
Journal of Computational Physics 404 (2020) 109062
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An efficient class of WENO schemes with adaptive order for 

unstructured meshes

Dinshaw S. Balsara a,b,∗, Sudip Garain b, Vladimir Florinski c, Walter Boscheri d

a ACMS Department, University of Notre Dame, United States of America
b Physics Department, University of Notre Dame, United States of America
c Space Physics, University of Alabama, Huntsville, United States of America
d Department of Mathematics and Computer Science, University of Ferrara, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 June 2018
Received in revised form 22 October 2019
Accepted 23 October 2019
Available online 6 November 2019

Keywords:
Higher order schemes
Hyperbolic systems
WENO
Reconstruction

Recent advances in finite-difference WENO schemes for hyperbolic conservation laws have 
resulted in WENO schemes with adaptive order of accuracy. For instance, a WENO-AO(5,3) 
scheme can provide up to fifth order of accuracy when the smoothness of the solution 
in the fifth order stencil warrants it, and yet, it can adaptively drop down to third order 
of accuracy when the higher order is not warranted by the solution on the mesh. Having 
an analogous capability for finite-volume WENO schemes for hyperbolic conservation laws, 
especially on unstructured meshes, can be very valuable. The present paper documents 
the design of finite volume WENO-AO(4,3) and WENO-AO(5,3) schemes for unstructured 
meshes. As with WENO-AO for structured meshes, the key advance lies in realizing 
that there is a favorable basis set, which is very easily constructed, and in which the 
computation is dramatically simplified. As with finite-difference WENO, we realize that one 
can make a non-linear hybridization between a large, centered, very high accuracy stencil 
and a lower order central WENO scheme that is, nevertheless, very stable and capable 
of capturing physically meaningful extrema. This yields a class of adaptive order WENO 
schemes that work well on unstructured meshes. On both the large and small stencils 
we have been able to make the stencil evaluation step very efficient owing to the choice 
of a favorable Taylor series basis. By extending the Parallel Axis Theorem, we show that 
there is a significant simplification in the finite volume reconstruction. Instead of solving a 
constrained least squares problem, our method only requires the solution of a smaller least 
squares problem on each stencil. This also simplifies the matrix assembly and solution for 
each stencil. The evaluation of smoothness indicators is also simplified. Accuracy tests show 
that the method meets its design accuracy. Several stringent test problems are presented 
to demonstrate that the method works very robustly and very well. The test problems are 
chosen to show that our method can be applied to many different meshes that are used to 
map geometric complexity or solution complexity.
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1. Introduction

Weighted Essentially Non-Oscillatory (WENO) schemes constitute one of the earliest numerical strategies for obtaining 
the solution to hyperbolic conservation laws with better than second order accuracy in the vicinity of smooth flows. They 
have also emerged as one of the most popular and well-used methods for delivering high order of accuracy at modest 
computational cost to the practicing scientist and engineer. The fact that they are well-known, easy to implement and offer 
good non-linear hybridization at local discontinuities adds to their attractiveness. Even so, very high order WENO schemes 
have been difficult to implement on unstructured meshes. The goal of this paper is, therefore, to show that there is an 
easy-to-implement strategy for achieving high order of accuracy on unstructured meshes. The method presented here builds 
on two recent innovations that have been carried out for finite difference WENO on structured meshes (Balsara, Garain and 
Shu [14]). The first innovation consists of choosing a suitable expansion basis in which the reconstruction problem on 
each stencil becomes simpler. The second innovation consists of combining only one large and very high order stencil with 
several smaller third order stencils (which nevertheless preserve physical extrema). In this paper we show that the same 
two innovations extend to unstructured meshes. The upshot is that anyone with a third order CWENO-type scheme that 
has been implemented on unstructured meshes (Semplice et al. [59], Dumbser et al. [36,37], Cravero et al. [31]) should be 
able to extend their code to higher order of accuracy using the methods described here. In fact, many of the popular WENO 
approaches for unstructured meshes (for example, Friedrichs [38], Dumbser and Käser [34]) should also find our methods 
very useful. This extension can be made with minimal effort.

All WENO schemes find their origins in Essentially Non-Oscillatory (ENO) schemes which were formulated in finite 
volume form by Harten et al. [42] and later in finite difference form by Shu and Osher [60,61]. The method was based on 
analyzing multiple high order stencils in order to find the single unique one that was most likely to produce a reconstructed 
polynomial with the smallest variation in the reconstructed solution. The use of a single stencil was found to be numerically 
unstable since certain types of pathological initial conditions could be designed that yielded too rapid a switching between 
stencils from one zone to the next. This rapid switching of stencils resulted in a loss of accuracy. Liu, Osher and Chan 
[51] and Jiang and Shu [47] overcame this problem by designing a fifth order finite-difference Weighted Essentially Non-
Oscillatory (WENO) scheme for structured meshes. The same reconstruction strategy was extended up to eleventh order by 
Balsara and Shu [4] and nineteenth order by Gerolymos, Sénéchal and Vallet [39]; see also Aràndiga et al. [3]. The baseline 
finite difference WENO scheme has seen many improvements. A formulation of WENO that preserves accuracy at critical 
points was presented in Henrick, Aslam & Powers [43], Borges et al. [22] and Castro et al. [28]. Balsara et al. [7] and Balsara, 
Garain and Shu [14] showed that the smoothness indicators for all orders of finite-difference WENO could be written very 
compactly in terms of the sum of perfect squares. Don et al. [33] have shown the value of the above compactly-written 
smoothness indicators in preserving symmetry for numerical calculations. The finite volume WENO methods have also been 
adapted to handle complex geometry by Hu and Shu [44] and Liu and Zhang [54]. The WENO reconstruction philosophy has 
also shown itself to be very malleable for use in constraint-preserving reconstruction of vector fields, as is needed in mag-
netohydrodynamics or computational electrodynamics (Balsara [5–8], Balsara and Dumbser [13], Xu, Balsara and Du [70], 
Balsara et al. [16–18]). For a comprehensive review of WENO schemes, see Shu [62]. To see how WENO schemes fit into the 
range of available higher order schemes, see the review by Balsara [19]. Several authors, too many to be mentioned, have 
contributed to the development of WENO schemes. Amongst the other noteworthy contributions we mention (Barth and 
Frederickson [21], Abgrall [1], Tsoutsanis et al. [67], Zhang and Shu [71], Aboiyar et al. [2]).

The high accuracy that can be achieved by finite difference WENO schemes has shown its use in idealized studies of 
turbulence. Numerical studies of turbulence require careful attention to accuracy and phase errors (Lele [49], Tam and 
Webb [66]). Compact-WENO schemes have been designed to handle shocks and simultaneously increase the phase accuracy 
(Pirozzoli [58], Shen and Yang [63], Deng and Zhang [32], Hu et al. [46], Martin et al. [57], Johnsen et al. [48]). As simulations 
of turbulence move on to the treatment of complex geometry, the same advantages of high accuracy will be needed on 
unstructured meshes. One may, therefore, expect that the schemes presented here might be useful for the simulation of 
turbulent engineering flows in complex geometries.

The original finite-difference WENO schemes (Jiang and Shu [47], Balsara and Shu [14]) achieve their high order of ac-
curacy by using optimal weights that are upwind-biased. The use of large stencils in all circumstances, also makes those 
schemes not as robust as centrally-biased WENO schemes. Many of the more robust WENO schemes draw on the fundamen-
tal insight from Balsara and Shu [14] who found that the very higher order WENO schemes, because of their larger stencils, 
could be slightly unstable and, therefore, had to be stabilized with some monotonicity preserving process from smaller 
stencils. In that paper, the solution from the large, optimal, WENO stencil was non-linearly limited to lie within bounds 
provided by lower order monotonicity preserving polynomials derived from smaller stencils. The central WENO (CWENO) 
schemes (Cravero & Semplice [30]), which have also been extended to unstructured meshes by Semplice, Coco & Russo [59]
also derive their robustness from the inclusion of smaller stencils. However, please also see the very robust WENO-ZQ and 
WENO-AO schemes by Zhu and Qiu [72] and Balsara Garain and Shu [14] which have the same idea and appeared in the 
same timeframe. It is possible to view WENO schemes generally as ones that have: - i) optimal weights (Jiang and Shu [47], 
Balsara and Shu [4], Hu and Shu [44], Zhang and Shu [71], Zhu and Qiu [79,81], Zhang et al. [80]), ii) WENO schemes based 
on non-optimal linear weights and with a large, ENO-type total stencil (Friedrichs [38], Levy, Puppo and Russo [50], Käser 
and Iske [45]) and iii) WENO schemes based on non-optimal linear weights, but which at the same time have an optimally 
compact total stencil (Zhu and Qiu [72], Balsara Garain and Shu [14], Zhu and Qiu [73], Zhu et al. [74], Zhao et al. [75], 
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Cravero and Semplice [30], Dumbser et al. [36]). The latter two types of WENO schemes emphasize the central, and most 
stable, stencil over and above all the other stencils. Thus for smooth flow, the reconstruction strategy is designed to seek 
out the most accurate central stencil. For non-smooth flow, the smoothness indicators permit the reconstruction to pick out 
the smoothest one-sided stencil. Experience has shown that the third order CWENO scheme is extremely stable, rivaling 
the stability of TVD schemes. The third order CWENO schemes also preserve physical extrema if such extrema exist in the 
flow. It is, therefore, desirable to build the twin advantages of stability and ability to capture extrema into very high order 
schemes, as we shall discuss in the next paragraph.

In Balsara, Garain and Shu [14] we realized that we can make a non-linear hybridization between a large, centered, 
very high accuracy stencil and a third order WENO scheme that is nevertheless very stable and capable of capturing phys-
ically meaningful extrema. (In a previous work, Zhu and Qiu [72] had non-linearly hybridized a fifth order reconstruction 
polynomial with a Van Albada-like limiter to arrive at a scheme that is fifth order for smooth flow and second order TVD 
at discontinuities.) The advances in Zhu and Qiu [72] and Balsara, Garain and Shu [14] were made for finite difference 
WENO, yielding a class of adaptive order schemes that we call WENO-AO (for adaptive order). Thus, on a structured mesh, 
we arrived at a WENO-AO(5,3) scheme that is at best fifth order accurate by virtue of its centered stencil with five zones 
and is non-linearly hybridized with a blend of second degree polynomials. The process can be extended to arrive at a 
WENO-AO(7,3) scheme that is at best seventh order accurate by virtue of its centered stencil with seven zones and again 
non-linearly hybridized with a similar blend of second degree polynomials. In this paper we show how the same advances 
are transcribed to WENO schemes for unstructured meshes.

Please note that for unstructured meshes, there is no fundamental objection to having a WENO-AO(4,3) or WENO-
AO(5,4,3) scheme. However, when going from one order to the next higher order, we have to inflate the large stencil that 
we use. We have simply found it more economical to increase the order of the inflated large stencil in steps of two to arrive 
at WENO-AO(5,3) scheme schemes on unstructured meshes. As a result, the WENO-AO schemes designed here for unstruc-
tured meshes draw on the same two advances that made it possible to have WENO-AO schemes for structured meshes. 
First, we use a special basis set which is very easy to evaluate and which reduces the reconstruction of the solution on any 
given stencil to a least squares problem, instead of a constrained least squares problem. Instead of solving a constrained 
least squares problem, our method only requires the solution of a smaller least squares problem on each stencil. This also 
simplifies the matrix assembly and solution for each stencil. The evaluation of smoothness indicators is also simplified. 
Second, we use a non-linear hybridization of a very high order central stencil with a third order WENO scheme which is 
very stable. The large, centered, and very high accuracy stencil could keep local smooth extrema and lower accuracy stencils 
could keep essentially non-oscillatory property near strong discontinuities.

It is also worth noting that the CWENO methods suggested by Dumbser and Käser [34] tend to be very expensive because 
of the large number of characteristic projections that one has to carry out in directions that are orthogonal to all the faces 
of a given triangle or tetrahedron. For two dimensions, this entails three sets of characteristic projections for each of the 
zones that make up all of the stencils. For three dimensions, the number of characteristic projections increases to four. We 
find this to be prohibitively expensive for practical use. For that reason, we suggest the use of positivity considerations 
drawn from Balsara [11] to avoid the large number of characteristic projections. We find that when the reconstruction is 
based on non-linear hybridization and the need to retain positivity of density and pressure, the resulting scheme does not 
need characteristic projection. Instead, a reconstruction of the conserved variables is sufficient.

Section 2 describes the WENO reconstruction process as it has been extended to unstructured meshes using our current 
innovations. Section 3 describes the WENO-AO schemes at higher orders. Section 4 talks about simplifications that can be 
obtained on spherical meshes. Section 5 a brief synopsis of implementation-related details. Section 6 documents the order 
property for multidimensional test problems. Section 7 presents several stringent test problems. Section 8 draws some 
conclusions.

