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Abstract—This paper considers the problem of estimating the
structures of a pair of structurally similar graphs associated with
two distinct Ising models. It is assumed that the graphs have
the same number of nodes with unknown structures, with the
additional side information that a known subset of nodes have
identical structures (connectivity) in both graphs. The objective
is the exact recovery of the structures of both graphs. The
bounded degree and bounded edge sub-classes of Ising models
are investigated, and necessary and sufficient conditions on the
sample complexity for bounded probability of error under the two
criteria are established. Furthermore, the results are compared
with the conditions on the sample complexity of recovering the
graphs independently. One major observation is that by judicially
leveraging the information about the identical sub-graphs by
jointly recovering both structures, the sample complexity reduces
by a factor cp2, where p is the number of nodes in the graph
and c is some constant.

I. INTRODUCTION

Graphical models provide structural representations of the
conditional dependence among multiple random variables [1]
and [2]. The nodes of the graphical models represent the
random variables whose inter-dependence is encoded by the
edges among them, such that the joint probability of the
random variables captures the structure of the graph. Graphical
models have applications in a wide range of domains, e.g.,
computer vision [3], genetics [4]–[6], social networks [7], and
power systems [8]. In this paper, we focus on Ising models and
consider the problem of recovering the graphical structures of
a pair of graphical models with partially identical structures.

Graphical models with partially identical structures arise
in various domains such as biological networks [4], physical
infrastructures [9], and behavioral analysis [10]. The models
in such applications consist of multiple layers of networks of
information sources, in which the networks share some of their
information sources, generating shared random variables. For
instance, different gene networks that represent the subtypes
of the same cancer may share similar edges across all subtypes
and also have unique edges corresponding to each subtype [4].

Information-theoretic tools are effective for finding
algorithm-independent guarantees on learning the structures
of graphical models. The existing information-theoretic stud-
ies on graphical models include those of [11]–[13], which
analyze the sample complexity for selecting the model of a
given graph in various sub-classes of Ising models. Specifi-
cally, [11] establishes the necessary and sufficient conditions
on the sample complexity for the exact recovery of the
Ising models under bounded degree and bounded number
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of edges. These results are generalized in [14] to establish
necessary conditions for set-based graphical model selection,
in which the graph estimator outputs a set of potentially true
graphs instead of a unique graph. Necessary conditions for
recovering girth-bounded graphs and path-restricted graphs are
analyzed in [12]. The problem of graphical model selection
for various sub-classes of Ising models under the criterion
of approximate recovery is investigated in [13], in which a
certain number of missed edges or incorrectly included edges
are tolerated in the estimated graph structure. Approximate
recovery bounds on the sample complexity are characterized
for Ising and Gaussian models without considering the effect
of edge weights in [15]. The problems of structure recovery
and inverse covariance matrix estimation for Gaussian models
are studied in [16], where information-theoretic bounds on
the sample complexity are delineated. Similarly, information-
theoretic bounds are established for the class of power-law
graphs in [17].

The problem of joint graphical model inference has been
studied in [4], [5], [10], and [18]–[22]. Specifically, an empir-
ical Bayes method is developed in [4] to identify interactions
that are unique to each class and that are shared across all
classes. Graphical Lasso-based algorithms are developed in [5]
and [18]–[20] for joint inference of Gaussian graphical models.
An optimization-based approach to the joint estimation of
the graph structures using discrete data is studied in [10]. A
Bayesian approach to jointly estimating Gaussian graphical
models is investigated in [21], where the models with shared
structure are identified from the data groups and their relative
similarity is leveraged for inference.

All aforementioned studies on joint learning of graphical
models focus on empirical frameworks for graph estima-
tion or selection. In contrast, in this paper, we characterize
infomation-theoretic necessary and sufficient conditions on
the sample complexity under bounded probability of error in
jointly recovering two partially identical graphs from edge-
bounded and degree-bounded sub-classes of Ising models, and
compare with the existing relevant results for single graphs
studied in [11]. We observe that the graph decoder that jointly
recovers a pair of partially identical graphs with p number
of nodes saves at least cp2 number of samples, where c is a
positive constant. The specific subclass with this behavior is
characterized by fixed maximum degree and maximum number
of edges in a graph as p grows. We also observe in several
cases that the gap between the results in this paper and the
corresponding results from [11] scales at a similar rate as
the sample complexity, albeit with significant savings in the
sample complexity.
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II. GRAPH MODEL

Consider a set of vertices V , {1, . . . , p} connected by
two distinct collection of edges denoted by E1 ⊆ V × V
and E2 ⊆ V × V , forming two distinct undirected graphs
G1,(V,E1), G2,(V,E2). We use the convention (u, v) ∈ Ei
to show that an edge connects nodes u, v ∈ V in graph Gi. We
also define Ni(u) ⊆ V as the set of nodes in the neighborhood
of a node u ∈ V in graph Gi, i.e.,

Ni(u) , {w ∈ V : (u,w) ∈ Ei} . (1)

The degree of node u is denoted by diu, where diu , |Ni(u)|.
We leverage these two graphs to graphically represent two
Ising graphical models.

