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Abstract
Many energy policies are implemented to subsidize the adoption of energy efficiency. 
However, when private benefits from energy efficiency exceed the social benefits, there 
is an incentive for the consumers to over-invest in energy efficiency; otherwise, there is 
an incentive to under-invest. This study adds to this discussion by providing an empirical 
estimation of the electricity savings and social benefits after energy efficiency retrofits for 
consumers on time-of-use (TOU) and increasing block pricing, respectively. We aim to 
examine how social versus private savings from a given energy efficiency measure may be 
different depending on different pricing plans. This study applies hourly electricity data for 
about 16,000 residential consumers during 2013–2017 in Arizona. We show that for the 
TOU consumers, the private savings from energy-efficient AC retrofits are greater than the 
social savings by 61%, while the increasing block rate consumers’ private savings exceed 
the social savings by 46%, when other market failures are not considered (e.g., principal-
agent problem and imperfect information). Different rate plans impose different marginal 
electricity prices which influence the incentives to invest in energy efficiency as well as 
electricity consumption behaviors that can influence both the private and social savings 
from energy efficiency. The result indicates that there should be potentially different levels 
of policy interventions towards energy efficiency for consumers on different pricing. Addi-
tionally, we also find that energy efficiency makes the electricity demand more elastic to 
price changes.

Keywords  Energy efficiency · Time-of-use · Increasing block rate · Private benefits · 
Social benefits · Price elasticity

1  Introduction

It is believed that there is an “energy efficiency gap”—the failure to invest in seemingly 
cost-effective energy efficiency technologies (Allcott and Greenstone 2012; Gillingham 
and Palmer 2014). Motivated by this concern, many policies and energy efficiency pro-
grams are implemented to encourage the adoption of energy efficiency by households. 
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The justifications for these policies are two folds. First, the negative externalities such 
as carbon emissions and environmental pollution are not internalized into the electricity 
prices paid by consumers (Fowlie et al. 2018). Therefore, there are social benefits associ-
ated with promoting energy efficiency. Second, there are various market failures, such as 
the principal-agent problems (Gillingham et al. 2012), imperfect information, and learning 
effects (Velthuijsen 1993; Jaffe and Stavins 1994; Gillingham and Palmer 2014; Fowlie 
et al. 2018). These market failures induce suboptimal investment decisions and policies can 
promote energy efficiency and increase investment level.

However, it is possible that consumers already have an incentive to over-invest in energy 
efficiency (or private benefits larger than social benefits) even when not influenced by pol-
icies to promote energy efficiency. Novan and Smith (2018) reported that there is over-
investment for increasing block rate (IBR) consumers in California (other market failures 
are not considered). If the electricity price is higher, there is an incentive for the private to 
invest more. This implicit incentive to over-invest in energy efficiency can be viewed as a 
counter-argument to the efficiency policies.

Energy prices have an impact on investments in energy efficiency or the degrees of 
energy efficiency because different energy bill savings are achieved with different prices 
(Malatji et  al. 2013). Electricity consumption behaviors will also be different under dif-
ferent marginal prices (Qiu et  al. 2018; Faruqui and Sergici 2010). Currently, electricity 
prices are regulated and usually charged higher than their marginal costs. These regulated 
prices thus distort incentives for investment in energy efficiency (regulatory failures) (Gill-
ingham and Palmer 2014). Existing studies have not examined how different electricity 
rates lead to over-investment or under-investment of energy efficiency, which is important 
for the quantification of the benefits of energy efficiency and also to help policymakers 
with the design of incentives for energy efficiency.

Dynamic pricing plans follow the cost of electricity supply more closely (Aigner et al. 
1994) and help smooth the electric load profile, and therefore are often applied in the 
demand response programs (Torriti 2012; Vardakas et al. 2015). Among them, the time-
of-use (TOU) is the most common one with higher marginal prices during peak hours and 
lower prices during off-peak hours (Newsham and Bowker 2010). TOU has already been 
widely implemented and about 30% of the consumers of Salt River Project (SRP) util-
ity in Arizona have enrolled in TOU plans (Qiu et al. 2018). Different pricing plans (e.g., 
TOU vs. non-TOU pricing plan) may lead to a different amount of energy saved from a 
given energy efficiency measure, our study provides empirical evidence of such differences 
resulting from different plans.

Additionally, it is possible that consumers’ price elasticity of electricity demand changes 
after adopting energy-efficient technologies. Energy efficiency consumers might be more 
price-elastic because advanced technologies such as programmable thermostats can help 
the consumers better respond to price changes (Faruqui et  al. 2010). On the other hand, 
energy efficiency consumers might be less price-elastic because they do not consume much 
energy in the first place. Thus, empirical evidence is needed to investigate the change in 
price elasticities with the presence of energy efficiency, which also impacts the further esti-
mation of the private and social savings from energy efficiency.

This study quantifies the hourly electricity savings from energy efficiency for consum-
ers enrolled in TOU plan and compares their private and social savings with those under 
increasing block rate (IBR or non-TOU). Building on Novan and Smith (2018), Boom-
hower and Davis (2020) and others, social benefits include the following: the avoided elec-
tricity generation costs, reduced negative externality costs, deferred investments in capac-
ity and transmission/distribution. Specifically, the research questions are as follows:
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1.	 What is the electricity saved by hour-of-day for TOU and non-TOU consumers, respec-
tively?

2.	 How do consumers’ price elasticities change with the presence of energy efficiency?
3.	 How are the private savings on bills compared to social savings by decreasing electricity 

generation and pollution for TOU and non-TOU consumers, respectively?

We focus on energy-efficient air conditioning units (ACs) in Arizona by using informa-
tion on energy efficiency replacements and smart metering data, which records the hourly 
electricity demand in kWh for about 16,000 households during 2013–2017. We attempt 
to use a combination of matching and fixed effects panel regression to reduce potential 
endogeneity, which exists since the enrollment in TOU and the adoption of energy-efficient 
ACs are voluntary for the consumers. Our results show that consumers under both TOU 
and non-TOU rates have an incentive to over-invest in energy efficiency. We also find that 
energy efficiency impacts the price elasticity of electricity by making the consumers more 
elastic to price changes.

We find that the private benefits exceed the social benefits to a lesser extent for non-
TOU consumers, which implies that when there are other market failures, non-TOU con-
sumers are more likely to under invest in energy efficiency. Therefore, energy efficiency 
interventions should be focused more on consumers on non-TOU price plans than those on 
TOU plans. However, households may not respond fully to private incentives to invest in 
energy efficiency due to market failures such as imperfect information and principal-agent 
problems (Gillingham and Palmer 2014). In this case, policy interventions such as provid-
ing better information could help with the investment in energy efficiency.

This paper proceeds as follows. Section 2 reviews the literature. Section 3 depicts a the-
oretical framework, describes the data and also presents the empirical strategy. Section 4 
provides the econometric analysis, results and some robustness checks. The estimation of 
private and social savings under TOU and non-TOU is in Sect. 5. Section 6 concludes and 
makes some policy implications.

2 � Literature Review

This study contributes to three strands of literature. First, many studies have evaluated the 
energy savings from energy efficiency programs (e.g., Allcott and Greenstone 2017; Fowlie 
et al. 2018; Liang et al. 2018); however, most of them have not examined the effect of dif-
ferent electricity rates on savings from energy efficiency. Different electricity rates charge 
prices in different ways and directly influence consumer behaviors as well as the associ-
ated savings. This study will contribute to this strand of literature by evaluating the sav-
ings under the TOU and IBR (non-TOU) rates, which have not been examined by existing 
studies.

Second, many studies on the evaluation of energy efficiency rely on monthly consump-
tion with only a few exceptions (e.g., Novan and Smith 2018; Boomhower and Davis 2020) 
while using smart-meter electricity data1 makes it possible to study more complex con-
sumption behaviors (Burlig et al. 2020). The intra-day timing of electricity savings should 
be considered, which leads to better estimates of savings compared to those based on 

1  U.S. Department of Energy, Electric Power Annual, Released December 2017, Tables 2.1 and 10.10.
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monthly or daily consumption. Moreover, the marginal environmental damages from elec-
tricity generation also differ by hour-of-day (Callaway and Fowlie 2009; Siler-Evans et al. 
2012; Carson and Novan 2013; Qiu and Kahn 2018). Our study contributes to this emerg-
ing strand of the studies using high-frequency data.