2. Third order WENO reconstruction on unstructured meshes

First we describe conventional, third order WENO reconstruction on an unstructured mesh. While the description in 
this section focuses on two-dimensions, it extends naturally to three dimensions. (Appendix A of this paper provides the 
details for three-dimensional WENO reconstruction.) The first purpose of this description is to show that when viewed in 
the Taylor basis that we present in this section, the third order WENO reconstruction even on unstructured meshes becomes 
very simple. The second purpose for this description stems from the fact that this WENO formulation will subsequently be 
used as a building block for the design of higher order WENO-AO schemes. We will use a central stencil and three forward 
sectorial stencils, as shown in Fig. 1. Notice that at third order, the number of degrees of freedom in 2D is given by Ndof = 5. 
As a result, our central stencil in Fig. 1b has ∼ 2Ndof zones; and our one-sided stencils in Figs. 1c, 1d and 1e have ≥ 1.5Ndof
zones. This is in keeping with the suggestion from Dumbser and Käser [34] who find that the least squares minimization 
requires an overdetermined linear system, and that the system should be overdetermined by a certain small multiplicative 
factor. (Fig. 1a will be used in a later discussion.) A non-linear hybridization will eventually be made with the central stencil 
having a much larger linear weight and the three one-sided forward sectorial stencils having a much smaller linear weights.

Our choice of basis is inspired by the moments of inertia that are used in physics and engineering mechanics to describe 
the motion of rigid bodies. In those foundational subjects one learns that it is possible to develop a moment of inertia 
about a centroidal point of a solid body. Then the moment of inertia about any other point is given by that same moment 
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(a) (b) (c)

(d) (e)

Fig. 1. Shows the five stencils that are used for fifth order WENO-AO on a two-dimensional unstructured mesh. The target zone in which the reconstruction 
is desired in shown in black. Fig. 1a shows the large central fifth order stencil. Fig. 1b shows the smaller central third order stencil. Figs. 1c, 1d and 1e 
show the smaller forward sectorial stencils at third order which are one-sided relative to the vertices of the target zone. Figs. 1b, 1c, 1d and 1e can also be 
used by themselves for a third order WENO reconstruction.

Fig. 2. Shows a stencil associated with the (green) zone “0” in thin lines. We consider the process of assembling one row of the least squares matrix for 
this stencil. The row concerns the (yellow) zone “ j” in the stencil. The local coordinates for zone “0” are shown as (x, y) and the local coordinates for zone 
“ j” are shown as (ξ, η). The centroids (center of masses) of the two zones are shown as heavy dots; the relative separation between the centroids is shown 
by the red vector. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

about the centroid plus the mass of the body times the square of the distance to the centroid. (In classical mechanics, this 
is known as the Parallel Axis Theorem or the Huygens-Steiner Theorem, see Haas [41] or Goldstein et al. [40] for instance. 
Note though that in this paper we make a significant extension of the theorem without which it would not be useful for 
computational work.) The same simple idea is generalized in this paper to arrive at a favorable basis set that is based on 
the moments of inertia for each zone of the mesh. Only the first basis function has a non-zero mean value and corresponds 
to the zone-averaged conserved variable in the zone. The rest of the higher basis functions have zero mean when integrated 
over the element of interest. Such a basis is sometimes referred to as a Taylor basis (Luo et al. [53]). At third and higher 
orders it becomes easy to see the benefits of using the Taylor basis in conjunction with our generalization of the Parallel 
Axis Theorem, which is why this section introduces the idea at third order.
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Consider the stencil that is shown in Fig. 2. It pertains to zone “0”. We wish to reconstruct the moments in zone “0” 
using the other zones in the stencil. Let us consider the zone “ j” which is within the shown stencil for zone “0”. Let 
(x, y) be the local coordinate system located at zone “0”. In other words, we locate the origin of our coordinate system 
at the centroid of zone “0”. Let (ξ, η) be the local coordinate system for zone “ j” whose centroid is located at a position 
x j x̂ + y j ŷ relative to the zone “0”. The displacement vector from zone “0” to zone “ j” is shown by the red arrow in Fig. 2. 
Consequently, we can relate the coordinates within the two zones by the equations x = x j + ξ and y = y j + η. For the zone 
“0” we would like to make the third order reconstruction that looks like

u0(x, y) = ū0 + ū0
x x+ ū0

y y + ū0
xx

(
x2 − C̄0

xx

)+ ū0
yy

(
y2 − C̄0

yy

)+ ū0
xy

(
xy − C̄0

xy

)
(2.1)

Here ū0 is the mean value of the conserved variable in zone “0” and is held fixed; the other moments of the conserved 
variables have to be reconstructed or evolved with limiting depending on the scheme used. The mesh (x, y) is located at the 
centroid of zone “0” with the result that the first geometric moments are zero. The second (and higher) geometric/physical 
moments, C̄0

xx , C̄0
yy and C̄0

xy for zone “0” can be obtained from

C̄0
xx = 1

|�0|
¨

�0

x2 dxdy; C̄0
yy = 1

|�0|
¨

�0

y2 dxdy; C̄0
xy = 1

|�0|
¨

�0

xy dxdy; with |�0| ≡
¨

�0

dxdy (2.2)

For the zone “ j”, in principle, the analogous reconstruction would look like

u j(ξ,η) = ū j + ū j
xξ + ū j

yη + ū j
xx
(
ξ2 − C̄ j

xx
)+ ū j

yy
(
η2 − C̄ j

yy
)+ ū j

xy
(
ξη − C̄ j

xy
)

(2.3)

The second (and higher) geometric moments, C̄ j
xx , C̄

j
yy and C̄ j

xy for zone “ j” can be obtained as

C̄ j
xx = 1

|� j|
¨

� j

ξ2 dξ dη; C̄ j
yy = 1

|� j|
¨

� j

η2 dξ dη; C̄ j
xy = 1

|� j|
¨

� j

ξηdξ dη; where |� j| ≡
¨

� j

dξ dη

(2.4)

The geometric moments, C̄ j
xx , C̄

j
yy and C̄ j

xy , in zone “ j” will play an important role in the efficient reconstruction of the 
conserved variables in zone “0”. Later on, we will see that the fluid moments ū j

x , ū
j
y , ū

j
xx , ū

j
yy and ū j

xy will not be needed 
when making finite volume WENO reconstruction in zone “0”. Similarly, even though this is not the goal of this paper, if 
we are perhaps making P1PN reconstruction, we will see that the moments ū j

xx , ū
j
yy and ū j

xy will not be needed when 
reconstructing the quadratic terms in eqn. (2.1).

Eqns. (2.1) and (2.3), despite their utility as intermediate equations, will not be used directly in a computer implemen-
tation. The two good reasons for this decision are as follows:

1) In general we may have zones of vastly different sizes close to one another. This happens quite frequently on an 
unstructured mesh. This unfavorable juxtaposition of zone sizes can sometimes result in poorly conditioned matrices.

2) We want to obtain as much concordance as we can to the structured mesh WENO, where we know and understand 
how to seamlessly construct smoothness indicators. The weight of experience, derived from structured meshes, is that 
it helps to regularize each zone to be a unit interval. We would like to do the same for unstructured meshes because it 
will help us in defining smoothness indicators.

Let us, therefore, take steps to overcome these two deficiencies from the very onset. Let zone “0” have a characteristic length 
l0 as shown in the figure and let zone “ j” have a characteristic length l j as shown in Fig. 2. We can then rewrite eqn. (2.1)
in zone “0” using coordinates that are scaled by the length l0 as

u0(x, y) = ū0 + u0
x

(
x

l0

)
+ u0

y

(
y

l0

)
+ u0

xx

[(
x

l0

)2

− C0
xx

]
+ u0

yy

[(
y

l0

)2

− C0
yy

]
+ u0

xy

[(
x

l0

)(
y

l0

)
− C0

xy

]
(2.5)

We can analogously write eqn. (2.3) for the zone “ j” using coordinates that are scaled by the length l j as

u j(ξ,η) = ū j + u j
x

(
ξ

l j

)
+ u j

y

(
η

l j

)
+ u j

xx

[(
ξ

l j

)2

− C j
xx

]
+ u j

yy

[(
η

l j

)2

− C j
yy

]
+ u j

xy

[(
ξ

l j

)(
η

l j

)
− C j

xy

]
(2.6)

Taking eqns. (2.5) and (2.6) as an examples, we have the following rescaling of the modes and the geometrical moments

u0
x = ū0

xl0; u0
y = ū0

yl0; u0
xx = ū0

xxl
2
0; u0

yy = ū0
yyl

2
0; u0

xy = ū0
xyl

2
0;

u j
x = ū j

xl j; u j
y = ū j

yl j; u j
xx = ū j

xxl
2
j ; u j

yy = ū j
yyl

2
j ; u j

xy = ū j
xyl

2
j ;

C0
xx = C̄0

xx

l2
; C0

yy = C̄0
yy

l2
; C0

xy = C̄0
xy

l2
; C j

xx = C̄ j
xx

l2
; C j

yy = C̄ j
yy

l2
; C j

xy = C̄ j
xy

l2

(2.7)
0 0 0 j j j
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Eqns. (2.5) and (2.6), along with the rescaling in eqn. (2.7), are in a format that is suitable for computer usage. However, 
please note that eqns. (2.1) and (2.3) are very useful for deriving the mathematical relations. In other words, eqns. (2.1)
to (2.4) and (2.7) are essential in helping to define the moments and showing the reader the steps that go into the exact 
evaluation and rescaling of those moments. However, in most codes this definition and rescaling of the moments only needs 
to be carried out and stored only once. After than is done, the reconstruction relies on the scaled equations given by eqns. 
(2.5) and (2.6). The only exception would be Lagrangian or ALE type codes where the mesh topology keeps changing every 
timestep; where the moments would need to be regenerated at every timestep.

The stencil shown in Fig. 2 has eight zones other than the zone “0”. As a result, we will obtain a least squares matrix 
with eight rows for this particular stencil; furthermore, the matrix will have Ndof = 5 number of columns. Let us focus 
on specifying how each row of that least squares matrix is constructed. Each zone “ j” in the stencil shown in Fig. 2 will 
provide one row for the least squares matrix. In constructing any row of the least squares matrix (for the stencil shown in 
Fig. 2), we will have to assert the following requirement

ū j = 1

|� j|
¨

� j

u0(x, y)dxdy (2.8)

By making the coordinate transformation

ξ = x− x j; η = y − y j (2.9)

we can write eqn. (2.8) in terms of the local coordinates associated with zone “ j” as follows

ū j = 1

|� j|
¨

� j

u0(ξ + x j, η + y j)dξ dη (2.10)

Consequently, we can write

u0(ξ + x j, η + y j) = ū0 + ū0
x(ξ + x j) + ū0

y(η + y j) + ū0
xx

[
(ξ + x j)

2 − C̄0
xx

]
+ ū0

yy

[
(η + y j)

2 − C̄0
yy

]+ ū0
xy

[
(ξ + x j)(η + y j) − C̄0

xy

] (2.11)

This is where the idea of shifting the physical moments, drawn from classical mechanics and the Parallel Axis Theorem, 
becomes very useful. We illustrate it explicitly for the following integral¨

� j

[
(ξ + x j)

2 − C̄0
xx

]
dξ dη =

¨

� j

[
x2j − C̄0

xx + 2x jξ + ξ2]dξdη = |� j|
[
x2j − C̄0

xx

]+ |� j|C̄ j
xx

= |� j|l20
{[(

x j

l0

)2

− C0
xx

]
+
(
l j
l0

)2

C j
xx

} (2.12)

Analogously to eqn. (2.12), we can write the remaining two integrals without providing intermediate steps as follows
¨

� j

[
(η + y j)

2 − C̄0
yy

]
dξ dη = |� j|l20

{[(
y j

l0

)2

− C0
yy

]
+
(
l j
l0

)2

C j
yy

}
(2.13)

and
¨

� j

[
(ξ + x j)(η + y j) − C̄0

xy

]
dξ dη = |� j|l20

{[(
x j

l0

)(
y j

l0

)
− C0

xy

]
+
(
l j
l0

)2

C j
xy

}
(2.14)

The above three equations show how the integrals in eqn. (2.10) are quickly and easily evaluated. The simplicity in the 
evaluation is a direct byproduct of our generalization of the Parallel Axis Theorem.

