
DOCSDN: Dynamic and Optimal Configuration

of Software-Defined Networks

� Timothy Curry, � Devon Callahan, Benjamin Fuller, and Laurent Michel

University of Connecticut, Storrs CT 06268, USA
{timothy.curry,devon.callahan,benjamin.fuller,laurent.michel}@uconn.edu

Abstract. Networks are designed with functionality, security, perfor-
mance, and cost in mind. Tools exist to check or optimize individual
properties of a network. These properties may conflict, so it is not al-
ways possible to run these tools in series to find a configuration that
meets all requirements. This leads to network administrators manually
searching for a configuration.
This need not be the case. In this paper, we introduce a layered frame-
work for optimizing network configuration for functional and security
requirements. Our framework is able to output configurations that meet
reachability, bandwidth, and risk requirements. Each layer of our frame-
work optimizes over a single property. A lower layer can constrain the
search problem of a higher layer allowing the framework to converge on
a joint solution.
Our approach has the most promise for software-defined networks which
can easily reconfigure their logical configuration. Our approach is vali-
dated with experiments over the fat tree topology, which is commonly
used in data center networks. Search terminates in between 1-5 minutes
in experiments. Thus, our solution can propose new configurations for
short term events such as defending against a focused network attack.
Keywords: Network Configuration · Software Defined Networking ·
Reachability · Constraint Programming · Optimization

1 Introduction

Network configuration is a crucial task in any enterprise. Administrators balance
functionality, performance, security, cost, and other industry specific require-
ments. The resulting configuration is subject to periodic analysis and redesign
due to red team recommendations, emerging threats, and changing priorities.
Tools assist administrators with this complex task: existing work assesses net-
work reachability [27], wireless conflicts [40], network security risk [46, 52], and
load balancing [48,51]. These tools assess the quality of a potential configuration.
Unfortunately, current tools suffer from three limitations:

1. Tools assess whether a single property is satisfied, making no recommenda-
tion if the property is not satisfied. This leaves IT personnel with the task
of deciding how to change the network.

2. Tools assess networks with respect to an individual goal at a time. This
means a change to satisfy a single property may break another property.
There is no guidance for personnel on how to design a network that meets
the complex and often conflicting network requirements.

3. Tools do not react to changing external information such as the publication
of a new security vulnerability.

Our Contribution This work introduces a new optimization framework that finds
network configurations that satisfy multiple (conflicting) requirements. We focus
on data center networks (DCN) that use software defined networking (SDN).
Background on these settings is in Section 2. Our framework is called DocSDN

(Dynamic and Optimal Configuration of Software-Defined Networks).

DocSDN searches for network configurations that simultaneously satisfy
multiple properties. DocSDN is organized into layers that consider different
properties. The core of DocSDN is a multistage optimization that decouples
search on “orthogonal” concerns. The majority of the technical work is to ef-
fectively separate concerns so the optimization problems remain tractable. Our
framework is designed to continually produce network configurations based on
changing requirements and threats. It frees IT personnel from the complex ques-
tion of how to satisfy multiple requirements and can quickly incorporate new
threat information.

DocSDN focuses on achieving functional requirements (such as network
reachability and flow satisfaction) and limiting security risk (such as isolating
high risk nodes and nodes under denial of service attack). Naturally, other layers
such as performance or cost can be incorporated. The search for a good config-
uration could be organized in many ways. State-of-the-art approaches assess
different properties in isolation, frustrating search for a solution that satisfies all
requirements. Ideally, a framework should search for a configuration that simul-
taneously satisfies all requirements. This extreme is unlikely to be tractable on
all but the smallest networks. DocSDN mediates between these approaches sep-
arating the functional and security search problems but introducing a feedback
loop between the two search problems based on cuts.

In the proposed organization the functional layer is “above” the security
layer. Through the feedback loop, the security layer describes a problematic
part of the network to the functional layer. The functional layer then refines its
model and searches for a functional configuration that satisfies an additional con-
straint. This has the effect of blocking the problematic part of the configuration.
Currently, the feedback signal is a pair of nodes that should not be proximate in
the network. After multiple iterations the two layers jointly produce a solution
that optimizes the SDN configuration both with respect to functionality and
security risks.

DocSDN provides solutions of improving quality before the final solution.
Thus, the network can be reconfigured once the objective improves on the current
configuration by a large enough amount (to justify the cost/impact of reconfig-
uration).

Functional Layer Security Layer

Least Cost
Path(s,t)

generation

Functional Solver
(QBP)

Security ModelFunctional Model

Security Solver
(MIP)

Equivalence
classes

Result Analysis
Benders Cut
Generation

SDN Device
Configurations

Risk Calculations

Fig. 1. DocSDN Framework. A layered decomposition that breaks down configuration
synthesis into functional and security layers.