Third, abundant studies have estimated the price elasticities of energy demand. The 
short-term price elasticities are reported to vary from 0 and  -0.8 and the long-term ones 
are found to be between -0.3 and  -1.2 (Labandeira et al. 2017; Sherwin and Azevedo 2020). 
Studies on the price elasticities under TOU pricing (Aigner et  al. 1994; Filippini 1995, 
2011; Qiu et al. 2018) showed that consumers could reduce the peak quantity demanded 
by shifting consumption from on-peak to off-peak hours, but the magnitudes vary. Differ-
ent methods have been adopted for the estimation, including cointegration regression, the 
error-correction model, and Computable General Equilibrium (Hughes et al. 2008; Lijesen 
2007; He et  al. 2011). However, none of them have specifically explored how the price 
elasticities change with the presence of energy efficiency. Since price elasticity may change 
with energy efficiency, an empirical estimation is necessary. This study will provide an 
estimation of the short-run price elasticity when energy efficiency exists.

We estimate electricity savings in kWh by hour-of-day for consumers enrolled on two 
plans separately: (1) TOU customers with and without energy-efficient ACs; (2) IBR or 
non-TOU customers with and without energy-efficient ACs. This study includes both 
groups of consumers while paying special attention to group (1) since no existing research 
has specifically examined TOU consumers. The comparison of two groups helps us explore 
how electricity savings profiles (savings by hour-of-day) may differ under different elec-
tricity rates. We also use TOU consumers to examine the difference in elasticities due to 
energy efficiency. The non-TOU households cannot be used to estimate price elasticity 
because they face a marginal price that increases with aggregated consumption rather than 
a price varying intra-day.

3 � Theoretical Framework, Data, and Empirical Strategy

3.1 � Theoretical Framework

Figure  1 shows the theoretical framework. Figure panel (a) illustrates the conventional 
argument for subsidizing energy efficiency. When external cost is not priced into energy 
consumption, the marginal social cost of energy efficiency for a customer (as illustrated 
by the MSB curve) is larger than the marginal private benefit (as illustrated by the MPB 
curve). The marginal cost of adopting energy efficiency is illustrated by the MC curve. 
When there are no policy interventions and other market failures, the equilibrium level of 
energy efficiency adoption is at Q2, which is lower than the socially optimal adoption level 
at Q1. When other market failures (as illustrated by the red arrow) are present such as infor-
mation asymmetry, split-incentive problem, and inattention, the private adoption level is 
pushed even lower. Figure panel (b) illustrates if the price of electricity paid by consum-
ers is high enough so that the marginal private benefit is greater than the marginal social 
benefit, the private adoption level in the absence of other market failures could be higher 
than the socially optimal level. Figure panel (b) also shows that the deviation between the 
private adoption level and the socially optimal level could differ for customers on different 
pricing plans.
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TOU pricing and IBR pricing not only have different levels of marginal prices, but they 
also have different charging structures (TOU varies by peak and non-peak hours and IBR 
charges volumetrically based on aggregated monthly consumption). The higher the aver-
age marginal prices,2 the larger the demand for energy efficiency, which is a “product” to 
reduce energy consumption.

Figure panel (c) illustrates that with other market failures and also when the marginal 
social benefit is smaller than the marginal private benefit, the private adoption level may 
be either greater (red arrow) or smaller (light red arrow) than the socially optimal level, 
depending on the relative sizes of the two effects. In either case, we show that the devia-
tions between the private and socially optimal adoption levels are different for consum-
ers on different rate plans, implying that government policies incentivizing the adoption of 
energy efficiency should differ by rate plans.

In the empirical analysis, we will estimate the social versus private savings under TOU 
and IBR, following the setting in figure panel (b), which is without other market failures. 
The comparison of social and private savings provides indication for the discrepancy 

Fig. 1   Theoretical framework. Notes: MSB stands for marginal social benefit; MPB stands for marginal pri-
vate benefit; MC is the marginal cost for adopting energy efficiency; the red arrows indicate the influence of 
other market failures such as information asymmetry, split-incentive problem, and inattention

2  TOU has a lower marginal price on average than the increasing block rate (IBR) in our study sample. The 
average marginal price for TOU consumers is $0.1005 while that for IBR consumers is $0.1218.
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between the private and the socially optimal levels. If private savings are larger than the 
social savings, there is an incentive for consumers to over-invest. On the other hand, if the 
social savings are larger than the private savings, there is an incentive to under-invest and 
policies should subsidize energy efficiency adoption.

3.2 � Data

Arizona has high temperatures during the summer and thus has large electricity consump-
tion, which contributes to the development of dynamic pricing plans (Kirkeide 2012). Our 
data come from the Salt River Project (SRP), which is one of the major utilities in the 
Phoenix metropolitan area in Arizona. We focus on energy-efficient AC replacements in 
this study. The AC replacements are important since electricity consumption from ACs 
takes half of the peak load in Arizona (Koch-Nielsen 2013) and is also one of the end-uses 
that grow fastest (Boomhower and Davis 2020).

We have three datasets: two on energy-efficient AC replacements and one smart-meter-
ing data. The two separate datasets recording energy-efficient AC replacements include (1) 
the AC replacements from SRP’s AC rebate program called “Cool Cash” which started in 
2016 and (2) the Residential Equipment and Technology (RET) survey conducted in 2014. 
The replacements recorded by the “Cool Cash” rebate program contains detailed informa-
tion including replacement date, capacity, and Seasonal Energy Efficiency Ratio (SEER). 
In the RET survey, the participants were selected randomly to complete the survey online 
or by mail. They were asked to report whether they had replaced their central AC units 
with more efficient Energy Star ACs during the past 3 years.3 The rebate program provides 
financial incentives4 and the financial incentives for energy-efficient ACs vary between 
$200 and $800.5 We do not have information about the rebates for replacing the ACs in 
the RET survey. However, since the consumers are from the same utility company, they are 
likely to face the same incentives. In the main analysis, we combine the AC replacements 
recorded by the rebate program with the RET survey because this provides us with a larger 
sample. The final sample compiles the data from about 16,000 households. Altogether, 
we observe 1246 households with AC replacements, among which 82 (6.6%) are from the 
rebate program while the self-reported RET survey includes 1164 (93.4%) households. 
Table 5 in the “Appendix” shows the distribution of dates of replacement. Table 6 shows 
the technical attributes of ACs (e.g., capacity, SEER) recorded by the rebate program.

The third dataset is the customer-level smart metering data, which is also from SRP and 
contains hourly electricity consumption data. The smart-metering data is combined with 
housing characteristics (e.g., square footage, building year) and socio-demographics (e.g., 
household size, household income) which are obtained from the RET survey. The smart 
metering data spans from May 2013 to November 2017. The rebate program recorded 
replacements from May 2016 to April 2017 and the RET survey was submitted in July 
and August 2014. The timeline of the three datasets is depicted in Fig. 2. Given that the 
exact timing of replacements was not reported in the RET survey, we removed the electric-
ity consumption data before their survey submission dates and only included those after 

3  Energy Star central AC unit must have a SEER that exceeds 14.
4  The time for these incentives recorded in our dataset is from May 2016 to November 2017.
5  The incentives given by the utility is roughly based on SEER: if 15 ≤ SEER < 16, the incentive is $200; if 
16 ≤ SEER < 17, the incentive is $400; if 17 ≤ SEER < 18, the incentive is $600 and if SEER ≥ 18, the incen-
tive is $800. See more details in http://www.savew​ithsr​p.com/RD/CoolC​ash.aspx.
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the submission dates, namely, only the “post-treatment” observations. We also dropped 
30 days prior to the known replacement date to avoid abnormal electricity usage during 
replacements. We dropped the accounts with multiple zip codes to ensure that changes in 
electricity consumption are not caused by relocation.

