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Abstract—Consider a set of information sources, each generat-
ing a sequence of independent and identically distributed random
variables over time. Each information source generates its data
according to one of the two possible distributions F0 or F1. Due to
potential physical couplings that govern the information sources,
the underlying distribution of each sequence depends on those of
the rest. Hence, the underlying distributions form a dependence
kernel. Due to uncertainties in the physical models, however, the
dependence kernel is not fully known. The objective is to design a se-
quential decision-making procedure that identifies a sequence gen-
erated according to F1 with the fewest number of measurements.
Earlier analyses of such search problems have demonstrated that
the optimal design of the sequential rules strongly hinges on know-
ing the dependence kernel precisely. Motivated by the premise that
the dependence kernel is not known, this paper designs a sequen-
tial inference mechanism that forms two intertwined inferential
decisions for identifying a sequence of interest and learning the
parameters of the dependence kernel. This paper devises three
strategies that place different levels of emphasis on each of these
inference goals. Optimal decision rules are characterized, and their
performance is evaluated analytically. Also, the application of the
proposed framework to wideband spectrum sensing is discussed.
Finally, numerical evaluations are provided to compare the perfor-
mance of the framework to those of the relevant existing literature.

Index Terms—Model uncertainty, quickest detection, quickest
search, sequential estimation, sequential sampling.

I. INTRODUCTION

S EARCHING over a set of data streams for the purpose
of identifying data streams that exhibit desired statistical

features arises in a wide range of applications. Categorically,
identifying the streams of interest can represent identifying op-
portunities (arising, e.g., in wideband spectrum sensing) or mit-
igating risks (arising, e.g., in network intrusion or fraud detec-
tion). Identifying such data streams of interest, especially in
large sets of data streams, is often very time-sensitive due to
the transient nature of the opportunities that are attractive only
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when detected quickly, or due to the substantial costs that risks
can incur if not responded to rapidly (c.f. [1] for more extended
overview). The significance of searching over collections of data
streams is expected to grow well into the future due to the ad-
vances in various technological, social, and economic domains,
in which large-scale and complex data is routinely generated
and processed for various inferential purposes.

Quickest search over a set of information streams aims to
identify the desired streams in real-time and in the quickest
fashion. Quickest search strikes a balance between the quality
and the agility of the search process as two opposing figures of
merit. Specifically, forming more reliable decisions necessitates
collecting more data, which in turn delays the decision process,
and subsequently penalizes the agility. The problem of quick-
est search over multiple data streams was first formalized and
analyzed in [2] as an extension of sequential binary hypothe-
sis testing [3] and [4]. The study in [2] considers a set of data
streams, where each stream is generated according to one of the
two known distributions F0 and F1 independently of the rest.
The ultimate goal of quickest search in this context is identifying
one sequence generated according to the desired distribution F1
with the fewest number of measurements.

In network settings, however, in which there exists physical
coupling among the mechanisms that govern the information
sources and generate the data streams, the assumption that dif-
ferent data streams are generated according to one of the possi-
ble distributions independently of each other is not necessarily
valid. Motivated by such network settings, [5] treats the quick-
est search over data streams that are generated according to
a known linear dependency kernel, where it is shown that the
structure of the optimal decision rules for performing quickest
search strongly depends on the parameters of the dependency
kernel. In reality, however, the dependency kernel is not neces-
sarily known, e.g., when F1 captures anomalous behaviors that
have unpredictable patterns or causes.

In this paper we formalize a framework for quickest search
problem over correlated data streams when the parameters of the
dependency kernel are unknown. The framework is constructed
in three stages, where each stage has its specific set of technical
challenges. First we consider a purely sequential detection prob-
lem in which the objective is to identify one sequence generated
according to F1 with minimal delay. In this stage we are not
concerned about learning the model, and all the uncertainties
are dispensed with as nuance parameters. In the second stage,
we consider a purely sequential estimation problem, in which
the objective is to form reliable estimates for the parameters of
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the dependency kernel with the fewest number of measurements
made across the sequences. This stage does not identify any data
stream and its focus is placed entirely on learning the model.
Finally, we consider a sequential setting that pursues both infer-
ence goals. Specifically, a sequence generated according to F1
is identified, and also reliable estimates about the parameters are
produced. In analyzing all these three problems, the sequential
framework and the associated sampling strategy are specified by
two data-driven components. The first is the stochastic stopping
time of the process, which is the time that sampling is terminated
and reliable decisions are produced. The second component is
the dynamic selection of the data streams over time for collecting
data. Clearly, not all data streams are equally informative about
the inference objectives, and optimally selecting and sampling
the data streams over time have a pivotal role for ensuring the
optimality of the coupled data-acquisition and decision-making
processes.

Forming such dynamic decisions that pertain to data col-
lection is closely related to the notion of controlled sensing,
originally developed by Chernoff for binary composite hypoth-
esis testing in order to dynamically decide about running one
of the two possible experiments at each time [6]. Chernoff
shows that performing the experiment with the best immedi-
ate return according to proper information measures achieves
optimal performance in the asymptote of diminishing rate of er-
roneous decisions. Extensions of the Chernoff’s rule to accom-
modate infinite number of available experiments and infinite
number of hypotheses are studied in [7] and [8], respectively.
Recent advances on controlled sensing for hypothesis testing
include [9]–[12]. The existing relevant studies on sequential es-
timation include the pioneering work on sequentially estimating
one parameter by observing one data stream of independent and
identically distributed (i.i.d.) random variables in [13]. Such a
sequential estimation routine is further extended in [14] and [15]
to a setting in which multiple data streams are available. In such
settings, a fully sequential strategy, besides the stopping rule
and the final estimators, includes a selection rule that dynami-
cally identifies the most informative data streams over time and
gathers measurements from those data streams. In [14] multiple
unknown parameters are available and each data stream depends
only on one of the unknown parameters, while [15] generalizes
the results to the setting in which data streams have common
unknown parameters.

Other existing studies on quickest search that are relevant
to the scope of this paper include scanning problems studied
in [16]–[22]. The studies in [16]–[19] consider a finite set of
data streams, with exactly one stream generated according to the
desired distribution, and the objective is identifying the desired
sequence. On the other hand, the studies in [20]–[22] consider
a finite set of data streams that contains multiple data streams
with the desired distribution, and the objective is identifying all
of the data streams of interest. The search objective of detect-
ing only a fraction of the sequences with the desired feature is
studied in [23]–[25]. Fractional recovery of such sequences al-
lows for missing some of them during the search process which
ultimately leads to a faster process. Specifically, [23] character-
izes some of the existing search procedures and their sampling

complexity under different assumptions with the goal of finding
one desired data stream among a large number of data streams,
and [24] and [25] propose a data-adaptive search under a hard
constraint on the sampling resources to detect a fraction of the
desired data streams.

As a direct application domain of the theory developed,
we consider the problem of identifying spectrum opportunities
(holes) in the wideband spectrum. In such settings, the spec-
trum band is divided into multiple narrow-band channels, each
of which being used by certain users for communication. Hence,
at a given instant, the active users communicate over some of
these channels, which we refer to as busy channels, and under-
utilize the rest, which we call spectrum holes. A user who seeks
to initiate a communication session, scans the spectrum via se-
quentially tuning its receiver’s filters to different sub-channels
and collecting data. It examines the channels sequentially until
it identifies a channel as a spectrum hole with sufficient con-
fidence. The sequence of measurements collected from a busy
channel are modeled by F0 , and F1 models the measurements
from a spectrum hole. The level of utilization of a spectrum band
in an area varies over time, and the historical data are leveraged
to only obtain certain stochastic occupancy patterns for each
narrow-band channel. Since the occupancy statuses of the spec-
trum holes vary rapidly and the spectrum holes might not remain
free for a long duration, it is of paramount importance to devise
mechanisms that can identify the spectrum holes quickly, as any
delay in identifying the spectrum holes leads to under-utilization
of the spectrum and reduced spectrum efficiency. Also, we may
seek to identify the level of under-utilization of the spectrum
and the occupancy pattern by estimating the dependency kernel
of the busy channels. Therefore, the spectrum sensing problem
can be considered as an instance of the problem studied in this
paper.

