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Abstract

Many energy policies are implemented to subsidize the adoption of energy efficiency.
However, when private benefits from energy efficiency exceed the social benefits, there
is an incentive for the consumers to over-invest in energy efficiency; otherwise, there is
an incentive to under-invest. This study adds to this discussion by providing an empirical
estimation of the electricity savings and social benefits after energy efficiency retrofits for
consumers on time-of-use (TOU) and increasing block pricing, respectively. We aim to
examine how social versus private savings from a given energy efficiency measure may be
different depending on different pricing plans. This study applies hourly electricity data for
about 16,000 residential consumers during 2013-2017 in Arizona. We show that for the
TOU consumers, the private savings from energy-efficient AC retrofits are greater than the
social savings by 61%, while the increasing block rate consumers’ private savings exceed
the social savings by 46%, when other market failures are not considered (e.g., principal-
agent problem and imperfect information). Different rate plans impose different marginal
electricity prices which influence the incentives to invest in energy efficiency as well as
electricity consumption behaviors that can influence both the private and social savings
from energy efficiency. The result indicates that there should be potentially different levels
of policy interventions towards energy efficiency for consumers on different pricing. Addi-
tionally, we also find that energy efficiency makes the electricity demand more elastic to
price changes.

Keywords Energy efficiency - Time-of-use - Increasing block rate - Private benefits -
Social benefits - Price elasticity

1 Introduction

It is believed that there is an “energy efficiency gap”—the failure to invest in seemingly
cost-effective energy efficiency technologies (Allcott and Greenstone 2012; Gillingham
and Palmer 2014). Motivated by this concern, many policies and energy efficiency pro-
grams are implemented to encourage the adoption of energy efficiency by households.
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The justifications for these policies are two folds. First, the negative externalities such
as carbon emissions and environmental pollution are not internalized into the electricity
prices paid by consumers (Fowlie et al. 2018). Therefore, there are social benefits associ-
ated with promoting energy efficiency. Second, there are various market failures, such as
the principal-agent problems (Gillingham et al. 2012), imperfect information, and learning
effects (Velthuijsen 1993; Jaffe and Stavins 1994; Gillingham and Palmer 2014; Fowlie
et al. 2018). These market failures induce suboptimal investment decisions and policies can
promote energy efficiency and increase investment level.

However, it is possible that consumers already have an incentive to over-invest in energy
efficiency (or private benefits larger than social benefits) even when not influenced by pol-
icies to promote energy efficiency. Novan and Smith (2018) reported that there is over-
investment for increasing block rate (IBR) consumers in California (other market failures
are not considered). If the electricity price is higher, there is an incentive for the private to
invest more. This implicit incentive to over-invest in energy efficiency can be viewed as a
counter-argument to the efficiency policies.

Energy prices have an impact on investments in energy efficiency or the degrees of
energy efficiency because different energy bill savings are achieved with different prices
(Malatji et al. 2013). Electricity consumption behaviors will also be different under dif-
ferent marginal prices (Qiu et al. 2018; Faruqui and Sergici 2010). Currently, electricity
prices are regulated and usually charged higher than their marginal costs. These regulated
prices thus distort incentives for investment in energy efficiency (regulatory failures) (Gill-
ingham and Palmer 2014). Existing studies have not examined how different electricity
rates lead to over-investment or under-investment of energy efficiency, which is important
for the quantification of the benefits of energy efficiency and also to help policymakers
with the design of incentives for energy efficiency.

Dynamic pricing plans follow the cost of electricity supply more closely (Aigner et al.
1994) and help smooth the electric load profile, and therefore are often applied in the
demand response programs (Torriti 2012; Vardakas et al. 2015). Among them, the time-
of-use (TOU) is the most common one with higher marginal prices during peak hours and
lower prices during off-peak hours (Newsham and Bowker 2010). TOU has already been
widely implemented and about 30% of the consumers of Salt River Project (SRP) util-
ity in Arizona have enrolled in TOU plans (Qiu et al. 2018). Different pricing plans (e.g.,
TOU vs. non-TOU pricing plan) may lead to a different amount of energy saved from a
given energy efficiency measure, our study provides empirical evidence of such differences
resulting from different plans.

Additionally, it is possible that consumers’ price elasticity of electricity demand changes
after adopting energy-efficient technologies. Energy efficiency consumers might be more
price-elastic because advanced technologies such as programmable thermostats can help
the consumers better respond to price changes (Faruqui et al. 2010). On the other hand,
energy efficiency consumers might be less price-elastic because they do not consume much
energy in the first place. Thus, empirical evidence is needed to investigate the change in
price elasticities with the presence of energy efficiency, which also impacts the further esti-
mation of the private and social savings from energy efficiency.

This study quantifies the hourly electricity savings from energy efficiency for consum-
ers enrolled in TOU plan and compares their private and social savings with those under
increasing block rate (IBR or non-TOU). Building on Novan and Smith (2018), Boom-
hower and Davis (2020) and others, social benefits include the following: the avoided elec-
tricity generation costs, reduced negative externality costs, deferred investments in capac-
ity and transmission/distribution. Specifically, the research questions are as follows:
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1. What is the electricity saved by hour-of-day for TOU and non-TOU consumers, respec-
tively?

2. How do consumers’ price elasticities change with the presence of energy efficiency?

3. How are the private savings on bills compared to social savings by decreasing electricity
generation and pollution for TOU and non-TOU consumers, respectively?

We focus on energy-efficient air conditioning units (ACs) in Arizona by using informa-
tion on energy efficiency replacements and smart metering data, which records the hourly
electricity demand in kWh for about 16,000 households during 2013-2017. We attempt
to use a combination of matching and fixed effects panel regression to reduce potential
endogeneity, which exists since the enrollment in TOU and the adoption of energy-efficient
ACs are voluntary for the consumers. Our results show that consumers under both TOU
and non-TOU rates have an incentive to over-invest in energy efficiency. We also find that
energy efficiency impacts the price elasticity of electricity by making the consumers more
elastic to price changes.

We find that the private benefits exceed the social benefits to a lesser extent for non-
TOU consumers, which implies that when there are other market failures, non-TOU con-
sumers are more likely to under invest in energy efficiency. Therefore, energy efficiency
interventions should be focused more on consumers on non-TOU price plans than those on
TOU plans. However, households may not respond fully to private incentives to invest in
energy efficiency due to market failures such as imperfect information and principal-agent
problems (Gillingham and Palmer 2014). In this case, policy interventions such as provid-
ing better information could help with the investment in energy efficiency.

This paper proceeds as follows. Section 2 reviews the literature. Section 3 depicts a the-
oretical framework, describes the data and also presents the empirical strategy. Section 4
provides the econometric analysis, results and some robustness checks. The estimation of
private and social savings under TOU and non-TOU is in Sect. 5. Section 6 concludes and
makes some policy implications.

2 Literature Review

This study contributes to three strands of literature. First, many studies have evaluated the
energy savings from energy efficiency programs (e.g., Allcott and Greenstone 2017; Fowlie
et al. 2018; Liang et al. 2018); however, most of them have not examined the effect of dif-
ferent electricity rates on savings from energy efficiency. Different electricity rates charge
prices in different ways and directly influence consumer behaviors as well as the associ-
ated savings. This study will contribute to this strand of literature by evaluating the sav-
ings under the TOU and IBR (non-TOU) rates, which have not been examined by existing
studies.

Second, many studies on the evaluation of energy efficiency rely on monthly consump-
tion with only a few exceptions (e.g., Novan and Smith 2018; Boomhower and Davis 2020)
while using smart-meter electricity data' makes it possible to study more complex con-
sumption behaviors (Burlig et al. 2020). The intra-day timing of electricity savings should
be considered, which leads to better estimates of savings compared to those based on

! U.S. Department of Energy, Electric Power Annual, Released December 2017, Tables 2.1 and 10.10.
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monthly or daily consumption. Moreover, the marginal environmental damages from elec-
tricity generation also differ by hour-of-day (Callaway and Fowlie 2009; Siler-Evans et al.
2012; Carson and Novan 2013; Qiu and Kahn 2018). Our study contributes to this emerg-
ing strand of the studies using high-frequency data.

