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Abstract—This paper considers a sequence of random variables
that undergo periods of transient changes at an unknown set of
time instants, referred to as transient change-points. The objective
is to constantly monitor the sequence in order to detect one of the
change-points subject to a hard constraint on the detection delay,
while in parallel, the rate of false alarms is controlled. This setting
is fundamentally different from the conventional change-point
detection problems, in which there exists at most one change-
point that can be either persistent or transient. In this paper, the
exact optimal decision rules are characterized. Furthermore, it
is shown that in the special case that the objective is detecting
a transient change-point at exactly the instant that a change
occurs (i.e., no detection delay), the test reduces to the well-
known Shewhart test. Numerical evaluations are also provided
to assess the performance of the decision rules.

Index Terms—Change-point detection, quickest detection, tran-
sient changes.

I. INTRODUCTION

Real-time monitoring of a system or process for detecting
a change in its behavior arises in many application domains
such as detecting faults or security breaches in networks, and
searching for under-utilized spectrum bands for opportunistic
spectrum access. It is often of interest to detect changes with
minimal delay after they occur. At the same time, detection
rules that are exceedingly sensitive to fluctuations in the data
are susceptible to raising frequent false alarms. This creates
an inherent tension between the quickness and the reliability
of the decisions.

The classical change-point detection problems, generally,
focus on detecting a permanent change in the statistical model
of a given sequence of random variables. Specifically, in such
problems, a random sequence is generated according to a
nominal distribution, which at an unknown time permanently
changes to a different distribution [1]. In such problems, a
decision-maker designs a stopping rule to detect the change
with a minimal delay after the change occurs, while in parallel,
controlling the rate of false alarms. The setting and objective
of this paper has major distinctions from the classical quickest
change-point detection. First, the change is not persistent, i.e.,
after a period of time following a change-point, the distribution
returns to the nominal model. Secondly, the change-points are
not unique, and a sequence can potentially undergo multiple
transient change-points. Finally, our objective is to search
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and identify a change-point within a hard deadline after it
occurs, while in the classical problems the focus is on soft
deadline, i.e., the average detection delay. The advantage of
enforcing a hard deadline on the delay is that it prevents
arbitrarily large delays, which is not the case when enforcing
soft deadlines. This vision is in line with the settings in [2]–[5],
with the distinction that in this paper multiple change-points
can occur and they are transient. This problem is, for instance,
motivated by application in spectrum sensing, in which we
are interested in quickly identifying free spectrum bands that
become available for only short periods.

Quickest detection of transient changes in a sequence has
gained recent interest. For instance, the study in [6] aims to
characterize the shortest duration of a transient change that
can be detected reliably as the false alarm rate approaches
zero, and [7] aims to minimize the rate of missing transient
changes. Besided the objectives, the main distinction of our
setting with those of [6] and [7] is that they consider only
one transient change, while we consider having an unknown
number of transient change-points. The studies in [8]–[11]
consider a setting in which only one permanent change occurs
in the sequence, but the change does not occur abruptly,
but it rather does through a series of changes, after which
it settles to a permanent steady state. In this setting, the
steady-state distribution is different from the pre-change one.
In [8] the transient duration is a single sample, while in [9]
it is a deterministic unknown constant. Quickest change-point
detection under multiple transient changes is also considered
in [10] and [11], in which the state of the system is assumed
to be a Markov process and only one of the states, which is
an absorbing state, is considered as the desirable change state.

Besides the distinction in the data model, the ultimate
goal of this paper also differs from the classical settings.
Specifically, instead of minimizing the average detection delay,
the probability of stopping at or within a deadline after a
change-point is maximized. This approach was first used in [2]
in a Bayesian setting for detecting a persistent change in
a sequence of independent and identically distributed (i.i.d.)
random variables. The results were extended to dependent
random variables in [12], and composite post-change models
in [3]. In [4] and [5], the objective is detecting a persistent
change immediately by using the first sample under the change
state. Under both Bayesian and minimax regimes the exactly
optimal detection rules have been characterized, and the results
have been extended to independent non-identically distributed
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samples and composite post-change models in [4], and to
Markovian samples in [5].

