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Abstract—This paper considers the problem of secure parameter
estimation when the estimation algorithm is prone to causative attacks.
Causative attacks, in principle, target decision-making algorithms (e.g.,
inference and learning algorithms) to alter their decisions by making them
oblivious to specific attacks. Such attacks influence inference algorithms
by tampering with the mechanism through which the algorithm is
provided with the statistical model of the population about which an
inferential decision is made. Causative attacks are viable, for instance,
by contaminating the historical or training data, or by compromising an
expert who provides the model. In the presence of causative attacks, the
inference algorithms operate under a distorted statistical model for the
population from which they collect data samples. This paper introduces
specific notions of secure estimation and provides a framework under
which secure estimation under causative attacks can be formulated.
Closed-form decision rules, and the fundamental tradeoffs between secu-
rity guarantee and decision qualities are characterized. To circumvent the
computational complexity associated with growing parameter dimension
or attack complexity, a scalable estimation algorithm and its attendant
optimality guarantees are provided.

I. INTRODUCTION
A. Motivation

Anomaly detection, which has diverse applications in intrusion
detection, fraud detection, fault detection, system health monitoring,
and event detection, constitutes a major class of inference problems
in which the objective is raising alarms when the data pattern (e.g.,
statistical model) deviates significantly from the expected patterns.
Effective detection of anomalies in the data strongly hinges on the
known rules for distinguishing normal and abnormal data segments.
These rules, for instance, can be specified by an expert or by lever-
aging the historical data, depending on the context of the application.

While anomaly detection, which in essence copes with the vulner-
ability of the sampled data to being contaminated or compromised,
has been studied extensively (c.f. [1]-[3]), the vulnerability of the
inference algorithms to being compromised is far less-investigated.
The nature of security vulnerabilities that inference algorithms are
exposed to is fundamentally distinct from that of data. Specifically, in
the case of compromised sample data, the information of the decision
algorithm about the model remains intact, while the data fed to the
algorithm is anomalous. In contrast, attacks on the algorithms can be
exerted by providing the algorithm with an incorrect statistical model
for the data. This is viable by, for instance, contaminating the his-
torical data or by confusing the expert that produces a model, which
are critical for furnishing the true model for the statistical model
of the data. Therefore, when the sampled data is compromised, an
inference algorithm produces decisions based on an un-compromised
known model for the data, while the data that it receives and processes
are compromised. On the other hand, when the historical data or the
expert are compromised, an inference algorithm functions based on
an incorrect model for the data, in which case even un-compromised
sampled data produces unreliable decisions.

The aforementioned security vulnerabilities for the inference al-
gorithms can be capitalized on by adversaries in order to force an
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inference algorithm to deviate from its optimal structure and produce
decisions in ways that serve an adversary’s purposes. Such attacks
on decision algorithms are often referred to as causative attacks,
through which an adversary aims to (i) make the inference algorithms
oblivious to specific attacks, or (ii) degrade the performance of the
inference algorithm in the presence of such an attack [4].

While secure decision-making in adjacent domains (e.g., machine
learning) has been heavily investigated in recent years, the fundamen-
tal limits of secure statistical inference are not well-investigated, and
all the limited existing studies remain rather ad-hoc. In this paper,
we provide a framework for secure parameter estimation under the
potential presence of causative attacks. We establish the fundamental
tradeoffs involved in decision-making under causative attacks and
characterize the optimal decision rules for securely estimating the
parameters and concurrently detecting the presence of the attackers.