We now wish to assemble the desired row of the least squares matrix associated with Fig. 2. The row of the least squares 
matrix that corresponds to triangle “ j” is then given by

u0
x

[(
x j

l0

)]
+ u0

y

[(
y j

l0

)]
+ u0

xx

[(
x j

l0

)2

− C0
xx +

(
l j
l0

)2

C j
xx

]

+ u0
yy

[(
y j

l0

)2

− C0
yy +

(
l j
l0

)2

C j
yy

]
+ u0

xy

[(
x j

l0

)(
y j

l0

)
− C0

xy +
(
l j
l0

)2

C j
xy

]
= ū j − ū0

(2.15)

Such an equation is very easy to evaluate/assemble and can be asserted for each of the eight zones in the stencil shown in 
Fig. 2. Doing this for each of the elements in Fig. 2 enables us to assemble the entire least squares matrix. The right hand 
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side of eqn. (2.15) gives us one of the elements of the right hand side vector for the least squares system. Please realize that 
all the physical moments in eqn. (2.15) are evaluated only once at the beginning of the simulation and are stored at each 
of the zones. As a result, the assembly of the coefficients in eqn. (2.15) is nearly automatic. Each zone stores a list of zones 
that participate in each of its four, third-order stencils, shown in Fig. 1. In [59] a similar transcription from constrained 
least squares to unconstrained least squares was shown for structured meshes; however, this paper shows that achieving 
analogous transcription for unstructured meshes is substantially more complicated.

For the above formula to work, however, please note that the geometrical moments for any zone have to be constructed 
relative to the centroid of that zone. Of course, the geometrical moments should be constructed with third or better order 
of accuracy using suitably accurate quadrature points. It is also important to realize that the method does not distinguish 
between element shape; the elements can be triangles or tetrahedra or polygons in 2D; or the elements can be tetrahedra or 
hexahedra or polyhedra in 3D. Furthermore, as long as suitably accurate quadrature is used, the elements can have curved 
sides or even curved surfaces in 3D. This highlights the incredible utility and flexibility of the method proposed here. As 
long as the physical moments are accurately evaluated and stored for each zone, the entire reconstruction takes place in 
physical space. In an ALE calculation, where the vertices of the mesh can move, one has of course to evaluate the moments 
at every timestep. But in all other circumstances, the moments should only be evaluated and stored once and reused in 
subsequent timesteps.

Now that we have the modes of the reconstruction for each of the four stencils of interest, we can define smoothness 
indicators for all the stencils. The smoothness indicator for each stencil is given by

β = (u0
x

)2 + (u0
y

)2 + (u0
xx

)2 + (u0
yy

)2 + (u0
xy

)2
(2.16)

The above definition of the smoothness indicators, because it is correctly scaled for zone size (see eqn. (2.17)) retains the 
spirit of the smoothness indicators in Jiang and Shu [47] and, of course, our simplified smoothness indicators have the 
advantage that they are easier to evaluate. Our practical experience is that they work very well because of the suitable 
scaling; however, other choices of scaling can always be made. Notice that if we refer to the stencil in Fig. 1b as stencil 
number 1 and if we refer to the other three one-sided stencils in Figs. 1c, 1d and 1e as stencils number 2, 3 and 4 then we 
have four smoothness indicators β1, β2, β3 and β4. We can then write the non-linear weights as

w1 = γC

(β1 + ε)s
; w2 = 1

(β2 + ε)s
; w3 = 1

(β3 + ε)s
; w4 = 1

(β4 + ε)s
(2.17)

We then obtain the normalized non-linear weights as

w̄1 = w1

w1 + w2 + w3 + w4
;

w̄2 = w2

w1 + w2 + w3 + w4
; w̄3 = w3

w1 + w2 + w3 + w4
; w̄4 = w4

w1 + w2 + w3 + w4

(2.18)

Following Dumbser and Käser [34] we choose s = 4, ε = 10−12 and γC ∈ [50, 400]. The modes from the different stencils 
can be non-linearly hybridized using the normalized non-linear weights in eqn. (2.18). Therefore, let Rp2;1(x, y) denote 
the two-dimensional reconstructed polynomial associated with the central stencil; it will have a quadratic form analogous 
to eqn. (2.5). Let Rp2;2(x, y), Rp2;3(x, y) and Rp2;4(x, y) denote the two-dimensional reconstructed polynomials associated 
with the three one-sided stencils; they too will have a quadratic form analogous to eqn. (2.5). The superscript “p2” in the 
above nomenclature for the reconstructed polynomials indicates that the polynomials are quadratic in their variation. The 
final, non-linearly hybridized WENO reconstruction at third order is given by

RW ENO (x, y) = w̄1R
p2;1(x, y) + w̄2R

p2;2(x, y) + w̄3R
p2;3(x, y) + w̄4R

p2;4(x, y) (2.19)

This completes our description of the third order WENO reconstruction for unstructured meshes. The extension to 3D 
meshes is transparent. The method can be combined with a third order evaluation of the fluxes at the zone boundaries 
using any suitable Riemann solver. Each stage in the update can be combined with an SSP-RK strategy for achieving high 
order of temporal accuracy to achieve a scheme that is third order accurate in space and time.

3. Higher order WENO-AO reconstruction on unstructured meshes

The previous section showed us how the geometric/physical moments can be used to obtain a WENO reconstruction 
strategy that only uses least squares minimization rather than constrained least squares minimization. We also showed how 
it simplifies the definition of the smoothness indicators. The WENO reconstruction in the previous section was restricted to 
third order of accuracy. In this section we show that the process extends to fourth and fifth orders of accuracy.

This section is split into three sub-sections. Sub-section 3.1 shows how the previous procedure can be extended to the 
reconstruction of a fourth order central stencil. Sub-section 3.2 provides some further helpful details for fifth order accurate 
reconstruction of a central stencil. Sub-section 3.3 shows how WENO-AO schemes can be formulated using the mathematics 
that we develop in this section.
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3.1. Fourth order central stencil reconstruction for unstructured meshes

At fourth order, the analogue of eqn. (2.1) becomes

u0(x, y) = ū0 + ū0
x x+ ū0

y y + ū0
xx

(
x2 − C̄0

xx

)+ ū0
yy

(
y2 − C̄0

yy

)+ ū0
xy

(
xy − C̄0

xy

)
+ ū0

xxx

(
x3 − C̄0

xxx

)+ ū0
yyy

(
y3 − C̄0

yyy

)+ ū0
xxy

(
x2 y − C̄0

xxy

)+ ū0
xyy

(
xy2 − C̄0

xyy

) (3.1)

Just like eqn. (2.2) we define

C̄0
xxx = 1

|�0|
¨

�0

x3 dxdy; C̄0
yyy = 1

|�0|
¨

�0

y3 dxdy; C̄0
xxy = 1

|�0|
¨

�0

x2 y dxdy; C̄0
xyy = 1

|�0|
¨

�0

xy2 dxdy

(3.2)

Note though that while the integrals in eqn. (2.2) could be evaluated with third order accuracy for third order accurate 
WENO, the fourth order WENO requires more accuracy. Consequently, for fourth order WENO, the integrals in eqns. (3.2)
as well as (2.2) have to be evaluated with fourth order accuracy. Furthermore, if the element has curved faces, the centroid 
might have to be evaluated numerically. In that case, the centroid evaluation should also be done with fourth or higher 
order accuracy. For the sake of brevity, we will not repeat analogous information for eqns. (2.3) and (2.4).

For a computer implementation we will need the analogue of eqn. (2.5) which is given as

u0(x, y) = ū0 + u0
x

(
x

l0

)
+ u0

y

(
y

l0

)
+ u0

xx

[(
x

l0

)2

− C0
xx

]
+ u0

yy

[(
y

l0

)2

− C0
yy

]
+ u0

xy

[(
x

l0

)(
y

l0

)
− C0

xy

]

+ u0
xxx

[(
x

l0

)3

− C0
xxx

]
+ u0

yyy

[(
y

l0

)3

− C0
yyy

]
+ u0

xxy

[(
x

l0

)2( y

l0

)
− C0

xxy

]

+ u0
xyy

[(
x

l0

)(
y

l0

)2

− C0
xyy

]
(3.3)

In addition to the rescaling in eqn. (2.7), we also have

u0
xxx = ū0

xxxl
3
0; u0

yyy = ū0
yyyl

3
0; u0

xxy = ū0
xxyl

3
0; u0

xyy = ū0
xyyl

3
0;

C0
xxx = C̄0

xxx

l30
; C0

yyy = C̄0
yyy

l30
; C0

xxy = C̄0
xxy

l30
; C0

xyy = C̄0
xyy

l30

(3.4)

Analogous to eqns. (2.12), (2.13) and (2.14), at fourth order we have
¨

� j

[
(ξ + x j)

3 − C̄0
xxx

]
dξ dη = |� j|l30

{[(
x j

l0

)3

− C0
xxx

]
+ 3

(
x j

l0

)(
l j
l0

)2

C j
xx +

(
l j
l0

)3

C j
xxx

}
(3.5)

and
¨

� j

[
(η + y j)

3 − C̄0
yyy

]
dξ dη = |� j|l30

{[(
y j

l0

)3

− C0
yyy

]
+ 3

(
y j

l0

)(
l j
l0

)2

C j
yy +

(
l j
l0

)3

C j
yyy

}
(3.6)

and ¨

� j

[
(ξ + x j)

2(η + y j) − C̄0
xxy

]
dξ dη

= |� j|l20
{[(

x j

l0

)2( y j

l0

)
− C0

xxy

]
+
(
y j

l0

)(
l j
l0

)2

C j
xx + 2

(
x j

l0

)(
l j
l0

)2

C j
xy +

(
l j
l0

)3

C j
xxy

} (3.7)

and ¨

� j

[
(ξ + x j)(η + y j)

2 − C̄0
xyy

]
dξ dη

= |� j|l20
{[(

x j
)(

y j
)2

− C0
xyy

]
+
(
x j
)(

l j
)2

C j
yy + 2

(
y j
)(

l j
)2

C j
xy +

(
l j
)3

C j
xyy

} (3.8)
l0 l0 l0 l0 l0 l0 l0
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Finally, we can write the analogue of eqn. (3.16) as

u0
x

[(
x j

l0

)]
+ u0

y

[(
y j

l0

)]
+ u0

xx

[(
x j

l0

)2

− C0
xx +

(
l j
l0

)2

C j
xx

]

+ u0
yy

[(
y j

l0

)2

− C0
yy +

(
l j
l0

)2

C j
yy

]
+ u0

xy

[(
x j

l0

)(
y j

l0

)
− C0

xy +
(
l j
l0

)2

C j
xy

]

+ u0
xxx

[(
x j

l0

)3

− C0
xxx + 3

(
x j

l0

)(
l j
l0

)2

C j
xx +

(
l j
l0

)3

C j
xxx

]

+ u0
yyy

[(
y j

l0

)3

− C0
yyy + 3

(
y j

l0

)(
l j
l0

)2

C j
yy +

(
l j
l0

)3

C j
yyy

]

+ u0
xxy

[(
x j

l0

)2( y j

l0

)
− C0

xxy +
(
y j

l0

)(
l j
l0

)2

C j
xx + 2

(
x j

l0

)(
l j
l0

)2

C j
xy +

(
l j
l0

)3

C j
xxy

]

+ u0
xyy

[(
x j

l0

)(
y j

l0

)2

− C0
xyy +

(
x j

l0

)(
l j
l0

)2

C j
yy + 2

(
y j

l0

)(
l j
l0

)2

C j
xy +

(
l j
l0

)3

C j
xyy

]
= ū j − ū0

(3.9)

The above equation gives us an explicit expression for one of the rows of the least squares matrix. The right hand side of 
eqn. (3.9) gives us one of the elements of the right hand side vector for the least squares system. For each different element 
in the stencil, we will get one more such row. This shows us how the least squares matrix is to be assembled. If sufficient 
memory is available in the computer, one can assemble the least squares matrix once and for all at the beginning of the 
computation for all the stencils that are to be used and for all the zones of the mesh. We realize, however, that this might 
be memory-intensive. (It is worth mentioning that the three-dimensional analogues of eqns. (3.5) to (3.8) have been given 
in Appendix A of this paper.)

Let Rp3;0(x, y) denote the two-dimensional reconstructed polynomial associated with the large fourth order accurate 
central stencil described in this Sub-section. It will have a cubic form analogous to eqn. (3.3). Extending the smoothness 
indicator definition from eqn. (2.16) to the present section, we can write the smoothness indicator for the large central 
stencil as

β0 = (u0
x

)2 + (u0
y

)2 + (u0
xx

)2 + (u0
yy

)2 + (u0
xy

)2 + (u0
xxx

)2 + (u0
yyy

)2 + (u0
xxy

)2 + (u0
xyy

)2
(3.10)

In Sub-section 3.3 we will show how a large, high order stencil can be non-linearly hybridized with smaller third order 
stencils from Section 2.