SRP consumers are enrolled in one of the five different electricity rate plans,6 numbered 
E-21, E-22, E-23, E-25, and E-26 (Fig. 3). E-23 is an IBR with time-invariant marginal 
price that does not differ by hour of day. The other four plans are TOU rates with different 
on-peak hours and marginal prices. Table 7 gives the detailed per kWh charges for these 

Fig. 2   Timeline of smart metering data and energy-efficient AC replacements

Fig. 3   The TOU and non-TOU residential electricity pricing plans. Notes: E-21, E-22, E-25, and E-26 are 
TOU plans and E-23 is non-TOU plan; E-21Peak, E-22Peak, E-25Peak, and E-26Peak are the rates in sum-
mer peak—July and August

6  The rates are based on the rate book issued by SRP in 2017.
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plans. In this paper, we only include the summer months when cooling-drive consump-
tion may change due to AC replacements. For accounting purposes, the months of May to 
October are summer months, among which July and August are the peak summer months. 
The monthly service charge is the same for all plans and there is no demand charge. 

3.3 � Descriptive Statistics

Figure 4 plots the average hour-by-day electricity demand in kWh for TOU and non-TOU 
consumers. The average hourly demand of the TOU consumers is about 2 kWh higher than 
that of the non-TOU consumers. Usually, the demand peaks in the early hours of the even-
ing when people return from work and turn on their ACs. The peak hours of the TOU con-
sumers seem to occur 1 h later than the non-TOU consumers. The largest demand occurs 
at 7 p.m. for TOU consumers while at 6 p.m. for non-TOU consumers. The lowest average 
consumption occurs at 5 a.m. for both TOU and non-TOU consumers.

Figure 4 also shows that electricity consumption is impacted by the presence of energy 
efficiency. The non-TOU consumers with energy-efficient ACs tend to have higher con-
sumption compared to those without. Also, TOU consumers without energy efficiency 
have slightly higher electricity consumption than that of their counterparts. Table 1 pre-
sents the summary statistics of building attributes and housing characteristics.

3.4 � Empirical Strategy

There are two potential endogeneity issues. First, there could be a selection bias because 
the adoption of energy-efficient ACs is voluntary. For example, households that are more 
environmentally conscious are more likely to switch to energy-efficient ACs (Wilson and 
Dowlatabadi 2007; Ramos et al. 2016) and these households may also have different con-
sumption patterns. Second, enrolment in TOU plans is not mandatory (Qiu et  al. 2017) 

Fig. 4   Electricity demand in kWh by hour-of-day for TOU and non-TOU consumers
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Table 1   Descriptive statistics for the TOU and non-TOU customers with and without energy-efficient ACs

Variable Obs. Mean SD Min Max

TOU consumers without energy-efficient ACs
 Ownership (renter = 0) 4394 0.72 0.45 0 1
 Household income ($1000) 4394 61.10 45.05 0 150
 Square footage (1000 ft2) 4294 1.87 0.79 0.75 3
 Household size 4283 2.42 1.23 1.5 5
 White 4151 0.75 0.44 0 1
 Stories 4185 1.27 0.49 1 3
 Vintage 4394 26.88 17.92 0 65
 Age of household head 4165 53.92 15.95 21 75
 Primary (seasonal residence = 0) 4322 0.98 0.15 0 1
 Swimming pool 4378 0.40 0.49 0 1
 Programmable thermostats 4394 0.65 0.48 0 1
 Dwelling
  Mobile home 4230 0.01 0.10 0 1
  Single-family house 4230 0.82 0.38 0 1

TOU consumers with energy-efficient ACs
 Ownership (renter = 0) 496 0.84 0.37 0 1
 Household income ($1000) 496 69.24 45.11 0 150
 Square footage (1000 ft2) 488 1.96 0.74 0.75 3
 Household size 482 2.39 1.20 1.5 5
 White 478 0.82 0.39 0 1
 Stories 492 1.26 0.45 1 3
 Vintage 496 27.78 15.99 0 65
 Age of household head 471 55.21 13.87 21 75
 Primary (seasonal residence = 0) 495 0.98 0.15 0 1
 Swimming pool 496 0.45 0.50 0 1
 Programmable thermostats 496 0.80 0.40 0 1
 Dwelling
  Mobile home 491 0.01 0.10 0 1
  Single-family house 491 0.90 0.31 0 1

Non-TOU consumers without energy-efficient ACs
 Ownership (renter = 0) 7824 0.72 0.45 0 1
 Household income ($1000) 7824 45.03 40.70 0 150
 Square footage (1000 ft2) 7381 1.51 0.79 0.75 3
 Household size 7422 2.07 1.06 1.5 5
 White 7319 0.75 0.43 0 1
 Stories 7167 1.17 0.42 1 3
 Vintage 7824 29.98 19.78 0 65
 Age of household head 7143 60.38 14.73 21 75
 Primary residence (seasonal residence = 0) 7510 0.90 0.30 0 1
 Swimming pool 7739 0.16 0.36 0 1
 Programmable thermostats 7824 0.52 0.50 0 1
 Dwelling
  Mobile home 7354 0.05 0.21 0 1
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and consumers can switch between rate plans during billing cycles. To help address this 
endogeneity, we attempt to apply fixed effects to control for any confounding factors such 
as housing characteristics and socio-demographics that could influence enrollment in TOU 
plan, energy-efficient AC replacements, and also electricity consumption. A series of time 
fixed effects are also applied to partially control for the time-varying factors such as prefer-
ence change. The analysis is conducted for TOU and non-TOU customers separately so that 
we can compare consumers on different plans. We dropped the households that switched 
between TOU and non-TOU plans (9.3% of customers) and focus only on households who 
stayed on the same rate plan.

We conduct propensity score matching to eliminate any systematic differences between 
customers with and without energy-efficient ACs. Among various algorithms that are avail-
able, we use the one with the smallest median bias, that is, the radius matching with the 
caliper of 0.01.7 For a customer with an energy-efficient AC, we find a control customer 
with similar housing attributes and demographics but without an energy-efficient AC. Then 
we conduct the fixed effects regression on these matched customers. Only the households 
that are matched (or on the common support) are used for the statistical analysis (Fig. 10 
in the “Appendix”). The matching variables include square footage, ownership, number 
of stories, residence type (primary or seasonal residence), dwelling type (single-family 
house, apartment, or mobile home), vintage, household size, race, household income, age 
of household head, whether there is a swimming pool, and whether the households have 
programmable thermostats. The balance checking of propensity score matching (Table 8), 
which shows that the covariates for the treated and control groups are comparable to each 

Table 1   (continued)

Variable Obs. Mean SD Min Max

  Single-family house 7354 0.74 0.44 0 1
Non-TOU consumers with energy-efficient ACs
 Ownership (renter = 0) 731 0.79 0.40 0 1
 Household income ($1000) 731 55.84 44.08 0 150
 Square footage (1000 ft2) 723 1.62 0.78 0.75 3
 Household size 712 2.15 1.08 1.5 5
 White 691 0.80 0.40 0 1
 Stories 715 1.12 0.35 1 3
 Vintage 731 30.00 17.21 0 65
 Age of household head 707 59.16 14.34 21 75
 Primary residence (seasonal residence = 0) 724 0.90 0.30 0 1
 Swimming pool 730 0.18 0.39 0 1
 Programmable thermostats 731 0.72 0.45 0 1
 Dwelling
  Mobile home 714 0.05 0.22 0 1
  Single-family house 714 0.82 0.38 0 1

7  The different algorithms include radius matching, kernel matching, and k-nearest neighbors matching. 
Radius matching puts a constraint on the largest acceptable difference in propensity score when matching a 
control with a treated.
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other after propensity score matching. Solar panel installation is not included as the covari-
ates because our data suggests that its adoption is comparatively independent of the deci-
sion to adopt energy efficiency.8

We conduct several robustness checks and also combine the analysis with an innova-
tive machine learning approach. Alternative robustness checks include the coarsened exact 
matching, which is another widely adopted matching approach, and adding zip code-year 
fixed effects, which further control for more variation across households.