B. Overview and Contributions

To lay the context for discussing the problem investigated, consider
the canonical parameter estimation problem in which we have a
collection of probability distributions {Px : X € X} defined over
a common measurable space. The objective is to estimate X, which
lies in a known set X C R”, from data samples Y = [Y1,...,Y,],
where the sample Y, is distributed according to Px and lies in a
known set ) C R™. We denote the probability density functions
(pdfs) that the statistician assumes about the underlying distributions
of X and Y; by 7 and f(- | X), respectively, i.e.,

Y, ~ f(-|X), with X ~ 7. (1)

For convenience, we will assume that the pdfs do not have any
non-zero probability masses over lower-dimensional manifolds. The
objective of the statistician is formalizing a reliable estimator

X(Y): )" = X . )

Causative Attacks: In an adversarial environment, a malicious
attacker might launch a causative attack to influence (degrade) the
quality of X (Y). The purpose of such an attack is to compromise the
process that underlies acquiring the statistical models. We emphasize
that such an attack is different from those that aim to compromise
the data, e.g., false data injection attacks, which aim to distort the
data samples Y. Consequently, the effect of a causative attack is
misleading the statistician about the true model f(- | X) that it
assumes about the data. Such attacks are possible by compromising
the historical (or training) data that is used for defining a model for
the data. Depending on the specificity and the extent of a causative
attack, e.g., the fraction of the historical or training data that is
compromised, the true model f(- | X) can deviate to alternative
forms, the space of which we denote by F. The attack can affect
the statistical distribution of any number of the m coordinates of Y.
There are two major aspects to selecting F as viable model space.

o An attack is effective if the compromised model is sufficiently
distinct from the model assumed by the statistician. Hence,
even though in general F can be any representation of possible
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kernels f(- | X) mapping ) to R™, only a subset of such
mappings suffices to describe the set of effective attacks.

o There exists a tradeoff between the complexity of the model
space and its expressiveness. If it is overly expressive, it can
represent the possible compromised models with a more refined
accuracy at the expense of more complex inferential rules.

(g, B)-Security: The potential presence of an adversary introduces
a new dimension to the estimation problem in (2). Specifically, on
the one hand, the stochastic model of the data can be altered by an
attack and detecting whether the data model is compromised, itself
being an inference task, is never perfect. On the other hand, designing
an optimal estimation rule strongly hinges on successfully isolating
the true model. Hence, there exists an inherent coupling between the
original estimation problem of interest and the introduced auxiliary
problem (i.e., detecting the presence of an attacker and isolating the
true model). Based on this observation, in an adversarial setting, there
exists uncertainty about the true model, based on which the quality
of the estimator is expected to degrade with respect to an attack-free
setting. We are interested in establishing the fundamental interplay
between the quality of discerning the true model and the degradation
level in the estimation quality. To establish this interplay, we say that
an estimator is (g, 3)-secure if its estimation cost is weaker than that
of the attack-free setting by a factor ¢ € [1, +00), while missing at
most 3 € (0, 1] fraction of the attacks.

C. Related Studies

The problem of secure inference is studied primarily in the context
of sensor networks. The study in [5], in particular, considers a
two-sensor network in which one sensor is known to be secured,
and one sensor is vulnerable to attacks. The objective is forming
an estimate based on the mean-squared error criterion, for which
a heuristic detection-driven estimator is designed. The adversarial
setting defined in this paper is also similar to the widely-studied
Byzantine attack models in sensor networks, in which the data
generated by the compromised sensors are modified arbitrarily by
the adversaries in order to degrade or the inference quality (c.f. [2],
[3], [6], [7]). Strategies for isolating the compromised nodes in sensor
networks are investigated in [8]-[10]. The emphasis of these studies
is primarily focused on detecting attacks, or isolating the attacked
sensors, which is different from the scope of our paper, which is
focused on parameter estimation. All the aforementioned studies that
involve secure estimation, irrespective of their focus or objective,
conform in their design principle, which decouples the estimation
decisions from all other decisions involved (e.g., attack detection
or attacked sensor isolation), and produces either detection-driven
estimators or estimation-driven detection routines. Such approaches
implicitly assume that the detection decision has been perfect. The
premise that decoupling such intertwined estimation and detection
problems into independent estimation and detection routines is sub-
optimal is well-investigated (e.g., in [11]-[14]).