Third, abundant studies have estimated the price elasticities of energy demand. The
short-term price elasticities are reported to vary from O and -0.8 and the long-term ones
are found to be between-0.3 and -1.2 (Labandeira et al. 2017; Sherwin and Azevedo 2020).
Studies on the price elasticities under TOU pricing (Aigner et al. 1994; Filippini 1995,
2011; Qiu et al. 2018) showed that consumers could reduce the peak quantity demanded
by shifting consumption from on-peak to off-peak hours, but the magnitudes vary. Differ-
ent methods have been adopted for the estimation, including cointegration regression, the
error-correction model, and Computable General Equilibrium (Hughes et al. 2008; Lijesen
2007; He et al. 2011). However, none of them have specifically explored how the price
elasticities change with the presence of energy efficiency. Since price elasticity may change
with energy efficiency, an empirical estimation is necessary. This study will provide an
estimation of the short-run price elasticity when energy efficiency exists.

We estimate electricity savings in kWh by hour-of-day for consumers enrolled on two
plans separately: (1) TOU customers with and without energy-efficient ACs; (2) IBR or
non-TOU customers with and without energy-efficient ACs. This study includes both
groups of consumers while paying special attention to group (1) since no existing research
has specifically examined TOU consumers. The comparison of two groups helps us explore
how electricity savings profiles (savings by hour-of-day) may differ under different elec-
tricity rates. We also use TOU consumers to examine the difference in elasticities due to
energy efficiency. The non-TOU households cannot be used to estimate price elasticity
because they face a marginal price that increases with aggregated consumption rather than
a price varying intra-day.

3 Theoretical Framework, Data, and Empirical Strategy
3.1 Theoretical Framework

Figure 1 shows the theoretical framework. Figure panel (a) illustrates the conventional
argument for subsidizing energy efficiency. When external cost is not priced into energy
consumption, the marginal social cost of energy efficiency for a customer (as illustrated
by the MSB curve) is larger than the marginal private benefit (as illustrated by the MPB
curve). The marginal cost of adopting energy efficiency is illustrated by the MC curve.
When there are no policy interventions and other market failures, the equilibrium level of
energy efficiency adoption is at Q,, which is lower than the socially optimal adoption level
at Q. When other market failures (as illustrated by the red arrow) are present such as infor-
mation asymmetry, split-incentive problem, and inattention, the private adoption level is
pushed even lower. Figure panel (b) illustrates if the price of electricity paid by consum-
ers is high enough so that the marginal private benefit is greater than the marginal social
benefit, the private adoption level in the absence of other market failures could be higher
than the socially optimal level. Figure panel (b) also shows that the deviation between the
private adoption level and the socially optimal level could differ for customers on different
pricing plans.

@ Springer



Social Versus Private Benefits of Energy Efficiency Under...

Per unit value
Per unit value

MC

|
\1‘\

|

|

|
|

| h |
|

[
! i
<_‘Qg 101 101 1Qrou “ Oisr
Quantity of energy efficiency Q Quantity of energy efficiency Q
(a) (b)
A

Per unit value

MC

i
! ~

: <+ i
i

| »
01 QOrou Qmr ”
Quantity of energy efficiency O

(o)

Fig.1 Theoretical framework. Notes: MSB stands for marginal social benefit; MPB stands for marginal pri-
vate benefit; MC is the marginal cost for adopting energy efficiency; the red arrows indicate the influence of
other market failures such as information asymmetry, split-incentive problem, and inattention

TOU pricing and IBR pricing not only have different levels of marginal prices, but they
also have different charging structures (TOU varies by peak and non-peak hours and IBR
charges volumetrically based on aggregated monthly consumption). The higher the aver-
age marginal prices,” the larger the demand for energy efficiency, which is a “product” to
reduce energy consumption.

Figure panel (c) illustrates that with other market failures and also when the marginal
social benefit is smaller than the marginal private benefit, the private adoption level may
be either greater (red arrow) or smaller (light red arrow) than the socially optimal level,
depending on the relative sizes of the two effects. In either case, we show that the devia-
tions between the private and socially optimal adoption levels are different for consum-
ers on different rate plans, implying that government policies incentivizing the adoption of
energy efficiency should differ by rate plans.

In the empirical analysis, we will estimate the social versus private savings under TOU
and IBR, following the setting in figure panel (b), which is without other market failures.
The comparison of social and private savings provides indication for the discrepancy

2 TOU has a lower marginal price on average than the increasing block rate (IBR) in our study sample. The
average marginal price for TOU consumers is $0.1005 while that for IBR consumers is $0.1218.

@ Springer



J.Liang et al.

between the private and the socially optimal levels. If private savings are larger than the
social savings, there is an incentive for consumers to over-invest. On the other hand, if the
social savings are larger than the private savings, there is an incentive to under-invest and
policies should subsidize energy efficiency adoption.

3.2 Data

Arizona has high temperatures during the summer and thus has large electricity consump-
tion, which contributes to the development of dynamic pricing plans (Kirkeide 2012). Our
data come from the Salt River Project (SRP), which is one of the major utilities in the
Phoenix metropolitan area in Arizona. We focus on energy-efficient AC replacements in
this study. The AC replacements are important since electricity consumption from ACs
takes half of the peak load in Arizona (Koch-Nielsen 2013) and is also one of the end-uses
that grow fastest (Boomhower and Davis 2020).

We have three datasets: two on energy-efficient AC replacements and one smart-meter-
ing data. The two separate datasets recording energy-efficient AC replacements include (1)
the AC replacements from SRP’s AC rebate program called “Cool Cash” which started in
2016 and (2) the Residential Equipment and Technology (RET) survey conducted in 2014.
The replacements recorded by the “Cool Cash” rebate program contains detailed informa-
tion including replacement date, capacity, and Seasonal Energy Efficiency Ratio (SEER).
In the RET survey, the participants were selected randomly to complete the survey online
or by mail. They were asked to report whether they had replaced their central AC units
with more efficient Energy Star ACs during the past 3 years.® The rebate program provides
financial incentives* and the financial incentives for energy-efficient ACs vary between
$200 and $800.> We do not have information about the rebates for replacing the ACs in
the RET survey. However, since the consumers are from the same utility company, they are
likely to face the same incentives. In the main analysis, we combine the AC replacements
recorded by the rebate program with the RET survey because this provides us with a larger
sample. The final sample compiles the data from about 16,000 households. Altogether,
we observe 1246 households with AC replacements, among which 82 (6.6%) are from the
rebate program while the self-reported RET survey includes 1164 (93.4%) households.
Table 5 in the “Appendix” shows the distribution of dates of replacement. Table 6 shows
the technical attributes of ACs (e.g., capacity, SEER) recorded by the rebate program.

The third dataset is the customer-level smart metering data, which is also from SRP and
contains hourly electricity consumption data. The smart-metering data is combined with
housing characteristics (e.g., square footage, building year) and socio-demographics (e.g.,
household size, household income) which are obtained from the RET survey. The smart
metering data spans from May 2013 to November 2017. The rebate program recorded
replacements from May 2016 to April 2017 and the RET survey was submitted in July
and August 2014. The timeline of the three datasets is depicted in Fig. 2. Given that the
exact timing of replacements was not reported in the RET survey, we removed the electric-
ity consumption data before their survey submission dates and only included those after

3 Energy Star central AC unit must have a SEER that exceeds 14.
4 The time for these incentives recorded in our dataset is from May 2016 to November 2017.

5 The incentives given by the utility is roughly based on SEER: if 15 <SEER < 16, the incentive is $200; if
16 <SEER < 17, the incentive is $400; if 17 <SEER < 18, the incentive is $600 and if SEER > 18, the incen-
tive is $800. See more details in http://www.savewithsrp.com/RD/CoolCash.aspx.
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Fig.2 Timeline of smart metering data and energy-efficient AC replacements
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Fig.3 The TOU and non-TOU residential electricity pricing plans. Notes: E-21, E-22, E-25, and E-26 are
TOU plans and E-23 is non-TOU plan; E-21Peak, E-22Peak, E-25Peak, and E-26Peak are the rates in sum-
mer peak—July and August

the submission dates, namely, only the “post-treatment” observations. We also dropped
30 days prior to the known replacement date to avoid abnormal electricity usage during
replacements. We dropped the accounts with multiple zip codes to ensure that changes in
electricity consumption are not caused by relocation.

