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Optimal Network Parameter Estimation: Single-Shot
Exchange of Local Decisions

Saurabh Sihag and Ali Tajer

Abstract—This letter considers a network of sensors that collec-
tively sense a number of unknown parameters. Each sensor can
possibly sense only a subset of the parameters, gather data only
about these parameters, and has access to only the statistical model
of the data that it collects locally. The objective is that each sen-
sor forms optimal estimates for its designated parameters (i.e., the
parameters that it can sense). This letter proposes an estimation
cost function that strikes a balance between the sensors being au-
tonomous in forming local estimates based on their locally avail-
able data and statistical models, and enforcing consistency among
the local estimates formed for the parameters that are sensed by
multiple sensors. Exact optimal estimators are characterized, and
it is shown that the optimal estimators can be implemented in a
distributed way, through a single-shot exchange of local decisions.
Specifically, the distributed implementation consists of forming lo-
cal estimates and exchanging certain sufficient statistics values in
a single round of communication exchange among some of the sen-
sors. Furthermore, the optimal performance under the proposed
cost function is also compared analytically with the performance
of the widely used mean squared error estimator.

Index Terms—Autonomous systems, distributed algorithm,
estimation theory, networks.

I. INTRODUCTION

CONSIDER a network parameter estimation problem in
which m sensors {S1, . . . , Sm}, collectively, estimate n

mutually independent scalar parameters X � [X1, . . . , Xn]
T .

Each parameter might be sensed by only a subset of the sensors
(e.g., due to the network being large). We define the column
vector Ai ∈ {0, 1}n to account for the set of parameters sensed
by sensor Si. Specifically,

[Ai]j �
{
1 if Xj is sensed by Si

0 otherwise
. (1)

Accordingly, we define Xi � Ai ◦X, where ◦ denotes the
Hadamard product. Furthermore, we define the Yi ∈ Rp×1 as
the vector of p measurements generated by sensor Si. Measure-
ments Yi can be any non-linear and arbitrary function of the
parameters Xi, and they are related via

Yi ∼ fi(· | Xi), for i ∈ {1, . . . ,m} , (2)
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where fi denotes the conditional joint probability density func-
tion (pdf) of the measurements Yi. Furthermore, we denote the
prior pdf of Xi by πi. We assume that the pdfs fi satisfy the
regularity conditions [1].

Assumption: Each sensor Si has access only to its local sta-
tistical model fi(· | Xi) and its local data Yi. This assumption
is especially critical in large-scale networks in which it may be
infeasible or undesirable for a sensor agent to know the com-
plete statistical model of the network. For instance, in a power
system with multiple control areas, it is infeasible to perform
real-time exchange of the dynamically-changing system among
the physically distant control areas.

Objective: The objective is that sensor Si forms an estimate
for its relevant parameters Xi such that the estimates optimize a
joint global estimation cost function. The cost function will be
specified in Section III.

Autonomy versus Consistency: We propose a natural estima-
tion cost function that strikes a balance between:

1) sensors being autonomous in forming local estimates
based on their local data and statistical models; and

2) enforcing consistency among the local estimates for the
parameters that are being estimated by multiple sensors.

Main Results: The objective is that each sensor forms opti-
mal estimates for the its respective unknown parameters while
remaining oblivious to the statistical models of other sensors.
Driven by the specific cost function adopted, we have the fol-
lowing main observations:

1) We start by allowing full coordination among the sensors
in order to establish the optimal estimation performance.
We provide closed-form characterizations of the optimal
estimates when the sensors are allowed to share all their
data and local statistical model.

2) We characterize the minimal sufficient statistics that the
sensors need to share with each other in order to com-
pute the optimal estimates found in the fully coordinated
scenario.

3) The form of the sufficient statistics provided establish a
distributed algorithm for finding the optimal estimates at
the sensors, which we refer to as the single-shot exchange
of local decisions (SELD) algorithm. This algorithm,
specifically, consists in only one round of exchange of the
sufficient statistics among some of the sensors, and that is
sufficient for all the sensors to obtain the optimal estimates
that they could form when having full coordination.