3.2. Fifth order central stencil reconstruction for unstructured meshes

Once the third and fourth order reconstruction strategies are described, the extension to all higher orders becomes rather 
transparent. Consequently, we do not present a lot of detail for the fifth order case. We only describe the parts that are 
somewhat difficult. The analogue of eqn. (3.3) now becomes

u0(x, y) = ū0 + u0
x

(
x

l0

)
+ u0

y

(
y

l0

)
+ u0

xx

[(
x

l0

)2

− C0
xx

]
+ u0

yy

[(
y

l0

)2

− C0
yy

]
+ u0

xy

[(
x

l0

)(
y

l0

)
− C0

xy

]

+ u0
xxx

[(
x

l0

)3

− C0
xxx

]
+ u0

yyy

[(
y

l0

)3

− C0
yyy

]
+ u0

xxy

[(
x

l0

)2( y

l0

)
− C0

xxy

]

+ u0
xyy

[(
x

l0

)(
y

l0
− C0

xyy

)]
+ u0

xxxx

[(
x

l0

)4

− C0
xxxx

]

+ u0
yyyy

[(
y

l0

)4

− C0
yyyy

]
+ u0

xxxy

[(
x

l0

)3( y

l0

)
− C0

xxxy

]
+ u0

xyyy

[(
x

l0

)(
y

l0

)3

− C0
xyyy

]

+ u0
xxyy

[(
x

l0

)2( y

l0

)2

− C0
xxyy

]

(3.11)

For the fifth order reconstruction, all the physical moments in eqn. (3.11) have to be evaluated with fifth or higher order 
accurate quadrature.

The only difficult part is the evaluation of the integrals. Analogous to eqns. (2.12), (2.13) and (2.14), and also analogous 
to eqns. (3.5), (3.6), (3.7) and (3.8), at fifth order we have
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¨

� j

[
(ξ + x j)

4 − C̄0
xxxx

]
dξ dη

= |� j|l30
{[(

x j

l0

)4

− C0
xxxx

]
+ 6

(
x j

l0

)2( l j
l0

)2

C j
xx + 4

(
x j

l0

)(
l j
l0

)3

C j
xxx +

(
l j
l0

)4

C j
xxxx

} (3.12)

and ¨

� j

[
(η + y j)

4 − C̄0
yyyy

]
dξ dη

= |� j|l30
{[(

y j

l0

)4

− C0
yyyy

]
+ 6

(
y j

l0

)2( l j
l0

)2

C j
yy + 4

(
y j

l0

)(
l j
l0

)3

C j
yyy +

(
l j
l0

)4

C j
yyyy

} (3.13)

and ¨

� j

[
(ξ + x j)

3(η + y j) − C̄0
xxxy

]
dξ dη

= |� j|l30

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(
x j

l0

)3( y j

l0

)
− C0

xxxy

]
+ 3

(
x j

l0

)(
y j

l0

)(
l j
l0

)2

C j
xx + 3

(
x j

l0

)2( l j
l0

)2

C j
xy

+
(
y j

l0

)(
l j
l0

)3

C j
xxx + 3

(
x j

l0

)(
l j
l0

)3

C j
xxy +

(
l j
l0

)4

C j
xxxy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

and ¨

� j

[
(ξ + x j)(η + y j)

3 − C̄0
xyyy

]
dξ dη

= |� j|l30

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(
x j

l0

)(
y j

l0

)3

− C0
xyyy

]
+ 3

(
x j

l0

)(
y j

l0

)(
l j
l0

)2

C j
yy + 3

(
y j

l0

)2( l j
l0

)2

C j
xy

+
(
x j

l0

)(
l j
l0

)3

C j
yyy + 3

(
y j

l0

)(
l j
l0

)3

C j
xyy +

(
l j
l0

)4

C j
xyyy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.15)

and ¨

� j

[
(ξ + x j)

2(η + y j)
2 − C̄0

xxyy

]
dξ dη

= |� j|l30

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(
x j

l0

)2( y j

l0

)2

− C0
xxyy

]
+
(
y j

l0

)2( l j
l0

)2

C j
xx +

(
x j

l0

)2( l j
l0

)2

C j
yy

+ 4

(
x j

l0

)(
y j

l0

)(
l j
l0

)2

C j
xy + 2

(
y j

l0

)(
l j
l0

)3

C j
xxy + 2

(
x j

l0

)(
l j
l0

)3

C j
xyy +

(
l j
l0

)4

C j
xxyy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16)

The above five equations make it very easy to assemble the rows in the least squares matrix for fifth order accurate 
reconstruction when it is applied to the central stencil. Fig. 1a shows a representative the fifth order accurate central stencil 
in two dimensions. Fig. 1a helps us to appreciate that the fifth order WENO-AO will only require us to include one further 
stencil in addition to the four third order stencils shown in Figs. 1b, 1c, 1d and 1e. As a result, the fifth order WENO-AO 
formulation is not substantially more expensive as compared to the third order formulation.

Let Rp4;0(x, y) denote the two-dimensional reconstructed polynomial associated with the large fifth order accurate cen-
tral stencil described in this Sub-section. It will have a quartic form analogous to eqn. (3.11). Extending the smoothness 
indicator definition from eqn. (3.10) to the present section, we can write the smoothness indicator for the large central 
stencil as

β0 = (u0
x

)2 + (u0
y

)2 + (u0
xx

)2 + (u0
yy

)2 + (u0
xy

)2 + (u0
xxx

)2 + (u0
yyy

)2 + (u0
xxy

)2 + (u0
xyy

)2
+ (u0

xxxx

)2 + (u0
yyyy

)2 + (u0
xxxy

)2 + (u0
xyyy

)2 + (u0
xxyy

)2 (3.17)

In Sub-section 3.3 we will show how a large, high order stencil can be non-linearly hybridized with smaller third order 
stencils from Section 2.
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3.3. Assembling WENO-AO schemes

The details of this non-linear hybridization for WENO-AO(5,3) will be described in the next paragraph. However, it is 
very important to mention that the intuitive underpinnings of this method derive from the recent, and very nice, paper by 
Zhu and Qiu [72], who hybridized the fifth order central stencil and a Van Albada-type of limiter on a structured mesh. 
The Van Albada limiter is a TVD-class limiter which can clip extrema. For that reason, it is more advisable to nonlinearly 
hybridize the scheme with a suitable third order CWENO scheme as was done by Balsara, Garain and Shu [14] also for 
structured meshes; see also [72]. Our goal in this section is to extend WENO-AO(5,3) to unstructured meshes.

Now let us focus on a detailed description of WENO-AO(5,3). This description is important because we will later on show 
that it can also open the door to other families of WENO-AO schemes. The method is described by two parameters, γHi

and γLo , both of which are always positive and less than unity. The linear weight for the large (fifth order) central stencil is 
denoted by γ0; the linear weight for the smaller (third order) central stencil is denoted by γ1; and the linear weights of the 
three one-sided (third order) stencils are denoted by γ2, γ3 and γ4. The construction of the fifth order stencil is described 
in Sub-section 3.2 and the construction of the smaller third order stencils is described in Section 2. The linear weights are 
given by

γ0 = γHi; γ1 = (1 − γHi)γLo; γ2 = γ3 = γ4 = (1− γHi)(1 − γLo)/3 (3.18)

Notice that the third order central stencil should carry a higher linear weight than the other three one-sided third order 
stencils because this helps to make the third order WENO centrally biased on the unstructured mesh. Also notice that 
γ1 + γ2 + γ3 + γ4 = 1 − γHi . Typically, we set γHi ∈ [0.75, 0.95] and γLo ∈ [0.75, 0.95]. These numbers themselves give us a 
glimpse of what is afoot. When a suitable comparison of the smoothness indicators shows that the large fifth order central 
stencil is smooth we want most (or all) of our reconstruction to come from the large central stencil. However, when a 
suitable comparison of the smoothness indicators shows that the large central stencil is non-smooth, we want most (or all) 
of our reconstruction to be weighted towards our very stable, third order accurate, extrema-preserving WENO reconstruction 
from Section 2. In the next paragraph we describe the construction of the non-linear weights. In the paragraph after that, 
we describe the assembly of the non-linearly hybridized higher order reconstruction.

We now describe the process of obtaining the non-linear weights for WENO-AO(5,3) reconstruction. To avoid loss of 
order at inflection points we use the smoothness indicators to define

τ = 1

4

(|β0 − β1| + |β0 − β2| + |β0 − β3| + |β0 − β4|
)

(3.19)

Recall that β0 was defined in eqn. (3.17) whereas β1 through β4 were documented in the narrative that follows eqn. (2.16). 
Using the smoothness indicators again, and following Borges et al. [22], we can obtain the un-normalized weights using the 
WENO-Z option as

wi = γi
(
1+ τ 2/(βi + ε)2

)
for i = 0, . . . ,4 (3.20a)

If the solution is not dominated by inflection points, it may even be acceptable to use the original WENO strategy for 
obtaining the un-normalized weights given by

wi = γi/(βi + ε)p for i = 0, . . . ,4 (3.20b)

Here p = 2 or p = 4 are traditionally used; and ε is a very tiny number, typically ε ∼ 10−12. We have found eqn. (3.20b) to 
be a more stable option while eqn. (3.20a) is a more accurate option. In practice, we have used eqn. (3.20a) in this paper. 
The normalized weights are given by

w̄i = wi

/( 4∑
k=0

wk

)
for i = 0, . . . ,4 (3.21)

In principle, the WENO-Z option from eqn. (3.20a) is slightly better at inflection points, but the other choice from eqn. 
(3.20b) is also very popular. So we have documented both options. This completes the description of the normalized, non-
linear weights for WENO-AO(5,3). The same strategy also works for WENO-AO(4,3).

Say we denote the reconstructed polynomial from WENO-AO(5,3) as RAO(5,3)(x, y). Our task in this paragraph is to de-
scribe the construction of the order-preserving, non-linearly hybridized, fifth order polynomial RAO(5,3)(x, y). The non-linear 
weights should be combined in such a way that when all the smoothness indicators seem to have almost similar values 
then only the higher order scheme is obtained. Such a combination strategy was demonstrated in Balsara, Garain and Shu 
[14] for non-linearly hybridizing a fifth order polynomial with three quadratic polynomials for structured meshes. A similar 
idea can be used to make a non-linear hybridization between the fifth order polynomial associated with the central stencil 
from Sub-section 3.2 and the four third order polynomials from Section 2. The latter four stencils are associated with the 
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Fig. 3. Shows three successive zones in the radial direction. It also shows their radial extent as well as the arc length associated with each of them. The 
ratio of the arc length to the radial extent for each zone should remain the same if the zones are all to be similar to one another. When such a similarity 
prevails, the reconstruction matrices from one radial zone to the next will be identical.

third order WENO reconstruction described in eqn. (2.19). Realize, therefore, that when the five smoothness measures asso-
ciated with these five stencils have closely similar values, we have w̄i → γi for i = 1, . . . , 3. We then require that when the 
limits specified by the previous sentence are attained, we have RAO(5,3)(x, y) → Rp4;0(x, y). This is achieved by the following 
definition

RAO(5,3)(x, y) = w̄0

γ0

(
Rp4;0(x, y) −

(
4∑

k=1

γkR
p2;k(x, y)

))
+
(

4∑
k=1

w̄kR
p2;k(x, y)

)
(3.22)

Notice that in the limit where the smoothness indicators for all the stencils have closely similar values, we do have 
RAO(5,3)(x, y) → Rp4;0(x, y). In the limit where the larger stencil has a very non-smooth solution, we have w̄0 � w̄i for 
i = 1, . . . , 4. This ensures that the smoothest of the third order WENO stencils will be sought out by the reconstruction 
polynomial. Notice that the non-linear hybridization that we sought at the beginning of this paragraph has been found via 
eqn. (3.22).

The interested reader may always ask why we choose the WENO with second degree polynomial stencils as being ef-
fectively the fully stable one? It is always possible to claim that for problems involving interacting shocks, all the stencils 
with second degree polynomials might contain shocks. In such a situation, a purist might always insist that one should 
drop down to smaller stencils with perhaps linear polynomials. It is worth pointing out that practical experience on struc-
tured and unstructured meshes (Balsara, Garain and Shu [14], Dumbser and Käser [34]) has shown that with appropriate 
non-linear hybridization the stencils with second degree polynomials perform very well even in the vicinity of interacting 
shocks. Please see Fig. 5 from Balsara, Garain and Shu [14], which illustrates this point for a problem with interacting strong 
shocks.

