a particular ADC
architecture and require some modification (minor or major) in
the implementation, to be applied to another type of ADC
architecture in real-time. An intricate system-level
understanding of the ADC and its respective parameters is thus
required to perform any kind of optimization. This necessitates
the need of a general-purpose ADC optimization technique.
Further, there is a need for multi-parameter optimization to
overcome non-linearities due to severe correlated effects which
warrants the use of a neural network architecture [3], [7]. Unlike
existing schemes, NNs can optimize multiple system
parameters simultaneously, thus improving the system
performance considerably. Enabled by high-speed field-
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programmable gate arrays (FPGAs), they also have a
significantly faster closed loop response [8]. However,
empirical methods for model parameter selection and weight
matrix determination for NN have been demonstrated mostly
using GD algorithm [9], [10] which is easily trapped in local
optima during the optimization of system-wide variables (such
as signal-to-noise ratio, linearity/dynamic range, gain, offset,
timing mismatch, phase noise, and jitter). This not only limits
the use of NN optimization but is further expected to get worse
in advanced semiconductor nodes with higher mismatches.
Prior works in generic ADC optimization have used look-up-
table (LUT) and integral non-linearity (INL) based calibration
techniques that are not adequate for multi-parameter
optimization of high-speed ADCs. In [11], a LUT-based
foreground calibration algorithm is proposed to correct
memoryless non-linear impairments in the amplifiers and
comparators and mismatches in the capacitors in time-
interleaved (TI) ADCs. However, the use of one LUT table per
TI sub-ADC channel does not sufficiently capture inter-channel
dependencies and is further limited by the LUT size. In [12], an
INL based black-box calibration mechanism for ADCs with
strong input-output discontinuities between the adjacent output
codes is proposed. This scheme uses internal ADC signals to
estimate static non-linear errors for multi-valued ADCs having
strong discontinuities between adjacent codes and overcomes
the limitation of histogram based INL calibration which
incorrectly captures the non-linear ADC transfer characteristic,
thus, leading to miscalibration. This method, however, requires
complex matrix multiplications and a large training dataset to
achieve accurate calibration resulting in higher latencies.
Architecture-specific calibration techniques have also been
proposed for Nyquist ADCs. In [13], background calibration is
proposed to correct the non-linearities in a pipeline ADC
comprising inter-stage amplifiers, DACs, buffers and switches.
It uses a single calibration bit per pipelined stage to detect and
correct any INL breaks and harmonic distortion appearing in
the sub-range (flash code) from the respective stages. This
method is highly effective in mitigating intermodulation
components but its implementation is specific to pipeline ADC.
Particle swarm optimization (PSO) is a typical stochastic
optimization algorithm that has shown impressive performance
for a broad range of parameter optimization in data converters.
Proposed by Eberhart [14], PSO mimics the behavior of a flock
of birds or fish searching for food. Based on this principle, PSO
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Fig. 1. Proposed black-box multi-parameter optimization.

works by randomly spreading out multiple particles in the range
of probable solutions and each particle works to obtain the best
possible solution. After every iteration, all the particles
communicate their respective positions and best solutions they
have arrived at to the other particles in the swarm, directing the
other particles in the direction of best solution. This algorithm
thus works through co-operation and competition amongst the
individual particles. Because multiple particles are spread out
in the search space, each trying to find an optimum solution, the
probability of all the particles getting stuck in local minima
simultaneously is negligible and it is almost certain that at least
one particle in the swarm would find the global minima. The
PSO complexity is independent of the dataset size which makes
it readily applicable for optimizing high-speed ADCs with large
generated dataset as compared to size dependent SGD. In [15]
PSO is implemented off-chip to calibrate the inter-stage gains
for a pipelined ADC. The calibration method, however, does
not correct any non-linearities or mismatch and thus does not
utilize the full potential of PSO. In [16], these challenges are
overcome using an additional ADC for calibrating sub-ADC
stages hence consuming additional power and area.