The remainder of the paper is organized as follows. Section II
provides the data and sampling model, and formalizes the quick-
est search and learning problem of interest. The optimal infer-
ence rules are characterized in Section III, and the sampling
procedures and the associated stopping rules for purely search
and purely estimation routines are characterized in Section IV
and Section V, respectively. The combined inference procedure
is provided and analyzed in Section VI. Section VII discusses
the application in spectrum sensing and provides the simulation
results, and Section VIII concludes the paper.

II. MODEL AND FORMULATION

A. Data Model

Consider an ordered set of n sequences {X i : i ∈
{1, . . . , n}}, where each sequence consists of i.i.d. real-valued
observations X i �= {Xi

j : j ∈ N}. Each sequence is generated
according to one of the two possible distributions, hence, obey-
ing the following dichotomous model:

H0 : Xi
j ∼ F0

H1 : Xi
j ∼ F1

for j ∈ N , (1)
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whereF0 andF1 denote cumulative distribution functions (cdfs)
and are assumed to be distinct and known. Distribution F0 cap-
tures the statistical behavior of the normal sequences, and the
distribution of the abnormal sequences is F1 . We further as-
sume that well-defined probability density functions (pdfs) cor-
responding to F0 and F1 exist, which are denoted by f0 and f1 ,
respectively.

Each sequence is generated by F0 or F1 according to a de-
pendency kernel among the ordered set {X i : i ∈ {1, . . . , n}}.
Specifically, we assume that sequenceX 1 is generated according
toF1 with prior probability ε0 and for the subsequent sequences,
the prior probability of each sequence being generated by F1 is
controlled by the distribution of its preceding sequence. More
specifically, by denoting the true model underlying sequence
X i by Ti , we have

P (T1 = H1) = ε0 , (2)

and for i ∈ {2, . . . , n} we have

P (Ti =H1 | Ti−1 = Hj ) = εj , for j ∈ {0, 1}. (3)

In general, ε0 �= ε1 , and the setting ε0 = ε1 = ε subsumes the
quickest search over multiple independent sequences [2]. Fur-
thermore, we assume that ε0 , ε1 ∈ [0, 1] are unknown random
variables with continuous pdfs denoted by g0 and g1 , respec-
tively. Accordingly, we define ε

�= [ε0 ε1 ] as the vector of un-
known parameters that specify the dependency kernel parame-
ters, which we need to estimate.

B. Sampling Model

The objective of the search process is to identify one abnor-
mal sequence with the fewest number of measurements that can
be collected from the entire set of sequences. To minimize the
number of measurements, the sampling procedure sequentially
examines the sequences by taking one measurement at-a-time
until a sequence generated according to F1 can be identified
with sufficient reliability. We denote the index of the observed
sequence at time t by st ∈ {1, . . . , n}, and define Yt as the mea-
surement taken at time t. Hence, we can abstract the information
accumulated sequentially by the filtration {Ft : t ∈ N}, where

Ft �= σ(Y1 , s1 , , . . . , Yt , st) . (4)

Without loss of generality, we assume that the sampling process
starts from the first sequence, i.e., s1 = 1, and at time t and
based on the information accumulated up to time t, i.e., Ft , it
takes one of the following three possible actions:
A1) Decision: stops taking more samples and declares one of

the sequences observed up to time t as an abnormal one.
We remark that as shown in [5], when ε0 and ε1 are known
precisely, the optimal decision rules strongly depend on
the actual values of ε0 and ε1 . Hence, the quickest search
objective is strongly coupled with also concurrently form-
ing reliable estimates for ε0 and ε1 . Hence, the decision
also involves forming reliable estimates for ε0 and ε1 .

A2) Observation: due to lack of sufficient confidence to make
a decision or form reliable estimates for ε0 and ε1 ,

one more sample is taken from the same sequence, i.e.,
st+1 = st .

A3) Exploration: sequence st is discarded and the sampling
procedure switches to the next sequence and takes one
sample from the new sequence, i.e., st+1 = st + 1.

In order to formalize the sampling procedure we define τ
as the stopping time of the procedure, that is the time instant at
which action A1 (decision) is performed. We denote the estimate
formed for ε by ε̂(τ) �= [ε̂0(τ) ε̂1(τ)]. For the detection rule,
due to the dynamics of the system, we assume that the decision-
maker can only declare one of the sequences observed during
the last T time instants as an abnormal sequence. We denote the
set of sequences observed during the interval [τ − T + 1, . . . , τ ]
by S(τ, T ), i.e.,

S(τ, T ) �= {sτ−T +1 , . . . , sτ } . (5)

There is full flexibility in choosing T , and it can range from
1 to τ . We denote the detection rule at the stopping time by
δ(τ) ∈ S(τ, T ). To characterize dynamic switching between ob-
servation and exploration actions we define the binary function

ψ : {1, . . . , τ − 1} → {0, 1} , (6)

such that at time t ∈ {1, . . . , τ − 1} if the decision is in favor of
performing observation (A2) we set ψ(t) = 0, while ψ(t) = 1
indicates a decision in favor of exploration (A3). Hence, ∀t ∈
{1, . . . , τ − 1}:

ψ(t) =

{
0 action A2

1 action A3
. (7)

A sequential decision is completely characterized by the com-
bination

Φ �= (τ, ε̂(τ), δ(τ), ψ(1), . . . , ψ(τ − 1)) . (8)

For a given ε, we denote the nominal probability measure gov-
erning the collected samples and the expectation with respect to
this measure by Pε and Eε, respectively. We assume that Pε has
a well-defined probability density function denoted by pε.

C. Problem Formulation

The optimal search procedure can be found by determining
Φ. The natural performance measures for evaluating the effi-
ciency of any sequential sampling strategy Φ include the quality
of the final decisions and the agility of the process. The qual-
ity is captured by (i) the frequency of the erroneous decisions,
and (ii) an estimation cost capturing the fidelity of the esti-
mates. For this purpose, we define the terminal decision error
probability as

PΦ(τ) �= P (Tδ(τ ) = H0 | Fτ ) , (9)

and adopt the mean-squared error as the estimation cost, and
define the terminal estimation cost as

RΦ(τ) �= E{‖ε− ε̂(τ)‖2 | Fτ } . (10)

The agility is captured by the stochastic delay in reaching a
decision, i.e., τ . By integrating these figures of merit into one
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cost function, the stochastic aggregate cost function for a given
Φ at time t is given by

CΦ(t) �= cd · PΦ(t) + ce · RΦ(t) + cs · t , (11)

where cd , ce , and cs are positive constants that balance the qual-
ity and the agility of the search process. It is noteworthy that
the cost function defined in (11) is stochastic as it is a func-
tion of the random stopping time and the observations, which
are random variables, through filtrationFt . In the following sec-
tions, under different settings we characterize the stopping time,
the switching rules, the final decision rules, and the associated
performance guarantees.

D. Assumptions

Optimizing the cost function of (11) requires a set of as-
sumptions to satisfy some regularity conditions. To this end, we
define

λ(ε;Y t) �= log pε(Y1 , . . . , Yt) , (12)

as the log-likelihood of ε given the measurements taken up to
time t. Furthermore, we denote the maximum likelihood es-
timator (MLE) of ε based on the measurements up to time
t by

ε̂ML(t) �= arg max
ε∈[0,1]2

λ(ε;Y t) . (13)

Throughout the analysis we make the following assumptions,
the motivations for which are explained in the sequel.

