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Abstract—This paper considers the problem of recover-
ing the edge structures of two partially identical graphs
in the class of Ising models. It is assumed that both
graphs have the same number of nodes and a known
subset of nodes have identical structures in both graphs.
Therefore, inferring the structure of one graph can provide
the side information that could be leveraged for inference
related to the other graph. The objective is to recover
the connectivity of both graphs under an approximate
recovery criterion. The degree- and edge-bounded subclass
of Ising models is considered and necessary conditions
(information-theoretic) and sufficient conditions for the
sample complexity to achieve a bounded probability of
error are established. Furthermore, the scaling behavior
of the sample complexity is analyzed in different regimes
and specific regimes are identified for which the necessary
and sufficient conditions coincide, thus, establishing the
optimal sample complexity.

I. INTRODUCTION

Graphical models have been used to model the condi-
tional dependence among a set of random variables, in
which the random variables are associated with the nodes
of the graph and their interdependence is characterized
by the edge structure among them [1] and [2]. Graph-
based models have applications in a broad range of
domains, e.g., computer vision [3], genetics [4]–[6],
social networks [7], and power systems [8]. In this paper,
we consider the problem of learning the edge structures
of a pair of structurally similar graphs in the class of
Ising models by utilizing the samples from their joint
distributions.

Graphical models with partially similar structures arise
in modeling the inference problems in biological net-
works [4], physical infrastructures [9], and behavioral
analysis [10]. In such applications, the data is generated
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by multiple layered networks of information sources that
are modeled by graphs, in which each layer shares some
of its vertices and their respective data with the other
layers. For instance, the relationships among a group of
individuals that are active on multiple social networks
(e.g., Twitter and Facebook) can be modeled by distinct,
but potentially partially similar graphical models. In
these scenarios, the data collected from different graphs
have redundancy of information and inference about one
model serves as side information for the other models.

Motivated by this premise, we analyze the sample
complexity for joint model selection of a pair of partially
similar graphs in the class of Ising models from an
information-theoretic perspective. We consider an ap-
proximate recovery criterion, i.e., at most a fixed number
of errors are tolerated in the estimated edge structures,
and provide algorithm-independent information-theoretic
bounds on the sample complexity that establish the
statistical difficulty of the problem. Furthermore, we also
analyze the performance of a maximum likelihood (ML)
decoder to provide sufficient conditions on the sample
complexity.

The problem of graph structure learning is NP-hard in
general [11]. However, it becomes feasible under certain
restrictions on the edge structure, e.g., sparsity [12]–[15].
Such restrictions can be accommodated by considering
graph subclasses with restrictions on the maximum de-
gree and number of edges. Sample complexity for struc-
ture learning of single graphs have been studied from
an information-theoretic perspective in [16]–[20]. In [16]
and [17], algorithm independent necessary conditions on
the sample complexity for the exact structure recovery
of graphs in different sub-classes of Ising models are
established. In [18], structure learning for Ising models is
investigated under the performance criterion of approxi-
mate recovery, i.e., at most a fixed number of errors can
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be tolerated in the estimated graph structure. Necessary
conditions for set-based graph model selection, that is,
the graph estimator recovers a set of graphs that poten-
tially contains the true graph, are characterized in [20].

Joint inference in multiple graph models has been
investigated in [4], [5], [10], [21]–[29] for graphs that
may share structural properties. In [5] and [21]–[24], op-
timization based methods are applied for joint inference
of Gaussian graphical models. In [4] and [25], Bayesian
frameworks are investigated for joint model inference.

Joint structure learning has been investigated from an
information-theoretic perspecitve in [27]–[29]. Neces-
sary conditions on structure recovery of partially similar
graph models in path restricted subclass of Ising models
and degree bounded subclass of Gaussian models are
established in [27]. In [28], the problem of joint graph
structure recovery is investigated under the exact recov-
ery criterion. In [29], necessary and sufficient conditions
on the approximate recovery of a degree bounded sub-
class of Ising models are established. In contrast to the
studies in [27]–[29], we focus on the joint recovery of
graphs in a degree- and edge-bounded subclass of Ising
models under the approximate recovery criterion.

