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Abstract— This work proposes a new automatic model 

parameter selection approach for determining the optimal 
configuration of high-speed analog-to-digital converters (ADCs) 
using a combination of particle swarm optimization (PSO) and 
stochastic gradient descent (SGD) algorithm. The proposed hybrid 
method first initializes the PSO algorithm to search for optimal 
neural-network configuration via the particles moving in finite 
search space with coarse quantization. Using the PSO estimates, 
the SGD algorithm then finds the global optimum solution. The 
global search ability of the PSO algorithm and the local search 
ability of the SGD are thus exploited to determine an optimal 
solution that is close to the global optimum with reduced latency. 
Several experiments were constructed to optimize the non-
linearities in Nyquist flash and pipeline ADC datasets to show that 
the neural networks trained by the PSO-SGD algorithm 
outperform the random search-based performance optimization. 
Comparative resource analysis of the proposed algorithm is also 
conducted against the state-of-the-art that highlights improved 
latencies and performance with similar area and implementation 
complexity. 
 

Index Terms— Analog-to-digital converter (ADC), stochastic 
gradient descent (SGD), particle swarm optimization (PSO), 
neural-network (NN), artificial intelligence, bias optimization. 
 

I. INTRODUCTION 
rocess, voltage and temperature (PVT) variations 

affect the overall performance of many data converters 
leading to severe degradation in their performance. 

Widely used numerical optimization techniques such as 
gradient descent (GD) [1]–[6] are targeted for a particular ADC 
architecture and require some modification (minor or major) in 
the implementation, to be applied to another type of ADC 
architecture in real-time. An intricate system-level 
understanding of the ADC and its respective parameters is thus 
required to perform any kind of optimization. This necessitates 
the need of a general-purpose ADC optimization technique. 
Further, there is a need for multi-parameter optimization to 
overcome non-linearities due to severe correlated effects which 
warrants the use of a neural network architecture [3], [7]. Unlike 
existing schemes, NNs can optimize multiple system 
parameters simultaneously, thus improving the system 
performance considerably. Enabled by high-speed field-

 
 
 

programmable gate arrays (FPGAs), they also have a 
significantly faster closed loop response [8]. However, 
empirical methods for model parameter selection and weight 
matrix determination for NN have been demonstrated mostly 
using GD algorithm [9], [10] which is easily trapped in local 
optima during the optimization of system-wide variables (such 
as signal-to-noise ratio, linearity/dynamic range, gain, offset, 
timing mismatch, phase noise, and jitter). This not only limits 
the use of NN optimization but is further expected to get worse 
in advanced semiconductor nodes with higher mismatches.  

Prior works in generic ADC optimization have used look-up-
table (LUT) and integral non-linearity (INL) based calibration 
techniques that are not adequate for multi-parameter 
optimization of high-speed ADCs. In [11], a LUT-based 
foreground calibration algorithm is proposed to correct 
memoryless non-linear impairments in the amplifiers and 
comparators and mismatches in the capacitors in time-
interleaved (TI) ADCs. However, the use of one LUT table per 
TI sub-ADC channel does not sufficiently capture inter-channel 
dependencies and is further limited by the LUT size. In [12], an 
INL based black-box calibration mechanism for ADCs with 
strong input-output discontinuities between the adjacent output 
codes is proposed. This scheme uses internal ADC signals to 
estimate static non-linear errors for multi-valued ADCs having 
strong discontinuities between adjacent codes and overcomes 
the limitation of histogram based INL calibration which 
incorrectly captures the non-linear ADC transfer characteristic, 
thus, leading to miscalibration. This method, however, requires 
complex matrix multiplications and a large training dataset to 
achieve accurate calibration resulting in higher latencies. 

Architecture-specific calibration techniques have also been 
proposed for Nyquist ADCs. In [13], background calibration is 
proposed to correct the non-linearities in a pipeline ADC 
comprising inter-stage amplifiers, DACs, buffers and switches. 
It uses a single calibration bit per pipelined stage to detect and 
correct any INL breaks and harmonic distortion appearing in 
the sub-range (flash code) from the respective stages. This 
method is highly effective in mitigating intermodulation 
components but its implementation is specific to pipeline ADC. 