The remainder of the paper is organized as follows. Sec-
tion II provides the data model and formalizes the search
problem of interest. The quickest search rule for detecting a
change immediately is characterized in Section III, where the
exact decision rules are established. The results of Section III
are extended to the setting in which a change should be
detected within a hard deadline after it occurs in Section IV.
Section V provides the numerical evaluation of the quickest
search approach, and concluding remarks are provided in
Section VI.

II. PROBLEM STATEMENT

A. Data Model

Consider a sequence of random variables denoted by X 4
=

{Xt : t ∈ N}. As shown in Fig. 1, these random variables have
a common nominal probability distribution that undergoes
periods of transient changes at an unknown and non-random
set of time instants. Specifically, the elements of X are
nominally generated according to a probabilistic distribution
with the cumulative density function (cdf) F0. There poten-
tially exist a finite but unknown number of time instants
γ
4
= {γi : i ∈ {1, . . . , s}}, referred to as transient change-

points, at which the distribution changes from the nominal cdf
F0 to a distinct one with cdf F1. It is assumed that the number
of change-points |γ| = s ∈ N is unknown, and the duration
of each transient change is a known constant denoted by T .
The transient intervals are assumed to be non-overlapping, i.e.,
|γi − γj | > T , for all distinct i, j ∈ {1, . . . , s}. We define S
as the set of all time instants t ∈ N at which Xt is generated
by F1, i.e.,

S 4= {t : Xt ∼ F1} . (1)

Hence, for the elements of X we have the following dichoto-
mous model

Xt ∼ F0 , t ∈ N\S
Xt ∼ F1 , t ∈ S . (2)

We also assume that there exist well-defined probability den-
sity functions (pdfs) corresponding to F0 and F1, which we
denote by f0 and f1, respectively. Subsequently, we denote the
probability measure governing sequence X and the expectation
with respect to this measure by Pγ and Eγ , respectively. We
also use P∞ and E∞ for the case that no change occurs in
the data under consideration, i.e., s = 0.

B. Problem Formulation

The objective is to sequentially collect samples from se-
quence X and design a sequential decision rule for the quickest
detection and identification of one of the transient changes
with a delay not exceeding ξ ∈ {1, . . . , T}, while the rate
of false alarms is controlled. Hence, the sequential decision-
making process continually collects samples until the stopping
time of the process, at which point it is confident enough that a
change has occured within the past ξ samples. It is noteworthy
that the setting in which there exists only one change-point
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Fig. 1: Data model.

(i.e., s = 1), which can be either persistent or transient, is
studied extensively in the literature (c.f. [1]–[8]). In contrast,
in this paper we assume that the number of change-points s
is unknown and can exceed one.

The information generated by the data sequentially up to
time t generates the filtration {Ft : t ∈ N}, where

Ft
4
= σ

(
X1, . . . , Xt

)
. (3)

We define a coarser filtration, which at time t ∈ N is generated
by only the samples generated from the end of the preceding
change period up to time t. This filtration is denoted by

Gt
4
= σ

(
Xr(t)+T , Xr(t)+T+1, . . . , Xt

)
, (4)

where we have defined r(t)
4
= sup {γi ∈ γ : γi ≤ t − T},

and adopt the convention that the supremum of an empty set
is zero. The sequential sampling process continues until the
stopping time, denoted by τ , after which no further samples
are collected and a change is declared. The stopping time τ
is set to be a Gt-measurable function.

Two relevant performance measures for evaluating the qual-
ity of these sampling and decision-making processes are the
quickness of the process as well as the frequency of false
alarms. To account for the quickness, we are interested in the
real-time detection of a change with a hard deadline after
the change has occurred. Hence, the conventional average
detection delay is ineffective as it does not impose a hard
constraint on the detection delay and the delay can become
arbitrarily large. To circumvent this, for quantifying the agility
of the process we adopt a probability-based approach similar
to [2] and [4]. Specifically, we investigate two minimax
settings in which we consider probability maximization criteria
mimicking Pollak’s [13] and Lorden’s [14] approaches. In
particular, when the hard constraint on the delay is ξ samples,
for some ξ ∈ {1, . . . , T}, we define a Pollak-like criterion as

LP(τ)
4
= inf

γ

∑
γi∈γ

ξ∑
k=1

Pγ(τ = γi + k − 1 | τ ≥ γi) . (5)

Similarly, we define a Lorden-like worst case criterion as

LL(τ)
4
= (6)

inf
γ

∑
γi∈γ

ξ∑
k=1

essinf
Fγi−1

Pγ(τ = γi + k − 1 | Fγi−1, τ ≥ γi) .