SRP consumers are enrolled in one of the five different electricity rate plans,® numbered
E-21, E-22, E-23, E-25, and E-26 (Fig. 3). E-23 is an IBR with time-invariant marginal
price that does not differ by hour of day. The other four plans are TOU rates with different
on-peak hours and marginal prices. Table 7 gives the detailed per kWh charges for these

® The rates are based on the rate book issued by SRP in 2017.
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Fig.4 Electricity demand in kWh by hour-of-day for TOU and non-TOU consumers

plans. In this paper, we only include the summer months when cooling-drive consump-
tion may change due to AC replacements. For accounting purposes, the months of May to
October are summer months, among which July and August are the peak summer months.
The monthly service charge is the same for all plans and there is no demand charge.

3.3 Descriptive Statistics

Figure 4 plots the average hour-by-day electricity demand in kWh for TOU and non-TOU
consumers. The average hourly demand of the TOU consumers is about 2 kWh higher than
that of the non-TOU consumers. Usually, the demand peaks in the early hours of the even-
ing when people return from work and turn on their ACs. The peak hours of the TOU con-
sumers seem to occur 1 h later than the non-TOU consumers. The largest demand occurs
at 7 p.m. for TOU consumers while at 6 p.m. for non-TOU consumers. The lowest average
consumption occurs at 5 a.m. for both TOU and non-TOU consumers.

Figure 4 also shows that electricity consumption is impacted by the presence of energy
efficiency. The non-TOU consumers with energy-efficient ACs tend to have higher con-
sumption compared to those without. Also, TOU consumers without energy efficiency
have slightly higher electricity consumption than that of their counterparts. Table 1 pre-
sents the summary statistics of building attributes and housing characteristics.

3.4 Empirical Strategy

There are two potential endogeneity issues. First, there could be a selection bias because
the adoption of energy-efficient ACs is voluntary. For example, households that are more
environmentally conscious are more likely to switch to energy-efficient ACs (Wilson and
Dowlatabadi 2007; Ramos et al. 2016) and these households may also have different con-
sumption patterns. Second, enrolment in TOU plans is not mandatory (Qiu et al. 2017)
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Table 1 Descriptive statistics for the TOU and non-TOU customers with and without energy-efficient ACs

Variable Obs. Mean SD Min Max
TOU consumers without energy-efficient ACs
Ownership (renter=0) 4394 0.72 0.45 0 1
Household income ($1000) 4394 61.10 45.05 0 150
Square footage (1000 ft?) 4294 1.87 0.79 0.75 3
Household size 4283 242 1.23 1.5 5
White 4151 0.75 0.44 0 1
Stories 4185 1.27 0.49 1 3
Vintage 4394 26.88 17.92 0 65
Age of household head 4165 53.92 15.95 21 75
Primary (seasonal residence =0) 4322 0.98 0.15 0 1
Swimming pool 4378 0.40 0.49 0 1
Programmable thermostats 4394 0.65 0.48 0 1
Dwelling
Mobile home 4230 0.01 0.10 0 1
Single-family house 4230 0.82 0.38 0 1
TOU consumers with energy-efficient ACs
Ownership (renter=0) 496 0.84 0.37 0 1
Household income ($1000) 496 69.24 45.11 0 150
Square footage (1000 ft?) 488 1.96 0.74 0.75 3
Household size 482 2.39 1.20 1.5 5
White 478 0.82 0.39 0 1
Stories 492 1.26 0.45 1 3
Vintage 496 27.78 15.99 0 65
Age of household head 471 55.21 13.87 21 75
Primary (seasonal residence =0) 495 0.98 0.15 0 1
Swimming pool 496 0.45 0.50 0 1
Programmable thermostats 496 0.80 0.40 0 1
Dwelling
Mobile home 491 0.01 0.10 0 1
Single-family house 491 0.90 0.31 0 1
Non-TOU consumers without energy-efficient ACs
Ownership (renter =0) 7824 0.72 0.45 0 1
Household income ($1000) 7824 45.03 40.70 0 150
Square footage (1000 ft?) 7381 1.51 0.79 0.75 3
Household size 7422 2.07 1.06 1.5 5
White 7319 0.75 043 0 1
Stories 7167 1.17 0.42 1 3
Vintage 7824 29.98 19.78 0 65
Age of household head 7143 60.38 14.73 21 75
Primary residence (seasonal residence =0) 7510 0.90 0.30 0 1
Swimming pool 7739 0.16 0.36 0 1
Programmable thermostats 7824 0.52 0.50 0 1
Dwelling
Mobile home 7354 0.05 0.21 0 1
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Table 1 (continued)

Variable Obs. Mean SD Min Max
Single-family house 7354 0.74 0.44 0 1
Non-TOU consumers with energy-efficient ACs
Ownership (renter =0) 731 0.79 0.40 0 1
Household income ($1000) 731 55.84 44.08 0 150
Square footage (1000 ft?) 723 1.62 0.78 0.75 3
Household size 712 2.15 1.08 1.5 5
White 691 0.80 0.40 0 1
Stories 715 1.12 0.35 1 3
Vintage 731 30.00 17.21 0 65
Age of household head 707 59.16 14.34 21 75
Primary residence (seasonal residence =0) 724 0.90 0.30 0 1
Swimming pool 730 0.18 0.39 0 1
Programmable thermostats 731 0.72 0.45 0 1
Dwelling
Mobile home 714 0.05 0.22 0 1
Single-family house 714 0.82 0.38 0 1

and consumers can switch between rate plans during billing cycles. To help address this
endogeneity, we attempt to apply fixed effects to control for any confounding factors such
as housing characteristics and socio-demographics that could influence enrollment in TOU
plan, energy-efficient AC replacements, and also electricity consumption. A series of time
fixed effects are also applied to partially control for the time-varying factors such as prefer-
ence change. The analysis is conducted for TOU and non-TOU customers separately so that
we can compare consumers on different plans. We dropped the households that switched
between TOU and non-TOU plans (9.3% of customers) and focus only on households who
stayed on the same rate plan.

We conduct propensity score matching to eliminate any systematic differences between
customers with and without energy-efficient ACs. Among various algorithms that are avail-
able, we use the one with the smallest median bias, that is, the radius matching with the
caliper of 0.01.” For a customer with an energy-efficient AC, we find a control customer
with similar housing attributes and demographics but without an energy-efficient AC. Then
we conduct the fixed effects regression on these matched customers. Only the households
that are matched (or on the common support) are used for the statistical analysis (Fig. 10
in the “Appendix”). The matching variables include square footage, ownership, number
of stories, residence type (primary or seasonal residence), dwelling type (single-family
house, apartment, or mobile home), vintage, household size, race, household income, age
of household head, whether there is a swimming pool, and whether the households have
programmable thermostats. The balance checking of propensity score matching (Table 8),
which shows that the covariates for the treated and control groups are comparable to each

7 The different algorithms include radius matching, kernel matching, and k-nearest neighbors matching.
Radius matching puts a constraint on the largest acceptable difference in propensity score when matching a
control with a treated.
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other after propensity score matching. Solar panel installation is not included as the covari-
ates because our data suggests that its adoption is comparatively independent of the deci-
sion to adopt energy efficiency.®

We conduct several robustness checks and also combine the analysis with an innova-
tive machine learning approach. Alternative robustness checks include the coarsened exact
matching, which is another widely adopted matching approach, and adding zip code-year
fixed effects, which further control for more variation across households.