Particle swarm optimization (PSO) is a typical stochastic 
optimization algorithm that has shown impressive performance 
for a broad range of parameter optimization in data converters. 
Proposed by Eberhart [14], PSO mimics the behavior of a flock 
of birds or fish searching for food. Based on this principle, PSO  
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Fig. 1.  Proposed black-box multi-parameter optimization.  

works by randomly spreading out multiple particles in the range 
of probable solutions and each particle works to obtain the best 
possible solution. After every iteration, all the particles 
communicate their respective positions and best solutions they 
have arrived at to the other particles in the swarm, directing the 
other particles in the direction of best solution. This algorithm 
thus works through co-operation and competition amongst the 
individual particles. Because multiple particles are spread out 
in the search space, each trying to find an optimum solution, the 
probability of all the particles getting stuck in local minima 
simultaneously is negligible and it is almost certain that at least 
one particle in the swarm would find the global minima. The 
PSO complexity is independent of the dataset size which makes 
it readily applicable for optimizing high-speed ADCs with large 
generated dataset as compared to size dependent SGD. In [15] 
PSO is implemented off-chip to calibrate the inter-stage gains 
for a pipelined ADC. The calibration method, however, does 
not correct any non-linearities or mismatch and thus does not 
utilize the full potential of PSO. In [16], these challenges are 
overcome using an additional ADC for calibrating sub-ADC 
stages hence consuming additional power and area.  
 We propose a hybrid approach that is computationally 
efficient and has lower latency compared to the prior calibration 
techniques. In addition, the proposed technique does not suffer 
from local minima problems of SGD. The proposed work 
leverages PSO to narrow down the optimization space, while 
using GD to converge to the global minima at a much faster 
rate. This provides us with the flexibility to tune a much larger 
number of parameters in a smaller time, to get optimal ADC 
performance. We implement this in a neural-network (NN) with 
three layers – input layer, hidden layer, and an output layer as 
shown in Fig. 1. Simulations are demonstrated on a 
conventional 3-bit flash ADC and a 5-bit pipeline ADC, 
modelled using the Python programming language with 
intentional gain and offset errors. In [17], PSO has been used to 
optimize the time-amplifier linearity and shows a 6.4dB 
improvement in the pipeline TDC performance, thus 
demonstrating that PSO has the potential to calibrate a wide set 
of ADC non-linearities. The input layer of the NN uses time-
series data to compute instantaneous errors between the two 
inputs. This difference is then applied to the hidden layer by 
multiplying with 8-bit weighted vectors. The hidden layer in 
this process now applies the weights from the SGD, PSO, and 
the proposed PSO-SGD algorithm and provides its output to the 
output layer. Output layer is connected to the bias controls of 
the non-ideal ADC which will be tuned appropriately to reach 
the desired transfer function. This completes the feedback loop 
and is used to achieve the most optimum values in real-time. 

 Section II briefly describes the PSO and SGD optimization 
techniques and their use in NN and then presents the proposed 
PSO in combination with the SGD algorithm for multi-
parameter bias optimization with NN in real-time. Section III 
then presents the simulation results with the ADC datasets 
followed by the conclusions in section IV. 

II. PROPOSED NN BASED MULTI-PARAMETER OPTIMIZATION 
The training phase in the GD requires considering the depth 

and the number of hidden neurons which can be very influential 
in determining the optimization performance [9]. This is further 
affected by the choice of model parameter configuration setup 
that initializes learning rate, decay, momentum, dropout rate, 
and the number of hidden neurons. This consequently affects 
the weights of the gradient vectors as well as the variation 
amplitude of the parameters around the optimal bias point, 
leading to sub-optimal optimization. Despite recent works [10], 
[18] constructing a variety of empirical methods to improve the 
performance of NN-based optimization approaches and the use 
of classical multi-layer perceptron-based classifiers, GD cannot 
find the global minimum and its search procedure can easily be 
trapped in local optima as illustrated in Fig. 2. It is thus 
imperative to select the appropriate learning rate which is 
further challenged due to the large number of optimization 
variables in the analog front-end.  

Because of the above limitations, PSO-based optimization 
[19], [20], [21] have replaced GD to solve the multi-parameter 
optimization problem. However, despite many benefits of PSO, 
such as low-latency, and improved performance in a 
multivariate optimization task without being trapped in local 
minima, the PSO lags behind GD in achieving a similar 
accuracy with the same hardware complexity [22].  