Fig. 1. Two graphs with partially identical structures. Yellow nodes in both
graphs have identical internal edge structures.

Graphs G1 and G2 are assumed to share a common structure
in a cluster of nodes denoted by Vc ⊆ V , i.e., the internal sub-
graph formed by a set of nodes Vc is identical in both graphs.
An example of structurally similar graphs is shown in Fig. 1.

In the Ising model, each vertex u ∈ V in graph Gi
is associated with a binary random variable denoted by
Xu
i ∈ X , {−1, 1}. The joint probability density function

(pdf) of the random variables Xi , [X1
i , . . . , X

p
i ] associated

with graph Gi is given by

fi(Xi) ,
1

Zi
exp

( ∑
u,v∈V

λuvi Xu
i X

v
i

)
, (2)

where

λuvi ,

{
λ, if (u, v) ∈ Ei
0, otherwise

, (3)

and Zi is the partition function given by

Zi ,
∑

Xi∈{−1,1}p
exp

( ∑
u,v∈V

λuvi Xu
i X

v
i

)
. (4)

Parameter λ ∈ R+ captures the dependence among the
random variables associated with the vertices in the graph. As
illustrated in [11], as λ approaches to 0 or grows to infinity,
recovering the structure of the graph from its samples becomes
increasingly more difficult. Furthermore, corresponding to
graph Gi, we also define the maximum neighborhood weight
according to

ζi , max
w∈V

∑
u∈Ni(w)

λwui . (5)

III. PROBLEM FORMULATION

In this section we formalize the similarity models and the
joint structure recovery criteria.

A. Graph Similarity Models
Definition 1. Two graphs G1 and G2 are said to be η−similar,
for some η ∈ (0, 1), if they share a cluster of nodes that have
identical internal graphical structures in both graphs, and the
size of the cluster is |Vc| = bηpc.

For the convenience in notations, we define q , bηpc and
q̄ , p− bηpc. We denote the class of Ising models by I, and
the class of η−similar pairs of Ising models by Iη . In this
paper, we consider the following sub-classes of Ising models.
• Degree-bounded class Idη : This class contains all the
η−similar pair of graphs G1 and G2, each with a maxi-
mum degree d. Clearly, in this class, we have ζi = λd,
where ζi is defined in (5).

• Edge-bounded class Ikη : This class contains all the
η−similar pair of graphs G1 and G2, each with at most
k edges in each graph and at most bγkc, γ ∈ [0, 1],
number of edges lie in the shared sub-graph with nodes
in Vc. We set γ̄ , 1 − γ. We also assume that the
maximum neighborhood weight is bounded by ζ, i.e.,
ζi ≤ ζ for i ∈ {1, 2}.

B. Recovery Criteria
We collect n independent samples Xi, generated according

to fi, from graph Gi, for i ∈ {1, 2}. We denote the collection of
n samples from Gi by Xn

i . The objective is to jointly estimate
graphs G1 and G2 from samples Xn

1 and Xn
2
†. We denote

the graph decoder ψ : Xn×p ×Xn×p → C as the function that
maps the data to graphs in class C. To capture the accuracy of
decoder, corresponding to any generic class of pairs of graph
C, we define P(C) as the maximal probability of error in exact
recovery over the class C, i.e.,

P(C) , max
(G1,G2)∈C

P[ψ(Xn
1 ,X

n
2 ) 6= (G1,G2)] , (6)

where the probability is computed with respect to distributions
f1 and f2. Under this setting, a total of 2n samples are used
for joint model selection, corresponding to which we establish
performance guarantees on P(C) and analyze their scaling
behavior with respect to various parameters, i.e., λ, p, d, and
k. Let ns be the number of samples required for recovering
the structure of a single graph with the same performance
guarantees (c.f. [11]). Hence,

D , 2(ns − n) (7)

quantifies the gap between the sample complexities of jointly
recovering G1 and G2 and recovering them independently,
while achieving the same level of reliability in decoding. In the
next section, we provide necessary and sufficient conditions
on the sample complexity n for an arbitrary target reliability
level. These results can also be leveraged to analyze the scaling
behavior of D in different regimes.