4. Simplification of the algorithm on spherical (or self-similar) meshes

For spherical meshes (or for cylindrical meshes) a particularly efficient WENO strategy presents itself. The strategy is so 
efficient that it allows an entire row of zones on in the mesh to be processed by making only one inversion of the least 
squares matrix for each stencil. For all such spherical meshes, whether they use logically Cartesian (r, θ, φ) coordinates, or 
whether they use some geodesic-based tessellation of the sphere, there is a strong desire to concentrate zones in a ratioed 
fashion at the boundary of the sphere. In all such circumstances, as long as the mesh ratioing is done in a geometric fashion, 
it is possible to utilize self-similarity to dramatically simplify the calculation. This is shown in the next paragraph.

Consider Fig. 3 which shows zones in the radial direction starting from a radius of rmin. The top of the first zone has 
radius r1 = rmin + �r1 and an arc length of r1�θ . The top of the second zone in Fig. 3 has a radius r2 = r1 + �r2 and an 
arc length of r2�θ . The top of the third zone in Fig. 3 has a radius r3 = r2 + �r2 and an arc length of r3�θ ; and so on. To 
have true self-similarity, we want any target zone (and the halo of zones around it) to look like any other target zone (and 
the halo around this other target zone). This happens if all the zones have the same aspect ratio. When such a similarity 
prevails, the reconstruction matrices from one radial zone to the next will be identical. In other words, we want

r1�θ

�r1
= r2�θ

�r2
= r3�θ

�r3
= ... (4.1)

Eliminating �θ in the above equation, and using componendo-dividendo rules, we get
r1 = r2 = r3 = ... (4.2)

r2 r3 r4
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In other words, the radius of each zone boundary is the geometric mean of the two zone boundaries on either side of it. 
Simply put, we have

r j =√r j−1r j+1 (4.3)

If the above equation is satisfied, all zones in the same radial direction will be self-similar to the first zone being considered. 
As a result, one only needs to invert and store the least squares matrices for the stencils in that first zone. The inverted least 
squares matrices can then be reused for WENO reconstruction in all the other zones in that radial direction. This produces 
an enormous simplification in storage and processing of meshes in spherical (and cylindrical) geometries.

5. A pointwise description of implementation-related details

We describe a pointwise procedure for implementing the WENO-AO algorithm. The first four points below should only 
be done once at the time of initialization. The entire WENO-AO algorithm is described in the following steps:

1) Find the centroid of each zone. This is the unique point within each zone about which the first moments vanish. The 
centroid can even be found by using numerical quadrature, as long as the numerical quadrature is of sufficiently high 
order of accuracy, i.e. at least as high order as the accuracy of the desired scheme. In this work, we used quadrature 
that was at least one order of accuracy higher than that of the WENO scheme. This point needs to be done globally once 
at the beginning of the code for static meshes. In case we have mesh motion, as is common in any form of ALE-type 
scheme, this point needs to be repeated (globally) after mesh motion. If any form of local adaptation is used, this step 
has to be repeated in the locally adapted zones.

2) Using the radius of an in-circle, or circumcircle for each element, obtain a characteristic length for each element.
3) For each zone, we evaluate the geometric moments. For third order, use eqns. (2.4) and (2.7) to evaluate the geometric 

moments. This will enable us to expand the reconstructed polynomial for any stencil in terms of the basis set given in 
eqn. (2.6). For fourth order, use eqns. (3.2) and (3.4) to evaluate the geometric moments. This enables us to expand the 
reconstructed polynomial for the fourth order central stencil in terms of the basis set given in eqn. (3.3). Sub-section 3.2
provides much of the additional detail for fifth order reconstruction. (Appendix A gives details for the three-dimensional 
version of the algorithm discussed here.)

4) For each two-dimensional triangular zone, identify the central stencil and the three one-sided stencils, as shown in 
Fig. 1 and the associated discussion. For three-dimensional tetrahedral meshes, there will be a central stencil and four 
one-sided stencils. If a higher order WENO scheme is to be built, choose a suitably larger central stencil. Identification 
of a stencil is tantamount to having a list of zones that participate in a given stencil.

5) For each of the four third order stencils in two-dimensions, visit each of the elements in that stencil. The target element, 
i.e. the zone on which the reconstruction is being carried out, should be excluded. For each element in the stencil, eqn. 
(2.15) provides one row of the least squares system for that chosen stencil. Assemble that least squares matrix and the 
right hand side. Minimize the least squares system for each stencil to obtain the modes of the third order polynomial 
shown in eqn. (2.6). In three-dimensions, an analogue of eqn. (2.15) is easily built. If a large fourth order stencil is also 
present, eqn. (3.9) provides one row of the squares system for that fourth order stencil. Least squares minimization of 
that system will provide the modes of the fourth order polynomial shown in eqn. (3.3). If a fifth order stencil is present, 
obtain the analogous extension of eqn. (3.9). Least squares minimization of that system will provide the modes of the 
fifth order polynomial shown in eqn. (3.11). The three-dimensional extension of eqn. (3.9) is also easily obtained. For 
each stencil that is not close to the physical boundary, we have by now obtained all the modes of the polynomial basis 
expansion.

6) If a third order scheme is desired, construct smoothness indicators as in eqn. (2.16); make normalized non-linear 
weights as in eqn. (2.17) and (2.18); then use eqn. (2.19) to obtain a third order accurate WENO reconstruction for 
unstructured meshes. This procedure transparently extends to three-dimensions.

7) If a fourth or higher order scheme is desired, construct the smoothness indicators for the higher order stencils as in eqn. 
(3.17). Use eqns. (3.18) to (3.21) to make the normalized non-linear weights. Then use eqn. (3.22), or its higher order 
analogue, to obtain a fourth or higher order accurate WENO reconstruction for unstructured meshes. This procedure 
also transparently extends to three-dimensions.

There is a more efficient variant of this algorithm that trades memory for efficiency. In other words, if ample amounts of 
computer memory are available, then a faster algorithm becomes possible. This variant will work at least in the limit when 
the mesh is not moving. The simplification consists of realizing that the least squares matrix in step 5 above only needs to 
be constructed once for each stencil and stored in the computer’s memory. The corresponding matrix system only consists 
of geometrical terms and can be inverted once and for all during the initialization step. In that situation, step 5 above only 
requires the evaluation of a right hand side and its matrix multiplication with the pre-computed inverted matrix for any 
given stencil. As shown in Section 4, when self-similarity can be exploited, the matrix assembly and storage becomes even 
simpler.

For applications that do not use ALE methods, the previous paragraph provides the fastest implementation. For ALE 
methods, where the mesh geometry keeps changing, or when computer memory is at a premium, one may need to use 
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step 5 and resort to a matrix inversion for each time step. Even in such circumstances, if the conservation law has a large 
number of components, the least squares matrix assembly and inversion only needs to be done once per stencil and need 
not be repeated when reconstructing each of the components of the conservation law.

6. Results – order of accuracy in multiple space dimensions

To illustrate the versatility of our WENO-AO algorithms, we show results from two families of codes. The first code 
is three dimensional and it maps the sphere as perfectly as possible, as described below. The second code is a regular 
unstructured mesh code that can function without mesh motion as well as have ALE-type capabilities. For each sub-section 
we identify the kind of mesh used for that test problem.

The first code uses a geodesic mesh on a sphere which has been extruded out in the radial direction. Starting from a 
spherical icosahedron, the spherical triangles are successively bisected. As a result, the surface of the sphere is triangulated 
as perfectly as possible with great triangles that are (for the most part) as close as possible to equilateral triangles. This 
meshing gives us the most isotropic Delaunay triangulated meshing of the sphere that is possible. The extrusion in the radial 
direction ensures that each element of the mesh is a frustrum which can be mapped to a triangular prism. Isoparametric 
mapping that is linear, quadratic and cubic is used to map the reference triangular prism to the spherical frustrum formed 
by each element. When a cubic isoparametric mapping is used, the mapping is fourth order accurate, as is the fourth 
order scheme that we implemented. Therefore, the linear and quadratic mappings can be thought of as sub-parametric, 
while the cubic mapping is fully isoparametric. Up to fourth order accurate spatial reconstruction from WENO-AO was 
implemented on this spherical mesh. At fourth order, we used a central stencil along with six forward sector stencils for 
all our three-dimensional simulations on the geodesic mesh. The forward sector stencils were upwind biased towards the 
six vertices of the frustrum. We also used γHi = γLo = 0.95 in eqns. (3.18). At second and third order, we used seven 
(somewhat smaller) stencils with a similar philosophy but with γC = 50 in eqn. (2.17). All geodesic mesh calculations 
achieved non-linear hybridization by using eqn. (3.20b). This spatial reconstruction was coupled to an SSP-RK scheme with 
temporal accuracy that matches the spatial accuracy (Shu and Osher [60,61], Spiteri and Ruuth [64,65]). In keeping with 
the ideas on isoparametric mapping, the curvature of the spherical faces was included in the quadrature formulae for the 
flux evaluation and the quadrature in the annular faces of each zone was also treated precisely. Algorithmic details for the 
geodesic mesh are provided in Balsara et al. [20]. Notice that the mesh used is ratioed in the radial direction. As a result, 
each zone of this mesh is topologically similar to a triangular prism; see Fig. 2 of that paper. But, because of the ratioing in 
the radial direction, each prism is much narrower at the inner radius and broader at the outer radius. This affects the CFL 
because the smallest side of each zone has to be used when computing the CFL. For this reason, the CFLs of such codes are 
a little smaller than the traditional CFL because one side of the zone is much narrower than the other side of the zone.

The second code uses a regular unstructured mesh which can be used with or without ALE-type mesh motion. The 
WENO-AO provides the spatial reconstruction. Up to fifth order accurate reconstruction was included in the code. The ADER 
method (Dumbser et al. [35]) was used for the temporal evolution resulting in a single step update where the reconstruc-
tion was done only once per timestep. When the ALE capabilities of the code were used, mesh motion was provided by 
using multidimensional Riemann solvers (Balsara, [9,10,12], Boscheri et al. [23,24], Balsara and Nkonga [15]). For a detailed 
description of the ADER-ALE algorithm the reader is referred to (Boscheri et al. [25–27]). Regardless of order, the two-
dimensional ALE code with WENO-AO used one large central stencil, one smaller central stencil and three forward sector 
stencils (see Fig. 1) with γHi = γLo = 0.95 in eqns. (3.18). All unstructured mesh calculations achieved non-linear hybridiza-
tion by using eqn. (3.20a). The mesh used in this second code is a traditional unstructured mesh and there is no problem 
with using CFLs that are as large as 0.5 in all the reported simulations from this code.

6.1. Spherical geodesic mesh: solar wind on spherical meshes

A stellar wind is a continuous supersonic outflow of ionized gases from the atmosphere of a star. One of the simplest 
models for the stellar wind is a spherically symmetric (all variables depend on radial distance R measured from the center 
of the star) expansion of a polytropic gas into space (Parker, [77]). In a weakly magnetized case the flow is given by the 
solution of

ṽ2 − 1

2
+ R̃2(1−γ ) ṽ(1−γ ) − 1

γ − 1
− 2

(
1

R̃
− 1

)
= 0, (6.1)

ρ̃ = 1

ṽ R̃2
,

P̃ = ρ̃γ .