4 Econometric Analysis and Results
4.1 Electricity Savings by Hour-of-Day

In this section, we estimate electricity savings by hour-of-day. The following model is
applied:

24

Demand,;,; = a; + Z ﬂ{’EE_ACid * hour_of _day, + p,Price;,; + p3CDD;,; + fLHDD,,

h=1
+ psHoliday, + psWeekday, + ©,+ 6,, + v;, + €54

ey
where Demand,;,; represents the electricity consumption in kWh at household i during the
hour 4 on day d. The log of the electricity demand is not used as the dependent variable
since we are interested in estimating the values of the private and social benefits, which
are calculated as a marginal benefit (in $/kWh) multiplied by the change in kWh. EE_AC
refers to the status of energy-efficient AC replacements, which is equal to 1 for the treated
group in their post-treatment period and is 0 all otherwise. g, the coefficient on the inter-
action term of energy efficiency and hour dummy, measures the hourly electricity savings
and it is the one we are most interested in. The covariates include CDD (Cooling Degree
Days), HDD (Heating Degree Days), holiday dummy, and weekend dummy. CDD and
HDD are obtained from the hourly temperatures from the National Oceanic and Atmos-
pheric Administration.” ; is the individual-customer fixed effects and controls for the time-
invariant variation among households such as square footage and household income. The
time fixed effects include year fixed effects z,, month-of-year fixed effects 6,,, and hour-of-
day fixed effects y,,, and they capture the time-varying variation during different times such
as economic development and change in local energy policies. We include all the energy-
efficient AC customers in this main analysis: those recorded by the utility rebate program
and also the self-reported ones.

Figure 5 plots the hourly electricity savings from the AC replacements for TOU and
non-TOU consumers. The vertical axis refers to the change in hourly electricity demand
(kWh), and a negative value indicates less electricity demanded (electricity savings). We
find that electricity savings occur from 4 p.m. to 10 p.m. for the TOU consumers while
occur throughout the day for non-TOU consumers. The largest savings happen during late
afternoon and evening for all the consumers, which are usually the peak hours. This is

8 The correlation between AC replacements and solar panel installation is —0.0685, which suggests its
impact on AC replacements very weak.
% ftp://ftp.ncdc.noaa.gov/pub/data/uscrn/products/hourly02/.
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Fig.5 Estimates of electricity savings by hour-of-day for TOU and non-TOU consumers. Notes: Propen-
sity score matching is applied before the fixed effects regression. Each plot has 24 coefficients with the
95% confidence intervals. The dependent variable for regressions is hourly electricity demand in kWh.
All regressions are estimated with household fixed effects and year, month-of-year, and hour-of-day fixed
effects. Electricity price, CDD, HDD, holiday, and weekend are included as covariates

intuitive since the savings are larger when electricity consumption is also larger during
these peak hours. The full regression results are listed in Table 9. Coarsened exact match-
ing is also conducted (“Appendix 3”) as a robustness check, which gets results generally
consistent with those using propensity score matching. '

There are two possible reasons why TOU consumers yield different savings than non-
TOU consumers.'! Firstly, the TOU consumers have higher consumption than IBR con-
sumers (Fig. 4), and the high-usage consumers are usually those with higher incomes.'?
The lower-income households on non-TOU plan may have less efficient electric appliances
(Cayla et al. 2011), and comparatively have greater potential in saving (Liang et al. 2018).
Secondly, it is also possible that houses on TOU have different electricity using behav-
iors (Qiu et al. 2018; Faruqui and Sergici 2010) and experience greater behavioral changes
such as rebound effects. Their ACs may be set to lower temperatures after retrofits, which
leads to less energy savings. This is confirmed by the finding that an IBR tariff reform in
China mitigates the rebound effect (Lin and Liu 2013) and that increasing energy prices
reduce the rebound effect (Ouyang et al. 2010). Hence, non-TOU households with smaller
rebound effects have more savings.

The coefficients on CDD, HDD, holiday, and weekend are statistically significant, and
all show expected signs. The coefficient on price for the IBR consumers is positive, which
is caused by the fact that the marginal electricity price increases as consumers increase
their electricity consumption.

10 We also include the zip code-year fixed effects and control for more unobserved variation at the zip code
level that also varies across years, such as infrastructure change or environmental campaign in the commu-
nity. The results have a similar pattern as that of the main results. However, there are more peak hours with
statistically significant savings for the TOU consumers while for the non-TOU consumers, the magnitude of
savings becomes slightly larger. This suggests that slightly more zip-year level variation exists for non-TOU
consumers.

"' A formal statistical test to confirm that two groups have different savings is performed in “Appendix 4:
Test the inequality of regression coefficients for TOU and non-TOU groups”.

12 [ ow-income households have lower consumption, as it is the case in (Fowlie et al. 2018). In this study,
the average household income is $63 k for TOU consumers while is $50 k for non-TOU consumers. The
lower-income households are not specifically the least well-off ones.
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Overlapping of peak hours with electricity savings
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Fig.6 Overlap of electricity savings by hour-of-day and marginal electricity prices. Notes: The non-TOU
price is the increasing block rate (E-23) while the weighted-average electricity price for TOU consumers
is the average of all the TOU prices. Point estimates are plotted. Zeros in many hours indicate that TOU
consumers only save on some specific hours while savings are not found to be statistically significant at a
meaningful significance level (p <0.10) for other hours. A non-significant coefficient means that the null
hypothesis that electricity saving is zero cannot be rejected. There may be savings for some of the house-
holds in practice, but heterogeneity may be large among them and shows insignificant savings on average.
Due to the insignificance of p-values, we treat these savings in these hours as zero

4.2 Overlap of Peak Hours with Electricity Savings

Figure 6 displays how concurrently electricity savings happen with peak hours. The left
axis shows the hourly marginal electricity price. The right axis shows the estimates of elec-
tricity savings taken from the regressions in the former section but formatted in positive
values. The figure reveals that a correlation exists between the hours of saving and the price
of electricity. The overlap is especially strong during the peak hours in the late afternoon
and early evening when the marginal cost of providing electricity is also very high. This
further confirms that the intra-day timing should be considered for estimation of money
saved on bills because calculation using average prices and average reduction in consump-
tion ignores a “timing premium” (Boomhower and Davis 2020). Furthermore, intra-day
timing also matters for estimating environmental pollutants during electricity generation
which also varies throughout the day (Sherwin and Azevedo 2020).

4.3 Heterogeneity Among Households

In this section, the heterogeneity among households is examined to investigate how the
savings from AC upgrades vary across different households. The AC replacements
recorded by the rebate program provide the installation time and thus for these households
there are data for both pre-treatment and post-treatment periods. We run the regression in
Eq. (1) individually for each treated household. Figure 7 shows the coefficients from these
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Hourly electricity savings at 8 p.m. for TOU consumers Hourly electricity savings at 9 p.m. for non-TOU consumers

10
L
10
L

Electricity savings (KWh)
Electricity savings (kWh)

Households Households

Fig. 7 Heterogeneity in hourly electricity savings among households. Notes: The dashed black lines show
the 95% confidence intervals. All regressions are estimated with household fixed effects and time fixed
effects included. Electricity price, CDD, HDD, holiday, and weekend are also included as covariates. Only
22 treated households on TOU rate and 41 on non-TOU rate recorded by the “Cool Cash” rebate program
have the accurate installation dates and have both the pre-treatment and post-treatment data. After match-
ing, the numbers further reduce to 15 for TOU consumers and 34 for non-TOU consumers (since not all
households have all housing characteristics available for matching and are thus dropped

regressions at specific hours. For different TOU consumers, hourly electricity savings vary
from O to 5.9 kWh at 8 p.m. For non-TOU consumers, hourly savings range from no sav-
ings to 8.2 kWh at 9 p.m. These hours are chosen because they are the hours when the larg-
est electricity savings occur. The variation reveals that the savings are very heterogeneous
among households and it is possible that some households have no electricity savings at all
after AC replacements.

4.4 Price Elasticity

It is possible that consumers’ response to electricity price changes may change with the
presence of energy efficiency. In this section, we test if residential consumers will have
different short-run price elasticities with the presence of energy efficiency using our large-
sample hourly consumption data. We run the following model on the matched sample to
examine how energy efficiency influences price elasticities.

Demand,;,; = a; + p, Price;,; + p,Price;,; * EE_AC,; + p;CDD;;,,
+ p,HDD,;,, + psHoliday; + fsWeekday; + Ty + 6,y + Vi + Einas @)

where f; implies the average change in quantity demanded when prices change without
energy efficiency; f, is the coefficient on the interaction terms of electricity price and
energy-efficient ACs and it tests whether the average price elasticities differ for consumers
with the presence of energy efficiency.'> The model is only run for the TOU consumers
since the IBR consumers do not have price variation by hour-of-day.