II. DATA MODEL AND DEFINITIONS
A. Attack Model

Our focus is on the canonical estimation problem in (2). The
objective is to form an optimal estimate X (Y) (under the general
cost functions specified later) in the potential presence of a causative
attack. Under the attack-free setting, the data is assumed to be
generated according to the known distribution

Y, ~ f(-1X), with X ~ 7w, forre{l,...n}. (3)

In an adversarial setting, an adversary, depending on its strength and
preference, can launch an attack that can compromise the underlying
process that the statistician uses for acquiring f(- | X). An attack will
be carried out for the ultimate purpose of degrading the estimation
quality of X. We assume that the adversary can corrupt the data
model of up to K € {1,...,m} coordinates of Y. Hence, for a
given K, there exist 7 = YK, () number of attack scenarios
under which the compromised data models are distinct. Define
S 2 {S1,...,S7} as the set of all possible combinations of attack
scenarios, where S; C {1,...,m} describes the set of coordinates
the models of which are compromised under scenario s € {1,...,T'}.

Under the attack scenario ¢ € {1,...,T'}, the distribution of Y,
deviates from f and changes to a model in the space F;. As discussed
earlier, there exists a tradeoff between the expressiveness of this space
and the complexity of the ensuing inferential rules. Specifically, a
larger space J; can distinguish different attack strategies with a more
accurate resolution at the expense of high complexity in the analysis
and the resulting decision rules. Also, the model can be effective if
it encompasses sufficiently distinct models. Throughout the analysis
of the paper, we assume that F; £ {fi(- | X)}. i.e., F; consists
of one alternative distribution. This is primarily for the convenience
in notations, and all the results presented can be generalized to any
arbitrary space with countable elements. Based on this model, when
the data models in the coordinates contained in S; are compromised,
the joint distribution changes from f(- | X) to fi(- | X).

Different attack scenarios might occur with different likelihoods,
e.g., compromising one coordinate is easier than compromising two,
and it might turn out to be more likely. To distinguish such likelihoods
we adopt a Bayesian framework in which we define ¢p as the
prior probability of having an attack-free scenario and define e;
as the prior probability of the event that the attacker compromises
the model under the coordinates specified by S;. A block diagram
of the attack model and the inferential goals to be characterized,
which are discussed in the remainder of this section, is depicted in
Fig. 1. Finally, we define the marginal pdf of the data at coordinate
1 €{1,...,m} under the attack-free setting and when the coordinate
is compromised by g and g;, respectively.

B. Decision Cost Functions
1) Attack Detection Costs: The possibility of having multiple
alternatives to the attack-free model renders the model detection
problem as the following composite hypothesis testing problem.
Ho : Y~ f(Y ] X), with X ~7(X)
Hi : Y~ fi(Y]X), with X ~7(X), for €{1,...,T}
(C))

The likelihood of deciding in favor of H; under the true model H; is
PO=H,|T=H) = [ 5(¥)A(Y)dY . )
Y

We define Py as the aggregate probability of incorrectly identifying
the true model under the presence of compromised coordinates, i.e.,

T

Pra(8) EP(D#T|T#Ho) =)

=1

€ -P(D#H: | T=H,)
1-— €0 ’
(0)
Furthermore, we define Pg, as the aggregate probability of erro-
neously declaring that a set of coordinates are compromised, while
operating in an attack-free scenario. We have
T
Pu(8) 2P(D #Ho | T=Ho) =) P(D=H;|T=Ho). (7)

=1
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Fig. 1: The effect of the adversary on the data model, and the inferential decisions involved.

2) Secure Estimation Costs: In this subsection, we define two
estimation cost functions for capturing the fidelity of the estimate
X (Y) we aim to form for X. For this purpose, we adopt a
generic and non-negative cost function C(X, U(Y)) to quantify the
discrepancy between the ground truth X and a generic estimator
U(Y). Based on this, corresponding to each model H; and given

data Y we first define the average posterior cost function as
Goi(U(Y) | Y) 2 E [C(X,U(Y)) | Y] Vi€ {0,....T}, (8

where the conditional expectation is with respect to X when the
true model is H;. Besides this, due to having distinct data models
under different attack models, we consider having possibly distinct
estimators under different models. Driven by this, we consider the
design for an estimate for X under each model. We denote the
estimate of X under model H; by X;(Y), and accordingly, we define