To overcome these limitations, first, the PSO algorithm will 
be initialized to search for a network configuration that is closer 
to the global minimum with coarse quantization. The pseudo-
code for this is as shown in Fig. 3. This will be followed by GD 
that trains the NN using the PSO estimates and fine tunes the 
learning rate to find the global optimum solution. By exploiting 
the global search ability of the PSO algorithm and the local  

Fig. 3.  Pseudo code for optimization. 
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Fig. 2.  Optimization using SGD algorithm. 

a. Evaluate difference between desired (yi(t)) and actual 
ADC output (h(t)) to get mean squared error (e) 

b. while e > 0.05 * target error 
 Use PSO to optimize the ADC parameters 

c. Initialize the starting point of SGD with the global best 
position of the PSO 

d. Use SGD to optimize the ADC parameters 
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Fig. 4.  Implementation of SGD to calibrate flash-ADC.  

 
Fig. 6.  Error vs number of iterations run in PSO.  
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Fig. 7.  A 5-bit pipelined ADC model. 

search ability of the GD, an optimal solution that is close to the 
global optimum with reduced latency can be found. We next 
describe the cost function analysis using GD and PSO used for 
the proposed optimization algorithm. 

A. Cost function analysis with Stochastic GD optimization 
A cost function defines the performance of a system based on 
its expected value and the actual output obtained through the 
system. GD follows the gradient of this cost function to arrive 
at the most optimum solution, which is the minimum value the 
cost function can achieve. The system parameters are updated 
after computing the mean squared error value of a batch of 
samples, leading to averaging of the errors, and thus more time 
for achieving minimum value [23]. Stochastic GD (SGD) 
computes error value based on one sample point per iteration 
and updates the system parameters after every single iteration.  
As a result, the errors are not averaged out and the function 

achieves minima faster [24]. In the case of high frequency 
ADCs, the errors in the output bits might average out due to a 
single bit flipping frequently, so it is of prime importance to 
preserve the error information of each bit. This makes SGD the 
obvious choice for such an optimization task. However, as 
discussed earlier, the SGD algorithm suffers from the same 
limitation as the GD and can converge to a local minima. The 
cost function has been defined as the mean square difference 
between the two concurrent bit values of the two data streams. 
With a unity amplitude input signal, SGD is then applied in the 
feedback loop to vary the threshold levels of the non-ideal ADC 
to achieve the least possible error. The update mechanism of the 
SGD optimization implemented in Fig. 4 is as follows:  

st+1=st+2.μ.et.sgn(xt) (1) 

where s represents the cost function, μ controls the accuracy, 
and sgn(x) represents the signum function. 

B. Cost function analysis with PSO optimization 
A similar cost function analysis for PSO is described in (2) 

and (3). Equation (2) defines the particle velocity (vi). The first 
term, w.vt represents the inertia factor accumulated by the 
particle over the previous iterations. The second term 
c1.rand(0,1). �xpbest

t - xt�  represents the competition factor 
driving the particle towards its individual best. The third term 
c2.rand(0,1). �xgbest

t -xt�  represents the push towards the global 
best position discovered by any of the particles in the swarm. 
(3) further defines the displacement (xi) of the particle based on 
the updated velocity value of the particle, as shown in Fig. 5. 

vi
t+1  = w ∙ vt + c1 ∙  rand(0,1) ∙ �xt

pbest
 - xt� 

                     + c2∙ rand(0,1)∙ �xt
gbest

 - xt� 
(2) 

xi
t+1 = xi

t + vi
t+1 (3) 

where w, c1 and c2 are scaling factors for the inertia, 
competition and co-operation factors respectively. The function 
rand(x, y) generates a random number between x and y.  

C. Proposed hybrid PSO and SGD optimization  
 To overcome the limitations in PSO and SGD, we propose a 
hybrid algorithm, that achieves not only lower latencies with 
significantly lower probability of getting stuck in a local 
minima, but also achieving higher accuracy than PSO alone.   