The results (Table 2) show that the coefficient g, is statistically significant (p <0.10),
which indicates that price elasticities do change with the presence of energy efficiency.

13" All the energy-efficient AC customers are incorporated including the self-reported replacements from
the RET survey.
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Table 2 Estimates of price

elasticities for TOU consumers Coefficients
With_ and without energy Electricity price —12.572%%*
efficiency
(0.557)
Electricity price * energy-efficient AC —2.708%*%*
(1.118)
CDD 0.227%#%%*
(0.002)
HDD 0.374%**
(0.013)
Weekend 0.164%%%*
(0.025)
Holiday 0.037*
(0.021)
Constant 4.101%**
(0.100)
Year fixed effects Yes
Month-of-year fixed effects Yes
Hour-of-day fixed effects Yes
N 59,345,610
R? 0.334

Propensity score matching is applied before the fixed effects regres-
sion. Standard errors in parentheses, *p <0.10, **p <0.05, ***p <0.01

Price elasticity is calculated to be —0.13 without energy efficiency, according to the defi-
nition formula of price elasticity.'* This is generally consistent with the existing finding
that the short-run demand for electricity is rather price-inelastic and the price elasticity
is around —0.1 (Burke and Abayasekara 2018). The price elasticity with the existence of
energy efficiency changes from —0.13 to —0.16 (the coefficient on the interaction term is
—2.7). Although the absolute magnitude does not seem large, this equals a relatively large
percentage change of 23%. This result indicates that energy-efficient technologies such as
more efficient ACs make the consumers more elastic to electricity demand. Policy implica-
tions regarding this change in price elasticities are made in the last section.

4.5 Robustness Check

In this section, counterfactuals are created using a machine learning approach. Machine
learning is more flexible in terms of model specification by not assuming a simple and spe-
cific relationship between variables (Varian 2014). It makes an overall prediction and cre-
ates the counterfactual; that is, the electricity consumption for the treated group supposing
that they did not get treated. We use the pre-treatment data to train the model and use the
trained model to predict the counterfactual for each household.

4 Average price elasticity = %VAAQ;Z'ZL” = ‘%, where the coefficient on price gives dQ/dP, and Q and P

are the average electricity quantity demanded and average price.
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Fig. 8 Estimates of electricity
savings by hour-of-day during 0
the summer months. Notes: The
blue line is for the TOU consum-
ers and the red line is for the non-
TOU consumers. The grey area is
the 95% confidence interval with
the standard error. The method
for computing standard errors
after model selection methods

is not yet well addressed. Thus
following (Prest 2020), we use an
OLS regression

TOU

Electricity consumption (kWh)

1 4 7 10 13 16 19 22
Hour

Following (Burlig et al. 2020), we apply the Least Absolute Shrinkage and Selection
Operator (LASSO) method.'> The assumption is that the electricity consumption of the
treated group continues their pre-treatment trend. The pre-treatment data is used to get the
trend and predict the consumption without absorbing impacts from the treatment. A ran-
dom treatment date is assigned for the control households, and the observations before the
hypothetical replacement date are used as pre-treatment data. The predictors include build-
ing attributes and socio-demographics. After the counterfactuals are created, we use a dif-
ference-in-difference strategy to get the average treatment effect. The formula is as follows:

P

ﬂ = (yT,post - yT,post) - (yT,pre - j\)T,pre) - (yC,post - yC,pust) - (yC,pre - yC,pre)’ (3)

where the predicted values (noted with hats) are the prediction from the trained model.
Subscript T denotes the treated group while C refers to the control group.

The results'® (Fig. 8) show that the pattern of electricity savings is similar to the main
results, but the magnitude of the estimates seem to be larger. The largest electricity savings
also occur during peak hours. The variation between the largest and smallest savings tends
to be larger for TOU consumers than non-TOU consumers. The possible reason might be
that a machine learning approach could capture more variation across hourly consumption
while the previous method attributes some of the variations to household fixed effects.

15 Other models could also be applicable such as random forests (Cicala 2017). A LASSO is preferred if
covariates are more likely to have strong linear effects on outcomes.

16 The self-reported replacements are excluded since clear installation dates are not available for them.
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Table 3 Average electricity savings from energy-efficient ACs during summer months

TOU consumers Non-TOU
consum-
ers

Private savings ($) 263.1 695.4
Social savings ($) 163.7 477.0
Environmental damages ($) 29.0 124.5
Generation savings ($) 64.4 146.5
Reduced capacity investments ($) 21.1 23.3
Reduced transmission/distribution cost ($) 49.2 182.7
(Private savings—social savings)/social savings 61% 46%
Social savings/private savings 62% 69%

5 Private and Social Savings
5.1 Comparison of Private Versus Social Savings

We employ hourly electricity savings and hourly prices to estimate the private and
social savings. The daily private savings for an average consumer are calculated using
> ﬂ{’priceh, where price;, is the hourly price and ﬂf’ is the estimated hourly electricity sav-
ings. The total private savings are obtained by summing up the daily savings across all
summer days.!’

The social savings are calculated by incorporating two components: (1) reduction in
environmental damages from pollutants, and (2) reduced social cost from electricity gen-
eration. We incorporate the following major pollutants: CO,, SO,, NOx and particulate
matter. The daily environmental damages are calculated by )., ﬂf’MDh, where ﬂf’ is the
hourly electricity savings, and the hourly marginal damage factors MD,, are obtained from
(Holland et al. 2016). We apply the set of marginal damage factors from the Western Elec-
tricity Coordinating Council (WECC) region which Arizona belongs to. Some electricity is
lost during the generation (4.6%) and transmission/distribution process (9.6%) (Graff Zivin
et al. 2014; Novan and Smith 2018), so two adjustments are made by scaling up the social
savings by 1.05x1.096.

The reduced social cost from electricity generation is estimated using the hourly system
lambdas reported in the FERC 714 forms.'® The system lambda is the system marginal
cost,'” which is usually calculated to minimize production costs among different produc-
tion resources. We use system lambdas to indicate the economic marginal cost of genera-
tion. Besides, deferred capital investment in generation capacity is estimated by multiply-
ing the largest average hourly changes in summer consumption by the average monthly
cost of capacity. An average monthly capacity cost of $2.66/kW is adopted following

17 The implied payback period is estimated to be 15.4 years for the TOU consumers and 5.0 years for
the non-TOU consumers, depending on the size of their annual savings. The cost of energy-efficient AC
replacement is assumed to be $5000. The details are seen in Table 10 in “Appendix 1.

18 https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-no-
714-annual-electric/data.

19 https://www.e-education.psu.edu/eme801/node/532.
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Table 4 Average electricity savings from energy-efficient AC using alternative marginal factors

TOU consumers Non-TOU
consum-
ers

Private savings ($) 263.1 695.4
Social savings ($) 182.1 527.3
Environmental damages ($) 474 174.8
Generation savings ($) 64.4 146.5
Reduced capacity investments ($) 21.1 23.3
Reduced transmission/distribution cost ($) 49.2 182.7
(Private savings—social savings)/social savings 44% 32%
Social savings/private savings 69% 76%

(Novan and Smith 2018). We also included the deferments in transmission/distribution
investments. According to eia.gov,? the average electricity delivery cost is estimated to
be 3.2 cents/kWh (in 2016), including the costs of transmission infrastructure, distribution
equipment, installation, equipment maintenance, customer billing, education, relations,
labor costs, and others. The avoided transmission and distribution costs are calculated by
multiplying the average delivery cost by the total decreased consumption.

We find that the TOU consumers with energy efficiency save $263 on electricity bills
(Table 3) while the non-TOU consumers have higher private savings at $695. For both
TOU and non-TOU consumers, the total social savings are smaller than the private savings.
This suggests that there is an incentive to over-invest in energy efficiency for both types of
consumers (when not considering other market failures). For the non-TOU consumers, the
private savings exceed the social savings by 46% while for the TOU consumers, the private
savings are greater than the social savings by 61%. The discrepancy between social and
private savings is larger for TOU consumers than non-TOU consumers.