We propose a hybrid approach that is computationally
efficient and has lower latency compared to the prior calibration
techniques. In addition, the proposed technique does not suffer
from local minima problems of SGD. The proposed work
leverages PSO to narrow down the optimization space, while
using GD to converge to the global minima at a much faster
rate. This provides us with the flexibility to tune a much larger
number of parameters in a smaller time, to get optimal ADC
performance. We implement this in a neural-network (NN) with
three layers — input layer, hidden layer, and an output layer as
shown in Fig. 1. Simulations are demonstrated on a
conventional 3-bit flash ADC and a 5-bit pipeline ADC,
modelled using the Python programming language with
intentional gain and offset errors. In [17], PSO has been used to
optimize the time-amplifier linearity and shows a 6.4dB
improvement in the pipeline TDC performance, thus
demonstrating that PSO has the potential to calibrate a wide set
of ADC non-linearities. The input layer of the NN uses time-
series data to compute instantaneous errors between the two
inputs. This difference is then applied to the hidden layer by
multiplying with 8-bit weighted vectors. The hidden layer in
this process now applies the weights from the SGD, PSO, and
the proposed PSO-SGD algorithm and provides its output to the
output layer. Output layer is connected to the bias controls of
the non-ideal ADC which will be tuned appropriately to reach
the desired transfer function. This completes the feedback loop
and is used to achieve the most optimum values in real-time.
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Minima

Local
Minima

Fig. 2. Optimization using SGD algorithm.

Section II briefly describes the PSO and SGD optimization
techniques and their use in NN and then presents the proposed
PSO in combination with the SGD algorithm for multi-
parameter bias optimization with NN in real-time. Section 111
then presents the simulation results with the ADC datasets
followed by the conclusions in section IV.

II. PROPOSED NN BASED MULTI-PARAMETER OPTIMIZATION

The training phase in the GD requires considering the depth
and the number of hidden neurons which can be very influential
in determining the optimization performance [9]. This is further
affected by the choice of model parameter configuration setup
that initializes learning rate, decay, momentum, dropout rate,
and the number of hidden neurons. This consequently affects
the weights of the gradient vectors as well as the variation
amplitude of the parameters around the optimal bias point,
leading to sub-optimal optimization. Despite recent works [10],
[18] constructing a variety of empirical methods to improve the
performance of NN-based optimization approaches and the use
of classical multi-layer perceptron-based classifiers, GD cannot
find the global minimum and its search procedure can easily be
trapped in local optima as illustrated in Fig. 2. It is thus
imperative to select the appropriate learning rate which is
further challenged due to the large number of optimization
variables in the analog front-end.

Because of the above limitations, PSO-based optimization
[19], [20], [21] have replaced GD to solve the multi-parameter
optimization problem. However, despite many benefits of PSO,
such as low-latency, and improved performance in a
multivariate optimization task without being trapped in local
minima, the PSO lags behind GD in achieving a similar
accuracy with the same hardware complexity [22].

To overcome these limitations, first, the PSO algorithm will
be initialized to search for a network configuration that is closer
to the global minimum with coarse quantization. The pseudo-
code for this is as shown in Fig. 3. This will be followed by GD
that trains the NN using the PSO estimates and fine tunes the
learning rate to find the global optimum solution. By exploiting
the global search ability of the PSO algorithm and the local

a. Evaluate difference between desired (yi(t)) and actual
ADC output (4(t)) to get mean squared error (e)
b. while e > 0.05 * target error
= Use PSO to optimize the ADC parameters
c. Initialize the starting point of SGD with the global best
position of the PSO
d.  Use SGD to optimize the ADC parameters

Fig. 3. Pseudo code for optimization.
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Fig. 5. Optimization using Particle Swarm Optimization (PSO) algorithm
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Fig. 7. A 5-bit pipelined ADC model.

search ability of the GD, an optimal solution that is close to the
global optimum with reduced latency can be found. We next
describe the cost function analysis using GD and PSO used for
the proposed optimization algorithm.