4) We also analytically compare the efficiency of the esti-
mates under the proposed cost function with the perfor-
mance of a widely-used mean-squared error (MSE) cost
function where the MSE estimator has full access to all
the data and the joint statistical models of the data at all
sensors.
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II. RELATED STUDIES

The problem of network parameter estimation has a rich liter-
ature [1] and [2], and arises in a wide range of domains such as
sensor networks [3]–[5], power systems [6]–[9], and social net-
works [10]–[12]. In many practical applications, it is desirable
to distribute the inference among multiple autonomous entities
in the network to gain scalability, resilience to failure, and alle-
viate privacy/security concerns [2]. For instance, the division of
power systems into multiple control centers allows the design of
reliable and computationally efficient inference rules [6]. How-
ever, in general, the inference decisions at different control cen-
ters in a power system may not be mutually independent due to
the measurements and parameters associated with the tie lines
connecting them [7]–[9]. Therefore, performing independent in-
ference at individual control centers may not lead to optimal de-
cisions. This motivates the design of inference frameworks with
locally autonomous decisions while not compromising on the
scalability and quality of decision rules.

In this letter, we focus on a network parameter estimation
problem, in which the parameters are sensed, collectively, by
m autonmous sensors. Similar problems have been studied in
the context of Bayesian learning and multitask learning prob-
lems in multi-agent networks in [10]–[20]. In the context of
Bayesian learning, each agent modifies its belief (posterior dis-
tribution of parameters) based on private information (i.e., in-
formation only accessible to agents that receive it) and multiple
rounds of communication with neighboring agents with an aim
to converge to a common decision that optimizes a cost or a
reward (for e.g. MSE). In [13], a Bayesian filter is applied to a
tracking problem where the agents reach consensus on the prob-
ability distribution of the states of a moving target. In [10], [14]
and [16], the strategies for distributed estimation are character-
ized where the agents collaborate among themselves to reach
a consensus on the belief of a fictitious fusion center that has
access to the data at all agents.

The studies in [18]–[20] consider the settings where each
agent in a multi-agent network is interested in learning only
a subset of the complete set of unknowns. In these studies,
data processing and inter-agent communication strategies are
characterized by multiple rounds of communication among the
agents that lead to convergence to the solution that optimizes
a distributed objective function. In [18] and [19], sequential
distributed estimation strategies based on diffusion least mean
squares and consensus, respectively, are studied, whereas, a
distributed optimization method based on alternating direction
method of multipliers is adopted in [20]. The studies in [19]
and [20] also apply their respective frameworks to a network
flow problem.

The aforementioned works in the context of Bayesian learn-
ing in [10]–[17] focus primarily on achieving the performance
of an estimator that optimizes MSE. In contrast, we propose an
estimation framework based on a cost function that incorporates
the quality of estimates based on autonomous decisions at all
sensors and the consistency in the estimates of commonly ob-
served parameters by different sensors. We provide closed form
estimation rules that optimize the proposed cost. Furthermore, in
contrast to the distributed estimation strategies in [18] and [19],
we characterize the minimal sufficient statistics that the sensors
must exchange among themselves in one round to form their re-
spective optimal estimates. We also analytically and empirically
compare the estimation performance of the proposed estimation
rules with that of an estimator that optimizes MSE.

III. ESTIMATION FRAMEWORK

We aim to design an estimation framework for the network
estimation problem specific in Section I. For this purpose, we
defineY � [Y1, . . . ,Ym] as the collection of all measurements,
and define X̂i(Y) as the estimate of Xi formed by sensor Si. In
general, there is a set of parameters that are estimated only by
one sensor, and a set of parameters that are estimated by more
than one sensor. We adopt a cost function that (i) provides the
sensor with autonomy for forming estimates for their parameters
that they sense exclusively, and (ii) forces the sensors sharing
the same parameter form a consistent estimate for the shared
parameter. The proposed cost function, as a result, consists of
two separate costs specified next.