1) For j ∈ {0, 1},

Eε

{
∂λ(ε;Y t)

∂εj

}
= 0 . (14)

2) The normalized log-likelihood function is finite, i.e.,

1
t
Eε{|λ(ε;Y t)|} <∞, ∀ε . (15)

3) The log-likelihood function is continuous in ε.
4) The Fisher information matrix for ε is positive-definite,

continuous in ε, and all its entries are finite.
5) For j ∈ {0, 1}, the prior density gj (εj ) is continuous and

strictly positive over [0, 1].
6) For any real Δ > 0

Eε{sup{λ(ε;Y t)− λ(ε′;Y t) : ‖ε− ε′‖ ≥ Δ}} < 0 .
(16)

Assumption 1 is the regularity conditions for the Cramer-Rao
lower bound [26], assumptions 2–4 ensure that a strongly con-
sistent MLE exists, assumption 5 guarantees the consistency of
the Bayesian estimator, and assumption 6 ensures that the pro-
cess does not degenerate, i.e., for sufficiently distinct values of
ε the likelihoods λ(ε;Y t) are distinguishable.

III. OPTIMAL INFERENCE RULES

In this section, we characterize the detection rule δ(τ) and
the estimation rule ε̂(τ) for any given stopping time τ and
any switching sequence {ψ(t) : t ∈ {1, . . . , τ − 1}}. Then, in
the following sections we focus on two special cases of the

search problem. One case places the emphasis on the detection
subproblem by setting ce = 0 and nulling the contribution of
the estimation cost to the aggregate cost defined in (11), and
the other case focuses on the estimation subproblem by setting
cd = 0. Based on the insights from these special cases, we finally
treat the problem in its general form.

It is shown in [27] that in a sequential setting, for any given
sampling strategy and stopping rule, there exists a fixed set of
final decisions that are optimal. Furthermore, the quadratic esti-
mation cost RΦ(t) is independent of the detection rule, and also
the detection cost is independent of the estimate of ε. Hence, for
any given stopping time τ and sequence of switching functions
{ψ(t) : t ∈ {1, . . . , τ − 1}}, detection and estimation decision
rules can be decoupled. The following theorem formalizes these
results.

Theorem 1 [27]: The detection and estimation rules at the
stopping time for optimizing the cost function (11) are indepen-
dent of the stopping time and the switching rule.

Proof: The proof, the details of which can be found in [27],
involves showing that optimizing the cost function in (11) can
be carried out by first, inserting the optimal decision rules (de-
tection and estimation decisions), then computing the total cost,
and finally decising whether the sampling process should ter-
minate or further measurements are required to make better
decisions. �

This theorem facilitates characterizing the detection and es-
timation decisions. To proceed, we define πit as the posterior
probability that the sequenceX i is abnormal given the informa-
tion up to time t, i.e.,

πit
�= P (Ti = H1 | Ft) . (17)

By defining

κit(ε)
�= P (Ti = H1 | Ft , ε) , (18)

it can be readily verified that

κit+1(ε) =

{
Θ(κit(ε), Yt+1) if st = i

κit(ε) if st �= i
, (19)

where we have defined

Θ(κ(ε), y) �=
κf1(y)

κf1(y) + (1− κ)f0(y)
· 1{ψ (t)=0}

+
κ̄f1(y)

κ̄f1(y) + (1− κ̄)f0(y)
· 1{ψ (t)=1}, (20)

where κ̄
�= (ε1 − ε0)κ+ ε0 . Based on this, we have

πit =
∫
κit(ε)g(ε | Ft) dε0dε1 , (21)

where g(ε | Ft) denotes the posterior pdf of ε. Based on these
definitions, the next theorem provides the optimal decision rules
for any given stopping time and switching sequence.

Theorem 2 (Decision Rules): For a given stopping time τ
and switching sequence:

1) The optimal detection rule, which minimizes CΦ(τ), is

δ(τ) = arg max
i∈S(τ ,T )

πiτ . (22)
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2) The optimal estimation rule, which minimizes CΦ(τ), is

ε̂(τ) = E{ε | Fτ } . (23)

Proof: The proof results from Theorem 1 and leveraging
the fact that the detection and estimation costs are independent.
The rest follows the standard proof for showing that, in Bayesian
settings, maximum a posterior probability (MAP) is the optimal
detection rule and posterior mean is the optimal estimation rule.
For the detection rule, a randomized detection rule is considered,
the detection cost of which is computed and is shown to be
minimized by a pure strategy that detects the sequence with
the maximum posterior probability. The optimal estimator is
obtained by expanding the estimation cost function and taking
derivative with respect to the estimator. �

Remark 1: It is noteworthy that, since the previously dis-
carded sequences will not be revisited in the future and the final
detection rule only selects one sequence among the ones ob-
served during the last T time instants, at each time t and after
observing Yt , we only need to update the posterior probabili-
ties πit for sequences i ∈ S(t, T ). For larger values of T , we
need to update the posterior probabilities of more sequences.
Specifically, in two extreme cases, if T = t we should update
the posterior probabilities of all the observed sequences up to
time t and select one of them at the stopping time, while if
T = 1 only the sequence under observation is considered as a
candidate for being generated according to F1 .

Remark 2: The other quantity required for decision-making
at each time is the posterior distribution of ε, i.e., g(ε | Ft). To
this end, the decision maker is required to remember only some
statistics of the collected data for each sequence, no all of the
measurements. Specifically, at each time instant t and for any
sequence s ≤ ψ(t) and j ∈ {0, 1} if we denote the likelihood
that the sequence s is drawn fromFj , given all the measurements
from sequence s, by Ltj (s), i.e.,

Ltj (s) =
∏

{t:ψ (t)=s}
fj (Yt) ,

the decision-maker is only required to remember the set
{Ltj (s) : j ∈ {0, 1}, s ≤ ψ(t)}. Hence, for the exact com-
putation of the posterior distribution, the decision-maker is only
required to remember twice the number of visited sequences.
Then, when only one sequence has been observed, we have

g(ε | Ft) =
[Lt1(1) + (1− ε0)Lt0(1)]g0(ε0)g1(ε1)∫

[ε0Lt1(1) + (1− ε0)Lt0(1)]g0(ε0)g1(ε1)dε0dε1

=
[

[ε0Lt1(1) + (1− ε0)Lt0(1)]g0(ε0)∫
[ε0Lt0(1) + (1− ε0)Lt1(1)]g0(ε0)dε0

]
g1(ε1) .

It is observed that observing the first sequence does not change
the marginal posterior distribution of ε1 and the best estimate
for ε1 remains the prior mean. However, the marginal posterior
distribution of ε0 changes and the posterior mean estimator for
ε0 becomes

E{ε0 |Y1} =
E{ε20}[Lt1(1)− Lt0(1)] + E{ε0}Lt0(1)

E{ε0}[Lt1(1)− Lt0(1)] + Lt0(1)
,

where all the expectations on the right hand side are with respect
to the prior distribution. Now, for any sequence k ≤ ψ(t) by
defining Y tk as the set of samples taken from sequence k and
Y t−k as the set of samples taken from sequences other than k we
obtain

g(ε | Ft) =
P (ε0 , ε1 |Y t−k )P (Y tk |ε,Y t−k )∫
P (ε|Y t−k )P (Y tk |ε,Y t−k )dε0dε1

.

The first term in the nominator is computed by using the samples
from the first k − 1 sequences, while the second term is obtained
from

P (Y tk |ε,Y t−k )

=
Lt0(k) + [Lt1(k)− Lt0(k)]p(ε, k, t)∫

[Lt0(k) + [Lt1(k)− Lt0(k)]p(ε, k, t)]dε0dε1
,

where we have defined

p(ε, k, t) �= ε0 + (ε1 − ε0)P (Tk−1 = H1 |Y t−k , ε) ,

and P (Tk−1 = H1 |Y t−k , ε) also follows a recursive equation as
follows:

P (Tk−1 = H1 |Y t−k , ε)

=
Lt1(k − 1)p(ε, k − 1, t)

Lt1(k − 1)p(ε, k − 1, t) + Lt0(k − 1)(1− p(ε, k − 1, t))
.

In practice, since we are calculating the integrals approximately,
instead of all the likelihood values, we can save the value of
P (Tk = H1 |Y tk , ε) for all the combinations of ε0 and ε1 . Since
these two quantities are bounded between 0 and 1, the memory
required for this purpose depends on the resolution with which
the decision-maker computes the integrals. One disadvantage of
this approximation is that the approximation errors propagate
over time and may lead to large errors when the number of
visited sequences increases.