X(Y) 2 [Xo(Y),..., Xr(Y)] . 9)

Considering such distinct estimators, the estimation cost
C(X,Xi(Y)) is relevant only if the decision is H,. Hence,
for any generic estimator U;(Y) of X under model H;, we define
the decision-specific average cost function as

Ji(6:,Ui(Y)) 2 B [C(X,U:(Y)) | D=Hi] , Vi, (10)

where the conditional expectation is with respect to X and Y.
Accordingly, we define an aggregate average estimation as

J(6,U) & Ji(6:,U:(Y)) 11
(0,U0) = _max  Ji(0, Ui(Y)) (11
where we have defined U £ [Up(Y),...,Ur(Y)]. Finally, cor-
responding to the attack-free scenario, in which the only possible
data model is the assumed model f, corresponding to any generic
estimator V(Y) we define the average estimation according to

Jo(V) =E[C(X,V(Y))], (12)

where the expectation is with respect to X and Y under model f. It
is noteworthy that Jo defined in (12) is fundamentally different from
J(8,U) defined in (11), since the former is the estimation cost when
there is no alternative to f (i.e., the attack-free scenario), while the
latter is the estimation cost in an adversarial setting in which we have
decided that the attacker has not compromised the data, which being
a detection decision is never perfect and can be inaccurate with a
non-zero probability. The role of Jo (V') in our analysis is furnishing
a baseline for the estimation quality in order to assess the impact of
the potential presence of an adversary on the estimation quality.

III. SECURE PARAMETER ESTIMATION

The core premise underlying the notion of secure estimation
presented is that there exists an inherent interplay between the quality
of estimating X and the quality of isolating the true model governing
the data. Specifically, perfect detection of an adversary’s attack model

is impossible. At the same time, the estimation quality strongly relies
on the successful isolation of the true data model. Lack of a perfect
decision about the data model is expected to degrade the estimation
quality compared to the attack-free scenario. To quantify such an
interplay as well as the degradation in estimation quality with respect
to the attack-free scenario, we provide the following definition.
Definition 1: For a given estimator V' in the attack-free scenario,
and a secure estimation procedure specified by rules (4, U) in the
adversarial scenario, we define the estimation degradation factor as

q(6,U,V) & J(9,U)

To(V) (13)

Based on this definition, next we define the performance region,
which encompasses all the pairs of decision qualities ¢(d, U, V') and
Pmd(8) over the space of all possible decision rules (8§, U, V).
Definition 2 (Performance Region): We define the performance
region as the region of all simultaneously achievable estimation
quality ¢(&, U, V) and detection performance Ppmg(4).
By leveraging the characteristics of the performance region, next we
define the notion of (g, 3)-security, which is instrumental in defining
the secure estimation problem of interest. For this purpose, note that
a defined in (13) normalizes the estimation cost in the adversarial
setting by that of the attack-free scenario. The two estimation cost
functions involved in ¢(&, U, V) can be computed independently,
and as a result, determining their attendant decision rules can be
carried out independently. For this purpose, we define V* as the
optimal decision rule under the attack-free setting, and Jy as the
corresponding estimation cost, i.e.,

Vv* A& arg min Jo(V) and J5 2 min Jo(V). (14)

Definition 3 ((q, B)-security): An estimation procedure specified
by (8, U, V™) for the adversarial scenario is said to be (g, 3)-secure
if the decision rules (8, U) yield the minimal EDF among all the
decision rules corresponding to which the average rate of missing
the attacks does not exceed 8 € (0,1], i.e.,

qé%aglq(a,U,v*) , st. Pma(8) < 8. 15)
The performance region, and its boundary that specifies the interplay
between ¢ and [ are illustrated in Fig. 2. Based on these definitions,

we aim to characterize:

1) The region of all simultaneously achievable values of
q(6,U, V") and Pna(d), which is illustrated by the dashed
region in Fig. 2.

The (g, 3)-secure decision rules (8, U, V™) that solve (15),
and specify the boundary of the performance region, which is
illustrated by a solid line as the boundary of the performance
region in Fig. 2.