IV. MAIN RESULTS

In this section, we provide the necessary and sufficient con-
ditions on the sample complexity n. The sufficient conditions

†The results in this paper can be generalized to settings with more than
two graphs, and different numbers of samples from each graph. For clarity,
we only analyze the setting with two graphs, and equal number of samples
per graph.
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TABLE I
SUMMARY OF MAIN RESULTS (NON-EXPONENTIAL SCALING) FOR EXACT RECOVERY OF ISING MODELS.

Graph Class
Parameters

Scaling behavior Comparison with [11]

Necessary Conditions Sufficient Conditions Necessary Conditions Sufficient Conditions

Bounded degree Idη
λ = O

(
1
d

)
Ω(d2 log p) Ω(d3 log p) D ∼ Ω(d2) D ∼ O(d3 log p)

λ = O
(

1
p

)
Ω(p2 log p) Ω(p2 log p) D ∼ Ω(p2) D ∼ O(p2 log p)

d fixed

Bounded edge Ikη
λ = O

(
1√
k

)
Ω(k log p) Ω(k2 log p) D ∼ Ω(k) D ∼ O(k2 log p)

λ = O
(

1
p

)
Ω(p2 log p) Ω(p2 log p) D ∼ Ω(p2) D ∼ O(p2 log p)

k fixed

are established based on the analysis of a maximum likeli-
hood (ML) decoder. The necessary conditions established are
algorithm-independent and serve as performance benchmarks
for any designed algorithm.

A. Sufficient Conditions
In this section, we provide sufficient conditions on the

number of samples for model selection of different classes
of Ising models. We also analyze the scaling behaviors of the
results with parameters λ, p, k, and d.

Theorem 1 (Class Idη ). Consider a pair of η−similar graphs
G1 and G2 in class Idη . If the sample size n satisfies

n ≥ r1 max{B1, 2B2} , (8)

where we have defined

r1 ,
2d(3 exp(2λd) + 1)

sinh2(λ/4)
, (9)

B1 ,

(
2 log q + log 4d+ log

1

δ

)
, (10)

B2 ,
(

log
8dq̄

δ
+ log

((
q̄

2

)
+ pq

))
, (11)

then there exists a graph decoder ψ : Xn×p × Xn×p → Idη
that achieves P(Idη ) ≤ δ.

Next, we elaborate on the scaling behavior shown in The-
orem 1 in different regimes. Note that even though the
terms r1B1 and r1B2 in (8) have similar scaling behavior
in λ, p, and d for constant η, r1B1 dominates the sample
complexity when the size of shared cluster is large enough,
i.e., q

q̄ � 1. This captures the effect of the size of the shared
cluster on sample complexity. Furthermore, depending on the
relationship between λ and d, we have the following distinct
behaviors for the sampling complexity saving D in different
regimes. In all these regimes, it is assumed that the maximum
degree d is increasing with the graph size p.

1. λ = Θ(1): In this regime, both r1B1 and r1B2

scale as edd log pd
δ . Also, in comparison with the ex-

isting results for a single graph, we conclude that
D scales as O(ed log p). Furthermore, when we have
d = ω(log(log p)) and δ fixed, both the bound on sample
complexity and D scale exponentially in d.

2. λ = O
(

1
d

)
: In this regime, as d → ∞, we

have sinh(λ/4) = O(λ). Therefore, the sufficient
condition from Theorem 1 can be simplified to
n ≥ c1 max{d2, λ−2}d log p/δ, where c1 is a positive
constant. For a constant δ, the bound on the sample
complexity has an asymptotic scaling behavior given by
Ω(d3 log p). In comparison with the existing result for a
single graph, we conclude that D scales at most at the
rate of d3 log p, i.e., the gain in the number of samples for
joint model selection over independent model selection of
graphs using an ML based decoder scales as O(d3 log p).

3. λ = Θ(d): In this regime, the terms r1B1 and r1B2 scale
as eλd log p for a constant δ. Furthermore, if we have
λd = ω(log(log p)), then the scaling behavior is simpli-
fied to eλd. Also, in comparison with the corresponding
results for single graphs, we conclude that D scales as
O(eλd log p).

Theorem 2 (Class Ikη ). Consider a pair of η−similar graphs
G1 and G2 in class Ikη . If the sample size n satisfies

n ≥ r2 max{2B3, B4} , (12)

for sufficiently large p, where we have defined

r2 ,
3 exp(2ζ) + 1

sinh2(λ/4)
, (13)

B3 ,2(k′ + 1) log p+ log
1

δ
, (14)

B4 ,2(bγkc+ 1) log q + log
1

δ
, (15)

k′ , min

{
k,

(
q̄

2

)
+ q̄q

}
, (16)

then there exists a graph decoder ψ : Xn×p × Xn×p → Ikη
that achieves P(Ikη ) ≤ δ.