Quantities with the tilde on top denote the radial distance, density, radial velocity, and pressure normalized to their values 
at the critical point R = Rc , where the flow velocity equals the sound speed. At large distances from the star (well beyond 
the critical point) the force of gravity may be neglected and equation (6.1) becomes
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Table 1a
The table shows the accuracy analysis for the second-order WENO scheme for the solar wind 
on spherical meshes. A CFL of 0.25 was used. The errors and accuracy in the density (ρ) and 
x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 8.6233E−05 1.6185E−04
3.962 2.0239E−05 2.09 4.3210E−05 1.91
1.981 5.2455E−06 1.95 1.4638E−05 1.56
0.991 1.3577E−06 1.95 6.3307E−06 1.21

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.0841E−04 4.2383E−04
3.962 5.1914E−05 2.01 1.1087E−04 1.93
1.981 1.3205E−05 1.98 3.8251E−05 1.54
0.991 3.3509E−06 1.98 1.5359E−05 1.32

Table 1b
The table shows the accuracy analysis for the third-order WENO scheme for the solar wind 
on spherical meshes. A CFL of 0.25 was used. The errors and accuracy in the density (ρ) and 
x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 4.1558E−05 7.8614E−05
3.962 5.6337E−06 2.88 1.1236E−05 2.81
1.981 7.2899E−07 2.95 1.4637E−06 2.94
0.991 9.2576E−08 2.98 1.9935E−07 2.88

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 6.7677E−05 1.5859E−04
3.962 8.0631E−06 3.07 1.8145E−05 3.13
1.981 1.0051E−06 3.00 2.1916E−06 3.05
0.991 1.2675E−07 2.99 4.0494E−07 2.44

Table 1c
The table shows the accuracy analysis for the fourth-order WENO scheme for the solar wind 
on spherical meshes. A CFL of 0.25 was used. The errors and accuracy in the density (ρ) and 
x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 1.0069E−05 2.0471E−05
3.962 4.6732E−07 4.43 1.7192E−06 3.57
1.981 2.9786E−08 3.97 2.2732E−07 2.92
0.991 2.1204E−09 3.81 2.6227E−08 3.12

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.4760E−05 5.1096E−05
3.962 9.9519E−07 4.64 4.2656E−06 3.58
1.981 5.1718E−08 4.27 5.4669E−07 2.96
0.991 3.3236E−09 3.96 6.2537E−08 3.13

ṽ2 − 1

2
+ R̃2(1−γ ) ṽ(1−γ ) − 1

M2
0(γ − 1)

= 0. (6.2)

In eqn (6.2) the tilde quantities are normalized to some reference radius where the flow is already supersonic with a Mach 
number M0 > 1. The simulation was initialized with a solution to (6.2) obtained using Newton’s method on a domain of 
radial extent [2:3.5]. We used γ = 1.4, the reference radius of one and the values of density, velocity and pressure all equal 
to unity at that distance, which yields M0 = √

γ ≈ 1.2. This problem was run till a time of 0.25.
The second order WENO scheme uses simple, piecewise-linear interpolation and is included for completeness. The third 

order WENO scheme is based on the method described in Section 2. The WENO-AO(4,3) scheme is based on the algorithm 
described in Section 3.1. Tables 1a, 1b and 1c show the accuracy analysis for second, third and fourth order simulations, re-
spectively. For the time integration, we used SSP-RK schemes with temporal order that matches the spatial order of accuracy. 
The results are shown for the situation where second order isoparametric mapping is used to map the triangular prisms 
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Table 2a
The table shows the accuracy analysis for the second-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 1.5631E−04 2.8996E−04
3.962 3.5544E−05 2.14 7.7206E−05 1.91
1.981 8.7083E−06 2.03 1.9920E−05 1.95
0.991 2.1688E−06 2.01 5.0472E−06 1.98

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.1010E−04 4.2611E−04
3.962 5.1761E−05 2.02 1.1192E−04 1.93
1.981 1.2874E−05 2.01 2.8658E−05 1.97
0.991 3.2169E−06 2.00 9.8811E−06 1.54

Table 2b
The table shows the accuracy analysis for the third-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 7.5177E−05 1.3145E−04
3.962 1.0268E−05 2.87 1.8422E−05 2.83
1.981 1.3137E−06 2.97 2.3806E−06 2.95
0.991 1.6527E−07 2.99 3.2278E−07 2.88

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 6.8752E−05 1.6133E−04
3.962 8.1940E−06 3.07 1.8180E−05 3.15
1.981 1.0123E−06 3.02 2.1982E−06 3.05
0.991 1.2705E−07 2.99 2.9499E−07 2.90

to spherical frustrums. On the coarsest level, the spherical mesh has the angular resolution of 5.625◦ and 8 logarithmically 
binned radial zones. On the finest level, the spherical mesh has the angular resolution of 0.703◦ and 64 logarithmically 
binned radial zones. We can see that the schemes achieve their design accuracies.

6.2. Spherical geodesic mesh: method of manufactured solution on spherical meshes

This test problem has been adopted from Ivan et al. [78] and suitably modified for a purely hydrodynamical simulation. In 
this problem, the exact solution is given by the vector of primitive variables as (ρ, P , vx, v y, vz) = (R− 5

2 , R− 5
2 , x√

R
, y√

R
, z√

R
+

κR
5
2 ). This exact solution is obtained from the Euler equations with the source term given by⎡
⎢⎢⎢⎢⎢⎣

0,
1
2 R

−2 + κz(3.5R−1 + 2κz) + (κR)2

2 (5κzR + 7),
1
2 xR

− 5
2 (R−1 − 5R−2 − κz),

1
2 yR

− 5
2 (R−1 − 5R−2 − κz),

1
2 zR

− 5
2 (R−1 − 5R−2 − κz) + 5

2κR− 1
2 (1 + κzR) + κR− 1

2

⎤
⎥⎥⎥⎥⎥⎦ .

Here, R =√x2 + y2 + z2 and as suggested in Ivan et al. [78], we use κ = 0.017. This problem is initialized inside a spherical 
domain with radial extent [2 : 3.5]. We used a three-dimensional geodesic mesh with zones that form spherical triangles 
when projected on to the unit sphere. In the ghost zones of the upper and lower radial boundary, we provide the zone 
averaged values of the exact solution. These zone averaged values are evaluated using high-order accurate quadrature points. 
For this problem, we used a stopping time of 0.25 and γ = 7/5.

The second order WENO scheme uses simple, piecewise-linear interpolation and is included for completeness. The third 
order WENO scheme is based on the method described in Section 2. The WENO-AO(4,3) scheme is based on the algorithm 
described in Section 3.1. Tables 2a, 2b and 2c show the accuracy analysis for second, third and fourth order runs, respec-
tively. For the time integration, we used SSP-RK schemes with temporal order that matches the spatial order of accuracy. 
The results are shown for the situation where third order isoparametric mapping is used to map the triangular prisms to 
spherical frustrums. On the coarsest level, the spherical mesh has the angular resolution of 5.625◦ and 8 logarithmically 
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Table 2c
The table shows the accuracy analysis for the fourth-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 1.8430E−05 3.6866E−05
3.962 8.1022E−07 4.51 1.9642E−06 4.23
1.981 4.2407E−08 4.26 1.8713E−07 3.39
0.991 2.5237E−09 4.07 2.2846E−08 3.03

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.5092E−05 5.1456E−05
3.962 9.9576E−07 4.66 2.8303E−06 4.18
1.981 4.6000E−08 4.44 3.2183E−07 3.14
0.991 2.5904E−09 4.15 3.9207E−08 3.04

Table 3a
The table shows the accuracy analysis for the second-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 1.8156E−04 3.2563E−04
3.962 3.6534E−05 2.31 7.5258E−05 2.11
1.981 8.5767E−06 2.09 1.9467E−05 1.95
0.991 2.1168E−06 2.02 5.1555E−06 1.92

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.1267E−04 4.2943E−04
3.962 5.1546E−05 2.04 1.1015E−04 1.96
1.981 1.2757E−05 2.01 2.8227E−05 1.96
0.991 3.1824E−06 2.00 1.0597E−05 1.41

Table 3b
The table shows the accuracy analysis for the third-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 5.4496E−05 9.5615E−05
3.962 7.8704E−06 2.79 1.4496E−05 2.72
1.981 1.0169E−06 2.95 1.9490E−06 2.89
0.991 1.2784E−07 2.99 2.5167E−07 2.95

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 4.9159E−05 1.2456E−04
3.962 5.1857E−06 3.24 1.1195E−05 3.48
1.981 6.1178E−07 3.08 1.4484E−06 2.95
0.991 7.5421E−08 3.02 1.8330E−07 2.98

binned radial zones. On the finest level, the spherical mesh has the angular resolution of 0.703◦ and 64 logarithmically 
binned radial zones. We can see that the schemes achieve their design accuracies.

In Section 3 we mentioned that we use γHi ∈ [0.75, 0.95] and γLo ∈ [0.75, 0.95]. However, the results in Tables 1 and 2
were obtained with γHi = 0.85 and γLo = 0.85. It is desirable to show that our WENO-AO scheme is quite insensitive to the 
specific values of γHi and γLo . Recall that γLo can be used for second and third order schemes too. To show that the order 
property is insensitive to variations in γHi and γLo , we present Table 3 with γHi = 0.75 and γLo = 0.75. We also present 
Table 4 which uses γHi = 0.95 and γLo = 0.95. We see from Tables 3a, 3b, 3c and 4a, 4b, 4c that the order property is 
indeed unchanged. This shows that our WENO-AO scheme is quite insensitive to the specific values of the coefficients that 
are used.
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Table 3c
The table shows the accuracy analysis for the fourth-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 1.8420E−05 3.6829E−05
3.962 8.1129E−07 4.50 1.9647E−06 4.23
1.981 4.2445E−08 4.26 1.8797E−07 3.39
0.991 2.5237E−09 4.07 2.3265E−08 3.01

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.5077E−05 5.1454E−05
3.962 9.9689E−07 4.65 2.8346E−06 4.18
1.981 4.6044E−08 4.44 3.2337E−07 3.13
0.991 2.5904E−09 4.15 3.9657E−08 3.03

Table 4a
The table shows the accuracy analysis for the second-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 1.4425E−04 2.9570E−04
3.962 3.5749E−05 2.01 7.9194E−05 1.90
1.981 8.9123E−06 2.00 2.0373E−05 1.96
0.991 2.2277E−06 2.00 5.1584E−06 1.98

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.0958E−04 4.3064E−04
3.962 5.2234E−05 2.00 1.1369E−04 1.92
1.981 1.3044E−05 2.00 2.9091E−05 1.97
0.991 3.2645E−06 2.00 9.1867E−06 1.66

Table 4b
The table shows the accuracy analysis for the third-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 9.7628E−05 1.7027E−04
3.962 1.2731E−05 2.94 2.2914E−05 2.89
1.981 1.6145E−06 2.98 2.9211E−06 2.97
0.991 2.0283E−07 2.99 4.1588E−07 2.81

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 8.9188E−05 1.9430E−04
3.962 1.1386E−05 2.97 2.5608E−05 2.92
1.981 1.4423E−06 2.98 3.2673E−06 2.97
0.991 1.8254E−07 2.98 4.3948E−07 2.89

6.3. Unstructured mesh without and with ale: isentropic hydrodynamical vortex

To demonstrate the multidimensional accuracy of our WENO-AO schemes on unstructured meshes, we use the isentropic 
fluid vortex test from Jiang and Shu [47]. The problem is initialized on a two-dimensional unstructured mesh that spans 
[−5, 15] × [−5, 5]. Traditionally, on a structured mesh, the vortex would be made to propagate along the diagonal of the 
mesh. However, for an unstructured mesh, this is irrelevant, and we cause the vortex to propagate in the x-direction over a 
distance of 10 units. An unperturbed flow for the Euler equations is chosen with (ρ, P , vx, v y) = (1, 1, 0, 1) and with ratio 
of specific heats γ = 1.4 is initialized on the unstructured mesh. The temperature and entropy are defined by T = P/ρ and 
S = P/ργ . The vortex is defined as a fluctuation to this mean flow given by

(δvx, δv y) = ε
e0.5(1−r2)(−y, x)
2π
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Table 4c
The table shows the accuracy analysis for the fourth-order WENO scheme for the method of 
manufactured solution on spherical meshes. A CFL of 0.25 was used. The errors and accuracy 
in the density (ρ) and x-momentum (mx) are shown.

Angular size 
(in degrees)

ρ L1 error ρ L1 accuracy ρ Linf error ρ Linf accuracy

7.925 1.8420E−05 3.6829E−05
3.962 8.1129E−07 4.50 1.9647E−06 4.23
1.981 4.2445E−08 4.26 1.8797E−07 3.39
0.991 2.5237E−09 4.07 2.3265E−08 3.01

Angular size 
(in degrees)

mx L1 error mx L1 accuracy mx Linf error mx Linf accuracy

7.925 2.5077E−05 5.1457E−05
3.962 9.9689E−07 4.65 2.8346E−06 4.18
1.981 4.6044E−08 4.44 3.2337E−07 3.13
0.991 2.5904E−09 4.15 3.9657E−08 3.03

Table 5
The table shows the accuracy analysis for the hydrodynamical vortex problem as measured in the density variable.
Method Element size, h L1 error L1 order L∞ error L∞ order

WENO 3rd Order Eulerian (fixed mesh) 3.2476 · 10−1 7.9950 · 10−2 – 2.0007 · 10−2 –
2.4837 · 10−1 3.9448 · 10−2 2.6 9.0074 · 10−3 3.0
1.6336 · 10−1 1.3362 · 10−2 2.6 2.8225 · 10−3 2.8
1.2811 · 10−1 5.8711 · 10−3 3.4 1.3839 · 10−3 2.9

WENO 3rd Order ALE (moving mesh) 3.2936 · 10−1 6.0638 · 10−2 – 1.3994 · 10−2 –
2.5118 · 10−1 2.6351 · 10−2 3.1 5.3706 · 10−3 3.5
1.6757 · 10−1 8.5445 · 10−3 2.8 1.9207 · 10−3 2.5
1.2781 · 10−1 3.4613 · 10−3 3.3 8.4560 · 10−4 3.0

WENO-AO(4,3) Eulerian (fixed mesh) 3.2476 · 10−1 2.4369 · 10−2 – 7.0007 · 10−3

2.4837 · 10−1 8.0741 · 10−3 4.1 1.8866 · 10−3 4.9
1.6336 · 10−1 1.4910 · 10−3 4.0 4.0097 · 10−4 3.7
1.2811 · 10−1 5.0134 · 10−4 4.5 2.2025 · 10−4 2.5

WENO-AO(4,3) ALE (moving mesh) 3.2873 · 10−1 1.8373 · 10−2 – 4.0138 · 10−3

2.5098 · 10−1 6.6598 · 10−3 3.8 1.5404 · 10−3 3.5
1.6752 · 10−1 1.5044 · 10−3 3.7 4.1024 · 10−4 3.3
1.2777 · 10−1 4.6699 · 10−4 4.3 1.4565 · 10−4 3.8

WENO-AO(5,3) Eulerian (fixed mesh) 3.2476 · 10−1 3.5950 · 10−2 – 9.6827 · 10−3

2.4837 · 10−1 9.5362 · 10−3 4.9 2.1702 · 10−3 5.6
1.6336 · 10−1 1.6050 · 10−3 4.3 4.1663 · 10−4 3.9
1.2811 · 10−1 4.3449 · 10−47 5.4 1.0065 · 10−4 5.8

WENO-AO(5,3) ALE (moving mesh) 3.2742 · 10−1 2.6027 · 10−2 – 9.2958 · 10−3 -
2.5095 · 10−1 5.2638 · 10−3 6.0 1.3474 · 10−3 7.3
1.6754 · 10−1 8.5469 · 10−4 4.5 2.2682 · 10−4 4.1
1.2778 · 10−1 2.2302 · 10−4 5.0 6.7040 · 10−5 5.0

δT = − (γ − 1)ε2

8γπ2
e(1−r2); δS = 0

where r2 = x2 + y2 and the vortex strength ε = 5. The problem is stopped at a time of 10.0, by which time the vortex has 
propagated a distance of 10 units in the x-direction.