4 � Econometric Analysis and Results

4.1 � Electricity Savings by Hour‑of‑Day

In this section, we estimate electricity savings by hour-of-day. The following model is 
applied:

where Demandihd represents the electricity consumption in kWh at household i during the 
hour h on day d. The log of the electricity demand is not used as the dependent variable 
since we are interested in estimating the values of the private and social benefits, which 
are calculated as a marginal benefit (in $/kWh) multiplied by the change in kWh. EE_AC 
refers to the status of energy-efficient AC replacements, which is equal to 1 for the treated 
group in their post-treatment period and is 0 all otherwise. �h

1
 , the coefficient on the inter-

action term of energy efficiency and hour dummy, measures the hourly electricity savings 
and it is the one we are most interested in. The covariates include CDD (Cooling Degree 
Days), HDD (Heating Degree Days), holiday dummy, and weekend dummy. CDD and 
HDD are obtained from the hourly temperatures from the National Oceanic and Atmos-
pheric Administration.9 �i is the individual-customer fixed effects and controls for the time-
invariant variation among households such as square footage and household income. The 
time fixed effects include year fixed effects �y , month-of-year fixed effects �m , and hour-of-
day fixed effects �h , and they capture the time-varying variation during different times such 
as economic development and change in local energy policies. We include all the energy-
efficient AC customers in this main analysis: those recorded by the utility rebate program 
and also the self-reported ones.

Figure  5 plots the hourly electricity savings from the AC replacements for TOU and 
non-TOU consumers. The vertical axis refers to the change in hourly electricity demand 
(kWh), and a negative value indicates less electricity demanded (electricity savings). We 
find that electricity savings occur from 4 p.m. to 10 p.m. for the TOU consumers while 
occur throughout the day for non-TOU consumers. The largest savings happen during late 
afternoon and evening for all the consumers, which are usually the peak hours. This is 

(1)

Demandihd = �i +

24
∑

h=1

�h
1
EE_ACid ∗ hour_of_dayh + �2Priceihd + �3CDDihd + �4HDDihd

+ �5Holidayd + �6Weekdayd + �y + �m + �h + �ihd

8  The correlation between AC replacements and solar panel installation is − 0.0685, which suggests its 
impact on AC replacements very weak.
9  ftp://ftp.ncdc.noaa.gov/pub/data/uscrn​/produ​cts/hourl​y02/.
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intuitive since the savings are larger when electricity consumption is also larger during 
these peak hours. The full regression results are listed in Table 9. Coarsened exact match-
ing is also conducted (“Appendix 3”) as a robustness check, which gets results generally 
consistent with those using propensity score matching.10

There are two possible reasons why TOU consumers yield different savings than non-
TOU consumers.11 Firstly, the TOU consumers have higher consumption than IBR con-
sumers (Fig. 4), and the high-usage consumers are usually those with higher incomes.12 
The lower-income households on non-TOU plan may have less efficient electric appliances 
(Cayla et al. 2011), and comparatively have greater potential in saving (Liang et al. 2018). 
Secondly, it is also possible that houses on TOU have different electricity using behav-
iors (Qiu et al. 2018; Faruqui and Sergici 2010) and experience greater behavioral changes 
such as rebound effects. Their ACs may be set to lower temperatures after retrofits, which 
leads to less energy savings. This is confirmed by the finding that an IBR tariff reform in 
China mitigates the rebound effect (Lin and Liu 2013) and that increasing energy prices 
reduce the rebound effect (Ouyang et al. 2010). Hence, non-TOU households with smaller 
rebound effects have more savings.

The coefficients on CDD, HDD, holiday, and weekend are statistically significant, and 
all show expected signs. The coefficient on price for the IBR consumers is positive, which 
is caused by the fact that the marginal electricity price increases as consumers increase 
their electricity consumption.

Fig. 5   Estimates of electricity savings by hour-of-day for TOU and non-TOU consumers. Notes: Propen-
sity score matching is applied before the fixed effects regression. Each plot has 24 coefficients with the 
95% confidence intervals. The dependent variable for regressions is hourly electricity demand in kWh. 
All regressions are estimated with household fixed effects and year, month-of-year, and hour-of-day fixed 
effects. Electricity price, CDD, HDD, holiday, and weekend are included as covariates

10  We also include the zip code-year fixed effects and control for more unobserved variation at the zip code 
level that also varies across years, such as infrastructure change or environmental campaign in the commu-
nity. The results have a similar pattern as that of the main results. However, there are more peak hours with 
statistically significant savings for the TOU consumers while for the non-TOU consumers, the magnitude of 
savings becomes slightly larger. This suggests that slightly more zip-year level variation exists for non-TOU 
consumers.
11  A formal statistical test to confirm that two groups have different savings is performed in “Appendix 4: 
Test the inequality of regression coefficients for TOU and non-TOU groups”.
12  Low-income households have lower consumption, as it is the case in (Fowlie et al. 2018). In this study, 
the average household income is $63 k for TOU consumers while is $50 k for non-TOU consumers. The 
lower-income households are not specifically the least well-off ones.
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4.2 � Overlap of Peak Hours with Electricity Savings

Figure 6 displays how concurrently electricity savings happen with peak hours. The left 
axis shows the hourly marginal electricity price. The right axis shows the estimates of elec-
tricity savings taken from the regressions in the former section but formatted in positive 
values. The figure reveals that a correlation exists between the hours of saving and the price 
of electricity. The overlap is especially strong during the peak hours in the late afternoon 
and early evening when the marginal cost of providing electricity is also very high. This 
further confirms that the intra-day timing should be considered for estimation of money 
saved on bills because calculation using average prices and average reduction in consump-
tion ignores a “timing premium” (Boomhower and Davis 2020). Furthermore, intra-day 
timing also matters for estimating environmental pollutants during electricity generation 
which also varies throughout the day (Sherwin and Azevedo 2020).

4.3 � Heterogeneity Among Households

In this section, the heterogeneity among households is examined to investigate how the 
savings from AC upgrades vary across different households. The AC replacements 
recorded by the rebate program provide the installation time and thus for these households 
there are data for both pre-treatment and post-treatment periods. We run the regression in 
Eq. (1) individually for each treated household. Figure 7 shows the coefficients from these 

Fig. 6   Overlap of electricity savings by hour-of-day and marginal electricity prices. Notes: The non-TOU 
price is the increasing block rate (E-23) while the weighted-average electricity price for TOU consumers 
is the average of all the TOU prices. Point estimates are plotted. Zeros in many hours indicate that TOU 
consumers only save on some specific hours while savings are not found to be statistically significant at a 
meaningful significance level (p < 0.10) for other hours. A non-significant coefficient means that the null 
hypothesis that electricity saving is zero cannot be rejected. There may be savings for some of the house-
holds in practice, but heterogeneity may be large among them and shows insignificant savings on average. 
Due to the insignificance of p-values, we treat these savings in these hours as zero
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regressions at specific hours. For different TOU consumers, hourly electricity savings vary 
from 0 to 5.9 kWh at 8 p.m. For non-TOU consumers, hourly savings range from no sav-
ings to 8.2 kWh at 9 p.m. These hours are chosen because they are the hours when the larg-
est electricity savings occur. The variation reveals that the savings are very heterogeneous 
among households and it is possible that some households have no electricity savings at all 
after AC replacements.

4.4 � Price Elasticity

It is possible that consumers’ response to electricity price changes may change with the 
presence of energy efficiency. In this section, we test if residential consumers will have 
different short-run price elasticities with the presence of energy efficiency using our large-
sample hourly consumption data. We run the following model on the matched sample to 
examine how energy efficiency influences price elasticities.

where �1 implies the average change in quantity demanded when prices change without 
energy efficiency; �2 is the coefficient on the interaction terms of electricity price and 
energy-efficient ACs and it tests whether the average price elasticities differ for consumers 
with the presence of energy efficiency.13 The model is only run for the TOU consumers 
since the IBR consumers do not have price variation by hour-of-day.