Given the decision rules in Theorem 2, we next character-
ize the optimal stopping time τ , and the associated optimal
switching rules {ψ(t) : t ∈ {1, . . . , τ − 1}}. For this purpose,
we first consider the sequential detection and sequential estima-
tion problems separately in two different settings. By leveraging
the insight gained from these special cases we solve the joint de-
tection and estimation problem in Section VI. In the sequel, we
consider the problem of optimizing the cost formulated in (11)
in the asymptote of large sample-size setting, or equivalently
cs → 0. In this setting, since the samples, while being condi-
tionally independent, are not identically distributed we focus on
a weak version of asymptotic optimality [15].

IV. EMPHASIS ON DETECTION (ce = 0)

We first consider a purely sequential search setting, in which
the estimation quality is unintegrated by setting ce = 0. This
problem under the assumption that ε is known and the objective
is to minimize the delay is studied in [5], where the analyses
provide the optimal stopping time and switching rules. In this
section, we provide stopping and switching rules that admit cer-
tain optimality guarantees and facilitate generalizing the results
to the general case of ce �= 0. To this end, we propose a stopping
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time and switching rules, the combination of which accepts
asymptotic optimality guarantees. Specifically, we define

τ ∗d
�= inf

{
t : max

i∈S(t,T )
πit ≥ 1− csd

}
, (24)

where csd
�= cs

cd
. According to this stopping rule, the sampling

process continues until one is confident enough that one of the
sequences observed in the window of past T time instants is
generated by F1 .

Next, we characterize the switching rule prior to the stopping
time in order to dynamically decide between the exploration and
observation actions. To proceed, at any time t ∈ {1, . . . , τ ∗d −
1} we form the maximum a posterior (MAP) estimate for ε,
denoted by

ε̃(t) �= arg max
ε∈[0,1]2

g(ε | Ft) . (25)

Then, at any time t ∈ {1, . . . , τ ∗d − 1} we set the switching rule
to discard sequence st and switch to sequence (st + 1) when
πstt falls below a data-driven threshold. Specifically,

ψd(t) �=

{
1 if πstt < [ε̃1(t)− ε̃0(t)]πstt + ε̃0(t)

0 if πstt ≥ [ε̃1(t)− ε̃0(t)]πstt + ε̃0(t)
. (26)

This switching rule, when combined with the stopping time
given in (24), achieves the weakly asymptotic pointwise opti-
mality [15], formalized in the following theorem.

Theorem 3: Consider a sequential strategy Φd with the de-
tection and estimation rules specified in (22) and (23), the stop-
ping time defined in (24) and the switching rule given in (26).
For any other sampling strategy Φ̂ with the stopping time τ̂ , we
have

lim
cs d→0

P
{CΦd (τ ∗d )

CΦ̂ (τ̂)
≤ 1 + Δ

}
= 1 , ∀Δ > 0 . (27)

Proof: The proof involves showing that

1
τ ∗d

log PΦ(τ ∗d )
cs d→0
−−−→−DKL(f1‖f0) , a.s.

This is carried out by showing that the number of collected
samples is dominated by the samples taken from the sequence
being declared as an abnormal sequence, and using the law of
large number of convergence of log-likelihood ratio. Then, the
assumptions of Theorem 2.1 (ii) in [13] is satisfied and the proof
is concluded. See Appendix B for the details of the proof. �

This theorem indicates that a weakly asymptotically point-
wise optimal sequential strategy, defined by its stopping time
and switching rule, can be reduced to comparing the posterior
probability terms with two thresholds at each time t.

V. EMPHASIS ON ESTIMATION (cd = 0)

The problem of sequential estimation from one sequence is
studied in [13], where an unknown parameter is estimated by
sequentially observing a sequence of i.i.d. random variables
until a reliable estimate can be formed. The results have been
extended to a setting in which multiple data streams are available
and only one of them can be observed at each time instant [14]
and [15]. In such settings, a dynamic selection rule should be

designed in order to identify the most informative sequence at
each time to collect its data. In this section, the dynamic selection
rule is the switching rule ψ(t) and should decide between the
observation and exploration actions.

To formalize the decision rules, we define the Fisher infor-
mation matrices I0(ε) ∈ R2×2 and I1(ε) ∈ R2×2 such that

[I0(ε)]ij
�= −E

{ ∂

∂εi−1

∂

∂εj−1
log P (Yt+1 | Ft , ε, ψ(t) = 0)

}
,

(28)

is the (i, j) entry of I0(ε), and

[I1(ε)]ij
�= −E

{ ∂

∂εi−1

∂

∂εj−1
log P (Yt+1 | Ft , ε, ψ(t) = 1)

}
,

(29)

is the (i, j) entry of I1(ε). Based on these definitions, we char-
acterize a stopping time and a switching rule that achieve asymp-
totic optimality when cse

�= cs
ce

tends to zero. Specifically, we
define the stopping time as

τ ∗e
�= inf

{
t : RΦ(t) ≤ (t+ 1) · cse

}
. (30)

According to this stopping rule, when the estimation cost RΦ(t)
falls below the total sampling cost (t+ 1) · cse , the sampling
process terminates. Furthermore, the switching rule should se-
lect the action between observation and exploration such that
it minimizes the estimation variance. According to the Cramer-
Rao bound, the estimation cost defined in (10) is lower bounded
by the trace of the inverse of the Fisher information matrix
associated with the data and the unknown parameters. In the
sequel, we will show that this lower bound is achievable in the
asymptote of large sample size. Hence, we select the action that
minimizes this lower bound. Therefore, we first compute ε̂ML(t)
as the maximum likelihood (ML) estimate of ε at time t based
on the observations up to time t, i.e.,

ε̂ML(t) �= arg max
ε∈[0,1]2

P (Y1 , . . . , Yt ; s1 , . . . , st | ε) . (31)

Then, the switching ruleψe(t) is set to be a randomized rule such
that it is set to 0 or 1 randomly according to a Bernoulli random
variable with parameter p∗(ε̂ML(t)), which is the solution to

p∗(ε) �= arg min
p∈[0,1]

2∑
i=1

[(
p · I1(ε)+(1− p) · I0(ε)

)−1
]
ii
.

(32)

This switching rule ensures that the sampling process takes the
action that minimizes the variance of estimation. While ignoring
the impact of the current decision on the future ones, it can be
shown that in the large sample regimes, it is asymptotically
optimal.

Theorem 4: Let Φe be the sampling strategy characterized by
the stopping time and the switching rule given in (30) and (32),
respectively. Then, when cse approaches zero, for any other
sampling strategy Φ̂ we have

lim
cs e→0

P
{CΦe (τ

∗
e )

CΦ̂ (τ̂)
≤ 1 + Δ

}
= 1 , ∀Δ > 0 . (33)
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Proof: The main idea of the proof is to show that the posterior
distribution of ε is Gaussian. Since for Gaussian distributions the
Bayesian estimator is efficient, the Fisher information matrix is
exactly the amount of information obtained from a new sample.
Therefore, it provides all the information needed for decision-
making. For complete proof, see Appendix C. �

This switching rule ensures that a sufficient number of sam-
ples are taken from the current sequence so that its distribution
is distinguishable before switching to the next sequence, and the
stopping rule guarantees that enough number of sequences are
observed such that a reliable estimate of ε can be formed.

VI. COMBINED SEARCH AND ESTIMATION

With the insights gained from the previous two sections, in
this section we treat the quickest search problem of interest in
its general form, which involves forming reliable decisions for
both estimation and detection routines. We first characterize a
stopping time by noting that in the search problem the sampling
process terminates when (1−maxi∈S(t,T ) π

i
t) falls below csd ,

i.e., the relative cost of one new sample, while in the estimation
problem, it stops when the normalized estimation cost

(RΦ (t)
t+1

)
is smaller than the relative cost of one new sample cse . Hence,
for the general quickest search problem we define the stopping
time as

τ ∗
�= inf

{
t : cd

(
1− max

i∈S(t,T )
πit

)
+ ce

RΦ(t)
t+ 1

≤ cs
}
.