The third order WENO scheme is based on the method described in Section 2. The WENO-AO(4,3) scheme is based 
on the algorithm described in Section 3.1. The WENO-AO(5,3) scheme is based on the algorithm described in Section 3.2. 
Table 5 shows that the third order WENO and the WENO-AO(4,3) and WENO-AO(5,3) schemes on fixed and moving meshes 
achieve their design accuracies. This demonstrates that the WENO-AO reconstruction philosophy presented in this paper 
works. CFLs as large as 0.5 produce the same order of accuracy on our unstructured mesh.

7. Results – multidimensional test problems

In Section 6 we described the two different types of codes that were used to demonstrate the order of accuracy of 
the WENO-AO algorithm. In this Section we use the same two codes on a test suite of stringent test problems. For each 
sub-section we identify the kind of mesh used for that test problem.
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(a)

(b)

Fig. 4. Plot (a) shows the density at time 0.2 from the double Mach reflection problem run with the fifth order version of the WENO-AO schemes. Plot (b) 
shows a zoom on the roll-up of the Mach stem in the double Mach reflection problem. Density contour lines are plotted.

7.1. Unstructured static mesh: double Mach reflection problem

This test case has been originally proposed by Woodward and Colella [69] and it involves a Mach 10 shock wave which 
is moving along the x-direction of the computational domain, where a ramp with an angle of 30◦ is located. The interaction 
between the shock wave and the ramp yields the development of small-scale structures that arise from Kelvin-Helmholtz 
instabilities. The computational domain is discretized with an unstructured mesh of characteristic size h = 1/400, hence 
using 2,690,720 triangles, while the initial condition can be found in the aforementioned reference. The simulation is run to 
a final time of 0.2 with the fifth order accurate WENO-AO scheme and the results are depicted in Figs. 4a and 4b. Figs. 4a 
and 4b used 35 density contour levels ranging in the interval [1.5, 22.5]. The high order scheme is able to capture the fluid 
sub-structures as notable from Fig. 4b, while being at the same time very robust around the strong shock wave.

7.2. Unstructured static mesh: forward facing step problem

The forward facing step problem represents a benchmark for the validation of a numerical scheme in the presence of 
reflecting shock waves that travel across the computational domain and interact one with each other. The initial condition 
can be found in the paper by Woodward and Colella [69] and it consists in a Mach 3 flow impinging on a forward facing 
step. This leads to the generation of a bow shock wave which spreads towards the upper wall boundary of the computational 
domain. As a result, a normal shock and a slip surface are emanated by the reflecting wall and the interaction among all 
waves yields a triple point structure in the flow. This test case is run again using the fifth order version of our WENO-AO 
scheme and Fig. 5 depicts the density contour lines at the final time of 5. A computational mesh with size h = 1/400 with 
910,992 triangular control volumes has been employed. Figs. 5 used 30 density contour levels ranging in the interval [0.5, 
6.5]. High resolution can be noticed at the corner of the forward facing step as well as close to the upper boundary where 
flow instabilities with vorticial shape occur.
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Fig. 5. Shows the density at time 4.0 from the forward facing step problem run with the fifth order version of the WENO-AO schemes.

(a) (b)

(c) (d)

Fig. 6. Shows the results for the Sod problem at time 0.2. (a) 3D view of the grid and density contours. Density (b), velocity (c) and pressure (d) versus 
exact solution.

7.3. Unstructured mesh with ALE: Sod problem on a moving three-dimensional mesh

Here we solve the well-known Sod shock tube problem on a moving unstructured three-dimensional grid. Even though 
this test case has a one-dimensional setting, it becomes fully multidimensional when run on an unstructured computational 
mesh where no faces or edges are in general aligned with the main flow along the x-direction. The Sod problem develops a 
right traveling shock wave and a contact discontinuity, whereas a rarefaction wave is moving to the left. The computational 
domain is the box [−0.5, 0.5] ×[−0.05, 0.05] ×[−0.05, 0.05] and is discretized with a total number of 22227 tetrahedra. The 
fourth order WENO-AO scheme has been run to simulate this test case up to the final time 0.2 and the results are gathered 
in Fig. 6, where a comparison against the exact solution is shown. The numerical results are in excellent agreement and, 
thanks to the Lagrangian-like approach, only one computational point is located across the contact discontinuity. The mesh 
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(a) (b)

(c) (d)

Fig. 7. Shows the results for the Lax problem. Figs. 7a and 7b show two different views of the density, the latter figure shows the density on a 2D 
unstructured static mesh. Figs. 7c and 7d show the pressure and x-velocity respectively.

is highly compressed by the shock wave and pulled by the rarefaction wave, therefore demonstrating the robustness of the 
WENO-AO reconstruction proposed in this paper. It is important to appreciate that these are ALE results, and therefore, 
completely competitive with comparable ALE results from Vilar et al. [68], Liu et al. [55], Chiraville et al. [29], Liu et al. [52]
and Loubere et al. [56]. In some cases, our results are even less oscillatory than the ones reported in the literature.

7.4. Unstructured static mesh: Lax problem

Here we solve a classical Riemann problem, namely the Lax shock tube problem. This test case includes the formation 
of a left-propagating rarefaction wave, an intermediate contact discontinuity and a right-propagating shock wave. Though 
intrinsically one-dimensional, this problem becomes non-trivial and multidimensional when applied to unstructured meshes, 
where in general the element edges are not aligned with the fluid motion.

The initial computational domain is given by the box � = [−0.5; 0.5] × [−0.05; 0.05] that is discretized with a charac-
teristic mesh size of h = 1/200, leading to a total number of Ne=8862 elements. The initial conditions are very well-known 
for the Lax problem and are not repeated here. We fix periodic boundary conditions in the y direction, while transmissive 
boundaries are imposed along the x direction. The ratio of specific heats is assumed to be γ = 1.4 and the exact solution is 
computed with the exact Riemann solver. The final time is tf = 0.14 and we use a fifth order WENO-AO schemes to compute 
the numerical solution depicted in Fig. 7. A good agreement with the analytical solution can be observed and the scheme is 
able to preserve the one-dimensional property even at high order and on a two-dimensional unstructured mesh.

7.5. Unstructured mesh with ALE: Saltzman problem

The Saltzman problem consists in the motion of a piston traveling along the main direction of a rectangular box, which 
is initially filled with a perfect gas at rest with very low pressure. This test problem was set up (Dukovicz and Meltz 
[76]) for a two-dimensional Cartesian grid that has been skewed and it represents a very challenging test problem that 
allows the robustness of any moving mesh scheme to be validated. The piston generates a shock wave that is moving 
faster and is compressing the fluid and, as such, even the computational grid. The final time is 0.6 and a scatter plot of 
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) and (b) show scatter plots of cell density for the Saltzman problem run with the fifth order accurate WENO-AO scheme (left) and the classical 
fifth order WENO reconstruction (right). Fig. 8c shows the same result computed with CWENO5. Figs. 8d and 8e show scatter plots of cell velocity for the 
Saltzman problem run with the fifth order accurate WENO-AO scheme (left) and the classical fifth order WENO reconstruction (right). Fig. 8f shows the 
same result computed with CWENO5.

all cell density and velocity is compared against the exact solution in Figs. 8a, b, c and 8d, e, f, respectively. The numerical 
results have been obtained with a fifth order WENO-AO scheme on a computational grid with characteristic mesh size of 
h = 1/100, as usually done in literature. For comparison purposes, we have added Figs. 8c and 8f to the aforementioned 
figures, which show the density and horizontal velocity distribution for the Saltzman problem computed with the CWENO5 
algorithm of [36]. The numerical solution is in good agreement with the exact solution and the WENO-AO reconstruction 
is able to provide a less oscillatory solution compared with standard WENO reconstruction of the same order of accuracy. 
Our ALE results are competitive with comparable ALE results from Vilar et al. [68], Liu et al. [55], Chiraville et al. [29], 
Liu et al. [52] and Loubere et al. [56]. In some cases, our results are even less oscillatory than the ones reported in the 
literature.

7.6. Unstructured mesh with ALE: Sedov problem

We consider both the two- and three-dimensional version of the Sedov problem, that describes the evolution of a cylin-
drical and spherical symmetric blast wave generated at the origin of the square and cubic computational domain. The origin 
is located at O = (0, 0, 0) and the size of the domain is given by [0, 1.2]d with d = 2, 3 being the number of space dimen-
sions. The computational grid is made by triangles or tetrahedra with a mesh size of h = 0.03 and the initial set up of 
this problem can be found in (Boscheri [26]). We use a fifth order WENO-AO scheme in 2D while we rely on the fourth 
order version in 3D to run the simulation up to time 1.0. The exact solution consists in the shock wave located at radius 
r = 1 with a density peak of 6. Fig. 9 contains the final mesh configurations obtained by the numerical solution, while in 
Fig. 10 a scatter plot of the cell density is compared with the exact solution for both 2D and 3D configurations. The shock 
is properly captured and located by the WENO-AO schemes and also the density peak value is well approximated. Note also 
that the solution is reasonably symmetric and not spread, which is not trivial in the case of high order methods on fully 
unstructured meshes. Our ALE results are competitive with comparable ALE results from Vilar et al. [68], Liu et al. [55], 
Chiraville et al. [29], Liu et al. [52] and Loubere et al. [56]. In some cases, our results are even less oscillatory than the ones 
reported in the literature.
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(a) (b)

Fig. 9. Shows the final mesh configuration at time 1.0 for the Sedov problem in 2D (a) and 3D (b).

(a) (b)

Fig. 10. Shows a scatter plot of cell density for the Sedov problem in 2D (a) and 3D (b) run with the fifth and fourth order accurate WENO-AO scheme.

7.7. Unstructured mesh with ALE: on the computational efficiency

In the following we want briefly to give some comments on the computational cost of the WENO-AO schemes presented 
in this paper compared with the WENO schemes proposed in Dumbser and Käser [34] and (Boscheri [26]). In the present 
work only five (in 2D) or six (in 3D) reconstruction stencils are needed to carry out the reconstruction procedure, while 
in Dumbser and Käser [34] we always need seven and nine reconstruction stencils in two and three space dimensions, 
respectively. Moreover, the WENO-AO strategy makes use of a more compact stencil, whose extension is basically determined 
by the higher polynomial, i.e. the so-called large central stencil. Then, the remaining third order central and one-sided 
stencils are likely to be contained in the fourth or fifth order central reconstruction stencil. On the contrary, in the WENO 
approach all stencils are always filled up with the same number of elements dictated by the degree of the reconstruction 
polynomial, that is 3 or 4 according to what considered in this paper. In this way, the local reconstruction system that has 
to be solved for each element is bigger in WENO algorithms and each cell counts more reconstruction systems that must 
be solved, namely one per stencil. The WENO-AO technique allows the reconstruction algorithm to be performed more 
efficiently but always keeping the desired order of accuracy achieved by classical WENO schemes.