The underlying optimization problems are NP-hard but optimization technol-
ogy has seen tremendous advances in performance during the past few decades.
Since 1991, mathematical programming solvers have delivered speedups of 11 or-
ders of magnitude [8,17]. Hybrid techniques such as Benders decomposition [6,12,
20,21] and column generation [3,19,31] (aka, Dantzig-Wolfe decomposition [14])
made it possible to solve huge problems thanks to on-demand generation of
macroscopic variables and the dynamic addition of critical constraints. Large
Neighborhood Search [47] further contributed to delivering high-quality solution
within constrained time budgets.

These techniques are beginning to see adoption in network security. Yu et
al. recently applied stochastic optimization with Bender’s decomposition to as-
sess network risk under uncertainty for IoT devices [52]. They used Bender’s
decomposition on a scenario-based stochastic optimization model to produce
a parent problem that chooses a deployment plan while children are concerned
with choosing the optimal nodes to serve the demands in individual scenarios. In
comparison, our approach addresses both functional and security requirements.
It relies on Bender’s cuts from the security layer (child) to rule out vulnerable
functional plans whose routing paths fail to adequately minimize risks and maxi-
mize served clients. We now briefly describe the framework (a formal description
is in Section 3) and present an illustrative example.

Overview of DocSDN Figure 1 presents an overview of the framework. The
functional layer takes as input a Functional Model that describes the network
including the physical topology, capacity, the allowable communication pat-
terns and the demand requirements. Network reachability begins with a prim-
ing procedure that generates the k-least cost paths to the optimizer for each
source/destination pair in the demand requirements. The objective for the func-
tional layer is to find a logical topology (a collection of routed paths) that meets
all demand requirements while favoring shorter length routing paths and load
balancing. The program is formulated as quadratic binary program (QBP). The
solution as determined by the functional layer is passed to the security layer.

The output of the functional layer and a security model are the input for
the security layer. The current configuration is fed to a module that uses risk
assessments for the individual network devices (obtained for example using a

The first iteration The functional layer proposes a candidate configuration
where G1 routes all traffic intended for H1 and H2 to S1 which then forwards
the traffic andG1 routes traffic intended forH3 andH4 to S2 which then forwards
the traffic. This is the first candidate solution presented to the security layer.

Since H1 is high risk the security layer proposes a firewall at S1 to block
all port 80 traffic. This reduces risk at the cost of blocking all traffic to H2.
Of course, in real firewalls more fine-grained rules are possible, this simplified
example is meant to illustrate a case where collateral damage to the functional
objective is necessary to achieve the security objective. Since traffic is being
blocked to a node with low risk, the security layer asks the functional layer to
separate H1 and H2 so H2 does not suffer.
Repeated iterations The functional layer now has a constraint thatH1 andH2

should not be collocated in the network. As such, it proposes a new configuration
with H1 and H3 under S1 and H2 and H4 under S2. This is then sent to the
security layer. The security layer makes a similar assessment and proposes a
firewall rule at S2, finds this recommendation hurts functionality and requests
separation of H1 and H3.

This process repeats with the functional layer proposing to collocate H1 and
H4. The security layer similarly asks to separate H1 and H4. Finally, H1 is
segregated from all other nodes. This produces a configuration where H1 is the
only child of S1. Note that having H2, H3 and H4 under a single switch may
hurt performance but the effect is less than blocking traffic to one of the nodes
entirely. DocSDN can then output the candidate solution as high level SDN
fragments (using a high-level language like Frenetic [16]).
Recovery Importantly, when the DDoS abates, DocSDN automatically reruns
with a changed risk for H1, outputting a binary tree.
Organization The rest of the work is organized as follows: Section 2 provides
background on our application and discusses related work, Section 3 describes
our framework and accompanying optimization models, Section 4 describes our
experimental setup, Section 5 evaluates the framework and finally Section 6
concludes.

2 Background and Related Work

Data Center Networks (DCN) host, process and analyze data in financial, enter-
tainment, medical, government and military sectors. The services provided by
DCNs must be reliable, accurate and timely. Services provided by DCNs (and the
corresponding traffic) are heterogeneous. The network must adapt to changing
priorities and requirements while protecting from emerging threats. They scale
to thousands of servers linked through various interconnects. Protocols used for
these services are split roughly 60 percent web (HTTP/HTPS) and 40 percent
file storage (SMB/AFS) [7]. The interdependence of device configurations make
modifying any single configuration difficult and possibly dangerous for network
health. A seemingly simple update can cause significant collateral damage and
unintended consequences.