It can be readily verified that

LL(τ) ≤ LP(τ) . (7)
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In order to account for the frequency of the false alarms, we
use E∞{τ}, which captures the average run length to a false
alarm before the first change-point γ1 occurs.

There exists an inherent tension between the rate of false
alarms on the one hand, and the measures LP(τ) and LL(τ),
on the other hand, as improving these two measures penalizes
the false alarm rate. An optimal sampling strategy can be
obtained by striking a balance between the false alarm rate
and the detection probability. Hence, under the Pollak-like and
Lorden-like criteria in (5) and (6), respectively, the sampling
strategy is the solution to

supτ LP(τ)
s.t. E∞{τ} ≥ η

, and
supτ LL(τ)
s.t. E∞{τ} ≥ η

, (8)

where η ≥ 1 in both settings controls the false alarm rate.
In the next section, we first focus on these two problems
for ξ = 1, i.e., the setting in which we aim to identify one
exact change-point. By leveraging the insight gained from this
special case, we solve the problems in (8) in their general
forms in Section IV.

III. QUICKEST SEARCH RULES FOR ξ = 1

In this section, we characterize the optimal stopping rules
for the problems in (8) when ξ = 1. For this purpose, we
first find upper bounds on the objective functions LP(τ) and
LL(τ) in Section III-A. Then we briefly review the Shewhart
test in Section III-B, and in Section III-C we show that by
using the Shewhart test as the decision rule the values of
LP(τ) and LL(τ) achieve their upper bounds determined in
Section III-A, thereby establishing that the Shewhart test is an
optimal solution to (8).

A. Upper Bounds on the Objective Functions

In order to facilitate finding upper bounds on the objective
functions in (5) and (6), we denote the likelihood ratio of the
sample collected at time t by `t, i.e.,

`t
4
=
f1(Xt)

f0(Xt)
. (9)

The following theorem characterizes an upper bound on both
Pollak-like and Lorden-like criteria defined in (5) and (6),
respectively.

Theorem 1 (Upper Bound): For the objective functions
LP(τ) and LL(τ), and for s ∈ N, we have

LL(τ) ≤ LP(τ) ≤ s ·
E∞{`τ}
E∞{τ}

. (10)

B. Shewhart Test

The form of Shewhart test that we adopt in this paper
consists in a dynamic and sequential likelihood ratio test. For-
mally, at each time t and based on the observation Xt we form
the likelihood ratio value `t defined in (9). The Shewhart test
compares `t with a pre-specified and deterministic threshold
α and declares a change when `t exceeds α. Specifically, the
stopping time of the Shewhart test is found via

τs
4
= inf {t : `t ≥ α} . (11)

The value of the threshold α is chosen such that the average
run-length to a false alarm is guaranteed not to be smaller than
η, and it can be computed by solving

P∞(`1 ≥ α) = η−1 . (12)

C. Optimality of Shewhart Test

We prove the exact optimality of the Shewhart test formal-
ized in (11) and (12) for problems in (8). For this purpose, we
start by proving that corresponding to any feasible1 decision
rule with the stopping time ν and the associated ratio

E∞{`ν}
E∞{ν}

, (13)

we can construct an alternative feasible decision rule that
achieves the false alarm constraint with equality, and its stop-
ping time, denoted by ν′, achieves the same ratio. Specifically,
corresponding to any feasible stopping time ν there exists ν′

such that

E{ν′} = η and
E∞{`ν′}
E∞{ν′}

=
E∞{`ν}
E∞{ν}

. (14)

This observation is formalized in the following lemma.
Lemma 1: Corresponding to any given feasible decision

rule with the stopping time ν, there always exists a feasible
decision rule that satisfies the false alarm constraint with
equality, and its stopping time, denoted by ν′, yields

E∞{`ν′}
E∞{ν′}

=
E∞{`ν}
E∞{ν}

. (15)

Next, we leverage the result of Lemma 1 and prove the
following properties for the Shewhart test:

1) It is a feasible test.
2) It maximizes the upper bound on LP(τ) and LL(τ)

established in Theorem 1.
3) The objective functions LP(τ) and LL(τ) meet this

maximum upper bound when using the Shewhart test.
These properties are formalized in the following two lemmas.