(34)

While it is a combination of the stopping rules in the previous
settings, we will show that it can be also obtained directly by
optimizing the total Bayesian cost given in (11).

Theorem 5: Let Φ̄ be the sampling strategy with the stop-
ping time given in (34) and the optimal switching sequence
{ψ∗(t) : t ∈ {1, . . . , τ ∗ − 1}}, and let Φ̂ be any arbitrary sam-
pling strategy with the same switching rule and any other stop-
ping time τ̂ . For all Φ̂ and τ̂ we have

lim
cs d ,cs e→0

P
{CΦ̄ (τ ∗)

CΦ̂ (τ̂)
≤ 1 + Δ

}
= 1 , ∀Δ > 0 . (35)

Proof: We use the convergence properties of estimation and
detection cost functions in combination with the stopping rule
in (34) and show that the ratio between the cost of the stopping
rule given in (34) and cost of any other stopping rule is less than
1. See Appendix D for more details. �

Next, we characterize the switching rules for dynamically de-
ciding between exploration and observation actions. First, we
note that, taking a new sample from any sequence reduces the
average estimation cost, while the detection error probability
depends on the number of samples taken from the sequence
declared as the abnormal sequence. Also, taking many samples
from one sequence cannot improve the estimation cost signifi-
cantly. Hence, for the switching rule, at the beginning we apply
the rule given in the purely estimation setting (32). When the
estimation cost becomes sufficiently small, we apply the switch-
ing rule given in the purely detection setting (26). Based on this,

Algorithm 1: Quickest Search and Learning Algorithm.
1 Set t = 1 and s1 = 1
2 Take one sample from sequence st
3 Update πit for i ∈ S(t, T ) and find ε̃(t)
4 If cd(1−maxi∈S(t,T ) π

i
t) + ce

RΦ (t)
t+1 ≤ cs

4 If ceRΦ(t) > cs(t+ 1)
5 IfI1(ε̂ML(t)) > I0(ε̂ML(t)) Then Set

st+1 = st
6 t← t+ 1
7 Go to Step 2
8 Else
9 If πstt < ε̃0 (t)

1−ε̃1 (t)+ ε̃0 (t) Then Set st+1 = st + 1
10 t← t+ 1
11 Go to Step 2
12 End if
13 End if
14 Set τ = t
15 Declare sequence

(
arg maxi∈S(τ ,T ) π

i
τ

)
as an outlier

16 Return E{ε | Fτ } as the estimate of ε

we set the switching rule as follows:

ψ(t) =

⎧⎨
⎩
ψe(t) if RΦ (t)

t+1 > cse

ψd(t) if RΦ (t)
t+1 ≤ cse

. (36)

This switching rule, at the beginning of the sampling process,
is more focused on forming a reliable estimate for ε. When
the estimation cost is sufficiently small, it gradually shifts the
focus to forming a reliable detection decision. The following
theorem formalizes the asymptotic optimality properties of the
sampling strategy characterized by the stopping rule in (34) and
the switching rule in (36).

Theorem 6: Let Φ∗ be the sampling strategy with the stop-
ping time given in (34) and a switching rule given in (36),
and let Φ̂ be any arbitrary sampling strategy with the stopping
time τ̂ . Then, in the asymptote of cse → 0, csd → 0, and when
cse = O(csd) we have

lim
cs d ,cs e→0

P
{CΦ∗(τ ∗)

CΦ̂ (τ̂)
≤ 1 + Δ

}
= 1 , ∀Δ > 0 . (37)

Proof: We provide a constructive proof. We show that the
switching rule given in (36) leads to the convergence properties
that are the basis of the proof for Theorem 5. See Appendix E
for the details of the proof. �

Based on the results of Theorem 1–Theorem 6, the steps
involved in the optimal sampling strategy and the decision rules
involved are summarized in Algorithm 1.

VII. APPLICATION TO SPECTRUM SENSING

In this section we apply the developed theory to spectrum
sensing, and specifically the quickest search for identifying
spectrum opportunities in a wideband spectrum, while the occu-
pancy states of the narrowband channels are co-dependent with
an unknown dependency kernel. Quick search for spectrum ac-
cess is motivated by the fact that the demand for communication
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bandwidth is constantly increasing. This necessitates more effi-
cient utilization of the available spectrum band. Since the spec-
trum band is sometimes under-utilized, identifying the unused
spectrum bands (i.e., spectrum holes) for opportunistic access
by radios seeking spectrum alleviates the scarcity issue. How-
ever, the occupancy statuses of the spectrum holes vary rapidly.
Hence, the spectrum holes might not remain free for long dura-
tion, as a result of which it is of paramount importance to devise
mechanisms that can identify the spectrum holes quickly. Es-
sentially, any delay in identifying the spectrum holes leads to
under-utilization of the spectrum and reduced spectrum effi-
ciency. In the following subsections, we show how the spectrum
sensing problem can be mapped into the quickest search prob-
lem studied in this paper.

A. Related Work

Applications of sequential sampling in spectrum sensing are
studied rather extensively [28]–[36]. Specifically, the studies
in [28] and [29] focus on only one narrowband channel, and
the former performs a binary hypothesis test while the latter
applies quickest change-point detection to identify free bands.
The study in [30] considers the optimal order of sensing in wide-
band spectrum sensing. A heuristic sequential sensing algorithm
based on a chi-squared test is proposed in [31], which enjoys
low-complexity and simple implementation. The problem of
quickest search for one spectrum hole when the prior probabil-
ity of occupancy of channels is known is studied in [32], and the
results are extended to a two-stage mixed-observation setting
in [33]. Cooperative sequential sensing mechanisms are studied
in [35] and [36].

All the aforementioned studies conform in the assumption
that the occupancy states of different narrowband channels are
statistically independent. However, this assumption might be vi-
olated in practice, especially in broadband communication sys-
tems, in which the channels are bundled together and assigned
to different users. The study in [34] considers co-dependent
among the occupancy states, and leverages this dependency
structure to design more efficient spectrum sensing algorithms.
This paper, similarly to [34], assumes co-dependence of the oc-
cupancy states, with the distinction that the parameters of the
dependency kernels are unknown. Since the algorithm designed
in [34] strongly hinges on these parameters, in this section we
aim to design alternative strategies for finding spectrum holes.

B. Spectrum Model

A wideband spectrum consisting of n ordered and non-
overlapping narrowband channel is considered. The narrowband
channels are allocated to different users based on the schedul-
ing and interference management policies. We denote the true
occupancy state of channel i by Ti , where Ti = H0 indicates
that channel i is busy and Ti = H1 indicates that the chan-
nel is idle. By accounting for the uncertainties in the usage of
each narrowband channel, we model the occupancy state Ti for
i ∈ {1, . . . , n} by a binary random variable and assume that the
occupancy states of different narrowband channels are not nec-
essarily independent. This could be due to the fact that in broad-
band communication systems, such as orthogonal frequency

division multiplexing (OFDM), a user may get access to a num-
ber of channels simultaneously based on its traffic need. The
network operator bundles adjacent narrowband channels and
assigns them to such users. Therefore, a channel being deemed
as busy provides some side information about the occupancy
states of its adjacent channels. Motivated by such underlying
coupling among the occupancy states of the adjacent narrow-
band channels, we consider the following dependency kernel
between the occupancy states of adjacent channels. For any
i ∈ {2, . . . , n} we have

P (Ti = H0 | Ti−1 = Hj ) = εj for j ∈ {0, 1} , (38)

where ε0 , ε1 ∈ [0, 1] control the dependency level. The actual
values of ε0 and ε1 depend on the variations of the traffic and
scheduling patterns of different narrowband channels over time,
which are not necessarily known. Hence, we assume that they
are random quantities. Finally we assume that channel 1 is a
idle channel with prior probability ε0 .