Simultaneously, the network fabric is changing with the advent of Software
Defined Networking (SDN) [30]. SDNs are flexible and programmable networks
that can adapt to emergent functional or performance requirements. Open-
flow [36] is a common open source software stack. Researchers have proposed
high-level languages and compilers [5, 16, 28, 44] that bridge the semantic gap
between network administrators and the configuration languages used by SDN
devices. These languages focus on compositional and parametric SDN software
modules that execute specific micro-functions (e.g., packet forwarding, dropping,
routing, etc.). The use of a high level language is prompted by a desire to be
able to select, instantiate and compose SDN modules with guarantees.

Our framework is intended to be modular and allow integration of prior work
on evaluating network configurations. As such there is a breadth of relevant work.
Due to space constraints we focus on the most relevant works. In the conclusion
we elaborate on the characteristics needed to integrate a prior assessment tool
into our framework (see Section 6).

Measuring Network Risk Known threats against computer systems are
maintained by governments and industry. Common Vulnerabilities and Expo-
sures (CVE) is a publicly available dictionary including an identifier and de-
scription of known vulnerabilities [13], CVE does not provide a severity score
or priority ranking for vulnerabilities. The US National Vulnerability Database
(NVD) [41] is provided by the US National Institute of Standards and Technol-
ogy (NIST). The NVD augments the CVE, adding severity scores and impact
ratings for vulnerabilities in the CVE.

There are many mechanisms for measuring the security risk on a network [10,
25,34,49,50]. Lippmann et al. present a network security model which computes
risk based on a list of the most current threats [33]. This model implements a
cycle of observe network state, compute risk, prioritize risk, and mitigate the
risk.

This loop is often codified into an attack graph [22,26,46]. Attack graphs try
to model the most likely paths that an attacker could use to penetrate a network.
Attack Graphs often leverage one or more of the aforementioned vulnerability
assessment tools as input, combined with a network topology and device software
configurations to generate the graph. Current attack graph technologies provide
recommendations to network administrators that effectively remove edges from
the graph and trigger a re-evaluation of the utility for the attacker. To the best
of our knowledge, current practice does not leverage network risk measurement
into constraints used for the generation of new configurations.

Network Reachability The expansion of SDN has aided the applicability
of formal verification to computer networks. Prior to SDN, the lack of clear
separation between the data and control plain created an intractable problem
when considering a network of any scale. Bounded model checking using SAT
and SMT solvers [4, 54] can currently verify reachability properties in networks
with several thousands of nodes.

Configuration Search Constraint Programming (CP) was introduced in
the late 1980s [45] and is used for scheduling [2], routing, and configuration

problems. Large-scale optimization problems are often decomposed including
Benders [12] and Dantzig-Wolfe [14]. Soft constraints or Lagrangian relaxation
are used for over-constrained problems or when the problem is too computa-
tionally expensive. Stochastic optimization techniques have been used for many
applications in resilience [9,39] and the underlying methodologies are a key part
of this research. Prior work in configuration management with constraint pro-
gramming [11, 32] focused on connectivity or security. We are not aware of any
work that balances these two objectives in a meaningful way.

3 Implementation

Figure 1 outlines the overall structure of the DocSDN framework. layer inter-
connections as well as their internals. The functional layer uses a mathemati-
cal optimization model that is fed to a quadratic mixed boolean programming
(QBP) solver alongside an initial set of least-cost paths to be considered to ser-
vice the required flows. The security layer receives the topology chosen by the
functional layer and a security model to solve, with a mixed-integer program-
ming (MIP) solver, the risk minimization problem. The output can result in
low-risk flows being blocked as a consequence of deploying firewalls to mitigate
high-risk flows. A result analysis module then produces equivalence classes that
are sent back to the functional layer to request the separation of specific flows
that should not share paths, with the goal of minimizing the collateral damage to
low-risk flows. These equivalence classes generate additional constraints, known
as Bender’s cuts, that are added to the functional solver for a new iteration. The
remainder of this section describes the major modules in Figure 1.

3.1 Functional Layer

The mathematical optimization model in the functional layer is a quadratic
mixed binary programming model. In constraint programming the four main
components are Inputs, Variables, Constraints, and an Objective function. In-
puts are below.
Inputs

N – the set of all network devices
E – the set of edges (pair of vertices) connecting network devices
T – the set of types of traffic to be routed
F – the set of (s, t, T) ∈ N ×N × T tuples defining desired traffic flows of type
T from source node s to sink node t.
D(f) : F → R – the actual demand for each flow f ∈ F
C ⊆ 2N – a subset of sets of network devices
R ⊆ C × C – pairs (c1, c2) of equivalence classes that segregate traffic from c1 to
c2.
P – the set of all paths
P (e) : E → P – the set of all paths containing edge e

P (n) : N → P – the set of all paths containing node n

P (c) : C → P – the set of all paths containing a node in c

N(p) : P → C – the set of nodes appearing in path p

P (s, t) : N ×N → P – the set of all paths s → t

cap(e) : E → R – gives the capacity of an edge e.