For the class of Ikη graphs, from the results in Theorem 2 it
can be readily verified that r2B4 dominates r2B3 when q

q̄ � 1,
which illustrates the effect of η. Note that k′ in (16) reflects
the maximum number of edges that can exist in the non-
shared cluster of the graphs. Depending on the relationship
between λ and k, we have the following distinct behaviors for
the sampling complexity saving D in different regimes. In all
these regimes it is assumed that k is increasing with the graph
size p.
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1. λ = Θ(1): When η is large enough, such that, q̄
q � 1

and γk �
(
q̄
2

)
+ q̄q, the sample complexity is dominated

by r2B4 which scales as Ω(eζk log p). Also, when we
have k′ = k, the bound on sample complexity scales
as Ω(eζk log p). Therefore, in this regime, the bound on
sample complexity is always dominated by a term that
has a scaling behavior given by Ω(eζk log p) for fixed
δ. Furthermore, in comparison with the results for single
graphs, we conclude that D scales as O(eζk log p).

2. λ = O
(

1√
k

)
: When k → ∞, we have

sinh(λ/4) = O(λ). Therefore, in this regime, the
bound on sample complexity scales according to
Ω(eζk2 log p/δ). If ζ is a constant or scales as
ζ = O(λ

√
k), then the bound on sample complexity

scales as Ω(k2 log p) for fixed δ. Furthermore, under
controlled ζ, we have D = O(k2 log p), which implies
that the gain in number of samples scales with at most
k2 log p.

3. λ = Θ(
√
k): In this regime, when both λ and k are

increasing with p, the bound on the sample complexity
scales as Ω(eζ log p). Also, by comparing with the result
for single graphs, we conclude that D = O(eζ log p).
When we have ζ ≥ λ

√
k and λ

√
k = ω(log(log p)),

both the bound on sample complexity and D scales
exponentially in eλ

√
k.

B. Necessary Conditions

Next, we provide the necessary conditions for exact re-
covery for the different sub-classes of Ising models. We
also provide remarks on the scaling behavior of the sample
complexity in terms of different parameters and compare the
results with the sufficient conditions established in Theorem 1
and Theorem 2.

Theorem 3 (Class Idη ). Consider a pair of η−similar graphs
G1 and G2 in class Idη . If the sample size n satisfies

n ≤ (1− δ) max {A1, A2, A3} , (17)

where we have defined

A1 ,
1

2λ tanh(λ)
log

(
q2

8
+
q̄4

16

)
, (18)

A2 ,
exp(λd)

8λd exp(λ)
log

(
qd

4
+

(q̄d)2

16

)
, (19)

A3 ,
qd

16p
log

q

8d
+
q̄d

8p
log

q̄

8d
, (20)

then for any graph decoder ψ : Xn×p×Xn×p → Idη , we have

P(Idη ) ≥ δ − 1

log p
, (21)

for sufficiently large p.

Next, we analyze the scaling behavior of the results in Theo-
rem 3. We start by noting that the terms A1, A2, and A3 have
different scaling behaviors in terms of λ, p, and d. Depending
on the combination of parameters, each of the three terms
A1, A2, and A3 will be the dominant (maximum) term in a
specific regime. This leads to different scaling behaviors in

different regimes, as described next. In the following regimes,
we assume that d is increasing with p.

1. λ = Θ(1): In this regime, A1 and A3 scale according
to Ω(log p) and A2 scales according to Ω(ed log p).
Clearly, A2 dominates the bound on sample complexity.
Also, in comparison with the existing result for a single
graph, we conclude that D scales at least at the rate
ed. The scaling behaviors of the necessary condition on
the sample complexity and D are consistent with the
corresponding results from Theorem 1.

2. λ = O
(

1
d

)
: In this regime, A1 scales according to

Ω( log p
λ tanhλ ), and A2 scales according to Ω(eλd log(pd)

d ).
When λ = O

(
1
d

)
, the bound A2 does not scale expo-

nentially in d. As p → ∞, we have tanhλ = O(λ).
Therefore, A1 dominates the bound on sample complexity
and the necessary condition in Theorem 3 reduces to
n ≤ c3 max{d2, λ−2} log p for some constant c3. This
implies that the bound on the sample complexity scales
according to Ω(d2 log p). In comparison with the cor-
responding necessary condition for a single graph, we
conclude that as p→∞, D = Ω(d2). Also, the necessary
conditions on the sample complexity in this regime match
the sufficient conditions established in Theorem 1 within
a factor of d.