II. GRAPH MODEL

Consider two undirected graphs G1 , (V,E1) and
G2 , (V,E2), where the graphs G1 and G2 are formed
by the set of vertices V , {1, . . . , p} that are connected
by the set of edges E1 ⊆ V × V and E2 ⊆ V × V ,
respectively. An edge between a pair of nodes u and v

in the graph Gi is denoted by (u, v) ∈ Ei. The set of
neighbors of node u in Gi is denoted by Ni(u), and its
degree is denoted by diu , |Ni(u)|. We use these two
graphs to represent a pair of Ising graphical models.

Fig. 1. Two graphs with partially similar structures. Yellow nodes
in both graphs have the same internal edge structure.

In this paper, we assume that the graphs G1 and G2

are structurally identical within a pre-specified cluster of

nodes Vc ⊆ V . An example of this setting is illustrated
in Fig. 1.

Under the Ising model, each node u ∈ V in the
graph Gi is associated with a binary random variable
Xu
i ∈ X , {−1, 1}. The joint probability density func-

tion (pdf) of the random vector Xi , [X1
i , . . . X

p
i ] is

given by

fi(Xi) =
1

Zi
exp

 ∑
u,v∈Vi

λuvi X
u
i X

v
i

 , (1)

where

λuvi ,

{
λ, if (u, v) ∈ Ei
0, otherwise

, (2)

for λ > 0, and Zi is the partition function given by

Zi ,
∑

Xi∈{−1,1}p
exp

 ∑
u,v∈V

λuvi X
u
i X

v
i

 . (3)

Note that the parameter λ in (2) controls the dependence
among the nodes in the graph. In [16], it is shown that
recovering the graph structure from the data becomes
more difficult as λ approaches 0 or grows to infinity.

III. PROBLEM FORMULATION

In this section, we formalize the notation for struc-
tural similarity and the recovery criterion for structure
learning.

A. Graph Similarity Models

Definition 1. A pair of graphs G1 and G2 is said to
be η−similar if both graphs have the same internal
graphical structure within a cluster of nodes of size bηpc,
for some η ∈ (0, 1).

For both G1 and G2, the edge structures between any pair
of nodes with at least one node not in Vc are assumed
to be structurally independent of each other. For ease in
notations, we define q , bηpc and q̄ , p − bηpc. We
denote the family of Ising models by I, and the family of
η−similar pairs of Ising models by Ī. In this paper, we
consider a restricted subclass of Ising models, given by
Īd,k, that consists of η-similar pairs of graphs with each
graph having at most k number of edges and at most
bγkc, for some γ ∈ (0, 1), edges in the cluster with
common structure, and each node in the graph having
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a degree of at most d. For convenience in notations,
throughout the paper we use the shorthand Ī to refer
to Īd,k.

B. Recovery Criterion

For graph Gi, we collect n graph samples that are
generated according to the pdf fi, for i ∈ {1, 2}. We
denote collection of n graph samples from Gi by Xn

i .
The objective is to jointly estimate the edge structures
of G1 and G2. The graph decoder ψ : X n×p×X n×p → Ī
is the function that maps the collected data to the graphs
in the class Ī.

We adopt an approximate graph recovery criteria, that
is, at most a pre-specified number of erroneous decisions
about the edges in the recovery of each graph are
tolerated by the graph decoder. We define the maximal
probability of error in the approximate graph recovery
over the class Ī as

P(Ī, z) , max
G1,G2∈Ī

P
[

max
i∈{1,2}

{|Ei∆Êi|} > z

]
, (4)

where |Ei∆Êi| is the edit distance between Ei and its
estimate Êi and is given by |Ei∆Êi| , |(Ei\Êi) ∪
(Êi\Ei)|. The parameter z is the pre-specified maximum
distortion level that can be tolerated in the estimated
graph structure with respect to the true graph structure.
Note that |Ei∆Êi| represents the number of modifica-
tions to be made in the edge structure to transform Ei
to Êi.

IV. MAIN RESULTS

In this section, we provide necessary and sufficient
conditions on the sample complexity for approximate
recovery of graph models in the class Ī.

A. Sufficient Conditions

The sufficient conditions for the approximate recovery
of graph models are derived based on the large deviations
analysis of an ML based graph decoder given by

(Ĝ1, Ĝ2) = arg max
(G1,G2)∈Ī

fG1,G2(X
n
1 ,X

n
2 ) , (5)

where fG1,G2(X
n
1 ,X

n
2 ) is the joint pdf of the data samples

Xn
1 and Xn

2 . The ML decoder in (5) is optimal for exact
recovery criterion, i.e., when z = 0. For approximate
recovery, we assume that the ML decoder does not
declare an error if the estimated graph structures are

within a distortion level of z with respect to the structures
of the true graphs.