Variables

activep,T ∈ {0, 1}, – for every path p ∈ P and traffic type T ∈ T , indicates
whether path p carries traffic of type T

flowp,T ∈ R≥0 – for every path p ∈ P and traffic type T ∈ T , amount of flow of
type T that is sent along path p

equivc,n ∈ {0, 1} – does node n ∈ N appear in an active path together with a
node in equivalence class c
sharec1,c2,n ∈ {0, 1} – indicates whether node n ∈ N appears on any active path
with nodes in classes c1, c2 ∈ C. Namely,

sharec1,c2,n ⇔ n ∈
((

∪p∈P (c1):activep,∗N(p)
)

∩
(

∪p∈P (c2):activep,∗N(p)
))

activep,∗ = 1 if there is a type T ∈ T where activep,T = 1
loadn ∈ R – the amount of flow that goes through node n

loadObj – the sum of squares of all loadn variables.

Constraints

∑

p∈P (e),T∈T

flowp,T ≤ cap(e), ∀e ∈ E (1)

∑

p∈P (s,t)

flowp,T ≥ D(s, t, T), ∀(s, t, T) ∈ F (2)

activep,T =1 → flowp,T ≥1, ∀(s, t, T) ∈ F , p ∈ P (s, t) (3)

∑

p∈P (s,t)

activep,T = 1, ∀(s, t, T) ∈ F (4)

equivc,n=
∨

p∈P (n)∩P (c)

(activep,T), ∀T ∈ T , n ∈ N , c ∈ C (5)

sharec1,c2,n=equivc1,n ∧ equivc2,n, ∀n ∈ N , (c1, c2)∈R (6)

loadn =
∑

p∈P (n),T∈T

flowp,T , ∀n ∈ N (7)

Equation 1 enforces the edge capacity constraint to service the demand of all
paths flowing through it. Equation 2 ensures that enough capacity is available
to meet the demand of an (s, t, T) flow. Equation 3 ensures that some non-zero
capacity is used if a specific path is activated (conversely, an inactive path can
only have a 0 flow). Equation 4 states that a single path should be chosen to
service a given flow f ∈ F . Equations 5 define the auxiliary variables equivc,n
as true if and only if node n ∈ N appears on an active path sharing a node with
the equivalence class c ∈ C. Equation 6 defines an active path that shares at

least one node with two classes. Finally, equation 7 defines the load of a node as
the sum of the flows associated to active paths passing through node n.

Objective

min





α0

∑

p,T len(p) ∗ flowp,T +

α1

∑

(c1,c2)∈R,n∈N (sharec1,c2,n − 1) +

α2

∑

n∈N (loadn)
2



 (8)

The objective function 8 in this model is a weighted sum of three terms. The
first term captures the total flows which are penalized by the length of the path
used to dispatch those flows (such policies are codified in OSFP [38] and BGP
practice [18]). The second term gives a unit credit each time equivalence classes
on the segregation list R do not share a node. (Due to this term, the objective
value of the final solution may change between iterations of the functional layer.)
The third and final term contribute to a bias towards solutions that achieve load
balancing thanks to the quadratic component which heavily penalizes nodes with
large loads.
Solving the Functional Model The functional model starts with empty sets
C and R which are augmented with each iteration of the framework. New sets of
nodes are added to C and new segregation rules are added to R (by the security
layer). In the current implementation, least cost paths between pairs of nodes
s, t are not generated “on demand”. Instead, the generation is limited to the
first best k such paths, for increasing values of k. This process will ultimately
be improved to use column generation techniques [14].