Lemma 2 (Feasibility of Shewhart): Shewhart test achieves
the false alarm constraints of (8) with equality.
In the next lemma, we establish that the Shewhart test maxi-
mizes the upper bound on the objective function.

Lemma 3: The Shewhart test is the solution to

sup
τ

E∞{`τ}
E∞{τ}

, subject to E∞{τ} = η . (16)

The following theorem proves that for the Shewhart test, the
objective function meets its upper bound and, consequently,
the Shewhart test is an optimal solution to (8) for ξ = 1.

Theorem 2: The Shewhart test with the stopping time and
threshold given in (11) and (12), respectively, is an optimal
solution to both problems in (8), i.e.,

LL(τs) = LP(τs) = sup
τ : E∞{τ}≥η

LP(τ) . (17)

1A decision rule with stopping time ν is called feasible if it satisfies the
false alarm constraint, i.e., E∞{ν} ≥ η.
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Shewhart test is not only an optimal test, but it is also
simple to implement; at each time t, it takes a new sample
from the sequence, forms its likelihood ratio, and compares the
likelihood ratio with a fixed pre-specified threshold. It stops
the process and declares a change the first time the likelihood
ratio exceeds the threshold.

IV. QUICKEST SEARCH WITHIN A WINDOW (ξ > 1)
In this section, we consider the general setting in which

the goal is to detect a change within a window of ξ samples
after its occurrence. For simplicity in notations, we present the
detailed results for ξ = 2, and the generalization for ξ > 2
follows the same line of arguments. The following lemma
provides an upper bound on the objective functions of (8) for
ξ = 2.

Theorem 3 (General Upper Bound): The objective functions
LP(τ) and LL(τ), defined in (5) and (6), respectively, satisfy

LL(τ) ≤ LP(τ) ≤ s ·
E∞{`τ + `τ−1`τ}

E∞{τ}
. (18)

The results of the theorem above is intuitive: for stopping
exactly at the change-point we already observed in Theorem 1
that the upper bound depends on the statistics of the last
one sample. This lemma states that for ξ = 2 it depends
on the statistics of the last two samples through the term
(`τ + `τ−1`τ ). The next step is to find the stopping time that
maximizes this upper bound, for which we later show that
the objective function meets its upper bound. First, it can be
readily verified that the upper bound in (18) can be achieved
by a stopping time that meets the false alarm constraint
with equality. Hence, for finding an optimal solution, we can
equivalently solve

sup
τ

E∞{`τ + `τ−1`τ}
E∞{τ}

, subject to E∞{τ} = η . (19)

This problem, equivalently, can be converted to the following
unconstrained problem,

sup
τ

E∞{`τ + `τ−1`τ − λτ} , (20)

where λ is a Lagrangian multiplier, which is chosen such that
E∞{τ} = η. In order to solve this problem, we define a
reward-to-go function at time t as

G̃t(Gt)
4
= max

{
`t + `t−1`t , −λ+ E∞{G̃t+1(Gt+1) | Gt}

}
,

where (`t + `t−1`t) is the reward of stopping at time t while
(−λ + E∞{G̃t+1(Gt+1) | Gt}) is the expected reward of
collecting one more sample. The following lemma provides
a sufficient statistic for calculating G̃t.

Lemma 4 (Sufficient Statistic): The reward-to-go function G̃t
is a function of Gt only through (`t−1, `t). Therefore, (`t−1, `t)
is a sufficient statistic for calculating G̃t.
Since the value of reward-to-go function only depends on the
value of (`t−1, `t) and not t, we define the reward-to-go as a
function of (`t−1, `t) by G(`t−1, `t), i.e.,

G(`t−1, `t)
4
= (21)

max{`t + `t−1`t , −λ+ E∞{G(`t, `t+1) | `t}} .