A. Cost function analysis with Stochastic GD optimization

A cost function defines the performance of a system based on
its expected value and the actual output obtained through the
system. GD follows the gradient of this cost function to arrive
at the most optimum solution, which is the minimum value the
cost function can achieve. The system parameters are updated
after computing the mean squared error value of a batch of
samples, leading to averaging of the errors, and thus more time
for achieving minimum value [23]. Stochastic GD (SGD)
computes error value based on one sample point per iteration
and updates the system parameters after every single iteration.

As a result, the errors are not averaged out and the function

achieves minima faster [24]. In the case of high frequency
ADC s, the errors in the output bits might average out due to a
single bit flipping frequently, so it is of prime importance to
preserve the error information of each bit. This makes SGD the
obvious choice for such an optimization task. However, as
discussed earlier, the SGD algorithm suffers from the same
limitation as the GD and can converge to a local minima. The
cost function has been defined as the mean square difference
between the two concurrent bit values of the two data streams.
With a unity amplitude input signal, SGD is then applied in the
feedback loop to vary the threshold levels of the non-ideal ADC
to achieve the least possible error. The update mechanism of the
SGD optimization implemented in Fig. 4 is as follows:

st=s4+2 p.e.sgn(x") (M

where s represents the cost function, p controls the accuracy,
and sgn(x) represents the signum function.

B. Cost function analysis with PSO optimization

A similar cost function analysis for PSO is described in (2)
and (3). Equation (2) defines the particle velocity (v;). The first
term, w.v' represents the inertia factor accumulated by the
particle over the previous iterations. The second term

cl.rand(0,1). {x;besl- xt} represents the competition factor
driving the particle towards its individual best. The third term
c2.rand(0,1). {xgbw-x‘} represents the push towards the global

best position discovered by any of the particles in the swarm.
(3) further defines the displacement (x;) of the particle based on
the updated velocity value of the particle, as shown in Fig. 5.

Vit =w-vt+ ¢, - rand(0,1) - {x‘pbeqt - x‘}

+ i _ t}

¢, rand(0,1) {x g = X
X§+1 :X% +V'i:+1 (3)

where w,c, and c, are scaling factors for the inertia,

competition and co-operation factors respectively. The function
rand(x, y) generates a random number between x and y.

C. Proposed hybrid PSO and SGD optimization

To overcome the limitations in PSO and SGD, we propose a
hybrid algorithm, that achieves not only lower latencies with
significantly lower probability of getting stuck in a local
minima, but also achieving higher accuracy than PSO alone.

PSO optimization is done first. Once the mean squared error
is reduced to less than 5%, the partially optimized system
parameters act as the input to the SGD algorithm which further
optimizes the system to achieve an accuracy of less than 0.1%.
The empirically determined limits of transitioning from PSO to
SGD optimizations are to realize less computational time while
also avoiding getting stuck in the local minima. As shown in
Fig. 6, we observe that the convergence time increases
exponentially as we reduce the mean squared error (i.e.,
increase the accuracy of the PSO algorithm). The 5% error
provides an optimal transition point for the proposed
experiments. Another important factor is the step-size for the
bias variation controlling the ADC outputs. Unlike software-
based optimization, hardware realization imposes several
constraints on the algorithm, such as the size of each variable
and the fixed-point accuracy. For custom circuit design using
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proposed algorithm (3-bit Flash ADC).

mixed-signal approaches, it translates to a large area overhead

proposed algorithm (5-bit pipelined ADC).

which is undesirable. The accuracy has thus been limited to 8-
bit fixed-point sufficient for the targeted ADC models.

The non-linearities were then removed using the same
method as described above. For the flash ADC model, gain non-
linearities were introduced in the LSB and (LSB+1) bits, while
for the pipelined ADC, gain error and a random DC offset was
introduced in the MSB residue stage. The model of a 5-bit
pipelined ADC along with the MSB residue stage with errors is
shown in Fig. 7. The output of the first stage after the
introduction of these non-linearities is captured as follows:

Viesidue = Ay * (Vm - Vq) "NL; = NL, “4)
where NL; and NL; are gain and offset errors.