Theorem 1. Consider a pair of η−similar graphs G1

and G2 in class Ī. If the sample size n satisfies

n ≥ r1 max{C1, 2C2} , (6)

where we have defined

r1 ,
2d(3 exp(2λd) + 1)

sinh2(λ/4)
, (7)

C1 ,
(

log(2q̄d− z)

+ log

((
q̄

2

)
+ qq̄

)
+ log

4

δ
, (8)

C2 ,

(
2 log(qd− z) + log

(
q

2

)
+ log

2

δ

)
, (9)

then there exists a graph decoder ψ : X n×p×X n×p → Ī
that achieves P(Ī, z) ≤ δ.

Note that r1C1 dominates 2r2C2 in the sample com-
plexity if the size of the non-shared cluster of nodes is
large, i.e., q̄q � 1 ,which illustrates the effect of structural
similarity. We elaborate on the scaling behavior of the
terms r1C1 and r1C2 under different regimes. In the
following regimes, it is assumed that d and k are
increasing with p.

1. λ = Θ(1): In this regime, both r1C1 and 2r1C2

scale as edd log pd
δ .

2. λ = O
(

1
d

)
: In this regime, as d → ∞, we

have sinh(λ/4) = Ω(λ). Therefore, the sufficient
condition from Theorem 1 can be simplified to
n ≥ c1 max{d2, λ−2}d log p/δ, where c1 is a
positive constant. For a constant δ, the bound on
the sample complexity has an asymptotic scaling
behavior given by Ω(d3 log p).

3. λ = Θ(d): In this regime, the terms r1C1 and 2r1C2

scale as eλd log p for a constant δ. Furthermore,
if we have λd = ω(log(log p)), then the scaling
behavior is simplified to eλd.

B. Necessary Conditions

Theorem 2 ( k ≤ p/4). Consider a pair of η−similar
graphs G1 and G2 in the class Ī, such that, d > 2,

k = ω(d2) and k ≤ p/4, and γ ≤ min

{
q

2k ,
2(d2)q
d+2

}
. For
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TABLE I
SUMMARY OF THE MAIN RESULTS FOR RECOVERING ISING MODELS OF CLASS Ī .

Parameters Approx. recovery (z > 0) Approx. recovery (z > 0) Exact recovery (z = 0)

(Necessary conditions) (Sufficient conditions) (Necessary conditions)

λ = O
(

1
d

)
Ω(d2 log p) Ω(d3 log p) Ω(d2 log p)

k = O(p) and k = Ω(d2)

λ = O
(

1
d

)
Ω(d2) Ω(d3 log p) Ω(d2 log p)

k = Ω(p) and k = O(p
√
d)

λ = O
(

1
d

)
Ω(d

3p2

k2 ) Ω(d3 log p) Ω(d2 log p)
k = Ω(p

√
d) and k = O(pd2 )

λ = O
(

1
p

)
Ω(p2 log p) Ω(p2 log p) Ω(p2 log p)

k, d fixed and k ≤ p/4

any graph decoder ψ : X n×p ×X n×p → Ī that achieves

P(Ī, z) ≤ δ , (10)

for z = bθkc for some θ ∈ (0, d−2
4d ), the sample size n

should satisfy

n ≥ max {D1, D2} (1− δ − o(1)) , (11)

where

D1 ,
2(1− γ) log(q̄) + γ log q − 2θ log p

λ tanhλ
, (12)

D2 ,
exp(λ(d− 2)/4)((1− γ/2) log 2−H2( d

d−2 · 2θ))
3λd2

.

(13)

Note that D1 and D2 have different scaling behavior
in λ, d, and p. In the following regimes, we assume that
both d and k increase with p.

1. λ = Θ(1): In this regime, D1 scales as log p and
D2 scales exponentially in d. From Theorem 2, we
have p = ω(d2). If d grows at a rate faster than
log(log p), the bound on sample complexity scales
exponentially in d.