This result is consistent with that of (Novan and Smith 2018) which also finds the pri-
vate savings are larger than the social savings for consumers in California where the house-
holds also face tiered tariffs larger than the social marginal cost and the households have
incentives to overinvest in energy efficiency. The results are also in line with the theoretical
framework that TOU and IBR impose different marginal prices which influence the incen-
tives to invest in energy efficiency as well as electricity using behaviors that influence both
the private and social savings. The TOU plan results in lower demand for energy efficiency
(the absolute value of the private savings is lower) with a lower marginal price compared to
the IBR plan in our sample.

We also tried an alternative set of the marginal damage factors, following (Azevedo
et al. 2017).2! Compared to the previous set of factors, the alternative factors are larger
for CO,, NOy and particulate matter while the factor for SO, is smaller. This alternative
factor set also has separated different seasons and we use factors for the summer season.
The results (Table 4) show that for TOU consumers, the private savings are larger than the
social savings by 44% while for non-TOU consumers, the private savings exceed the social

20 https://www.eia.gov/todayinenergy/detail. php?id=32812.
21 https://cedm.shinyapps.io/MarginalFactors/.
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Fig.9 The comparison of private versus social savings under different scenarios. Notes: The savings on the
vertical axis is formatted negative for the ease of comparison. If the sum is zero for all bars, the social sav-
ings are equal to the private savings
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savings by 32%. Again, the TOU plan yields a slightly larger deviation between private and
social savings in comparison to the non-TOU plan.

5.2 Scenario Analysis

The social cost of carbon (SC-CO, or more simplified SCC) is assumed to be at $35 for a
metric ton of carbon dioxide emissions during the calculation of environmental damages in
the last section. However, there is large uncertainty for the long-term damages from carbon
dioxide (Tol 2005). Considering this uncertainty, we use a scenario analysis with alterna-
tive SCC values: $11, $36, $56 and $105, which are estimated by the Environment Protec-
tion Agency (EPA). The first three values are estimated at the discount rate of 2.5%, 3%,
and 5%, while the fourth is the lower-probability but higher-impact outcome with particu-
larly harmful impacts (EPA 2016).

In the four scenarios, the estimation of social savings depends on the SCC values and
a larger SCC yields larger social savings. However, the private savings are always larger
than the social savings with all the alternative SCC values for TOU consumers while for
non-TOU consumers, the social savings are larger than the private savings only when $105
is employed as the SCC (Fig. 9). Therefore, our main findings remained, which is that the
private savings are larger than the social savings and the deviation between them is larger
for TOU consumers than non-TOU consumers.

5.3 Discussion

Investments in energy efficiency are voluntary for consumers. Although this study matches
the households on most important observable characteristics (socio-demographics and
housing characteristics), some heterogeneity remains with time-varying unobserved vari-
ables at the individual-consumer level not well controlled for, such as consumers’ varying
preferences (Nair et al. 2010), the learning effect (Jessoe and Rapson 2014), and new infor-
mation (Shen and Saijo 2009). This remaining endogeneity could potentially lead to biased
estimates. Here, we provide additional evidence that the potential time-variant individual-
specific unobservables do not pose a big threat to our estimates. We conducted a graphical
event study analysis, which shows that the treated and the control groups maintain a paral-
lel trend before the treatment. There is no statistically significant difference in the trends
between the treated and control groups prior to the energy efficiency replacement. This
indicates that the parallel trend assumption is satisfied (Fig. 11). The results are generally
consistent with our main analysis. Based on our analysis, the non-TOU consumers have
reduced electricity consumption after the replacement; however, the TOU consumers do
not seem to have reduced consumption. This may be due to the possibility that savings only
occur during specific hours for TOU consumers and average hourly savings are not obvious
(Fig. 5).

This study finds that both TOU and non-TOU consumers have incentives to over-invest
(private savings larger than social savings) while over-investment is larger for TOU con-
sumers. The estimation of private and social benefits does not account for other market
failures, as mapped in Fig. 1b. The existence of additional market failures could reduce
investments in energy efficiency. If the effect of the other market failures is large enough,
the private benefits could become smaller than the social benefits and our conclusion of
over-investment will not hold.
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As indicated in Sect. 3.2, we were not able to gather complete data from all the house-
holds we study. The number of treated households with accurate installation dates (those
recorded by the rebate program) is only 49 (15 TOU consumers and 34 non-TOU consum-
ers). Most households are without accurate installation dates (those recorded by the RET
survey). Thus, the source of variation in our main analysis comes mainly from the com-
parison between the treated and the control groups.

6 Conclusion and Policy Implications

This study provides an empirical assessment of the effects of two different pricing plans on
electricity savings from energy-efficient AC replacements for residential buildings. Using
a rich dataset of hourly electricity consumption of about 16,000 consumers from 2013 to
2017 in Arizona, we estimate the hour-of-day electricity savings and then use the estimated
hourly savings to estimate their private and social benefits. We show that for the TOU
consumers, the private savings are greater than the social savings (other market failures
not considered), while for non-TOU consumers, the private savings also exceed the social
savings, but by a lower percentage. In addition, we find that energy efficiency makes the
electricity demand more elastic to price changes, suggesting energy technologies help the
consumers better respond to price changes.

Our results have important policy implications. First, to address the market failure of
negative externalities of energy consumption, many existing policies are implemented to
incentivize energy efficiency rather than tax carbon emissions directly (Allcott and Green-
stone 2017). These policies potentially lead to a discrepancy between social and private
savings, resulting in either over-investment or under-investment of energy efficiency. Our
results show that (when other market failures are not considered) the private benefits of
non-TOU consumers exceed the social benefits to a lesser extent. This indicates non-TOU
consumers are more likely to underinvest in energy efficiency than the TOU consumers.
Therefore, one policy implication is that energy efficiency should target consumers on non-
TOU plan than those on TOU plan. Larger incentives should be provided to non-TOU con-
sumers who are less likely to over-invest in energy efficiency.

Second, this study finds that energy efficiency makes consumers more elastic, indicat-
ing that energy efficiency could help ease the burden on the utility companies in terms of
balancing the load and generation. It is expensive for utilities to maintain the generation
capacity for peak loads and also to ensure supply stability. Consumers’ increased response
to price changes helps utilities better reduce the peak load. Our results show that price
elasticity changes with the presence of energy efficiency. This finding highlights the impor-
tance of an empirical estimate of the savings from energy efficiency. It is also of signifi-
cance for future exploration of how revenues of utilities would change with the increas-
ing penetration of energy efficiency among households. Besides, this finding implies that a
load response program through pricing can be implemented together with energy efficiency
given that energy efficiency positively impacts TOU consumers’ response to price changes.
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Appendix 1

See Tables 5, 6, 7, 8,9 and 10.

Table 5 Years of adoption for

energy-efficient AC replacements Year Freq. Percent
Before or in 2014* 1164 89.88
2016 61 471
2017 70 5.41
Total 1295 100

*The consumers in the self-reported RET survey do not have informa-

tion on installation dates

Table 6 Technical attributes of energy-efficient AC replacements recorded by the rebate program

Variable Obs Mean SD Min Max
SEER of old ACs 73 10.137 1.619 6 13
Capacity 126 43,211.9 8850.398 23,400 58,500
SEER of energy-efficient ACs 126 16.353 1.277 15 23.5
Retrofit type (unitary air condi- 126 0.532 0.501 0 1

tioner = 1; unitary heat pump=0)

The consumers in the self-reported RET survey do not have information on technique attributes; in this
table, capacity refers to the cooling capacity of an air conditioner, which is similar to horsepower and
describes how powerful the unit is in British thermal unit (BTU); SEER (Seasonal Energy Efficiency Ratio)
is the ratio of cooling capacity in BTU to the energy consumed in watt-hours and higher SEER indicates

being more energy-efficient
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Table 8 Mean of variables before and after propensity score matching for TOU and non-TOU consumers
(treatment: energy-efficient AC replacement)