3.2 Risk Calculation

After the functional layer finds an optimal solution, it passes this solution to the
risk calculation procedure. This input is the set of active paths. This module
calculates the effective risk to the network for each path and traffic type.
Inputs

risk(n, T) : N ×T → R – the risk inherit to network device n for traffic of type
T (risk(n, T) ≥ 1)
dk(n) : N → 2N – the set of nodes at a distance at most k from n in the logical
topology

Calculation

Given an active path p ∈ P with source s and sink t, the calculation proceeds by
partitioning the set of nodes of the path into three segments: the nodes “close”
to the source s, “close” to the sink t and the nodes “in between”. Closeness is
characterized by the function dk and is meant to capture any connected node over
the logical topology which sits no more that k hops away. Given this partition,
flowRisk(p, T) is:

flowRisk(p, T) =
∑

i∈d2(s)∪d2(t)
risk(i, T)2+

∑

i∈N(p)\(d2(s)∪d2(t))
risk(i, T)2

We use k = 2 to model nodes on the same LAN. The rationale is to impart to
source s and sink t risk resulting from lateral movement of attacks. All other
nodes contribute to the overall path risk in proportion to the square of their
own risks. We expect in most networks for d2(s) and d2(t) to include nodes
not directly on the path (like nodes on the same LAN). The input path risk
calculation flowRisk(p, T) is modular and can be augmented using other risk
calculation methods.

3.3 Security Layer

The mathematical optimization model in the security layer is a mixed integer
programming model. We similarly present the inputs, variables, constraints, and
objective for the security layer. Its inputs are given below. Also note that all the
variables from the functional model are constants.
Inputs

mem(n) : N → R – the memory resources of SDN device n

fwCost(T) : T → R – the memory footprint for a firewall blocking traffic type
T

piCost – the memory footprint for a packet inspection post
fwComp – the complexity footprint for adding a firewall
piComp – the complexity footprint for adding a packet inspection post to the
network
penalty(p, T) : P × T → R – the penalty for blocking a unit of flow of type T

along path p

rank(n, p) : N ×P → Z – the position of node n in path p

flowRisk(p, T) : P × T → R≥0 – above risk calculation
Variables

fwn,T ∈ {0, 1} – does a firewall block traffic type T at n
pin ∈ {0, 1} – is there packet inspection at network device n

fwORn,T ∈ {0, 1} – is there a block everything or block traffic of type T firewall
at network device n

fwOPp,T ∈ {0, 1} – is there a firewall on path p

rfp,T ∈ [0, 1] – risk factor for path p ∈ P (s, t) servicing flow (s, t, T) ∈ F
RMfwp,n,T ∈ [0, 1] – used in the riskFactor calculation
RMpip,n,T ∈ [0, 1] – used in the riskFactor calculation
Constraints

fwORn,T = fwn,T ∨ fwn,∗, ∀n ∈ N , T ∈ T (9)
∑

T∈T ∪{∗}

fwCostT · fwn,T + piCost · pin ≤ memn, ∀n ∈ N (10)

fwOPp,T =
∨

n∈N(p)

(fwORn,T), ∀T ∈ T , p ∈ P : activep,T (11)

RMfwp,n,T = 1− (.5)rank(n,p) · fwORn,T ,

∀p ∈ P (s, t), n ∈ N(p), (s, t, T) ∈ F
(12)

RMpip,n,T = 1− 0.1 · (.5)rank(n,p) · pin,

∀p ∈ P (s, t), n ∈ N(p), (s, t, T) ∈ F
(13)

rfp,T = min
⋃

n∈N(p)

{RMfwp,n,T , RMpip,n,T },

∀T ∈ T , p ∈ P : activep,T

(14)

Equation 9 is used to define the presence of a firewall that will block traffic of
type T at a node n. Equation 10 ensures that the memory footprint in SDN
node n for the deployment of the firewall and the packet inspection logic does
not exceed the device memory. Equation 11 links the presence of a firewall that
will block traffic of type T on a path with the presence of a firewall that will
block traffic of type T on any node along the active path. Equation 12 defines the
minimum risk factor associated to a firewall. The earlier on the path the firewall
is deployed, the lower the risk. Equation 13 similarly defines the minimal risk.
Equation 14 defines the composite risk factor.

Objective

min











β0

(

∑

n,T fwComp · fwn,T +
∑

n piComp · pin
)

+

β1

∑

n loadn · pin+
β2

∑

p,T penalty(p, T) · flowp,T · fwOPp,T+

β3

∑

p,T flowRiskp,T · rfp,T











(15)

The objective function defined in equation 15 is a weighted sum of four distinct
terms that focus on minimizing the network complexity based on security re-
sources deployed, the load induced by inspection posts, the penalties incurred
from dropping desirable flows due to firewall placement and finally the residual
risk. This model is a classic mixed integer programming formulation.

3.4 Result Analysis

The result analysis module tries to generate cuts for the functional layer with
the goal of improving both functionality and security. To generate cuts, this
module will form equivalence classes of network nodes and pass back certain
pairs of these classes, one at a time, to the functional layer. Each pair of classes
describes a segregation rule, or a cut, to which to functional layer will adhere to
as much as possible.