PSO optimization is done first. Once the mean squared error 
is reduced to less than 5%, the partially optimized system 
parameters act as the input to the SGD algorithm which further 
optimizes the system to achieve an accuracy of less than 0.1%. 
The empirically determined limits of transitioning from PSO to 
SGD optimizations are to realize less computational time while 
also avoiding getting stuck in the local minima. As shown in 
Fig. 6, we observe that the convergence time increases 
exponentially as we reduce the mean squared error (i.e., 
increase the accuracy of the PSO algorithm). The 5% error 
provides an optimal transition point for the proposed 
experiments. Another important factor is the step-size for the 
bias variation controlling the ADC outputs. Unlike software-
based optimization, hardware realization imposes several 
constraints on the algorithm, such as the size of each variable 
and the fixed-point accuracy. For custom circuit design using 
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Fig. 5.  Optimization using Particle Swarm Optimization (PSO) algorithm 
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mixed-signal approaches, it translates to a large area overhead  

which is undesirable. The accuracy has thus been limited to 8-
bit fixed-point sufficient for the targeted ADC models.  

The non-linearities were then removed using the same 
method as described above. For the flash ADC model, gain non-
linearities were introduced in the LSB and (LSB+1) bits, while 
for the pipelined ADC, gain error and a random DC offset was 
introduced in the MSB residue stage. The model of a 5-bit 
pipelined ADC along with the MSB residue stage with errors is 
shown in Fig. 7. The output of the first stage after the 
introduction of these non-linearities is captured as follows: 

Vresidue = Av ∙ (Vin - Vq) ∙ NL1 − 𝑁𝑁𝐿𝐿2 (4) 
where NL1 and NL2 are gain and offset errors.  

III. SIMULATION RESULTS 
We design a 3-layer NN to compare the SGD and PSO 

algorithms with the proposed PSO-SGD algorithm. The 3-bit 
flash ADC with the NN-based feedback loop was first 
simulated by applying SGD optimization as shown in Fig. 4. 
The real-time optimization approach demonstrated a 5.34dB 
SNR improvement with the transient data showing improved 
sinusoidal response (Fig. 8). The closed-loop model ADC was 
then re-simulated with the NN configured to use PSO 
optimization and a 5.24dB of SNR improvement was observed 
as shown in Fig. 9. Finally, the proposed PSO-SGD hybrid 
optimization was applied to this model (Fig. 10). Initial 
optimization with the PSO first yields a SNR of 18.76dB which 
improves to 19.34dB after SGD is ran using the global best 

 
Fig. 11.  Performance comparison before and after calibration using 
proposed algorithm (5-bit pipelined ADC). 

 
Fig. 8.  Performance comparison before and after calibration using SGD. 

 

Fig. 9.  Performance comparison before and after calibration using PSO. 

 

 

Fig. 10.  Performance comparison before and after calibration using 
proposed algorithm (3-bit Flash ADC). 
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TABLE I. COMPARISON OF COMPUTATIONAL COMPLEXITY OF PROPOSED ALGORITHM WITH PSO AND SGD (FLASH ADC).  
Operations Particle Swarm Optimization (PSO) Gradient Descent (GD) Proposed Algorithm 

 Theoretical 
Complexity 

Calculated Actual Theoretical 
Complexity 

Calculated Actual Theoretical 
Complexity 

Calculated Actual 

Additions n1*n2*2l 30,000,000 480,000 3l 15,000 15,000 n1*n2+3l' 15,007,500 127,500 
Multiplications n1*n2 3,000 24 l 5,000 5,000 n1*n2+l′ 5,500 2,524 
ADC Calls n1*n2 3,000 24 l2 25,000,000 25,000,000 n1*n2+l'2 6,253,000 6,250,008 
SNR   18.76dB   19.1dB   19.34dB 

n1: Number of PSO iterations (8); n2: Number of swarm particles (3); l: Dataset length (5000); l’: Number of iterations for GD using proposed algorithm (2500) 
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position from PSO regressions taken as the starting point. The 
relative SNR improvement is 0.24dB and 0.34dB when 
compared to SGD and PSO respectively.  

The above experiments were repeated replacing the flash-
ADC with a traditional 5-bit pipeline ADC (Fig. 6). The SNR 
improves significantly from 16.49dB to 28.95dB after PSO as 
against the ideal SNR value of 31.76dB, while further 
improving to 31.4dB using the proposed algorithm, showing a 
14.91dB improvement in SNR value as shown in Fig. 11.  