2. λ = O(1
d): In this regime, as d → ∞, we have

tanhλ = O(λ) and therefore, D1 scales as d2 log p.
On the other hand, we have D2 → 0 as d → ∞.
Therefore, the bound on sample complexity scales
as d2 log p.

2. λ = Θ(d): In this regime, as d→∞, D1 scales as

log p
d and D2 scales exponentially in d. Clearly, D2

dominates the bound on sample complexity.

Theorem 3 ( k = Ω(p)). Consider a pair of η−similar
graphs G1 and G2 in the class Ī, such that, d > 2,
k = ω(d2) and k ≤ 1

2p(d
′ − 1) for some d′ ≤ d, and

γ ≤ min

{
(d′−1)q

2k ,
2(d2)q
d+2

}
. For any graph decoder ψ :

X n×p ×X n×p → Ī that achieves

P(Ī, z) ≤ δ , (14)

for z = bθkc for some θ ∈ (0, d−2
4d ), the sample size n

should satisfy

n ≥ max {D2, D3} (1− δ − o(1)) , (15)

where we have defined D2 in (13) and

D3 ,
(1− γ/2) log 2− h(θ)

λ e
2λ cosh(2λd′)−1
e2λ cosh(2λd′)+1

. (16)

We list different regimes under which D2 and D3 have
distinct scaling behavior in λ, p, d and k. In the following
regimes, we assume that d and k increase with p.

1. λ = Θ(1): In this regime, as d→∞, we have D3 =

O(1) and D2 scales exponentially in d. Therefore,
D2 dominates the bound on sample complexity.

1. λ = O(1
d) : In this regime, D2 → 0 as d →

∞. The analysis of D3 shows that D3 scales as
Ω(dmin{d, (d/d′)2}) and therefore, D3 character-
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izes the bound on the sample complexity. Further-
more, when d′ = O(

√
d), k scales according to p

√
d

and also, Ω
(
dmin

{
d,
(
d
d′

2
)})

= Ω(d2). When

k = Θ(pd), we have Ω
(
dmin

{
d,
(
d
d′

2
)})

=

Ω
(
d3p2

k2

)
.

3. λ = Θ(d) : In this regime D3 scales as 1/d and D2

scales exponentially in d2. Therefore, the bound on
scaling complexity scales exponentially in d2.

We note that the necessary conditions and sufficient
conditions on the sample complexity for approximate
recovery in the class Ī scale at the same rate asymp-
totically in a specific regime which is formalized in
Corollary 1.

Corollary 1 (Optimal Sample Complexity). When the
maximum degree d is fixed and satisfies d > 2 and the
maximum number of edges k is fixed and satisfies k ≤
p/4, and we have

γ ≤ min

{
q

2k
,
2
(
d
2

)
q

d+ 2

}
and λ = O

(
1

p

)
, (17)

the exact scaling behavior of the sample complexity for
approximate recovery in the class Ī is Ω(p2 log p), as
the size of the graph p grows.

Table 1 summarizes the non-exponential scaling behavior
of the necessary and sufficient conditions under different
regimes. Since η is fixed, it does not feature in the scaling
behavior of the sample complexity.

Next, we note that the extreme cases of η = 0 and
η = 1 simplify to the problem of approximate recovery
of single graphs analyzed in [18]. However, in general,
the necessary conditions on the sample complexity for
the approximate recovery of graphs in the class Ī are
different from the existing results for single graphs. This
observation is formalized in the following Corollary.

Corollary 2 (Special cases for approximate recovery).
The necessary conditions on the sample complexity for
the approximate recovery of partially similar graphs in
the sub-class Ī in the extreme cases of η = 0 and η = 1

subsume the existing results for single graphs.

V. CONCLUSION

In this paper, we have analyzed the problem of struc-
ture learning under an approximate recovery criterion

in the presence of side information about the structure.
This setting is posed naturally as joint recovery of a pair
of Ising models with partially identical edge structures.
Therefore, any inference about the structure of one graph
serves as the side information in the structure recovery
of the other graph. For the degree and edge bounded
subclass of Ising models, we have established the al-
gorithm independent necessary (information-theoretic)
and sufficient conditions on the sample complexity for
achieving a bounded probability of error under the ap-
proximate recovery criterion. We have also investigated
the scaling behavior of these conditions under different
regimes and identified a specific regime that renders the
optimal sample complexity.
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