After the functional and security layers are re-optimized using the most recent
cut, the result analysis module determines whether the cut was beneficial or
harmful based on the objectives of each layer. If the cut is deemed to have been
beneficial, we permanently keep it as a constraint, repopulate the cut queue, and
continue the process.

If the cut is deemed to have been harmful, it is removed from the functional
layer’s constraint pool. Then the next cut in the queue will be passed back to the
functional layer. If the cut queue is empty, the feedback mechanism terminates
and we output the best solution found.

We note that since this process only provides pairs of nodes it is a heuristic.
It may be necessary for many nodes to simultaneously be separated to arrive at
a global optimum. This mechanism performed well in our experiments.

3.5 Layer Coordination

It is valuable to review how the layers coordinate. The functional layer sends to
the security layer a set of paths that implements the routing within the network
to serve the specified flows while satisfying a set of segregation requirements.
The security layer first computes risks for these paths based on its knowledge
of the traffic. The paths, their risk and the security model are then tasked with
deploying packet inspection apparatus as well as firewalls within that logical
topology to monitor the traffic and block threats (risky traffic). Once the security
model is solved to optimality, an analysis can determine whether the proposed
logical topology is beneficial or not (w.r.t. its objective) and even suggest further
equivalence classes for network nodes as well as segregation rules to be sent back
to the functional layer for another iteration. Fundamentally, the coordination
signal boils down to additional equivalence classes to group nodes together with
segregation rules to separate paths that include network nodes in “antagonistic”
equivalence classes.

3.6 Outputs

When the set of potential cuts is empty, the proposed configuration can be parsed
and translated into SDN language fragments to be deployed on the network
devices in order to obtain the desired logical network topology put forth by our
framework.

4 Experimental Setup

A fundamental component of our work is the separation of the physical and logi-
cal networks. Our framework has potential in applications where many different
logical topologies are possible from a single physical topology. Physical topology
is an input to our framework and the empirical evaluation is based on a popular
topology: Fat-Tree [1].

The instance of Fat-Tree we use is shown in Figure 3. The network design
avoids bottlenecks through multiple equal capacity links between layers. This
design uses four layers of switches: gateway, core, aggregate and edge. The edge
switches serve as top-of-rack switches and are where our hosts connect.

Within our sample network, we consider having two main types of devices:
switches/routers and hosts. In order to model traffic between internal and ex-
ternal entities we utilize two gateway switches which represent the boundary of
our network. For generality we consider two traffic types (A and B) which could
represent any type of traffic such as web and storage. We also classify traffic as
internal and external, with external traffic traversing one of the gateways. We

10 paths 20 paths 30 paths 40 paths 50 paths 100 paths

Initial Flows Blocked 12 12 12 12 12 12

Final Flows Blocked 8 8 8 8 8 8

Initial Functional Objective 2012 2012 2012 2012 2012 2012

Final Functional Objective 2014 2014 2014 2015 2014 2015

Cut Reward -8450 -4260 -7210 -4900 -5540 -3840

Initial Security Objective 13735 13724 13729 13723 13696 13726

Final Security Objective 13356 13356 13356 13356 13356 13348

Initial Network Risk 10425 10414 10419 10413 10386 10416

Final Network Risk 11646 11646 11646 11646 11646 11638

Functional Nodes Explored 370 55 206 83 510 46

Security Nodes Explored 1922 1650 152 30 28 19

Beneficial Cuts 40 20 34 23 26 18

Harmful Cuts 453 70 237 81 68 74

Iterations Needed 494 91 272 105 95 93

Time in Model (s) 283 40 319 112 76 273

Table 1. Experimental results from applying the DocSDN framework to an order 4
Fat-tree. Each column refers to a separate experiment where the number of paths per
source-destination pair given to the framework were varied. Note that the functional
objective values in this table are calculated without the cut reward, the second term
in Equation 8, in order to facilitate comparisons across columns.

not to be viewed as stand alone metrics to determine solution quality but
rather inter layer communications indicating improvement or decline from a
functional or security perspective.

– The objective scores vary across our experiments due to the stochasticity
introduced by our heuristic-driven feedback module (see Section 3.4 for dis-
cussion). For instance, the functional objecive in the 30 path experiment is
slightly worse than it is in other runs, but this difference does not impact
the number of serviced flows in the final configuration.

– The variance in time, iterations and number of cuts produced by each exper-
iment is due to symmetries in the formulation. Solutions that are symmetric
in the functional layer may not be symmetric in the security layer and in-
duce slightly different solutions there. This is especially true for a Fat-tree
network due to its built in redundancy/symmetry.