The results (Table 2) show that the coefficient �2 is statistically significant (p < 0.10), 
which indicates that price elasticities do change with the presence of energy efficiency. 

(2)
Demandihd = �i + �1Priceihd + �2Priceihd ∗ EE_ACid + �3CDDihd

+ �4HDDihd + �5Holidayd + �6Weekdayd + �y + �m + �h + �ihd,

Fig. 7   Heterogeneity in hourly electricity savings among households. Notes: The dashed black lines show 
the 95% confidence intervals. All regressions are estimated with household fixed effects and time fixed 
effects included. Electricity price, CDD, HDD, holiday, and weekend are also included as covariates. Only 
22 treated households on TOU rate and 41 on non-TOU rate recorded by the “Cool Cash” rebate program 
have the accurate installation dates and have both the pre-treatment and post-treatment data. After match-
ing, the numbers further reduce to 15 for TOU consumers and 34 for non-TOU consumers (since not all 
households have all housing characteristics available for matching and are thus dropped

13  All the energy-efficient AC customers are incorporated including the self-reported replacements from 
the RET survey.
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Price elasticity is calculated to be − 0.13 without energy efficiency, according to the defi-
nition formula of price elasticity.14 This is generally consistent with the existing finding 
that the short-run demand for electricity is rather price-inelastic and the price elasticity 
is around − 0.1 (Burke and Abayasekara 2018). The price elasticity with the existence of 
energy efficiency changes from − 0.13 to − 0.16 (the coefficient on the interaction term is 
− 2.7). Although the absolute magnitude does not seem large, this equals a relatively large 
percentage change of 23%. This result indicates that energy-efficient technologies such as 
more efficient ACs make the consumers more elastic to electricity demand. Policy implica-
tions regarding this change in price elasticities are made in the last section.

4.5 � Robustness Check

In this section, counterfactuals are created using a machine learning approach. Machine 
learning is more flexible in terms of model specification by not assuming a simple and spe-
cific relationship between variables (Varian 2014). It makes an overall prediction and cre-
ates the counterfactual; that is, the electricity consumption for the treated group supposing 
that they did not get treated. We use the pre-treatment data to train the model and use the 
trained model to predict the counterfactual for each household.

Table 2   Estimates of price 
elasticities for TOU consumers 
with and without energy 
efficiency

Propensity score matching is applied before the fixed effects regres-
sion. Standard errors in parentheses, *p < 0.10, **p < 0.05, ***p < 0.01

Coefficients

Electricity price − 12.572***
(0.557)

Electricity price * energy-efficient AC − 2.708**
(1.118)

CDD 0.227***
(0.002)

HDD 0.374***
(0.013)

Weekend 0.164***
(0.025)

Holiday 0.037*
(0.021)

Constant 4.101***
(0.100)

Year fixed effects Yes
Month-of-year fixed effects Yes
Hour-of-day fixed effects Yes
N 59,345,610
R2 0.334

14  Average price elasticity =
%ΔQuanity

%ΔPrice
=

dQ∕Q̄

dP∕P̄
 , where the coefficient on price gives dQ∕dP , and Q̄ and P̄ 

are the average electricity quantity demanded and average price.
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Following (Burlig et  al. 2020), we apply the Least Absolute Shrinkage and Selection 
Operator (LASSO) method.15 The assumption is that the electricity consumption of the 
treated group continues their pre-treatment trend. The pre-treatment data is used to get the 
trend and predict the consumption without absorbing impacts from the treatment. A ran-
dom treatment date is assigned for the control households, and the observations before the 
hypothetical replacement date are used as pre-treatment data. The predictors include build-
ing attributes and socio-demographics. After the counterfactuals are created, we use a dif-
ference-in-difference strategy to get the average treatment effect. The formula is as follows:

where the predicted values (noted with hats) are the prediction from the trained model. 
Subscript T denotes the treated group while C refers to the control group.

The results16 (Fig. 8) show that the pattern of electricity savings is similar to the main 
results, but the magnitude of the estimates seem to be larger. The largest electricity savings 
also occur during peak hours. The variation between the largest and smallest savings tends 
to be larger for TOU consumers than non-TOU consumers. The possible reason might be 
that a machine learning approach could capture more variation across hourly consumption 
while the previous method attributes some of the variations to household fixed effects.

(3)𝛽 =

(

yT ,post − ŷT ,post
)

−

(

yT ,pre − ŷT ,pre
)

−

(

yC,post − ŷC,post
)

−

(

yC,pre − ŷC,pre
)

,

Fig. 8   Estimates of electricity 
savings by hour-of-day during 
the summer months. Notes: The 
blue line is for the TOU consum-
ers and the red line is for the non-
TOU consumers. The grey area is 
the 95% confidence interval with 
the standard error. The method 
for computing standard errors 
after model selection methods 
is not yet well addressed. Thus 
following (Prest 2020), we use an 
OLS regression

15  Other models could also be applicable such as random forests (Cicala 2017). A LASSO is preferred if 
covariates are more likely to have strong linear effects on outcomes.
16  The self-reported replacements are excluded since clear installation dates are not available for them.
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5 � Private and Social Savings

5.1 � Comparison of Private Versus Social Savings

We employ hourly electricity savings and hourly prices to estimate the private and 
social savings. The daily private savings for an average consumer are calculated using 
∑

h �
h
1
priceh , where priceh is the hourly price and �h

1
 is the estimated hourly electricity sav-

ings. The total private savings are obtained by summing up the daily savings across all 
summer days.17

The social savings are calculated by incorporating two components: (1) reduction in 
environmental damages from pollutants, and (2) reduced social cost from electricity gen-
eration. We incorporate the following major pollutants: CO2, SO2, NOX, and particulate 
matter. The daily environmental damages are calculated by 

∑

h �
h
1
MDh , where �h

1
 is the 

hourly electricity savings, and the hourly marginal damage factors MDh are obtained from 
(Holland et al. 2016). We apply the set of marginal damage factors from the Western Elec-
tricity Coordinating Council (WECC) region which Arizona belongs to. Some electricity is 
lost during the generation (4.6%) and transmission/distribution process (9.6%) (Graff Zivin 
et al. 2014; Novan and Smith 2018), so two adjustments are made by scaling up the social 
savings by 1.05 × 1.096.

The reduced social cost from electricity generation is estimated using the hourly system 
lambdas reported in the FERC 714 forms.18 The system lambda is the system marginal 
cost,19 which is usually calculated to minimize production costs among different produc-
tion resources. We use system lambdas to indicate the economic marginal cost of genera-
tion. Besides, deferred capital investment in generation capacity is estimated by multiply-
ing the largest average hourly changes in summer consumption by the average monthly 
cost of capacity. An average monthly capacity cost of $2.66/kW is adopted following 

Table 3   Average electricity savings from energy-efficient ACs during summer months

TOU consumers Non-TOU 
consum-
ers

Private savings ($) 263.1 695.4
Social savings ($) 163.7 477.0
Environmental damages ($) 29.0 124.5
Generation savings ($) 64.4 146.5
Reduced capacity investments ($) 21.1 23.3
Reduced transmission/distribution cost ($) 49.2 182.7
(Private savings—social savings)/social savings 61% 46%
Social savings/private savings 62% 69%

18  https​://www.ferc.gov/indus​tries​-data/elect​ric/gener​al-infor​matio​n/elect​ric-indus​try-forms​/form-no-
714-annua​l-elect​ric/data.
19  https​://www.e-educa​tion.psu.edu/eme80​1/node/532.

17  The implied payback period is estimated to be 15.4  years for the TOU consumers and 5.0  years for 
the non-TOU consumers, depending on the size of their annual savings. The cost of energy-efficient AC 
replacement is assumed to be $5000. The details are seen in Table 10 in “Appendix 1”.
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(Novan and Smith 2018). We also included the deferments in transmission/distribution 
investments. According to eia.gov,20 the average electricity delivery cost is estimated to 
be 3.2 cents/kWh (in 2016), including the costs of transmission infrastructure, distribution 
equipment, installation, equipment maintenance, customer billing, education, relations, 
labor costs, and others. The avoided transmission and distribution costs are calculated by 
multiplying the average delivery cost by the total decreased consumption.