2)
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Performance Region

(67 U7 V*)

q(6,U, V")

\

I:)md (6)

Fig. 2: Performance region.

Sinceq(6, U, V™) = J(i;U) , where J§j is a constant, the performance
0
region and the (g, 3)-secure decision rules are found by solving

mins y J(4,U)

st Pma(8) < B (16)

Q(B) = {

IV. SECURE ESTIMATION: OPTIMAL DECISION RULES

We characterize an optimal solution to the more general problem
Q(B), ie., the estimators {X;(Y) : ¢ € {0,...,7T}} and the
detectors {0;(Y) : 4 € {0,...,T}}. By noting (5) and (7), we obtain

J(8,U)

T . T
> T 2

1 j=0JY
J#i

mins,u)

Q(B) = 4 st () fi(Y)dY <8 -

a7

The roles of the estimators {U;(Y) : ¢ € {0,...,T}} appear only
in the utility function J(&,U). This allows for decoupling the
optimization problem Q(f) into two sub-problems, as formalized
in Theorem 1.

Theorem 1: The optimal secure estimators of X under different
models, ie., X = [Xo, . XT] is the solution to

X = arg mLiIn J(6,U). (18)

Furthermore, the solution of Q(/3), and subsequently the design of
the attack detectors, can be found by equivalently solving

mins  J(d, X)
QB) = st 3 i/ 5(Y)f(Y)dy <p - (19
i=1 ng? Y

This theorem establishes a property for the optimal estimator in (18),
by leveraging which, in the following theorem we provide optimal
designs for the secure estimators. Interestingly, it is shown that the
optimal estimator under each model can be specified by optimizing
a relevant cost function defined exclusively for that model.

Theorem 2 ((q,[3)-secure Estimators): For the optimal secure
estimators X we have

1) The minimizer of the estimation cost J;(d;, U;(Y)), i.e., the
estimation cost function under model H;, is given by

3) The cost function J(d,X) is given by

| G0y

J(6,X) = max . (22)
‘ / 8:(Y) f:(X)dY
Y
where we have defined
* a (U
Ci(Y) = Ulir(l‘f{) Coi(Us(Y) 1Y) . (23)

Next, given the optimal estimators X, we characterize the optimal
detection rules in the next theorem. The main observation is that
even though we started by considering general randomized decision
rules, these rules in their optimal forms reduce to deterministic ones.
Furthermore, the decisions rules depend on the estimation costs that
are computed based on the optimal estimation costs. These estimation
costs make the decisions coupled. In order to proceed, we first show
that Q(B) in (19) can be solved by leveraging the result of the
following theorem, which specifies an auxiliary convex problem.

Theorem 3: For any arbitrary u € R4, we have Q(3) < u if and
only if R(3,u) < 0, where we have defined

mins 7y

st [ ARG —uaY <5,

T o T .
;1760 JX_(:)/Y‘SJ(Y)fi(Y) dY <B4+~

J#i

R(B,u) =

(24)

Furthermore, R(3,u) is convex, and R(8,u) = 0 has a unique
solution in u, which we denote by u*.
The point v* has a pivotal role in specifying the optimal detection
decision rules. We define the constants {¢; : ¢ € {0,...,T +2}}
as the dual variables in the Lagrange function associated with the
convex problem R(8, ™). Based on these parameters, the optimal
detection rules can be characterized in closed-forms, as specified in
the following theorem.

Theorem 4 ((q, 3)-secure Detection Rules): The optimal decision
rules for isolating the compromised coordinates are given by

5i(Y):{ 1, if i=1

7 25
0, if i @3)

where we have defined i* £ argmin,. {0,...,y Ai. Constants

,,,,,

{Ao,...,Ar} are specified by the models, u*, and its associated
Langrangian multipliers {¢; : ¢ € {0,...,T + 2}}. Specifically,
A * * a €
Ao £ Lo fo(Y)[Cho(Y) = u'] +Lri1 T fi(Y), (6
=1 €0
Ai £ 4 fi(Y)[Ca(Y) —u']
T
e Y =T (YY) 4 breafo(Y) . @7
e E

Algorithm 1 summarizes all the steps involved for solving Q(3).