It is also observed from these models that the SNR 
improvement for PSO standalone was not observed to be as 
good as the one with SGD standalone with similar hardware 
requirements. However, there is a significant reduction in 
simulation time to achieve the demonstrated performance, 
which was expected. Based on the NN, the computational 
complexity of the PSO algorithm is dominated by the number 
of iterations performed to do the optimization and the number 
of swarm particles, while the complexity of GD only depends 
on the length of the dataset. For high-speed GHz range ADCs, 
the size of the captured data rapidly increases to the order of 
1010,  while requiring 4× computations for the GD to achieve a 
similar performance as PSO. Further, as the number of times 
the feedback loop runs scales quadratically with the data set 
size, it takes even larger (order of 1020) number of iterations to 
calibrate the ADC for the targeted performance. These factors 
combined have a direct impact on the computational hardware 
requirements and the optimization latency (directly 
proportional to the ADC calls) as shown in Table I. As seen 
from the table, the proposed algorithm has significantly lower 
latency than SGD while having lower number of computations 
than PSO and providing better optimization results than either 
SGD or PSO.  

IV. CONCLUSIONS 
This work proposes a hybrid optimization algorithm using 

stochastic gradient descent (SGD) and particle swarm 
optimization (PSO) to overcome simultaneously the large 
computational overhead of PSO, and the model parameter 
convergence limitation and high latency in the SGD. Two 
different architectures of a 3-bit flash and 5-bit pipeline ADC 
have been modelled with gain and random offsets errors in 
multiple stages. These models were then calibrated using the 
proposed multi-parameter optimization to recover the lost 
performance. The simulated flash performance improves by 
5.58dB (0.63b ENOB), while for the pipeline ADC, overall 
SNR improvement of 14.91dB (2.18b ENOB) was observed 
showing the effectiveness of the proposed approach. The 
outcome from this work will be especially useful for extreme 
high-speed data converters that require multi-parameter 
optimization to overcome both static and dynamic errors.   

REFERENCES 
[1] Takashi Oshima, et al, “Fast nonlinear deterministic calibration of 

pipelined A/D converters,” IEEE Mid. Symp. on Cir. and Syst, 
(MWSCAS), 2008, pp. 914–917. 

[2] Un-Ku Moon, et al, “Background digital calibration techniques for 
pipelined ADCs,” IEEE Trans. on Cir. and Syst. II: Analog and Digital 
Signal Processing, vol. 44, no. 2, pp. 102–109, Feb. 1997. 

[3] P. Kiss et al., “Adaptive digital correction of analog errors in MASH 
ADCs. II. Correction using test-signal injection,” IEEE Trans. on Cir. 
and Syst. II: Analog and Digital Signal Processing, vol. 47, no. 7, pp. 
629–638, Jul. 2000. 

[4] S. Kundu, et al, “Frequency-Channelized Mismatch-Shaped Quadrature 
Data Converters for Carrier Aggregation in MU-MIMO LTE-A,” IEEE 
Trans. on Cir. and Syst. - I: Reg. Pap., vol. 64, no. 1, pp. 3–13, Jan. 2017. 

[5] S. Gupta, et al, “Multi-rate polyphase DSP and LMS calibration schemes 
for oversampled data conversion systems,” IEEE Intl. Conf. on 
Acoustics, Speech and Signal Proc. (ICASSP), 2011, pp. 1585–1588. 

[6] S. Kundu, et al., “DAC mismatch shaping for quadrature sigma-delta 
data converters,” IEEE Intl. Mid. Symp. on Cir. and Syst. (MWSCAS), 
2015, pp. 1–4. 

[7] Y. Tang, et al, “Cascaded complex ADCS with adaptive digital 
calibration for i/q mismatch,” IEEE Trans. on Cir. and Syst. I: Reg. Pap., 
vol. 55, no. 3, pp. 817–827, Apr. 2008. 

[8] P. D. Reynolds, et al, “FPGA implementation of particle swarm 
optimization for inversion of large neural networks,” Proc. IEEE Swa. 
Intell. Symp. (SIS), 2005, pp. 389–392. 