We find that the TOU consumers with energy efficiency save $263 on electricity bills 
(Table  3) while the non-TOU consumers have higher private savings at $695. For both 
TOU and non-TOU consumers, the total social savings are smaller than the private savings. 
This suggests that there is an incentive to over-invest in energy efficiency for both types of 
consumers (when not considering other market failures). For the non-TOU consumers, the 
private savings exceed the social savings by 46% while for the TOU consumers, the private 
savings are greater than the social savings by 61%. The discrepancy between social and 
private savings is larger for TOU consumers than non-TOU consumers.

This result is consistent with that of (Novan and Smith 2018) which also finds the pri-
vate savings are larger than the social savings for consumers in California where the house-
holds also face tiered tariffs larger than the social marginal cost and the households have 
incentives to overinvest in energy efficiency. The results are also in line with the theoretical 
framework that TOU and IBR impose different marginal prices which influence the incen-
tives to invest in energy efficiency as well as electricity using behaviors that influence both 
the private and social savings. The TOU plan results in lower demand for energy efficiency 
(the absolute value of the private savings is lower) with a lower marginal price compared to 
the IBR plan in our sample.

We also tried an alternative set of the marginal damage factors, following (Azevedo 
et  al. 2017).21 Compared to the previous set of factors, the alternative factors are larger 
for CO2, NOX and particulate matter while the factor for SO2 is smaller. This alternative 
factor set also has separated different seasons and we use factors for the summer season. 
The results (Table 4) show that for TOU consumers, the private savings are larger than the 
social savings by 44% while for non-TOU consumers, the private savings exceed the social 

Table 4   Average electricity savings from energy-efficient AC using alternative marginal factors

TOU consumers Non-TOU 
consum-
ers

Private savings ($) 263.1 695.4
Social savings ($) 182.1 527.3
Environmental damages ($) 47.4 174.8
Generation savings ($) 64.4 146.5
Reduced capacity investments ($) 21.1 23.3
Reduced transmission/distribution cost ($) 49.2 182.7
(Private savings—social savings)/social savings 44% 32%
Social savings/private savings 69% 76%

20  https​://www.eia.gov/today​inene​rgy/detai​l.php?id=32812​.
21  https​://cedm.shiny​apps.io/Margi​nalFa​ctors​/.
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Fig. 9   The comparison of private versus social savings under different scenarios. Notes: The savings on the 
vertical axis is formatted negative for the ease of comparison. If the sum is zero for all bars, the social sav-
ings are equal to the private savings
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savings by 32%. Again, the TOU plan yields a slightly larger deviation between private and 
social savings in comparison to the non-TOU plan.

5.2 � Scenario Analysis

The social cost of carbon (SC-CO2 or more simplified SCC) is assumed to be at $35 for a 
metric ton of carbon dioxide emissions during the calculation of environmental damages in 
the last section. However, there is large uncertainty for the long-term damages from carbon 
dioxide (Tol 2005). Considering this uncertainty, we use a scenario analysis with alterna-
tive SCC values: $11, $36, $56 and $105, which are estimated by the Environment Protec-
tion Agency (EPA). The first three values are estimated at the discount rate of 2.5%, 3%, 
and 5%, while the fourth is the lower-probability but higher-impact outcome with particu-
larly harmful impacts (EPA 2016).

In the four scenarios, the estimation of social savings depends on the SCC values and 
a larger SCC yields larger social savings. However, the private savings are always larger 
than the social savings with all the alternative SCC values for TOU consumers while for 
non-TOU consumers, the social savings are larger than the private savings only when $105 
is employed as the SCC (Fig. 9). Therefore, our main findings remained, which is that the 
private savings are larger than the social savings and the deviation between them is larger 
for TOU consumers than non-TOU consumers.

5.3 � Discussion

Investments in energy efficiency are voluntary for consumers. Although this study matches 
the households on most important observable characteristics (socio-demographics and 
housing characteristics), some heterogeneity remains with time-varying unobserved vari-
ables at the individual-consumer level not well controlled for, such as consumers’ varying 
preferences (Nair et al. 2010), the learning effect (Jessoe and Rapson 2014), and new infor-
mation (Shen and Saijo 2009). This remaining endogeneity could potentially lead to biased 
estimates. Here, we provide additional evidence that the potential time-variant individual-
specific unobservables do not pose a big threat to our estimates. We conducted a graphical 
event study analysis, which shows that the treated and the control groups maintain a paral-
lel trend before the treatment. There is no statistically significant difference in the trends 
between the treated and control groups prior to the energy efficiency replacement. This 
indicates that the parallel trend assumption is satisfied (Fig. 11). The results are generally 
consistent with our main analysis. Based on our analysis, the non-TOU consumers have 
reduced electricity consumption after the replacement; however, the TOU consumers do 
not seem to have reduced consumption. This may be due to the possibility that savings only 
occur during specific hours for TOU consumers and average hourly savings are not obvious 
(Fig. 5).

This study finds that both TOU and non-TOU consumers have incentives to over-invest 
(private savings larger than social savings) while over-investment is larger for TOU con-
sumers. The estimation of private and social benefits does not account for other market 
failures, as mapped in Fig.  1b. The existence of additional market failures could reduce 
investments in energy efficiency. If the effect of the other market failures is large enough, 
the private benefits could become smaller than the social benefits and our conclusion of 
over-investment will not hold.
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As indicated in Sect. 3.2, we were not able to gather complete data from all the house-
holds we study. The number of treated households with accurate installation dates (those 
recorded by the rebate program) is only 49 (15 TOU consumers and 34 non-TOU consum-
ers). Most households are without accurate installation dates (those recorded by the RET 
survey). Thus, the source of variation in our main analysis comes mainly from the com-
parison between the treated and the control groups.

6 � Conclusion and Policy Implications

This study provides an empirical assessment of the effects of two different pricing plans on 
electricity savings from energy-efficient AC replacements for residential buildings. Using 
a rich dataset of hourly electricity consumption of about 16,000 consumers from 2013 to 
2017 in Arizona, we estimate the hour-of-day electricity savings and then use the estimated 
hourly savings to estimate their private and social benefits. We show that for the TOU 
consumers, the private savings are greater than the social savings (other market failures 
not considered), while for non-TOU consumers, the private savings also exceed the social 
savings, but by a lower percentage. In addition, we find that energy efficiency makes the 
electricity demand more elastic to price changes, suggesting energy technologies help the 
consumers better respond to price changes.

Our results have important policy implications. First, to address the market failure of 
negative externalities of energy consumption, many existing policies are implemented to 
incentivize energy efficiency rather than tax carbon emissions directly (Allcott and Green-
stone 2017). These policies potentially lead to a discrepancy between social and private 
savings, resulting in either over-investment or under-investment of energy efficiency. Our 
results show that (when other market failures are not considered) the private benefits of 
non-TOU consumers exceed the social benefits to a lesser extent. This indicates non-TOU 
consumers are more likely to underinvest in energy efficiency than the TOU consumers. 
Therefore, one policy implication is that energy efficiency should target consumers on non-
TOU plan than those on TOU plan. Larger incentives should be provided to non-TOU con-
sumers who are less likely to over-invest in energy efficiency.

Second, this study finds that energy efficiency makes consumers more elastic, indicat-
ing that energy efficiency could help ease the burden on the utility companies in terms of 
balancing the load and generation. It is expensive for utilities to maintain the generation 
capacity for peak loads and also to ensure supply stability. Consumers’ increased response 
to price changes helps utilities better reduce the peak load. Our results show that price 
elasticity changes with the presence of energy efficiency. This finding highlights the impor-
tance of an empirical estimate of the savings from energy efficiency. It is also of signifi-
cance for future exploration of how revenues of utilities would change with the increas-
ing penetration of energy efficiency among households. Besides, this finding implies that a 
load response program through pricing can be implemented together with energy efficiency 
given that energy efficiency positively impacts TOU consumers’ response to price changes.
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Appendix 1

See Tables 5, 6, 7, 8, 9 and 10.