The stopping time that maximizes the objective function
in (20) is the first time instant at which the reward of stopping,
i.e., (`t + `t−1`t), exceeds the reward of collecting one more
sample, i.e., (−λ+ E∞{G(`t, `t+1) | `t}). To formalize this,
we define

h(x)
4
= E∞{G(x, y) | x} , (22)

as the expected utility of collecting one more sample if we
ignore the delay cost, and stop the first time instant at which

`t + `t−1`t ≥ −λ+ h(`t) . (23)

The following theorem establishes that such a stopping time
optimizes the upper bound in (18).

Lemma 5: An optimal solution to the optimization problem
in (19) is

τ∗
4
= inf{t : `t + `t−1`t ≥ −λ+ h(`t)} , (24)

where λ > 0 is chosen such that E∞{τ∗} = η.
Since τ∗ optimizes the upper bound on the objective function
and is a feasible solution, it only remains to show that
for τ∗ the objective function is equal to the upper bound.
The following theorem asserts that this property holds, and
therefore, τ∗ is an optimal solution to (8).

Theorem 4: For the stopping time τ∗, defined in (24), where
λ > 0 is chosen such that E∞{τ∗} = η, the objective function
meets its upper bound, and therefore, it is an optimal solution
to (8) for ξ = 2.
An optimal stopping time that solves (20) for ξ = 2 is a
function of (`t−1, `t) and can be computed numerically. The
generalization of the results to any ξ > 2 is straightforward.
The following theorem summarizes this extension.

Theorem 5: For any ξ ∈ N and for the problems formulated
in (8) we have the following results.

1) An upper bound on the objective functions is

LL(τ) ≤ LP(τ) ≤ s ·
E∞

{∑ξ
k=1

∏k−1
s=0 `τ−s

}
E∞{τ}

. (25)

2) An optimal stopping time that maximizes the upper bound
has the form

τ∗g
4
= inf

{
t :

ξ∑
k=1

k−1∏
s=0

`t−s ≥ −λ+ ĥ(`t−ξ+2, . . . , `t)
}
, (26)

where ĥ(`t−ξ+2, . . . , `t) is defined as

ĥ(`t−ξ+2, . . . , `t)
4
= (27)

E∞{G(`t−ξ+2, . . . , `t, `t+1) | `t−ξ+1, . . . , `t−1, `t} .

3) For the stopping time in (26), we have

LL(τ
∗
g ) = LP(τ

∗
g ) = s ·

E∞
{∑ξ

k=1

∏k−1
s=0 `τ∗g−s

}
E∞{τ∗g }

, (28)

and therefore, it is an optimal solution to (8).
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Fig. 2: The probability of detecting the first or any change-point.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the optimal tests corresponding to the Pollak-like criterion
characterized in sections III and IV. To this end, we consider a
sequence with the nominal and the alternative distributions be-
ing the unit-variance Gaussian distributions with mean values
0 and 1, respectively. There exist 1000 change-points in the
sequence, each with the duration T = 1. Figure 2 compares
the conditional probability of detecting the first change-point
with that of detecting any change-point. It is observed that
when we have a more stringent constraint on the false alarm
rates, i.e., the average run-length to a false alarm increases, the
detection probability decreases since we want to raise fewer
false alarms. Also, the ratio gap between these two objective
function becomes more significant. This is due to the fact
that in our objective function, we can afford to wait for a
more reliable decision about the occurrence of a change-point.
Figure 3 illustrates the average number of missed change-
points in our setting. It is observed that for a larger average run
length to a false alarm we miss more change-points in order
to detect one of them more reliably with a hard deadline.

VI. CONCLUSION

We have analyzed the problem of quickest search for tran-
sient change-points. We have considered a setting in which a
sequence of random variables might undergo multiple change-
points and shortly after each change-point, they return to
the nominal distribution. Both the nominal and alternative
distributions are known and the objective is to identify one of
these change-points in real-time no later than a pre-specified
hard deadline, while controlling the false alarm rate. To this
end, we have considered a probability maximizing approach
in a minimax setting. We have characterized the exact optimal
decision rules. Furthermore, we have shown that when the
objective is detecting a change-point immediately after it
occurs, the characterized decision rule simplifies to the well-
known Shewhart test.
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Fig. 3: The average number of missed change-points before detection.
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