Variables Before matching After matching

Control Treated Control Treated

Obs Mean Obs Mean Obs Mean Obs Mean

TOU consumers

Ownership (renter=0) 4394 0.72 496 0.84 3660 0.84 425 0.83
(0.45) 0.37) 0.37) 0.37)
Household income ($1000) 4394 61.10 496 69.24 3660 70.63 425 70.14
(45.05) (45.11) (45.31) (43.34)
Square footage (1000 ft?) 4294 1.87 488 1.96 3660 1.98 425 1.98
(0.79) (0.74) 0.74) (0.73)
Household size 4283 242 482 2.39 3660 243 425 2.44
(1.23) (1.20) (1.24) (1.22)
White 4151 0.75 478 0.82 3660 0.82 425 0.82
(0.44) 0.39) 0.39) 0.39)
Stories 4185 1.27 492 1.26 3660 1.26 425 1.26
(0.49) (0.45) (0.48) (0.45)
Vintage 4394  26.88 496 27.78 3660 2847 425 28.12
(17.92) (15.99) (16.80) (15.78)
Household head age 4165 5392 471 5521 3660 55.11 425 54.78
(15.95) (13.87) (15.04) (13.78)
Primary residence (seasonal residence=0) 4322 0.98 495 0.98 3660 0.98 425 0.98
(0.15) (0.15) 0.13) 0.13)
Swimming pool 4378 0.40 496 045 3660 046 425 0.46
(0.49) (0.50) (0.50) (0.50)
Programmable thermostats 4394 0.65 496 0.80 3660 0.79 425 0.80
(0.48) (0.40) 0.41) (0.40)
Single-family house 4230 0.82 491 0.90 3660 0.90 425 0.89
(0.38) 0.31) (0.30) 0.31)
Non-TOU consumers

Ownership (renter =0) 5823 0.71 631 0.79 5745 0.78 600 0.78
(0.45) 0.41) 0.41) 0.41)

Household income ($1000) 5823 5152 631 59.89 5745 5621 600 56.33
(40.39) (43.61) (41.35) (41.32)

Square footage (1000 ft?) 5823 1.51 631 1.63 5745 1.60 600 1.61
Household size (0.79) (0.78) (0.79) (0.78)
5823 2.09 631 2.15 5745 2.12 600 2.14
(1.06) (1.08) (1.09) (1.08)

White 5823 0.77 631 0.82 5745 0.81 600 0.81
0.42) 0.39) (0.40) 0.39)

Stories 5823 1.18 631 1.12 5745 1.13 600 1.13
0.43) (0.35) (0.35) (0.35)

Vintage 5823 30.36 631 29.77 5745 3043 600 30.28
(19.28) (17.02) (18.77) (17.09)
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Table 8 (continued)

Variables Before matching After matching

Control Treated Control Treated

Obs Mean Obs Mean Obs Mean Obs Mean

Household head age 5823 59.14 631 5875 5745 5930 600 59.10
(15.16) (14.44) (14.59) (14.48)

Primary residence (seasonal residence=0) 5823 0.90 631 0.91 5745 0.90 600 0.91
0.29) 0.29) (0.30) (0.29)

Swimming pool 5823 0.16 631 0.19 5745 0.19 600 0.18
(0.37) (0.40) (0.39) (0.38)

Programmable thermostats 5823 0.52 631 0.71 5745 0.70 600 0.70
(0.50) (0.45) (0.46) (0.46)

Single-family house 5823  0.74 631 0.82 5745  0.82 600 0.82
0.44) (0.38) (0.39) (0.39)
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Table 9 Electricity savings by hour-of-day from energy-efficient ACs for TOU and non-TOU consumers

Variables

TOU consumers

Non-TOU consumers

Hour 1* energy-efficient AC

Hour 2* energy-efficient AC

Hour 3* energy-efficient AC

Hour 4* energy-efficient AC

Hour 5* energy-efficient AC

Hour 6* energy-efficient AC

Hour 7* energy-efficient AC

Hour 8* energy-efficient AC

Hour 9* energy-efficient AC

Hour 10* energy-efficient AC

Hour 11* energy-efficient AC

Hour 12* energy-efficient AC

Hour 13* energy-efficient AC

Hour 14* energy-efficient AC

Hour 15* energy-efficient AC

Hour 16* energy-efficient AC

Hour 17* energy-efficient AC

Hour 18* energy-efficient AC

Hour 19* energy-efficient AC

Hour 20* energy-efficient AC

Hour 21* energy-efficient AC

Hour 22* energy-efficient AC

-0.919
(0.652)
~0.886
(0.653)
-0.832
(0.653)
—0.846
0.651)
—0.789
(0.650)
~0.670
(0.652)
-0.731
(0.653)
—0.790
(0.653)
-0.727
(0.654)
—0.713
(0.652)
—0.668
(0.653)
—0.670
(0.654)
—0.622
(0.655)
—0.774
(0.659)
-0.825
(0.658)
— 1.094%
(0.657)
—1.215%
(0.651)

—1.273%*

(0.648)

—1.318%*

(0.647)

—1.325%%*

(0.643)
—1.194%
(0.644)
—1.125%
(0.645)

(0.296)

—1.286%+*
(0.299)
(0.301)

—1.236%%+
(0.301)

— 1231
(0.301)
(0.297)

— 1.105%#*
(0.296)

— 11628+
(0.295)

— 1,234
(0.295)
(0.297)

— 1,259
(0.299)

— 1261
(0.303)

— 1,251
(0.306)
(0.310)

— 1313
(0.311)

—1.39] %%
(0.312)

— 1458+
0.312)

— 1491
(0.307)

— 1.520%%*
(0.304)

—1.536%%+
(0.300)
(0.298)

— 146285+
(0.295)

@ Springer



Social Versus Private Benefits of Energy Efficiency Under...

Table 9 (continued)

Variables TOU consumers Non-TOU consumers
Hour 23* energy-efficient AC —1.030 —1.373%%%
(0.654) (0.294)
Hour 24* energy-efficient AC -0.916 —1.336%**
(0.655) 0.294)
CDD 0.227%#%%* 0.176%#*
(0.002) (0.002)
HDD 0.375%%%* 0.3147%%%*
(0.013) (0.030)
Electricity price —13.572%** 11.981%**
(0.553) (1.103)
Weekend 0.1637%#* 0.2327%#%
(0.025) (0.010)
Holiday 0.036* 0.066%**
(0.021) (0.016)
Constant 4.435%%* 0.062
(0.268) (0.165)
Year fixed effects Yes Yes
Month-of-year fixed effects Yes Yes
Hour-of-day fixed effects Yes Yes
Individual-customer fixed effects Yes Yes
N 59,345,610 95,636,736
R’ 0.334 0.391

The summer months are from May to October. The Standard errors in parentheses, *p <0.10, **p <0.05,
sekok
'p<0.01

Table 10 Cost-effectiveness of energy-efficient ACs

TOU consumers Non-TOU consumers
Annual dollar savings ($) 411.1 1093.3
Payback period 12.2 years 4.6 years
Discounted payback period (discount rate=3%) 15.4 years 5.0 years
Internal rate of return (per year) 14.96% 26.22%

Winter electricity savings are calculated based on the percentage of savings in the summer. The estimate
of the cost of energy-efficient AC replacement is from sources: https://www.remodelingexpense.com/costs
/cost-of-energy-efficient-air-conditioners/;  https://www.homeadvisor.com/cost/heating-and-cooling/install-
an-ac-unit/#14and16seer

Appendix 2

See Figs. 10 and 11.
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Common support for TOU consumers Common support for non-TOU consumers
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Fig. 10 Common support of propensity score matching for the TOU and non-TOU consumers
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Fig. 11 Test of the parallel trend assumption. Notes: This plot includes the estimated coefficients and 95%
confidence intervals. Time is normalized relative to the energy efficiency adoption month. Observations
before t=—20 are dropped. Price, CDD, and HDD are included as covariates. The regression includes
household fixed effects and year fixed effects. Standard errors are clustered at the household level

Appendix 3: Coarsened Exact Matching

We also match the treated and control groups using coarsened exact matching, which is
widely used in more recent studies (Stuart 2010). Coarsened exact matching divides the
variables into different strata and then the treated and control groups are matched based on
the strata (Iacus et al. 2012). Coarsened exact matching tries to reduce the overall imbal-
ance. 430 out of 496 (87%) TOU consumers and 641 out of 731 (88%) non-TOU con-
sumers with energy-efficient ACs are matched. The balance checking of the covariates is
shown in Table 11, which indicates that the covariates are balanced between the control
and treated groups after matching.