Table 5   Years of adoption for 
energy-efficient AC replacements

a The consumers in the self-reported RET survey do not have informa-
tion on installation dates

Year Freq. Percent

Before or in 2014a 1164 89.88
2016 61 4.71
2017 70 5.41
Total 1295 100

Table 6   Technical attributes of energy-efficient AC replacements recorded by the rebate program

The consumers in the self-reported RET survey do not have information on technique attributes; in this 
table, capacity refers to the cooling capacity of an air conditioner, which is similar to horsepower and 
describes how powerful the unit is in British thermal unit (BTU); SEER (Seasonal Energy Efficiency Ratio) 
is the ratio of cooling capacity in BTU to the energy consumed in watt-hours and higher SEER indicates 
being more energy-efficient

Variable Obs Mean SD Min Max

SEER of old ACs 73 10.137 1.619 6 13
Capacity 126 43,211.9 8850.398 23,400 58,500
SEER of energy-efficient ACs 126 16.353 1.277 15 23.5
Retrofit type (unitary air condi-

tioner = 1; unitary heat pump = 0)
126 0.532 0.501 0 1
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Table 8   Mean of variables before and after propensity score matching for TOU and non-TOU consumers 
(treatment: energy-efficient AC replacement)

Variables Before matching After matching

Control Treated Control Treated

Obs Mean Obs Mean Obs Mean Obs Mean

TOU consumers
 Ownership (renter = 0) 4394 0.72 496 0.84 3660 0.84 425 0.83

(0.45) (0.37) (0.37) (0.37)
 Household income ($1000) 4394 61.10 496 69.24 3660 70.63 425 70.14

(45.05) (45.11) (45.31) (43.34)
 Square footage (1000 ft2) 4294 1.87 488 1.96 3660 1.98 425 1.98

(0.79) (0.74) (0.74) (0.73)
 Household size 4283 2.42 482 2.39 3660 2.43 425 2.44

(1.23) (1.20) (1.24) (1.22)
 White 4151 0.75 478 0.82 3660 0.82 425 0.82

(0.44) (0.39) (0.39) (0.39)
 Stories 4185 1.27 492 1.26 3660 1.26 425 1.26

(0.49) (0.45) (0.48) (0.45)
 Vintage 4394 26.88 496 27.78 3660 28.47 425 28.12

(17.92) (15.99) (16.80) (15.78)
 Household head age 4165 53.92 471 55.21 3660 55.11 425 54.78

(15.95) (13.87) (15.04) (13.78)
 Primary residence (seasonal residence = 0) 4322 0.98 495 0.98 3660 0.98 425 0.98

(0.15) (0.15) (0.13) (0.13)
 Swimming pool 4378 0.40 496 0.45 3660 0.46 425 0.46

(0.49) (0.50) (0.50) (0.50)
 Programmable thermostats 4394 0.65 496 0.80 3660 0.79 425 0.80

(0.48) (0.40) (0.41) (0.40)
 Single-family house 4230 0.82 491 0.90 3660 0.90 425 0.89

(0.38) (0.31) (0.30) (0.31)
Non-TOU consumers
 Ownership (renter = 0) 5823 0.71 631 0.79 5745 0.78 600 0.78

(0.45) (0.41) (0.41) (0.41)
 Household income ($1000) 5823 51.52 631 59.89 5745 56.21 600 56.33

(40.39) (43.61) (41.35) (41.32)
 Square footage (1000 ft2) 5823 1.51 631 1.63 5745 1.60 600 1.61
 Household size (0.79) (0.78) (0.79) (0.78)

5823 2.09 631 2.15 5745 2.12 600 2.14
(1.06) (1.08) (1.09) (1.08)

 White 5823 0.77 631 0.82 5745 0.81 600 0.81
(0.42) (0.39) (0.40) (0.39)

 Stories 5823 1.18 631 1.12 5745 1.13 600 1.13
(0.43) (0.35) (0.35) (0.35)

 Vintage 5823 30.36 631 29.77 5745 30.43 600 30.28
(19.28) (17.02) (18.77) (17.09)
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Table 8   (continued)

Variables Before matching After matching

Control Treated Control Treated

Obs Mean Obs Mean Obs Mean Obs Mean

 Household head age 5823 59.14 631 58.75 5745 59.30 600 59.10

(15.16) (14.44) (14.59) (14.48)
 Primary residence (seasonal residence = 0) 5823 0.90 631 0.91 5745 0.90 600 0.91

(0.29) (0.29) (0.30) (0.29)
 Swimming pool 5823 0.16 631 0.19 5745 0.19 600 0.18

(0.37) (0.40) (0.39) (0.38)
 Programmable thermostats 5823 0.52 631 0.71 5745 0.70 600 0.70

(0.50) (0.45) (0.46) (0.46)
 Single-family house 5823 0.74 631 0.82 5745 0.82 600 0.82

(0.44) (0.38) (0.39) (0.39)
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Table 9   Electricity savings by hour-of-day from energy-efficient ACs for TOU and non-TOU consumers

Variables TOU consumers Non-TOU consumers

Hour 1* energy-efficient AC − 0.919 − 1.310***
(0.652) (0.296)

Hour 2* energy-efficient AC − 0.886 − 1.286***
(0.653) (0.299)

Hour 3* energy-efficient AC − 0.832 − 1.275***
(0.653) (0.301)

Hour 4* energy-efficient AC − 0.846 − 1.236***
(0.651) (0.301)

Hour 5* energy-efficient AC − 0.789 − 1.231***
(0.650) (0.301)

Hour 6* energy-efficient AC − 0.670 − 1.184***
(0.652) (0.297)

Hour 7* energy-efficient AC − 0.731 − 1.105***
(0.653) (0.296)

Hour 8* energy-efficient AC − 0.790 − 1.162***
(0.653) (0.295)

Hour 9* energy-efficient AC − 0.727 − 1.234***
(0.654) (0.295)

Hour 10* energy-efficient AC − 0.713 − 1.247***
(0.652) (0.297)

Hour 11* energy-efficient AC − 0.668 − 1.259***
(0.653) (0.299)

Hour 12* energy-efficient AC − 0.670 − 1.261***
(0.654) (0.303)

Hour 13* energy-efficient AC − 0.622 − 1.251***
(0.655) (0.306)

Hour 14* energy-efficient AC − 0.774 − 1.260***
(0.659) (0.310)

Hour 15* energy-efficient AC − 0.825 − 1.313***
(0.658) (0.311)

Hour 16* energy-efficient AC − 1.094* − 1.391***
(0.657) (0.312)

Hour 17* energy-efficient AC − 1.215* − 1.458***
(0.651) (0.312)

Hour 18* energy-efficient AC − 1.273** − 1.491***
(0.648) (0.307)

Hour 19* energy-efficient AC − 1.318** − 1.520***
(0.647) (0.304)

Hour 20* energy-efficient AC − 1.325** − 1.536***
(0.643) (0.300)

Hour 21* energy-efficient AC − 1.194* − 1.546***
(0.644) (0.298)

Hour 22* energy-efficient AC − 1.125* − 1.462***
(0.645) (0.295)
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Appendix 2

See Figs. 10 and 11.