In Table 6 we have collected some information about the computational cost needed for performing the simulation of 
the Sedov, the Saltzman and the Sod problems in 2D. The first two problems were done on a moving mesh and the Sod 
problem was done on a fixed two-dimensional mesh. For the first two test cases the mesh is moving, hence requiring the 
reconstruction matrixes to be computed at each time step. The overall CPU time is provided together with the computational 
times τW, τ CW and τW-AO that account for the time used per element update. Finally, the ratio β = (τW/τW-AO) states that 
the new WENO-AO approach is up to 1.8 times faster than the original WENO algorithm of Boscheri [26]. For CWENO from 
[36] the WENO-AO is slightly slower because CWENO uses smaller, piecewise linear stencils for its lower order scheme. 
Thus the speed comparison between WENO-AO and CWENO for ALE approaches actually reflects, to some measure, the 
stencil selection process. For Eulerian simulations on fixed meshes the gain in time is not as much relevant as for ALE 
computations because all reconstruction matrixes can be precomputed and stored once and for all in the preprocessing 
stage. Nevertheless, the WENO-AO strategy requires much less memory thanks to the reduced number of reconstruction 
stencils and their compactness compared to the original WENO. This is reflected in the results for the Sod problem.
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Table 6
Shows the computational time for running the two-dimensional Sedov and Saltzman problems using both WENO-
AO and WENO and CWENO methods.

Test Scheme # cells CPU time # time steps τ β

Sedov 2D WENO – AO 3200 3.57 · 103 635 τW-AO=1.76 · 10−3 1.0
Sedov 2D WENO 3200 8.88 · 103 857 τW = 3.24·10−3 1.8
Sedov 2D CWENO 3200 3.54 · 103 752 τ CW=1.46 · 10−3 0.8
Saltzman 2D WENO – AO 2000 3.99 · 103 1074 τW-AO=1.86 · 10−3 1.0
Saltzman 2D WENO 2000 1.09 · 104 1823 τW = 2.98·10−3 1.6
Saltzman 2D CWENO 2000 3.11 · 103 1053 τ CW=1.48 · 10−3 0.8
RP2D WENO – AO 2246 4.46 · 103 215 τW-AO=9.24 · 10−3 1.0
RP2D WENO 2246 4.47 · 103 215 τW = 9.25·10−3 1.0
RP2D CWENO 2246 4.45 · 103 215 τ CW=9.15 · 10−3 1.0

7.8. Spherical geodesic mesh: Sod test

Here we present the results of the well-known Sod shock tube problem. We set up the problem on a spherical com-
putational domain with radial extent [0.5 : 1.5]. The diaphragm separating the two uniform states is placed at r = 1.0. The 
vector of primitive variables inside and outside of the diaphragm are given by⎛

⎝ ρ

V
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⎞
⎠

in

=
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⎝ 1

0
1

⎞
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We use outflow boundary condition on both the inner and outer radial boundaries.
We run the above set up on the spherical mesh having angular resolution of 5.625◦ and 256 logarithmically binned 

radial zones. The computation uses fourth order accurate WENO-AO reconstruction. We also use third order isoparametric 
mapping to map triangular prisms to the spherical frustrums. The simulation has been run till a time of 0.2. The results 
of the Sod shock problem on a geodesic mesh are shown in Fig. 11. Fig. 11a shows the mesh, as projected on to the unit 
sphere. The three solid blue dots in Fig. 11a show us the vertices of one of the great triangles on the sphere. The blue lines 
also enable us to identify one of the great triangles. We can now easily visualize how recursive subdivision can produce 
the spherical mesh shown in Fig. 11a. Fig. 11b shows a meridional slice of the spherical mesh with the colorized density; 
we see that the density is entirely isotropic. Figs. 11c, 11d and 11e show the density, pressure and radial velocity from 
this spherical Sod shock problem plotted with respect to the radius of the mesh. We see that the contact discontinuity is 
captured very crisply and the shocks are free of oscillations.

7.9. Spherical geodesic mesh: hydrodynamical blast on a spherical sector

Here we present the results of the three dimensional hydrodynamical blast problem simulated on a spherical sector with 
radial extent [7, 16]. Around radius 11.5, a spherical explosion zone of unit radius is set up with a high pressure of 100 and 
density of 1. Outside this explosion zone, the pressure is 1 and density is 1. The fluid is initially static.

The above set up is run on a single sector spherical geodesic mesh with angular resolution of 0.35◦ and 180 logarithmi-
cally binned radial zones. Along the triangular edges of the sector we had 128 zones in each direction. We used the third 
order accurate WENO-AO for the results shown here. Fig. 12 shows the results of the blast problem at a time of 0.2. Fig. 12a 
and 12b show the density in two different slice planes that pass through the original center of the blast. Fig. 12c and 12d
show the pressure in the same two slice planes. Fig. 12e and 12f show the magnitude of the velocity in the same two slice 
planes. We can detect a slight anisotropy in the density and velocity owing to the fact that we have a ratioed mesh, but the 
mesh-imprinting is slight.

7.10. Unstructured static mesh: two interacting blast waves

This test problem (Woodward and Colella [69], Jiang and Shu [47]) involves the interaction of two blast waves. Let us 
consider a two-dimensional unstructured mesh that covers the computational domain � = [0, 1] × [0, 0.1] and the initial 
condition specified by the vector of primitive variables given by

V (t = 0) =
⎧⎨
⎩

(1,0,0,1000) for 0 < x < 0.1
(1,0,0,0.01) for 0.1 < x < 0.9
(1,0,0,100) for 0.9 < x < 1

with the adiabatic index γ = 1.4. The vector of primitive variables in this problem consists of density, x-velocity, y-velocity 
and pressure. Reflective wall boundary conditions are imposed along the x-direction, while periodic boundaries have been 
used in y-direction. Two runs were carried out with different resolutions. The computational domain in those two runs was 
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(c) (d)

(e)

Fig. 11. The results of the Sod shock problem on a geodesic mesh are shown in Fig. 11. Fig. 11a shows the mesh, as projected on to the unit sphere. Fig. 11b 
shows a meridional slice of the spherical mesh with the colorized density; we see that the density is entirely isotropic. Figs. 11c, 11d and 11e show the 
density, pressure and radial velocity plotted with respect to the radius of the mesh.

covered with triangular control volumes of two different sizes, namely h1 = 1/400 and h2 = 1/600. The final time of the 
simulation is chosen to be t = 0.038 and the results for both density and pressure distribution for a WENO-AO fifth order 
scheme are shown in Fig. 13. An excellent agreement with the reference solution is achieved, especially for the computation 
run on the finer mesh. We underline the fact that this simulation has been actually carried out on a fully two-dimensional 
unstructured mesh, thus the computational grid is not aligned with the main flow and does not exhibit a one-dimensional 
property. Nevertheless, the numerical solution presents a very good symmetry w.r.t. the y-axis, since the scatter plots in 
Fig. 13 refer to all cell values (i.e., it is not a 1D cut across the 2D domain).

7.11. Unstructured static mesh: shock density interaction problem

In order to show the advantages of high order numerical scheme, we propose to solve a well-known test problem (Shu 
and Osher [60,61]) that considers the interaction of a shock wave at Mach number M = 3 with a density fluctuation. 
Specifically, the computational domain is given by � = [−5, 5] × [−0.075, 0.075] and is discretized with an unstructured 
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(a) (b)

(c) (d)

(e) f

Fig. 12. Shows the results of the blast problem at a time of 0.2. Fig. 12a and 12b show the density in two different slice planes that pass through the 
original center of the blast. Fig. 12c and 12d show the pressure in the same two slice planes. Fig. 12e and 12f show the magnitude of the velocity in the 
same two slice planes.

triangular grid of characteristic mesh size h = 0.025. Since we use an unstructured mesh, in general the element edges are 
not aligned with the coordinate axes. The total number of control volumes reads NE = 5560, corresponding to an equivalent 
one-dimensional resolution of 1/400 cells along the x-direction. The initial conditions are exactly the ones specified in the 
original reference cited above. The ratio of specific heats of the gas is γ = 1.4 and the final time of the simulation is set to 
t = 1.8. Dirichlet and periodic boundary conditions are imposed in x- and y-direction, respectively. Figs. 14a and 14b depict 
the numerical density distribution for both fourth and fifth order WENO-AO schemes. A zoom on the density oscillations 
is also shown in Fig. 14c. The fifth order scheme better resolves the flow feature and an overall good agreement with the 
reference solution can be observed.
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(a) (b)

(c) (d)

Fig. 13. Shows the density and pressure of the two interacting blast waves problem run with the WENO-AO algorithm on two-dimensional unstructured 
meshes with zone sizes of 1/400 and 1/600. Figs. 13a and 13b show density and pressure for the lower resolution simulation. Figs. 13c and 13d show 
density and pressure for the higher resolution simulation. The reference solution is also shown.

(a) (b) (c)

Fig. 14. 14a and 14b depict the numerical density distribution for both fourth and fifth order WENO-AO schemes for the shock-density interaction problem. 
A zoom on the density oscillations is also shown in Fig. 14c.

8. Conclusions

In Balsara, Garain and Shu [14] a WENO-AO method was developed for finite difference WENO schemes on structured 
meshes. However, real-world problems are simulated on unstructured meshes. These meshes can be adapted to treat the 
geometric complexity that is inherent in real-world problems. The meshes can also themselves adapt to the solution, as in 
the case of an ALE scheme. For all such situations, it is highly desirable to reformulate the WENO-AO reconstruction method 
to arbitrary meshes. In this paper we have accomplished such a goal. The WENO-AO(4,3) and WENO-AO(5,3) schemes 
presented here can provide very high order of accuracy for smooth flow while also reverting to a very stable third order 
scheme that has excellent shock-handling capabilities as well as the ability to preserve extrema.

The method presented in this paper derives its efficiency from a fundamental insight that is taught in freshman physics 
classes. This insight consists of realizing that the moment of inertia of a solid about an axis that passes through its center of 
mass can be related to the moment of inertia of the same solid about any other axis that is parallel to the original axis. (In 
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classical mechanics, this is known as the Parallel Axis Theorem or the Huygens-Steiner Theorem.) This fundamental insight 
from freshman physics is generalized very significantly in this paper to arrive at a particularly convenient Taylor basis set 
in which the reconstructed variables can be expanded. The basis is very useful when reconstructing the solution on a given 
target zone. This is because the basis set in the target zone can be related to the basis set in another zone that is part of the 
target zone’s stencil. This is done via a simple transformation that generalizes the Parallel Axis Theorem. This generalization 
dramatically simplifies the reconstruction procedure on any given stencil. A consequence of this simplification is that instead 
of solving a constrained least squares problem (Dumbser and Kaser [34], Dumbser et al. [36]), one has only to solve a much 
simpler least squares problem. This convenient basis set is also beneficial when constructing smoothness indicators.

As with finite-difference WENO, we realize that one can make a non-linear hybridization between a large, centered, very 
high accuracy stencil and a lower order central WENO scheme that is, nevertheless, very stable and capable of capturing 
physically meaningful extrema. The result is a class of adaptive order WENO schemes that work very well on unstruc-
tured meshes. The smaller stencils (that are non-linearly hybridized with a larger, high order stencil) consist of the set of 
CWENO-type stencils that are traditionally used for third order WENO calculations on unstructured meshes.

Via a sequence of accuracy tests on a range of different mesh types, we show that the method meets its design accuracy. 
Several stringent test problems are presented to demonstrate that the method works very robustly and very well. The test 
problems are chosen to show that our method can be applied to many different types of unstructured meshes that are used 
to map geometric complexity or solution complexity. Our test problems encompass geodesic meshes, unstructured meshes 
and ALE-type meshes. Our WENO-AO method is also shown to be more efficient compared to older WENO schemes for 
unstructured meshes.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

DSB acknowledges support via NSF grants NSF-ACI-1533850, NSF-DMS-1622457, NSF-ACI-1713765, NSF-DMS-1821242 
and NSF-ECCS-19-04774. VAF acknowledges support via NSF grants NSF-DMS-1361197. Several simulations were performed 
on a cluster at UND that is run by the Center for Research Computing. Computer support on NSF’s XSEDE and Blue Waters 
computing resources is also acknowledged.

Appendix A

In the text, eqn. (2.12), (2.13) and (2.14) as well as (3.5), (3.6), (3.7) and (3.8) have given all the expressions for imple-
menting WENO-AO for two dimensions. Those expressions go over unchanged to three dimensions. In this appendix, we 
provide all the supplemental expressions for implementing WENO-AO in three dimensions up to fourth order. Once this 
idea is understood, extensions to fifth order are also easy.

In three dimensions, we have (x, y, z) coordinates with a shift given by (ξ, η, ζ ). Therefore, we can write the supple-
mental expressions for the third order WENO-AO as
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The supplemental expressions for the four order WENO-AO can be written as
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