V. CASE STUDY: SECURE ESTIMATION IN SENSOR NETWORKS

We consider a network of two sensors and a fusion center (FC)

U (Y) 2 arg inf Cpi(Ui(Y)]Y). (20) RS S
Ui (Y) to evaluate the estimation frameworks presented in this paper. Each
. . o o foa sensor is collecting a stream of data. Sensor ¢ € {1,2} collects n
2) The optimal estimator X = [Xo, ..., Xr]is given by measurements, denoted by Y — [Yy, ..., Y.i], where
X(Y)=Ur(Y) . @n Y} =h'X + N} . (28)
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Algorithm 1 — Solving Q(5)

1: Initialize uo = 0, u1

2: Evaluate optimal posterior estimation costs

3: repeat

4 U (UO —+ ul) / 2

5: for every £ = 0 in the discretized space |||, = 1 do
6 Compute § from Theorem 4

7 Compute M (£) 2 R(3,4)

8

9

end for
if min; M (€) < 0 then
10: U < U
11: )
12: else
13: ug < U
14: end if

15: until u; — up < ¢, for € sufficiently small
16: Q(B) «+ u* =w

h* models the channel connecting sensor i to the FC and N } accounts
for the additive channel noise. Different noise terms are assumed to
be independent and identically distributed (i.i.d.) generated according
to a known distribution.

We consider an adversarial setting in which only sensor 1 is
vulnerable. Hence, we have only one attack scenario. Accordingly,
we have €9 + €1 = 1. Under the attack-free scenario, we assume that
the noise terms N are i.i.d. with distribution A/(0,02). When data
from sensor 1 is compromised, the actual conditional distribution of
le | X is distinct from the distribution assumed by the statistician. The
inference objective, in principle, becomes similar to the adversarial
setting of [5], which focuses on data injection. Hence, in order to
be able to compare the performance of the optimal framework with
that of [5], we assume that the conditional distribution of le | X when
sensor 1 is under a causative attack is A'(h*X, o2 )*Unif[a, b], where
a,b € R are fixed constants and * denotes convolution.

Figure 3 depicts the variations of ¢, versus the tolerable miss-
detection rate [, where it is observed that the estimation quality
improves monotonically as § increases, and it reaches its maximum
quality when 8 = 1. A similar setting is studied in [5], where
the attack is induced additively into the data of sensor 1 and can
be any real number. This setting can be studied in the context of
causative attacks where the attacker’s mode of compromising the data
is adding a disturbance which has uniform distribution. Figure 3 also
compares the estimation quality of the methodology developed in
this paper, with that obtained by applying the methodology of [5],
which characterizes a single point in the (g, 3) plane. Specifically,
in [5], an estimator is designed to obtain the most robust estimate
by exploring the dependence of the estimation quality on the false
alarm probability, using which an optimal false alarm probability is
obtained, which in turn, fixes the miss-detection error probability,
and does not provide the flexibility to change the miss-detection rate
B. The results presented in Fig. 3 correspond to ¢ = 3, o, = 1,
h' =1, h? = 4, a = —40,b = 40. The upper bound on Py, is set
to a® = 0.1, where o™ is obtained using the methodology in [5].

VI. CONCLUSION

We have formalized and analyzed the problem of secure parameter
estimation problem under the potential presence of causative attacks
on the estimation algorithm. Under causative attacks, the information
of the estimation algorithm about the statistical model of the sampled
data is compromised. This leads the estimation algorithm exhibit
degraded performance compared to the attack-free setting. We have

18 T T T T T T T T

* — Optimal Performance
1.7r ¥ Method in [5] 1

Fig. 3: q versus .

provided closed-form optimal decision rules that ensure the best
estimation quality (minimum estimation cost) while controlling the
error in detecting the attacks and isolating the true model of the data.
We have designed the optimal decision rules, which combine both
estimation performance and detection power.
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