Table 9   (continued)

Variables TOU consumers Non-TOU consumers

Hour 23* energy-efficient AC − 1.030 − 1.373***
(0.654) (0.294)

Hour 24* energy-efficient AC − 0.916 − 1.336***
(0.655) (0.294)

CDD 0.227*** 0.176***
(0.002) (0.002)

HDD 0.375*** 0.314***
(0.013) (0.030)

Electricity price − 13.572*** 11.981***
(0.553) (1.103)

Weekend 0.163*** 0.232***
(0.025) (0.010)

Holiday 0.036* 0.066***
(0.021) (0.016)

Constant 4.435*** 0.062
(0.268) (0.165)

Year fixed effects Yes Yes
Month-of-year fixed effects Yes Yes
Hour-of-day fixed effects Yes Yes
Individual-customer fixed effects Yes Yes
N 59,345,610 95,636,736
R2 0.334 0.391

The summer months are from May to October. The Standard errors in parentheses, *p < 0.10, **p < 0.05, 
***p < 0.01

Table 10   Cost-effectiveness of energy-efficient ACs

Winter electricity savings are calculated based on the percentage of savings in the summer. The estimate 
of the cost of energy-efficient AC replacement is from sources: https​://www.remod​eling​expen​se.com/costs​
/cost-of-energ​y-effic​ient-air-condi​tione​rs/; https​://www.homea​dviso​r.com/cost/heati​ng-and-cooli​ng/insta​ll-
an-ac-unit/#14and​16see​r

TOU consumers Non-TOU consumers

Annual dollar savings ($) 411.1 1093.3
Payback period 12.2 years 4.6 years
Discounted payback period (discount rate = 3%) 15.4 years 5.0 years
Internal rate of return (per year) 14.96% 26.22%
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Appendix 3: Coarsened Exact Matching

We also match the treated and control groups using coarsened exact matching, which is 
widely used in more recent studies (Stuart 2010). Coarsened exact matching divides the 
variables into different strata and then the treated and control groups are matched based on 
the strata (Iacus et al. 2012). Coarsened exact matching tries to reduce the overall imbal-
ance. 430 out of 496 (87%) TOU consumers and 641 out of 731 (88%) non-TOU con-
sumers with energy-efficient ACs are matched. The balance checking of the covariates is 
shown in Table 11, which indicates that the covariates are balanced between the control 
and treated groups after matching.

The results (Fig.  12) obtained using coarsened exact matching are in general consistent 
with those using propensity score matching. For TOU consumers, the largest hourly savings 
also occur at 8 p.m., but there are fewer significant estimates in the later afternoon and early 
evening hours, while for the non-TOU consumers, the hourly savings show a similar pattern 
as those using propensity score matching; however, they seem to have a slightly smaller mag-
nitude. The hourly savings for morning hours such as 8 a.m. and 9 a.m. become larger than 
previous results

Fig. 10   Common support of propensity score matching for the TOU and non-TOU consumers

Fig. 11   Test of the parallel trend assumption. Notes: This plot includes the estimated coefficients and 95% 
confidence intervals. Time is normalized relative to the energy efficiency adoption month. Observations 
before t = − 20 are dropped. Price, CDD, and HDD are included as covariates. The regression includes 
household fixed effects and year fixed effects. Standard errors are clustered at the household level
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Table 11   Mean of variables before and after coarsened exact matching for TOU and non-TOU consumers 
(treatment: energy-efficient AC replacement)

Variable Before matching After matching

Without energy-
efficient AC

With energy-
efficient AC

Without 
energy-efficient 
AC

With energy-
efficient AC

Obs Mean Obs Mean Obs Mean Obs Mean

TOU consumers
 Ownership (renter = 0) 2202 0.72 496 0.84 930 0.87 382 0.87

(0.45) (0.37) (0.33) (0.33)
 Household income ($1000) 2202 0.51 496 0.64 930 0.67 382 0.67

(0.50) (0.48) (0.47) (0.47)
 Square footage (1000 ft2) 2202 0.71 496 0.75 930 0.78 382 0.78

(0.46) (0.43) (0.41) (0.41)
 Household size 2202 1.00 496 1.00 930 1.00 382 1.00

(0.00) (0.00) (0.00) (0.00)
 White 2075 0.75 478 0.82 921 0.86 376 0.86

(0.43) (0.39) (0.35) (0.35)
 Stories 2202 0.29 496 0.26 930 0.23 382 0.23

(0.46) (0.44) (0.42) (0.42)
 Vintage 2202 0.45 496 0.42 930 0.39 382 0.39

(0.50) (0.49) (0.49) (0.49)
 Household head age 2094 53.92 471 55.21 914 55.53 372 55.53

(16.06) (13.87) (13.52) (13.53)
 Primary (seasonal residence = 0) 2160 0.98 495 0.98 930 1.00 382 1.00

(0.14) (0.15) (0.05) (0.05)
 Swimming pool 2194 0.41 496 0.45 930 0.47 382 0.47

(0.49) (0.50) (0.50) (0.50)
 Programmable thermostats 2202 0.65 496 0.80 930 0.84 382 0.84

(0.48) (0.40) (0.36) (0.36)
 Single-family house 2120 0.82 491 0.90 930 0.95 382 0.95

(0.38) (0.31) (0.22) (0.22)
Non-TOU consumers
 Ownership (renter = 0) 7824 0.72 731 0.79 537 0.81 266 0.81

(0.45) (0.40) (0.39) (0.39)
 Household income ($1000) 7824 45.03 731 55.84 537 55.21 266 56.07

(40.70) (44.08) (43.61) (44.13)
 Square footage (1000 ft2) 7381 1.51 723 1.62 537 1.64 266 1.64

(0.79) (0.78) (0.79) (0.77)
 Household size 7422 2.07 712 2.15 533 2.11 263 2.13

(1.06) (1.08) (1.10) (1.07)
 White 7319 0.75 691 0.80 530 0.83 259 0.83

(0.43) (0.40) (0.38) (0.38)
 Stories 7167 1.17 715 1.12 536 1.09 265 1.09

(0.42) (0.35) (0.29) (0.31)
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Appendix 4: Test the Inequality of Regression Coefficients for the TOU 
and Non‑TOU Groups

In this section, we provide a formal statistical test that TOU and non-TOU consumers have dif-
ferent savings, namely different sets of regression coefficients. Since they are coefficients from 
regressions, they cannot be examined by a simple t test. We set up one more regression model 
which nests both groups of consumers.

Demandihd = � +

24
∑

h=1

�h
1
EE_ACid ∗ hour_of_dayh +

24
∑

h=1

�h
2
EE_ACid ∗ hour_of_dayh ∗ TOUi

+ �X
ihd

+ �y + �m + �h + �ihd

Table 11   (continued)

Variable Before matching After matching

Without energy-
efficient AC

With energy-
efficient AC

Without 
energy-efficient 
AC

With energy-
efficient AC

Obs Mean Obs Mean Obs Mean Obs Mean

 Vintage 7824 29.98 731 30.00 537 30.60 266 30.32

(19.78) (17.21) (18.52) (17.18)
 Primary (seasonal residence = 0) 7143 60.38 707 59.16 526 60.06 257 60.06

(14.73) (14.34) (13.67) (13.68)
 Swimming pool 7510 0.90 724 0.90 537 0.92 266 0.92

(0.30) (0.30) (0.26) (0.26)
 Programmable thermostats 7739 0.16 730 0.18 537 0.17 266 0.17

(0.36) (0.39) (0.38) (0.38)
 Single-family house 7824 0.52 714 0.72 536 0.71 265 0.71

(0.50) (0.45) (0.46) (0.46)

Fig. 12   Electricity savings by hour-of-day using coarsened exact matching. Notes: Coarsened exact match-
ing is applied before the fixed effects regression. Each plot has 24 coefficients with 95% confidence inter-
vals. The dependent variable for each regression is hourly electricity demand in kWh. Electricity price, 
CDD, HDD, holiday, and weekend are included as covariates. All regressions are estimated with household 
fixed effects and year, month-of-year, and hour-of-day fixed effects. The summer months are from May to 
October
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where all the variables share the same definition as those in Eq. (1). The covariates X also 
include the same covariates: electricity price, CDD, HDD, holiday and weekday. We have 
added a new variable TOUi to differentiate the two groups. It is equal to 1 when the con-
sumers are TOU consumers and it is 0 otherwise. By examining the coefficients on the 
interaction terms 

∑24

h=1
�h
1
EE_ACid ∗ hour_of_dayh ∗ TOUi , we can test if TOU and non-

TOU groups have different hour-by-day electricity savings after AC replacements. We find 
that the p-values (p < 0.01) indicate that the differences are statistically different (Table 12). 
We reject the null hypothesis that the difference is zero. In other words, we can conclude 
that the TOU group is different from the non-TOU group.
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