Throughout the rest of the letter for capturing the fidelity of
a generic estimator U for any specific parameter Xi we define
the quadratic cost function

C(Xi , U) � ‖Xi − U‖2. (3)

Autonomous Estimates: The parameters that Si senses and
aims to estimate are the non-zero elements of Xi = Ai ◦X.
We capture the fidelity of estimates generated by sensor Si by
defining the local average posterior cost function

Li(X̂i(Y) |Yi) � Ei

[
C(Xi , X̂i(Y)) | Y

]
, (4)

where expectation is with respect to fi. This emphasizes the
fact that each sensor used only its local data Yi and its local
statistical information fi(· | Xi).

Consistent Estimates: While each sensor can autonomously
optimize (4) to ensure optimal estimator design based on its re-
spective local data, it does not enforce consistency among the
estimates of the parameters formed by multiple sensors. To en-
sure consistency, corresponding to each two arbitrary sensors
Si and Sj we define the following measure of discrepancy be-
tween the estimates of their shared parameters. The indexes of
these shared parameters are specified by the non-zero elements
of Ai ◦Aj .

Dij(Y) � C(Ai ◦Aj ◦ X̂i(Y) , Ai ◦Aj ◦ X̂j(Y)). (5)

Aggregate Cost Function: We adopt a cost function that
aggregates the local and discrepancy cost functions specified
in (4) and (5), respectively. By setting V � [X1, . . . ,Xm] and
denoting its estimate by V̂(Y) ∈ Rn×m we define

J (V̂(Y) | Y) �
m∑
i=1

αiLi(V̂i(Y) |Yi) + β
∑
i�=j

Dij(Y) ,

(6)

where {αi}mi=1 are positive constants that can be tuned to place
the appropriate emphases on the local cost functions and the in-
consistency of the estimates for shared parameters. For instance,
sensors can experience different levels of signal-to-noise ratio
(SNR), and can be adjusted to contribute differently to the ag-
gregate cost function J . Similarly, β is a positive constant that
controls the degree of consistency among the estimates of the
same parameter formed by different sensors. Increasing β places
more emphasis on consistency while penalizing the estimates at
individual sensors.

This estimation cost allows us to set up an estimation frame-
work that ensures that each sensor forms estimates with high
fidelity while maintaining consistency with the estimates of its
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shared parameters formed by other sensors. We define the opti-
mal estimates as the solutions to

V̂(Y) � arg min
U(Y)

J (U(Y) | Y). (7)

IV. ESTIMATOR: OPTIMAL DESIGN AND IMPLEMENTATION

In this section, we provide the closed form characterization of
the optimal estimator V̂(Y) when we allow the sensors to have
full coordination, i.e., they can exchange as much information
as they wish. Once the optimal designs are characterized, in the
next step we show that the designs are amenable to distributed
implementation with limited and only round of information ex-
change among the sensors with shared parameters.

A. Optimal Estimators

We define matrix A � [A1, . . . ,Am], the unit vector
ej ∈ R1×n that contains all zeros except at location j, and the
unit vector gi ∈ R1×m that contains all zeros except at location
i. The following theorem characterizes the optimal estimators.

Theorem 1 (Estimators): For all j ∈ {1, . . . , n}, the j−th
row of the optimal estimator V̂(Y), i.e., ej · V̂ satisfies the
linear system of equations given by

Dj · [ej · V̂]T = [ej ·A]T ◦ bj , (8)

where Dj ∈ Rm×m and bj ∈ Rm×1 are defined as

[Dj ]u,v �⎧⎪⎨
⎪⎩
ej ·Au · (β‖ej ·A‖1 − β+αu)

αu
+(1− ej ·Au) if u=v

−ej ·Av · β
αu

if u �= v

(9)

and [bj ]i � Ei[Xj | Yi]. (10)

Furthermore, the optimal estimates at sensor Si are given by

V̂i(Y)=[gi ·D−1
1 ·[e1 ·A]T ◦b1, . . . , gi ·D−1

n ·[en ·A]T ◦bn]
T ,

(11)

where V̂i(Y) ∈ Rn×1 is a vector formed by the i−th elements
of the solutions to linear system of equations of the form (8) .