C. Sensing Model

A communication radio seeking spectrum opportunities scans
the spectrum via sequentially tuning its receiver’s filters to dif-
ferent channels and collecting information via channel mea-
surements. Sequence of measurements collected from channel
i is denoted by X i = {Xi

1 ,X
i
2 , . . . }. We assume that the oc-

cupancy status of a channel remains the same while it is under
observation. Then, if the samples collected from an occupied
channel and a vacant channel are modeled by cdfs F0 and F1 ,
respectively, the measurements obey the following dichotomous
hypothesis model

H0 : Xi
j ∼ F0

H1 : Xi
j ∼ F1

for j ∈ N , (39)

which is exactly the same as (1). The ultimate objective of spec-
trum sensing is to identify one idle channel. In practice, it is
more convenient for a radio to sweep the spectrum band by
applying a linear search as it requires to tune its receiver filter
to the channel under scrutiny. Also, without loss of generality,
we assume that a secondary user collects one measurement at-
a-time1. Therefore, at each time instant the spectrum seeking
radio should decide among detection, observation, and explo-
ration actions, as defined in Section II-B. This search procedure,
is specified by its stopping time τ and a switching rule ψ(t).
The objective of the spectrum sensing may be to identify one
spectrum hole, or to estimate the occupancy pattern parame-
ters ε, or both. Since the communication network is a dynamic
system, the occupancy pattern changes rapidly. Hence, it is of
paramount importance to detect the holes as quickly as possible.
By integrating all these figures of merit into one cost function,
the quickest spectrum sensing and parameter learning strategy
can be obtained by optimizing the cost function in (11).

D. Numerical Evaluations

In this subsection, we apply the proposed framework strate-
gies to wideband spectrum sensing. We consider a wideband

1Generalization to taking � samples at-a-time is straightforward.
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Fig. 1. Average delay versus uncertainty level of prior probability η.

Fig. 2. Average delay versus noise power σ2 and signal power μ.

spectrum consisting of n = 1000 narrowband channels. The
measurements from the idle channels are assumed to be drawn
fromN (0, σ2)2, and the measurements from a busy channel are
generated byN (μ, σ2), where μ > 0. We also assume that both
dependency kernel parameters ε0 and ε1 have uniform distribu-
tions over [η, 1− η] for some η ∈ [0, 0.5]. We also set the sliding
detection window interval to T = 1. Finally, we set the weights
associated with the costs of sampling, detection, and estimation
to cs = 0.01, cd = 1, and ce = 1, respectively. In Figs. 1 and 2
we evaluate the variations of the delay of the search process τ
versus varying values of η, σ2 , and μ. In these figures the delay
is compared with that of the purely detection setting in which
ce = 0, when both have the same rate of erroneous detection
decisions. As a benchmark, we also include the delay of the
process in which ε is perfectly known [5].

First, we set μ = 1 and σ2 = 1, and evaluate the delay for
η ∈ [0.1, 0.5). Fig. 1 shows that by increasing the uncertainty of
the dependency kernel, more samples are required even in the
purely detection setting in which we are not concerned about
estimating ε. This is due to the fact that the detection quality
implicitly depends on forming sufficiently reliable estimates
for ε. Also, it is observed that when ce �= 0, for forming reliable
estimates for ε, we require to take more measurements compared
to the case that estimation cost is unintegrated from the total
cost (ce = 0). As expected, for the setting with known ε, the
performance remains unchanged for varying η.

Next, we evaluate the impact of signal to noise ratio of the
measurements on the average delay. To this end, in Fig. 2 we
set η = 0.3 and compare the average delay of different settings

2N (a, b) denotes Gaussian distribution with mean a and variance b.

Fig. 3. Comparing average delays.

Fig. 4. Comparing average cost.

for varying signal power μ and noise power σ2 . It is observed
that the average delay increases as the measurements become
more noisy (higher noise power σ2), which is due to the fact
that the presence of more noise renders the task of distinguishing
between a busy channel and an idle channel more difficult. Also,
it is observed that for larger signal power the three sequential
methods reach the decisions faster.

In Fig. 3, in the given setting and for cs = 0.001 we evaluate
the performance of the proposed rule and compare the results
with the setting that ignores the existence of the dependency ker-
nel in the generation of sequences. In this setting, it is assumed
that each sequence is generated according to F1 independently
of the rest of the sequences and with prior probability ε, where
ε is unknown. We assume that the goal is the same and the
only difference is that since we only have one unknown param-
eter to estimate, we set ce = 2 in contrast to the setting of our
problem where ce = 1. It is observed that ignoring the depen-
dence among the sequences incurs more delay for detection and
estimation processes, and our improvement is specially more
significant when then two distributions are less-distinguishable
(more similar), which is the more challenging case. The reason
for larger delay is that by ignoring the dependence, we discard
all the information about the desired sequence collected from
each sequence after discarding it. Finally, in Fig. 4 we compare
the average aggregate cost for the proposed rule and the setting
that ignores the existence of dependence. It is observed that the
average cost behaves similarly to the average delay.

VIII. CONCLUSION

We have analyzed the problem of quickest search over
multiple correlated sequences, in which each sequence is
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generated according to one of the two possible distributions
F0 and F1 . Generations of the sequences are not independent,
and they follow a dependency kernel that is unknown. The
main objective is to identify one sequence generated according
to F1 with the fewest number of measurements. Motivated
by the fact that designing the detection rules strongly hinges
on knowing the kernel, achieving the detection objective also
necessitates producing reliable estimates for the dependency
kernel parameters. For this purpose, we have also integrated a
learning routine in the search process, the purpose of which is
estimating the parameters of the dependency kernel. We have
characterized the optimal detection and estimation rules, and
have designed asymptotically optimal sequential mechanisms
that at each time dynamically decide which sequence should be
sampled. The decision rules are characterized in three stages.
First, we have considered a purely detection setting in which
the estimation of the parameters is not a concern, and we have
shown that the decision rules reduce to a thresholding policy.
In the next setting, we have focused on the reliable estimation
of the unknown parameters and have shown that the optimal
procedure consists of a random switching rule that switches
to the following sequence with a parameter that minimizes a
function of Fisher information matrices, and stops when the
cost of estimation falls below the total cost of sampling. Finally,
we have combined the results of the first two settings to char-
acterize the sampling strategy for the quickest search problem
in its general form. We have also investigated the application of
the quickest search framework in wideband spectrum sensing.

APPENDIX A
PROOF OF THEOREM 2

When the stopping time and the switching sequence are fixed,
given the collected data up to time t, the detection cost and the
estimation cost are independent. Hence, in order to minimize
CΦ(τ), we require to minimize the detection and estimation
costs separately. In order to find the optimal decision rule that
minimizes the detection cost PΦ(τ), we consider a randomized
decision rule δ̃(τ) that decides in favor of sequence j from the
set S(τ, T ) with probability pj where

∑
j∈S(τ ,T ) pj = 1. For

this randomized decision rule, the detection error probability is
lower bounded by

PΦ(τ) =
∑

j∈S(τ ,T )

pj · P (Tj = H0 | Fτ )

(17)
=

∑
j∈S(τ ,T )

pj (1− πjt )

≥
∑

j∈S(τ ,T )

pj

(
1− max

i∈S(τ ,T )
πit

)

= 1− max
i∈S(τ ,T )

πit . (40)

This lower bound is achieved by setting

pj =

{
1, for j = arg maxi∈S(τ ,T ) π

i
t

0, otherwise
. (41)

Hence, the decision rule specified in (22) achieves this lower
bound. Similarly, for the estimator we also have

RΦ(τ) = E
{
‖ε̂(τ)− ε‖2 | Fτ

}
(42)

= E
{
‖ε̂(τ)− E{ε | Fτ }+ E{ε | Fτ } − ε‖2 | Fτ

}
(43)

= E
{
‖ε̂(τ)− E{ε | Fτ }‖2 | Fτ

}
(44)

+ E
{
‖ε− E{ε | Fτ }‖2 | Fτ

}
(45)

+ 2 · E
{
(ε̂(τ)− E{ε | Fτ })T (E{ε | Fτ }

−ε) | Fτ } (46)

= E
{
‖ε̂(τ)− E{ε | Fτ }‖2 | Fτ

}
(47)

+ E
{
‖ε− E{ε | Fτ }‖2 | Fτ

}
(48)

+ 2 · E
{
(ε̂(τ)− E{ε | Fτ })T

}
(49)

× E {(E{ε | Fτ } − ε) | Fτ }︸ ︷︷ ︸
0

(50)

= E
{
‖ε̂(τ)− E{ε | Fτ }‖2 | Fτ

}
(51)

+ E
{
‖ε− E{ε | Fτ }‖2 | Fτ

}
. (52)

The term in (52) is independent of the estimator. Hence, in order
to minimize the estimation cost, we only need to minimize (51).
The minimum value for (51) is zero and is achieved by setting

ε̂(τ) = E{ε | Fτ } . (53)

We observe that the detection rule that minimizes the detection
cost and the estimation rule that minimizes the estimation cost
are independent. Therefore, they are decoupled and the proof is
established.