[9] B. Widrow, et al, “A comparison of adaptive algorithms based on the 
methods of steepest descent and random search,” IEEE Trans. on Ant. 
and Prop., vol. 24, no. 5, pp. 615–637, Sep. 1976. 

[10] G. E. Hinton, et al, “A Fast Learning Algorithm for Deep Belief Nets,” 
Neural Computation, vol. 18, no. 7, pp. 1527–1554, May 2006. 

[11] A. Salib, et.al., “A generic foreground calibration algorithm for ADCs 
with nonlinear impairments”, in IEEE Trans. on Cir. and Syst. I: Reg. 
Pap., vol. 66, no. 5, pp. 1874-1885, May 2019. 

[12] A. Gines, et.al., “Black-box calibration for ADCs with hard nonlinear 
errors using a novel INL-based additive code: a pipeline ADC case 
study”, in IEEE Trans. on Cir. and Syst. I: Reg. Pap., vol. 64, no. 7, pp. 
1718-1729, July 2017. 

[13] A. Ali, et.al., “16.1 A 12b 18GS/s RF sampling ADC with an integrated 
wideband track-and-hold amplifier and background calibration”, IEEE 
Intl. Solid-State Cir. Conf. (ISSCC), San Francisco, CA, 2020, pp. 250-
252. 

[14] J. Kennedy, et al, “Particle swarm optimization,” IEEE Intl. Conf. on 
Neural Networks, 1995, vol. 4, pp. 1942–1948 vol.4. 

[15] C. Briseno-Vidrios et al., "A 44-fJ/Conversion Step 200-MS/s Pipeline 
ADC employing current-mode MDACs," in IEEE Jour. of Solid-State 
Circ., vol. 53, no. 11, pp. 3280-3292, Nov. 2018. 

[16] D. Zhou et al, "A digital-circuit-based evolutionary-computation 
algorithm for time-interleaved ADC background calibration," in IEEE 
Intl. System-on-Chip Conf. (SOCC), Seattle, WA, 2016, pp. 13-17. 

[17] E. Ghaderi et al, "10.8 A 4-Element 500MHz-modulated-BW 40mW 6b 
1GS/s analog-time-to-digital-converter-enabled spatial signal processor 
in 65nm CMOS," IEEE Intl. Solid-State Circ. Conf. (ISSCC), San 
Francisco, CA, 2020, pp. 186-188. 

[18] D. Ritchie, et al, “Neurally-guided Procedural Models: Amortized 
Inference for Procedural Graphics Programs Using Neural Networks,” 
Proc. Intl. Conf. on Neu. Inf. Proc. Syst., USA, 2016, pp. 622–630. 

[19] H. M. V, et al, “An Integrated MaxFit Genetic Algorithm-SPICE 
Framework for 2-Stage Op-Amp Design Automation,” IEEE Comp. Soc. 
Ann. Symp. on VLSI (ISVLSI), 2018, pp. 170–174. 

[20] D. Needell, et al, “Stochastic gradient descent, weighted sampling, and 
the randomized Kaczmarz algorithm,” Math. Program., vol. 155, no. 1, 
pp. 549–573, Jan. 2016. 

[21] D. J. Allstot, J. Park, K. Choi, “Parasitic-aware optimization of CMOS 
RF circuits”, Springer Science & Business Media, 2003. 

[22] V. G. Gudise, et al, “Comparison of particle swarm optimization and 
backpropagation as training algorithms for neural networks,” Proc. IEEE 
Swa. Intell. Symp. (SIS), 2003, pp. 110–117. 

[23] R. H. Byrd, et al, “Sample size selection in optimization methods for 
machine learning,” Math. Program., vol. 134, pp. 127–155, Aug. 2012. 

[24] L. Bottou, “Large-scale machine learning with stochastic gradient 
descent,” Proc. of COMPSTAT, 2010, pp. 177–186. 

 
 
 
 


	I. INTRODUCTION
	II. Proposed NN Based Multi-Parameter Optimization
	A. Cost function analysis with Stochastic GD optimization
	B. Cost function analysis with PSO optimization
	C. Proposed hybrid PSO and SGD optimization

	I.
	III. Simulation results
	IV. Conclusions
	References