III. SIMULATION RESULTS

We design a 3-layer NN to compare the SGD and PSO
algorithms with the proposed PSO-SGD algorithm. The 3-bit
flash ADC with the NN-based feedback loop was first
simulated by applying SGD optimization as shown in Fig. 4.
The real-time optimization approach demonstrated a 5.34dB
SNR improvement with the transient data showing improved
sinusoidal response (Fig. 8). The closed-loop model ADC was
then re-simulated with the NN configured to use PSO
optimization and a 5.24dB of SNR improvement was observed
as shown in Fig. 9. Finally, the proposed PSO-SGD hybrid
optimization was applied to this model (Fig. 10). Initial
optimization with the PSO first yields a SNR of 18.76dB which
improves to 19.34dB after SGD is ran using the global best

TABLE I. COMPARISON OF COMPUTATIONAL COMPLEXITY OF PROPOSED ALGORITHM WITH PSO AND SGD (FLASH ADC).

Operations Particle Swarm Optimization (PSO) Gradient Descent (GD) Proposed Algorithm
Theoretical Calculated Actual Theoretical | Calculated Actual Theoretical Calculated Actual
Complexity Complexity Complexity

Additions nl*n2*2/ 30,000,000 | 480,000 3/ 15,000 15,000 nl*n2+3/' 15,007,500 | 127,500

Multiplications nl*n2 3,000 24 i 5,000 5,000 nl*n2+/' 5,500 2,524

ADC Calls nl*n2 3,000 24 I 25,000,000 | 25,000,000 nl*n2+7” 6,253,000 6,250,008

SNR 18.76dB 19.1dB 19.34dB

nl: Number of PSO iterations (8); n2: Number of swarm particles (3); /: Dataset length (5000); /’: Number of iterations for GD using proposed algorithm (2500)
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position from PSO regressions taken as the starting point. The
relative SNR improvement is 0.24dB and 0.34dB when
compared to SGD and PSO respectively.

The above experiments were repeated replacing the flash-
ADC with a traditional 5-bit pipeline ADC (Fig. 6). The SNR
improves significantly from 16.49dB to 28.95dB after PSO as
against the ideal SNR value of 31.76dB, while further
improving to 31.4dB using the proposed algorithm, showing a
14.91dB improvement in SNR value as shown in Fig. 11.

It is also observed from these models that the SNR
improvement for PSO standalone was not observed to be as
good as the one with SGD standalone with similar hardware
requirements. However, there is a significant reduction in
simulation time to achieve the demonstrated performance,
which was expected. Based on the NN, the computational
complexity of the PSO algorithm is dominated by the number
of iterations performed to do the optimization and the number
of swarm particles, while the complexity of GD only depends
on the length of the dataset. For high-speed GHz range ADCs,
the size of the captured data rapidly increases to the order of
10'°, while requiring 4x computations for the GD to achieve a
similar performance as PSO. Further, as the number of times
the feedback loop runs scales quadratically with the data set
size, it takes even larger (order of 1020) number of iterations to
calibrate the ADC for the targeted performance. These factors
combined have a direct impact on the computational hardware
requirements and the optimization latency (directly
proportional to the ADC calls) as shown in Table I. As seen
from the table, the proposed algorithm has significantly lower
latency than SGD while having lower number of computations
than PSO and providing better optimization results than either
SGD or PSO.

IV. CONCLUSIONS

This work proposes a hybrid optimization algorithm using
stochastic gradient descent (SGD) and particle swarm
optimization (PSO) to overcome simultaneously the large
computational overhead of PSO, and the model parameter
convergence limitation and high latency in the SGD. Two
different architectures of a 3-bit flash and 5-bit pipeline ADC
have been modelled with gain and random offsets errors in
multiple stages. These models were then calibrated using the
proposed multi-parameter optimization to recover the lost
performance. The simulated flash performance improves by
5.58dB (0.63b ENOB), while for the pipeline ADC, overall
SNR improvement of 14.91dB (2.18b ENOB) was observed
showing the effectiveness of the proposed approach. The
outcome from this work will be especially useful for extreme
high-speed data converters that require multi-parameter
optimization to overcome both static and dynamic errors.
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