APPENDIX B
PROOF OF THEOREM 3

The cost function in (11) in a pure detection setting, i.e.,
ce = 0, becomes

CΦ(t) = cd · PΦ(t) + cs · t .

If we show that

1
τ ∗d

log PΦ(τ ∗d )
cs d→0
−−−→−DKL(f1‖f0) , a.s. , (54)

then, the assumptions of Theorem 2.1 (ii) in [13] will be satisfied
and the proof is concluded. The proof of (54) is carried out in
two steps.

Step 1: In the first step, we assume thatL sequences are visited
during the sampling process, and τ� , for � ∈ L �= {1, . . . , L}, is
the number of samples taken from sequence �. Hence,

τ ∗d =
L∑
�=1

τ� .

We denote the index of the sequence declared as an abnormal
sequence by k. We show that the values of τ� , for all � ∈ L \ {k},
are exponentially bounded and the delay is dominated by the
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number of samples taken from the sequence that will be declared
as abnormal. For this purpose, we define

A� =
�−1∑
i=1

τi, (55)

and accordingly we define Λ�
ν as the likelihood ratio when the

we draw ν samples from sequence �, i.e.,

Λ�
ν
�=

A� +ν∏
u=A�+1

f1(Yu )
f0(Yu )

. (56)

It can be readily verified that thresholding the posterior prob-
ability with two thresholds is equivalent to thresholding the
likelihood ratio Λ�

ν with thresholds [5], which we denote by γ�L
and γ�U . Hence, for any � ∈ L we have

P (τ� > u) = P
(
Λ�
ν ∈ (γ�L , γ

�
U ), ∀ν ∈ {1, . . . , u}

)
(57)

≤ P (Λ�
u ∈ (γ�L , γ

�
U )) (58)

= P (Λ�
u > γ�L , Λ�

u < γ�U ) (59)

= q� · P1(Λ�
u > γ�L , Λ�

u < γ�U ) (60)

+ (1− q�)P0(Λ�
u > γ�L , Λ�

u < γ�U ) (61)

≤ P1(Λ�
u < γ�U ) + P0(Λ�

u > γ�L ) , (62)

where q� is the prior probability of sequence � being drawn from
F1 , and Pj is the probability measure corresponding to cdf Fj .
On the other hand,

P0(Λ�
u > γ�L ) = P0

(√
Λ�
u >
√
γ�L

)
(63)

≤ 1√
γ�L

Eu
0

[√
Λ�

1

]
(64)

=
1√
γ�L

ρu , (65)

where (64) is due to the Markov inequality, and the set of like-
lihood ratios being i.i.d., and in (65) we have defined

ρ
�= E0

[√
Λ�

1

]
(66)

=
∫ √

f1(y)
f0(y)

f0(y) dy (67)

=
∫ √

f1(y)f0(y) dy (68)

<

√∫
f1(y) dy

√∫
f0(y) dy (69)

= 1 , (70)

where (69) holds owing to the Cauchy-Schwartz inequality. By
following the same procedure, we have

P1(Λ�
u < γ�U ) = P1([Λ�

u ]
− 1

2 > [γ�U ]−
1
2 ) (71)

≤
√
γ�U · Eu

1 {[Λ�
1 ]
− 1

2 } (72)

=
√
γ�U · ρu . (73)

Based on (62), (65), and (73), it is observed that

P (τ� > u) <

⎛
⎝ 1√

γ�L

+
√
γ�U

⎞
⎠ ρu , (74)

which shows that P (τ� > u) is exponentially-bounded and fi-
nite.

Step 2: In the second step we show that we have the following
convergence almost surely (a.s.):

1
τ ∗d

log PΦ(τ ∗d )
cs d→0
−−−→−DKL(f1‖f0) , a.s. (75)

This can be proved by directly applying [13, Theorem 4.2].
Here, we provide a simpler proof. First, we note that since τ�
for � ∈ L \ {k} is exponentially bounded and it satisfies

P
(

lim
cs d→0

τ ∗d =∞
)

= 1 , (76)

then we have
τk
τ ∗d

cs d→0
−−−→ 1 , a.s. (77)

On the other hand, based on the following bounds on πkτ ∗d

min
ε

κkτ ∗d (ε) ≤ πkτ ∗d ≤ max
ε

κkτ ∗d (ε) , (78)

for some ε∗ ∈ [0, 1]2 we have πkτ ∗d = κkτ ∗d
(ε∗). Therefore, πkτ ∗d

can be written as

πkτ ∗d =
θΛk

τ ∗d

(1− θ) + θΛk
τ ∗d

, (79)

for some θ ∈ (0, 1). Also, as csd approaches zero, the value of
πkτ ∗d

tends to 1. This indicates that the value of Λk
τ ∗d

tends to
infinity. Hence, we have

1
τk

log(1− πkτ ∗d )
cs d→0
−−−→− 1

τk
log Λk

τ ∗d
, a.s. (80)

Next, by leveraging (77) and (80), as csd → 0 we have

log PΦ(τ ∗d )
τ ∗d

=
log PΦ(τ ∗d )

τk
· τk
τ ∗d

(81)

→ log PΦ(τ ∗d )
τk

, a.s. (82)

=
1
τk

log(1− πkτ ∗d ) (83)

→ − 1
τk

log Λk
τ ∗d
, a.s. (84)

→ −DKL(f1‖f0) , a.s., (85)
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where the almost sure convergence in (82) holds because of (76)
and (77), the equality in (83) holds due to the definition of πit
in (9) and (17), the convergence in (80) leads to (84), and the
last convergence (85) is due to the law of large numbers. The
convergence of

log PΦ(τ ∗d )
τ ∗d

in (85) ensures that the conditions of [13, Theorem 2.1 (ii)] hold,
and therefore, the optimality of the proposed rule is established.

APPENDIX C
PROOF OF THEOREM 4

In a pure estimation setting, i.e., ce = 0, the cost function
in (11) becomes

CΦ(t) = ce · RΦ(t) + cs · t .
If we show that t · RΦ(t) for the given stopping time and switch-
ing rule convegrges to a positive random variable as cse → 0,
then the assumptions of Theorem 2.1 (i) in [13] will be satis-
fied and the proof is concluded. To prove the convergence of
t · RΦ(t), we define

V (ε) �= inf
p∈[0,1]

[
p · I1(ε) + (1− p) · I0(ε)

]−1
. (86)

Then, from the Cramer-Rao lower bound [37], ∀Δ > 0 we have

Pε

(
t · inf

Φ
RΦ(t) ≥ trace(V (ε))−Δ

) t→∞
−−−→ 1 . (87)

Next, we show that for the proposed switching sequence
{ψe(t) : t ∈ N} and any Δ > 0 we have

lim
t→∞

Pε (|t · RΦ(t)− trace(V (ε))| ≥ Δ) = 0 . (88)

For this purpose, note that due to the consistency of the MLE
we have

I�(ε̂ML(t))
t→∞
−−−→ I�(ε) , a.s. (89)

On the other hand, by specifying rt as the frequency of switching
between sequences in the first t instants, due to the consistency
of MLE, and also the continuity of the likelihood function Λε(·)
over ε we have

rt
t→∞
−−−→ p∗(ε) , a.s. (90)