The results (Fig. 12) obtained using coarsened exact matching are in general consistent
with those using propensity score matching. For TOU consumers, the largest hourly savings
also occur at 8 p.m., but there are fewer significant estimates in the later afternoon and early
evening hours, while for the non-TOU consumers, the hourly savings show a similar pattern
as those using propensity score matching; however, they seem to have a slightly smaller mag-
nitude. The hourly savings for morning hours such as 8 a.m. and 9 a.m. become larger than
previous results
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Table 11 Mean of variables before and after coarsened exact matching for TOU and non-TOU consumers
(treatment: energy-efficient AC replacement)

Variable Before matching After matching
Without energy- With energy- Without With energy-
efficient AC efficient AC energy-efficient efficient AC
AC

Obs Mean Obs Mean Obs Mean Obs Mean

TOU consumers

Ownership (renter=0) 2202 0.72 496 0.84 930 0.87 382 0.87
(0.45) 0.37) (0.33) (0.33)

Household income ($1000) 2202 0.51 496 0.64 930 0.67 382 0.67
(0.50) (0.48) 0.47) 0.47)

Square footage (1000 ft?) 2202 0.71 496 0.75 930 0.78 382 0.78
(0.46) (0.43) 0.41) 0.41)

Household size 2202 1.00 496 1.00 930 1.00 382 1.00
(0.00) (0.00) (0.00) (0.00)

White 2075 0.75 478 0.82 921 0.86 376 0.86
0.43) (0.39) (0.35) (0.35)

Stories 2202 0.29 496 026 930 023 382 0.23
(0.46) (0.44) 0.42) (0.42)

Vintage 2202 045 496 042 930 039 382 0.39
(0.50) (0.49) (0.49) (0.49)

Household head age 2094 5392 471 5521 914 55.53 372 55.53
(16.06) (13.87) (13.52) (13.53)

Primary (seasonal residence=0) 2160 098 495 098 930 1.00 382 1.00
(0.14) (0.15) (0.05) (0.05)

Swimming pool 2194 041 496 045 930 047 382 0.47
(0.49) (0.50) (0.50) (0.50)

Programmable thermostats 2202 0.65 496 0.80 930 0.84 382 0.84
(0.48) (0.40) (0.36) (0.36)

Single-family house 2120 0.82 491 0.90 930 095 382 0.95
(0.38) (0.31) 0.22) (0.22)

Non-TOU consumers

Ownership (renter =0) 7824 072 731 0.79 537 0.81 266 0.81
(0.45) (0.40) (0.39) (0.39)

Household income ($1000) 7824  45.03 731 55.84 537 5521 266 56.07
(40.70) (44.08) (43.61) (44.13)

Square footage (1000 ft?) 7381 1.51 723 1.62 537 1.64 266 1.64
(0.79) (0.78) (0.79) (0.77)

Household size 7422 207 712 2.15 533 2.11 263 2.13
(1.06) (1.08) (1.10) (1.07)

White 7319 0.75 691 0.80 530 0.83 259 0.83
(0.43) (0.40) (0.38) (0.38)

Stories 7167 1.17 715 1.12 536 1.09 265 1.09
0.42) (0.35) (0.29) 0.31)
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Table 11 (continued)

Variable Before matching After matching
Without energy- With energy- Without With energy-
efficient AC efficient AC energy-efficient efficient AC
AC

Obs Mean Obs Mean Obs Mean Obs Mean

Vintage 7824 2998 731 30.00 537 30.60 266 30.32
(19.78) (17.21) (18.52) (17.18)
Primary (seasonal residence=0) 7143 60.38 707 59.16 526 60.06 257 60.06
(14.73) (14.34) (13.67) (13.68)
Swimming pool 7510 090 724 090 537 092 266 0.92
(0.30) (0.30) (0.26) (0.26)
Programmable thermostats 7739 0.16 730 0.18 537 0.17 266 0.17
(0.36) (0.39) (0.38) (0.38)
Single-family house 7824 0.52 714 0.72 536 0.71 265 0.71
(0.50) (0.45) (0.46) (0.46)
TOU consumers after CEM Non-TOU consumers after CEM
Z- g
5 I B S S T
Hour Hour

Fig. 12 Electricity savings by hour-of-day using coarsened exact matching. Notes: Coarsened exact match-
ing is applied before the fixed effects regression. Each plot has 24 coefficients with 95% confidence inter-
vals. The dependent variable for each regression is hourly electricity demand in kWh. Electricity price,
CDD, HDD, holiday, and weekend are included as covariates. All regressions are estimated with household
fixed effects and year, month-of-year, and hour-of-day fixed effects. The summer months are from May to
October

Appendix 4: Test the Inequality of Regression Coefficients for the TOU
and Non-TOU Groups

In this section, we provide a formal statistical test that TOU and non-TOU consumers have dif-
ferent savings, namely different sets of regression coefficients. Since they are coefficients from
regressions, they cannot be examined by a simple # test. We set up one more regression model
which nests both groups of consumers.

24 24
Demand;;,; = a + z ﬂfEE_AC,-d * hour_of _day, + Z ﬂgEE_ACid * hour_of _day, * TOU,
h=1 h=1

+ BXipg + Ty + 0, F Vi F Eipg
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Table 12 Testing of inequality

H ffici P f.
for savings of TOU and non-TOU our Coefficient Standard errors t >1tl [95% Con

interval]
groups
Hourl 2.694 0.441 6.10 0.000 1.829 3.559
Hour2 1.941 0.355 5.47 0.000 1.246 2.637
Hour3 2.648 0.377 7.03 0.000 1.909 3.386
Hourd 2.416 0.374 6.46 0.000 1.683 3.148
Hour5 2.499 0.361 6.91 0.000 1.791 3.208
Hour6  1.999 0.373 5.36 0.000 1.268 2.730
Hour7 0.559 0.441 1.27 0.204 —0.304 1.423
Hour8 1.581 0416 3.80 0.000 0.767 2.396
Hour9 2.711 0.401 6.77 0.000 1.926 3.497
Hourl0 2.804 0.465 6.03 0.000 1.892 3.716
Hourll 2.337 0.478 4.89 0.000 1.400 3.273
Hourl2 2.956 0.532 5.55 0.000 1.912 3.999
Hourl3 4.118 0.607 6.78 0.000  2.927 5.308
Hourl4 4.060 0.645 6.30 0.000 2.796 5.324
Hourl5 4.624 0.618 7.49 0.000 3413 5.834
Hourl6 5.918 0.663 8.93 0.000 4.619 7.216
Hourl7 5.768 0.645 8.94 0.000 4.503 7.033
Hourl8 5.242 0.660 7.95 0.000 3.949 6.534
Hourl9 5.369 0.668 8.04 0.000 4.060 6.679
Hour20 4.003 0.577 6.93 0.000 2871 5.134
Hour21 3.808 0.642 5.94 0.000 2.551 5.066
Hour22 3.875 0.633 6.13 0.000 2.636 5.115
Hour23 3.130 0.523 5.98 0.000 2.105 4.155
Hour24 3.115 0.478 6.51 0.000 2.178 4.053

where all the variables share the same definition as those in Eq. (1). The covariates X also
include the same covariates: electricity price, CDD, HDD, holiday and weekday. We have
added a new variable TOU, to differentiate the two groups. It is equal to 1 when the con-
sumers are TOU consumers and it is O otherwise. By examining the coefficients on the
interaction terms 2211 ﬂf‘EE_AC,-d * hour_of _day, * TOU,, we can test if TOU and non-
TOU groups have different hour-by-day electricity savings after AC replacements. We find
that the p-values (p <0.01) indicate that the differences are statistically different (Table 12).
We reject the null hypothesis that the difference is zero. In other words, we can conclude
that the TOU group is different from the non-TOU group.
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