– Beneficial cuts reflects the number of segregation proposals from the security
layers that are adopted by the functional layer (these cuts remove the current
best feasible solution). harmful cuts are segregation proposals that do not
“cut” the current best feasible solution or worsen the functional solution.

6 Conclusion

Our framework is portable with respect to network risk assessment. Since the
risk calculation/analysis is decoupled from the optimization model, the frame-
work can be combined with any procedure that calculates risk on a per path

basis. Along with this procedure, the other requirements for implementing a dif-
ferent risk mechanism are 1) A way of evaluating how risk changes due to the
deployment of network defenses and 2) The ability to propose candidate cuts
that can be passed to the functional layer.

Our results show it is possible to effectively, automatically, and quickly find a
network configuration that meets multiple conflicting properties. Our framework
is modular, enabling integration of new desired properties. DocSDN will allow
network administrators to effectively prioritize and choose their desired proper-
ties. The efficiency of DocSDN is enabled by the feedback/interplay between
the functional and security optimization layers.

Acknowledgments

The authors thank the anonymous reviewers for their helpful insights. The au-
thors would also like to thank Pascal Van Hentenryck, Bing Wang, Sridhar Dug-
girala and Heytem Zitoun for their helpful feedback and discussions. The work
of T.C., B.F., and L.M. are supported by the Office of Naval Research, Comcast
and Synchrony Financial. The work of D.C. is supported by the U.S. Army. The
opinions in this paper are those of the authors and do not necessarily reflect the
opinions of the supporting organizations.

References

1. Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, com-
modity data center network architecture. In Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, SIGCOMM ’08, pages 63–74, New York,
NY, USA, 2008. ACM.

2. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling. Kluwer
Academic Publishers, 2001.

3. Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh,
and Pamela H Vance. Branch-and-price: Column generation for solving huge inte-
ger programs. Operations research, 46(3):316–329, 1998.

4. Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general ap-
proach to network configuration verification. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, pages 155–168. ACM,
2017.

5. Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and DavidWalker.
Network configuration synthesis with abstract topologies. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 437–451. ACM, 2017.

6. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4(1):238–252, 1962.

7. Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic charac-
teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10, pages 267–280, New York, NY,
USA, 2010. ACM.

8. R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. System Modelling
and Optimization: Methods, Theory, and Applications, chapter MIP: Theory and
practice – closing the gap, pages 19–49. Kluwer Academic Publishers, 2000.

9. G. Byeon, P. Van Hentenryck, R. Bent, and H. Nagarajan. Communication-
Constrained Expansion Planning for Resilient Distribution Systems. ArXiv e-
prints, January 2018.

10. Yulia Cherdantseva, Pete Burnap, Andrew Blyth, Peter Eden, Kevin Jones, Hugh
Soulsby, and Kristan Stoddart. A review of cyber security risk assessment methods
for scada systems. Computers & security, 56:1–27, 2016.

11. Terry Coatta and Gerald W. Neufeld. Configuration management via constraint
programming. In CDS, pages 90–101. IEEE, 1992.

12. Gianni Codato and Matteo Fischetti. Combinatorial Benders’ cuts for mixed-
integer linear programming. Operations Research, 54(4):756–766, 2006.

13. MITRE Corp. Common vulnerabilities and exposures, December 2018.
14. George B. Dantzig and Philip Wolfe. Decomposition principle for linear programs.

Oper. Res., 8(1):101–111, February 1960.
15. Seyed Kaveh Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Bohatei:

Flexible and elastic DDoS defense. In USENIX Security Symposium, pages 817–
832, 2015.

16. Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A network programming lan-
guage. ACM Sigplan Notices, 46(9):279–291, 2011.

17. B. Fourer. Amazing solver speedups. online, 2015. http://bob4er.blogspot.com/
2015/05/amazing-solver-speedups.html.

18. Phillipa Gill, Michael Schapira, and Sharon Goldberg. A survey of interdomain
routing policies. ACM SIGCOMM Computer Communication Review, 44(1):28–34,
2013.

19. Hassan Hijazi, Terrence W. K. Mak, and Pascal Van Hentenryck. Power system
restoration with transient stability. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pages 658–664. AAAI Press, 2015.

20. J.N. Hooker. Logic-based Benders decomposition. Mathematical Programming,
96:2003, 1995.

21. J.N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. John Wiley and Sons, 2000.

22. Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack graph
generation for network defense. In Annual Computer Security Applications Con-
ference, 2006., pages 121–130. IEEE, 2006.

23. John Ioannidis and Steven M. Bellovin. Pushback: Router-based defense against
DDoS attacks, 2001.

24. John Ioannidis and Steven M Bellovin. Implementing pushback: Router-based
defense against DDoS attacks. In NDSS, volume 2, 2002.