Therefore, for a sufficiently large number of samples and ob-
served sequences, the frequency of using the correct switching
rule is arbitrarily close to the optimal switching rule. Hence,
it only remains to establish the asymptotic efficiency of the
proposed rules [15], i.e.,

t · RΦ(t)
t→∞
−−−→ trace(V (ε)) , Pε, (91)

where the convergence is in probability under measure Pε. To
prove (91), we first note that, due to a weak version of Bernstein-
von Mises Theorem [38, Theorem 20.2], the posterior distribu-
tion of the estimator converges to a normal distribution, i.e.,

g
(√

t(ε̂(t)− ε) | Ft
) t→∞
−−−→N

(
0, (I∗(ε))−1) , Pε, (92)

where

I∗(ε) �= p∗(ε)I1(ε) + (1− p∗(ε))I0(ε) . (93)

The convergence of the estimation risk in (91) is proved by
establishing the finiteness of the moments of the posterior dis-
tribution of

√
t(ε̂(t)− ε). Specifically, for the purpose of this

theorem, it suffices to show that the first two moments of the
posterior distribution converge to that of a zero-mean normal
Gaussian distribution with covariance matrix (I∗(ε))−1 , i.e.,
for m ∈ {1, 2}∫

(
√
t(ε̂(t)− ε))m · g

(√
t(ε̂(t)− ε) | Ft

)
t→∞
−−−→ E{(

√
t(ε̂(t)− ε))m} , Pε, (94)

where the expectation in (94) is under distribution
N
(
0, (I∗(ε))−1

)
. This is proved by applying the Helly-Bray

Theorem and following the same line of argument as in [13].

APPENDIX D
PROOF OF THEOREM 5

The detection cost depends strongly on sequence k which is
the one declared as the desired sequence, while the estimation
cost relies on all the observed sequences. When the sampling
cost is substantially smaller than the costs of estimation and
detection decisions, from the proofs of Theorems 3 and 4, for
the optimal switching rule we can conclude that

1
t

log PΦ(t)
t→∞
−−−→−γDKL(f1‖f0) , a.s., (95)

and t · RΦ(t)
t→∞
−−−→ V̂ (ε) , Pε, (96)

for some 0 < V̂ (ε) <∞ and γ ∈ [0, 1], where γ depends on
the relative values of cd and ce . To prove (95), let us denote
the first time instant at which the first sample is taken from
sequence δ(τ ∗) by t1 . Then, from the proof of Theorem 3, as
τ ∗ − t1 →∞ we have

1
τ ∗ − t1

log PΦ(τ ∗)→ −DKL(f1‖f0) , a.s. (97)

Now, by defining

γ
�= 1− t1

τ ∗
, (98)

and noting that γ ∈ [0, 1] the proof of (95) is concluded. If (95)
and (96) are deterministic and hold for any t, and not only in the
asymptotes of large t, the stopping time would be the first time
t for which we have

cdPΦ(t) + ceRΦ(t) + cs(t)

≤ cdPΦ(t+ 1) + ceRΦ(t+ 1) + cs · (t+ 1) , (99)

which by replacing PΦ and RΦ from (95) and (96) reduces to

cdPΦ(t)(1− PΦ(t)
1
t ) + ce

RΦ(t)
t+ 1

≤ cs . (100)

The remainder of the proof involves showing that for the asymp-
totic convergence of random sequences in (95) and (96) we have

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on January 10,2021 at 15:13:48 UTC from IEEE Xplore.  Restrictions apply. 



650 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 3, FEBRUARY 1, 2019

asymptotic optimality. To prove this, we define

Wt
�= cdPΦ(t) , (101)

and Zt
�= ceRΦ(t) , (102)

for which, from (95) and (96) and some W < 0 and Z > 0 we
have

1
t

logWt

t→∞
−−−→W , a.s., (103)

and tZt
t→∞
−−−→ Z , Pε . (104)

For convenience in notations, in the remainder of the proofs we
suppress the superscript ∗ from τ ∗. Hence, at the stopping time

Wτ +
Zτ
τ
≤ cs . (105)

For any other strategy Φ̂ with stopping time ν we have

CΦ∗(τ)
CΦ̂ (ν)

=
Wτ + Zτ + csτ

Wν + Zν + csν
(106)

=
Wτ

cs τ
+ Zτ

cs τ
+ 1

Wν

cs τ
+ Zν

cs τ
+ cs ν

cs τ

(107)

≤
Wτ

cs
+ Zτ

cs τ
+ 1

Wν

cs τ
+ Zν

cs τ
+ cs ν

cs τ

(108)

≤ 2
Wν

cs τ
+ Zν

cs τ
+ ν

τ

, (109)

where (108) is the result of dropping τ from the first term of
the numerator, and (109) holds due to (105). If we show that the
denominator of (108) is greater than 2 the proof is complete as
the ratio between the total costs associated with the proposed
rule and any other stopping rule becomes less than 1. Since τ is
the stopping time, we have

Wτ +
Zτ
τ
≤ cs < Wτ−1 +

Zτ−1

τ − 1
, (110)

or, equivalently, τ 2cs can be bounded as

τ 2Wτ + τZτ ≤ τ 2cs

< τ 2Wτ−1 +
τ 2

(τ − 1)2 (τ − 1)Zτ−1 . (111)

SinceWτ decreases exponentially as τ →∞, both upper bound
and lower bound on τ 2cs converge to Z. Since we have

Zν
csτ

=
τ

ν
· νZν
τ 2cs

τ→∞
−−−→ τ

ν
, Pε, (112)

then for the denominator of (108) we have

Wν

csτ
+
Zν
csτ

+
ν

τ
≥ τ

ν
+
ν

τ
≥ 2 , Pε, (113)

which concludes the proof.

APPENDIX E
PROOF OF THEOREM 6

The optimality of the stopping time is proved in Theorem 5
and we only need to prove that the proposed switching rule is
optimal. The proof is by construction. We note that in order to
have a reliable estimate of the prior probability ε we require to
observe many sequences, and as cse tends to zero the number of
observed sequences approaches infinity. On the other hand, we
have observed in the proof of Theorem 3 that for a purely de-
tection problem, the stopping time is dominated by the number
of samples taken from the sequence detected as the desired one.
Hence, the number of samples taken for finding one abnormal
sequence has negligible effect on the estimation quality. On the
other hand, since T is finite and csd tends to zero, only the last
sequence under observation can be declared as the desired one.
As a result, the switching rule should be concerned about the es-
timation quality at the beginning of the sampling process. When
the estimation cost is sufficiently small and comparable to the
sampling cost, it has to turn to identifying one outlier sequence.
To formalize the proof, we need to establish that for the given
switching rule we have

1
t

log PΦ(t)
t→∞
−−−→−γDKL(f1‖f0) , a.s., (114)

and t · RΦ(t)
t→∞
−−−→ V̂ (ε) , Pε, (115)

for some 0 < V̂ (ε) <∞ and γ ∈ (0, 1). To this end, let us
denote the first time instant at which

ceRΦ(t) ≤ (t+ 1)cs (116)

by t1 . Then, from the proof of Theorem 4 we have

t1 · RΦ(t1)
t1→∞−−−→ trace(V (ε)) , Pε . (117)

On the other hand, from the proof of Theorem 3 we have

1
τ ∗ − t1

log PΦ(τ ∗ − t1)
τ ∗−t1→∞−−−→ −DKL(f1‖f0) , a.s.

(118)

Let us define

η
�=
τ ∗

t1
. (119)

We show that η is finite, then by defining

V̂ (ε) �= η · V (ε) , and γ
�= 1− 1

η
, (120)

the proof is concluded. We prove the finiteness of η by contra-
diction. Assume that η can be arbitrarily large. Then, since we
have

ceRΦ(t1) ≤ (t1 + 1)cs , (121)

we get

ceRΦ(τ ∗)
τ ∗ + 1

= o(cs) . (122)

On the other hand, while the estimation cost decreases with
the rate of t−1 , the detection cost decreases exponentially in t.
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Hence, if η →∞ we have

cdPΦ(τ ∗) = o(cs) . (123)

Combination of (122) and (123) contradicts the stopping rule
in (34).
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