The matrix Dj defined in (9) establishes the linear relation-
ships between the optimal estimates of Xj formed at differ-
ent sensors and their corresponding locally formed posterior
means of Xj . An important observation from Theorem 1 is that
the optimal estimate of Xj at sensor Si is given by the scalar
gi ·D−1

j ·[ej ·A]T ◦bj , which is the weighted average of the el-
ements of the vector of local posterior means of Xj , i.e., bj ,
and the weights are given by the elements of the i−th row of
D−1

j . This important observation guides computing the optimal

estimates V̂ in a distributed way, based on primarily forming
local posterior means at each sensor based on only the locally
available data and statistical models, and one round of commu-
nication for coordinating the decisions, as described in the next
subsection.

B. Distributed Implementation: SELD Algorithm

The structure of V̂i(Y) given in (11) indicates that determin-
ing the globally optimal estimate of Xj is a weighted average of

Fig. 1. Distributed network parameter estimation. An arrow from Xj to Si

indicates that sensor Si senses parameter Xj .

posterior means of this parameter at the sensors that sense Xj ,
as formalized in the following corollary.

Corollary 1 (Minimimal Sufficient Statistics): The local pos-
terior means of the parameters formed by the sensors are the
minimal sufficient statistics to be shared across the network in
order to compute the optimal estimates V̂(Y).

Hence, finding the globally optimal estimates can be carried
out in the following three steps that form the SELD algorithm:

1) Local Estimates: Each sensorSi forms the posterior means
for all the parameters that it senses based on its locally
available information and statistical models. Hence, sen-
sor Si computes Ei[Xi | Yi].

2) Coordination: All sensors that are commonly observing a
non-empty subset of unknown parameters exchange their
corresponding posterior means among themselves. For in-
stance, in Fig. 1, Sensors S1 and S2 commonly sense pa-
rameters X1 and X3. Hence, S1 and S2 exchange the fol-
lowing two scalar values for j ∈ {1, 3}

ej · E1[X1 | Y1] and ej · E2[X2 | Y2]. (12)

3) Aggregation: Sensor Si aggregates all the posterior means
shared with it according to (11) in order to find the globally
optimal estimates X̂i(Yi).

Therefore, the sensors can form the globally optimal esti-
mates with only one round of communication for sharing their
required sufficient statistics (posterior means). We comment that
that the structure of the shared parameters is known to the sensors
a-priori.

C. Efficiency and Connection to MSE

In this section we assess the efficiency of the optimal es-
timators for the proposed cost function J (V̂(Y) | Y). We
first characterize its asymptotic performance. Next, we compare
the performance of the optimal estimators for the cost function
J (V̂(Y) | Y) with that of the estimators for the MSE cost
function.

In Lemma 1, we provide the efficiency of the estimation
framework established in Theorem 1. To describe the results
in Lemma 1, we define diag(a) for a one dimensional vector a
as a diagonal matrix of size |a| × |a| with its diagonal elements
given by the elements of a. We also define

Ĩj(X)�
[
ej ·A1[I1(X1)

−1]jj , . . . , ej ·Am[Im(Xm)−1]jj
]T

,
(13)

where Ii(Xi) is the Fisher information matrix corresponding to
the unknown parameters observed by sensor Si, i.e.,

Ii(Xi) � −E
[∇2

Xi
log fi(Yi | Xi)

]
. (14)
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Lemma 1: The estimate V̂i(Y) formed by sensor Si, in the
asymptote of large number of samples p converges to a normal
distribution according to

√
p[V̂i(Y)−X]

d−→ N (0,Σi(X)) , (15)

where the diagonal elements of Σi(X) ∈ Rn×n are given by

[Σi(X)]jj = ‖(diag(gi ·D−1
j ))2Ĩj(X)‖1 . (16)

Proof: The proof follows directly from the asymptotic effi-
ciency of Bayesian estimators [21]. �

The relationship in (15) indicates that the variance of the esti-
mate ofXj by sensorSi scales according to 1

p [Σi(X)]jj . We use
the result of Lemma 1 to assess the asymptotic performance with
respect to the optimal MSE-based estimator that estimates X di-
rectly by using all the data Y. We denote such MSE estimator
by

X̂MSE(Y) = arg min
U(Y)

‖U(Y)−X‖2. (17)

For this purpose, for each sensor Si and parameters Xj that it
senses we define

ηji (X) � var(ej · X̂i)

var(ej · X̂MSE)
, (18)

which captures the relative estimation error variances.
Corollary 2: The ratio of the estimation error variances

ηji (X) in the asymptote of large p is given by

ηji (X) =
[Σi(X)]jj
[I(X)−1]jj

, (19)

where I(X) is the Fisher information matrix corresponding to
the true set of parameters X.

Remark 1 (Restricted collaboration): Note that the restric-
tion on communication between any two arbitrary sensors Si

and Sj can be accommodated in the SELD algorithm by setting
Dij(Y) = 0 in the estimation cost (6). In this scenario, the op-
timal estimates can be obtained and their performance analyzed
by the relative estimation error variances in Corollary 2 using
similar technical arguments used to recover the results for full
collaboration.

V. NUMERICAL EVALUATIONS

Consider a 4-sensor network collecting measurement about
parameters {Xi : i ∈ {1, . . . , 5}}, where the sensors and their
designated parameters are specified in Fig. 2. The parameters
are independent and distributed according to

X ∼ N (0,Σ) , where Σ = diag(1, 2, 4, 6, 6). (20)

The p measurements at sensor Si are given by

Yi = Ai ◦X+N i , (21)

where N i ∼ N (0, σ2
i I), where (σ2

1 , σ
2
2 , σ

2
3 , σ

2
4) = (2, 1, 4, 8).

We compare the empirical performance of proposed estima-
tion framework based on single-shot exchange of local decisions
(SELD) with that of an MSE estimator, an autonomous-only es-
timation framework (where each sensor forms final estimates
locally and independently), a uniform aggregation framework
where the sensors combine the minimal sufficient statistics with
equal weights to form consistent estimates), and a consensus +
innovations estimation strategy (CIRFE) proposed in [18]. We

Fig. 2. 4-sensor distributed network for estimating 5 parameters.

Fig. 3. Empirical RMSE versus the number of samples per sensor.

estimate the empirical root mean squared error (RMSE) over
105 Monte-Carlo simulations for different estimation strategies
and use it as the criterion for comparison among them. For the
results in Fig. 3, we set β = 1 and αi = σ−2

i , for i ∈ {1, 2, 3, 4}
such that the asymptotic estimation error variances for the es-
timates formed using the SELD algorithm are within 5% of an
MSE estimator.

In Fig. 3, we observe that the RMSE of the estimates yielded
by the SELD algorithm is very close to that of the MSE estimator.
One the other hand, the CIRFE algorithm exhibits a consider-
able gap with SELD and MSE. This is despite the fact that in
contrast to SELD, CIRFE is substantially more communication-
intensive. Specifically, for p number of measurements per sen-
sor, the final estimates using CIRFE are formed after p rounds
of communication. The performance gap between CIRFE and
SELD, nevertheless, diminishes asymptotically as the number of
measurements per sensor increases. Furthermore, SELD outper-
forms the independent estimation and the uniform aggregation
estimation strategies significantly, which underlines the signifi-
cance of strategically combining the minimal sufficient statistics
at all sensors.

VI. CONCLUSION

We have considered the problem of parameter estimation in a
multi-sensor network. Each sensor can observe a non-exclusive
subset of parameters. We have proposed an estimation frame-
work based on a proposed cost function that consists of estima-
tion qualities at all sensors and discrepancies among the esti-
mates of same parameters formed by different sensors. Closed
form optimal solution to the proposed cost is provided which
characterizes the minimal sufficient statistics for each sensor to
form optimal estimators. The estimation framework is amenable
to distributed implementation with one round of exchange of
minimal sufficient statistics among the sensors.
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