3. λ = Θ(d): In this regime, A2 scales according to
O(eλd log(pd)) and Ω(eλd log pd

λd ). Therefore, the bound
on the sample complexity is dominated by exp(λd) log p.
When λd = ω(log(log p)), we futher observe that A2

scales exponentially in λd and dominates the bound on
sample complexity. In comparison with the corresponding
necessary condition for a single graph, we conclude that
when η is fixed, the difference between the two terms
scales at least at the rate exp(λd) in this regime, which
is at the same rate as the bound on sample complexity
if λd = ω(log(log p)). Also, the scaling behaviors of
the necessary condition on the sample complexity and
D are consistent with the corresponding results from
Theorem 1.

Theorem 4 (Class Ikη ). Consider a pair of η−similar graphs
G1 and G2 in class Ikη , in which γ ≤ ηp

4k . If the sample size n
satisfies

n ≤ (1− δ) max{A1, A4} , (22)

where A1 is defined in (18) and

A4 ,
log
(
γ̄2k2/16+γk/4

4

)
32λ
√
k exp(2λ) sinh(λ)

× √
γ

exp
(
λ
√
bγkc

) +

√
γ̄

exp
(
λ
√
bγ̄kc

)
−1

, (23)

then for any graph decoder ψ : Xn×p ×Xn×p → Ikη , we have

P(Ikη ) ≥ δ − 1

log p
. (24)

Close scrutiny of A1 and A4 indicates that only A4 depends on
k. As a result, depending on the value of k, we can specify
which of the terms A1 and A4 becomes the dominant one.
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Hence, we have the following regimes and scaling behaviors
under each. In the following regimes, it is assumed that k is
increasing in p.

1. λ = Θ(1): In this regime, A1 scales at the rate log p and
A4 scales at the rate e

√
k log p. Therefore, A4 dominates

the sample complexity. Hence, D scales as Ω(e
√
k) in

this regime. Furthermore, when we have ζ ≥ λ
√
k and

e
√
k = ω(log p), both A4 and D scale exponentially in√
k, and the scaling behaviors of the necessary condi-

tions and D are consistent with those derived from the
sufficient conditions in Theorem 2.

2. λ = O
(

1√
k

)
: In this regime, A1 scales according to

Ω
(

log p
λ tanhλ

)
and dominates A4, which scales according

to O(λ−1 log k). Therefore, as k → ∞, A1 dominates
the sample complexity and the necessary condition in
Theorem 4 reduces to n ≤ c4 max{k, λ−2} log p for
some constant c4. Furthermore, A1 has an asymptotic
scaling behavior given by Ω(k log p). In comparison with
the corresponding lower bound for a single graph, we
conclude that D = Ω(k) in this regime. Furthermore,
the scaling behaviors of the sufficient condition and
D derived from the results in Theorem 2 match the
corresponding results from Theorem 4 within a factor k.

3. λ = Θ(
√
k): In this regime, A4 scales as eλ

√
k and

A1 scales as log p
λ tanhλ . Therefore, as λ increases with

k and p, A4 dominates the sample complexity. Hence,
the difference D scales exponentially in λ

√
k, which is

same as the scaling behavior of the necessary condition
on sample complexity. Also, the scaling behaviors of
the sufficient conditions and D are consistent with those
derived from the necessary conditions in Theorem 4.

C. Exact Sample Complexity
Next, we compare the results of Theorems 1 − 4 jointly

in order to specify a certain regime under which we have
the same scaling behavior of the sample complexity, i.e., the
necessary and sufficient conditions scale at the same rate for
both sub-classes Idη and Ikη .

Corollary 1 (Exact Recovery). When the maximum degree d
and the maximum number of edges k are fixed, and we have
λ = O(1/p), then the exact scaling behavior of the sample
complexity in classes Idη and Ikη is Ω(p2 log p), as the size of
the graph, p grows.

The main results with non-exponential scaling behavior are
summarized in Table 1. In all the results, it is assumed that
η > 0 is fixed and therefore, it does not affect the scaling
behavior of the sample complexity.

V. CONCLUSION

In this paper, we have considered the problem of joint
model selection of partially identical graphs in various sub-
classes of Ising models. Structural similarity between any two
graphs implies potentially redundant information. Under the
criteria of exact recovery of the structure of the graphs, we
have characterized necessary and sufficient conditions on the
sample complexity of joint model selection for various sub-
classes of Ising models. We have also analyzed the scaling

behavior of the sample complexity for joint model selection

presented in this paper and compared the results with that for
model selection of single graphs in the existing literature.
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