25. Wayne Jansen. Directions in security metrics research. Diane Publishing, 2010.
26. Kerem Kaynar. A taxonomy for attack graph generation and usage in network

security. Journal of Information Security and Applications, 29:27–56, 2016.
27. Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Godfrey. Veriflow:

Verifying network-wide invariants in real time. In Proceedings of the first workshop
on Hot topics in software defined networks, pages 49–54. ACM, 2012.

28. Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russell J Clark. Kinetic: Verifiable dynamic network control. In NSDI, pages
59–72, 2015.

29. Sam Kottler. February 28th DDoS incident report, March 2018.
30. Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

31. Edward Lam and Pascal Van Hentenryck. A branch-and-price-and-check model for
the vehicle routing problem with location congestion. Constraints, 21(3):394–412,
July 2016.

32. Siamak Layeghy, Farzaneh Pakzad, and Marius Portmann. SCOR: software-defined
constrained optimal routing platform for SDN. CoRR, abs/1607.03243, 2016.

33. Richard P Lippmann and James F Riordan. Threat-based risk assessment for
enterprise networks. Lincoln Laboratory Journal, 22(1):33–45, 2016.

34. RP Lippmann, JF Riordan, TH Yu, and KK Watson. Continuous security metrics
for prevalent network threats: introduction and first four metrics. Technical report,
Massachusetts Inst of Tech Lexington Lincoln Lab, 2012.

35. Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah
McKune, Arn Rey, John Scott-Railton, Ronald Deibert, and Vern Paxson. China’s
great cannon. Citizen Lab, 10, 2015.

36. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication Re-
view, 38(2):69–74, 2008.

37. Jelena Mirkovic and Peter Reiher. A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review, 34(2):39–53,
2004.

38. John T Moy. OSPF: anatomy of an Internet routing protocol. Addison-Wesley
Professional, 1998.

39. Harsha Nagarajan, Emre Yamangil, Russell Bent, Pascal Van Hentenryck, and
Scott Backhaus. Optimal resilient transmission grid design. In PSCC, pages 1–7.
IEEE, 2016.

40. Pedro Neves, Rui Calé, Mário Rui Costa, Carlos Parada, Bruno Parreira, Jose
Alcaraz-Calero, Qi Wang, James Nightingale, Enrique Chirivella-Perez, Wei Jiang,
et al. The SELFNET approach for autonomic management in an NFV/SDN
networking paradigm. International Journal of Distributed Sensor Networks,
12(2):2897479, 2016.

41. NIST. National vulnerability database, December 2018.
42. Gurobi Optimization. Inc.,“gurobi optimizer reference manual,” 2015. URL:

http://www. gurobi. com, 2014.
43. Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of network-

based defense mechanisms countering the DoS and DDoS problems. ACM Com-
puting Surveys (CSUR), 39(1):3, 2007.

44. Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David
Walker. Modular SDN programming with Pyretic. Technical Reprot of USENIX,
2013.

45. Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-
gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

46. Bruce Schneier. Attack trees. Blog, 1999.
47. P. Shaw. Using Constraint Programming and Local Search Methods to Solve

Vehicle Routing Problems. In Proceedings of Fourth International Conference on
the Principles and Practice of Constraint Programming (CP’98), pages 417–431.
Springer Verlag, October 1998.

48. Richard Skowyra, Andrei Lapets, Azer Bestavros, and Assaf Kfoury. A verifica-
tion platform for SDN-enabled applications. In IEEE International Conference on
Cloud Engineering (IC2E), pages 337–342. IEEE, 2014.

49. Sal Stolfo, Steven M Bellovin, and David Evans. Measuring security. IEEE Security
& Privacy, 9(3):60–65, 2011.

50. Gary Stoneburner, Alice Y Goguen, and Alexis Feringa. SP 800-30. Risk manage-
ment guide for information technology systems. 2002.

51. Richard Wang, Dana Butnariu, Jennifer Rexford, et al. Openflow-based server
load balancing gone wild. Hot-ICE, 11:12–12, 2011.

52. Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, and Xiang Zhang. Deploying ro-
bust security in internet of things. In IEEE Conference on Computer and Network
Security, 2018.

53. Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense
mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE
communications surveys & tutorials, 15(4):2046–2069, 2013.

54. Shuyuan Zhang and Sharad Malik. SAT based verification of network data planes.
In International Symposium on Automated Technology for Verification and Anal-
ysis, pages 496–505. Springer, 2013.

	DOCSDN: Dynamic and Optimal Configuration of Software-Defined Networks

