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ABSTRACT

This paper considers the problem of jointly recovering the
structures of two graphical models with unknown edge struc-
tures. It is assumed that both graphs have the same number
of nodes and a known subset of nodes have identical struc-
tures in both graphs. The classes of Ising models and Gaus-
sian models are considered. For Ising models, the objective is
to recover the connectivity of both graphs under an approxi-
mate recovery criterion. For Gaussian models, the objectives
of edge structure recovery and inverse covariance estimation
are considered. Information-theoretic bounds on the sample
complexity for bounded probability of error under the afore-
mentioned criteria are established and compared with the cor-
responding bounds on the sample complexity for recovering
the graphs independently.

Index Terms— Graphical models, information-theoretic
bounds, joint model selection, structural similarity.

1. INTRODUCTION

Conditional dependence among multiple random vari-
ables can be structurally modeled by graphical models, in
which the random variables form the nodes of the graphs
and their interdependence is captured by the edges among
them [1,2]. Graph-based models have widespread applica-
tions in many domains, e.g., computer vision [3], genetics
[4-6], social networks [7], and power systems [8]. In this
paper, we consider the problem of joint model selection of a
pair of graphs with partial structural similarity using samples
from their joint distributions, where the focus is on Gaussian
and Ising models. The problem of model selection consists
of edge structure recovery for Ising and Gaussian models
and also inverse covariance matrix estimation for Gaussian
models.

Graphical models with partially similar structures are ef-
fective for modeling inference problems in various domains
such as physical infrastructures [9], biological networks [4],
and behavioral analysis [10]. In such domains, the data is gen-
erated by multiple networks (modeled by graphs), in which
there exists a partial structure common to all networks, while
each network has also a unique partial structure. In such ap-
plications, the data collected from different graphs has redun-
dancy of information that can be leveraged for jointly ana-
lyzing the data from all the relevant models. Motivated by
this premise, we analyze algorithm-independent information-
theoretic bounds on the sample complexity for joint model
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selection of a pair of partially similar graphical models that
belong to the classes of Ising and Gaussian models. Further-
more, we also analyze inverse covariance estimation for a pair
of graphs from the class of Gaussian models.

1.1. Related Work

The problem of graphical model selection is feasible
under certain restrictions on the graph structure, e.g., spar-
sity [11-14]. Such restrictions on the graphical models can
be analyzed by studying graphs with bounded degree and
number of edges. Information-theoretic bounds on the sam-
ple complexity for model selection of single graphs in various
classes of Ising models and Gaussian models have been stud-
ied in [15-18]. In [15] and [16], necessary conditions on the
sample complexity for the exact recovery of sub-classes of
Ising models are established. In [17], the problem of graphi-
cal model selection is investigated for Ising models under the
criterion of approximate recovery, i.e., at most a fixed num-
ber of errors are tolerated in the estimated graph structure.
Necessary conditions for set-based graph model selection,
i.e., a set of graphs that potentially contains the true graph is
identified by the graph estimator, are characterized in [19].

Joint graphical model inference has been investigated
in [4, 5, 10,20-25] for graphs that may be structurally sim-
ilar. In [5] and [20-23], optimization techniques are used
for joint inference of Gaussian graphical models. In [4]
and [24], Bayesian frameworks are developed for joint model
inference. The aforementioned papers investigate various em-
pirical frameworks for joint graph inference when different
models may be partially similar. In this paper, we focus on
characterizing the sample complexity for joint model selec-
tion of a pair of graphs with same number of nodes that have
the same graph structure within a known cluster of nodes.

2. GRAPH MODEL

Consider a pair of undirected graphs, denoted by G; £

(Vi,Ey) and Go = (Va, Ey), where V; = {1,...,p} and
E; C V; x V; are the set of p vertices and the set of edges,
respectively, in graph G;, for ¢ € {1,2}. We denote the edge
between nodes u,v € E;, by E;" . Each node j € V; in
graph G; is associated with a random variable denoted by X7/,
and the joint probability density function (pdf) of the random
vector X; = [X},... XP] is denoted by f;(-), fori € {1,2}.
In this paper, we call X; as one graph sample. We collect n
graph samples from each graph to perform joint model selec-

tion of G; and G,. The collection of n samples from graph
G, is denoted by X*. Given AT* and X7, the graph decoder
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G(X, XJ) £ {G1,G,) provides the estimates Gy and G, for
G1 and G, respectively.

Fig. 1. Two graphs with partially similar structures. Yellow
nodes in both graphs have the same internal edge structure.

In this paper, we assume that the graphs G; and G, are
structurally identical within a pre-specified cluster of nodes,
i.e., both G; and G5 have the same internal sub-graph within a
set of nodes V. C Vp, V5. An example of this setting is illus-
trated in Fig. 1. We establish information-theoretic bounds on
the sample complexity of approximate joint model selection
of the two graphs for Ising models, and that for exact joint
model selection and inverse covariance matrix estimation for
Gaussian models.

3. PROBLEM FORMULATION

We formalize the notation for structurally similar graphs
in the following definition.

Definition 1. A pair of graphs G, and Gs is said to be
(—similar if both graphs have the same internal graphical
structure within a cluster of nodes of size |(p|, for some

¢€(0,1).

For both G; and Go, the edge structures between any pair
of nodes with at least one node not in V. are assumed to be
structurally independent of each other. For graph G;, the de-
gree of a node u € V; is denoted by d¢,, which captures the
number of nodes in the immediate neighborhood of u (i.e.,
the nodes that are directly connected to u by an edge). Given
the family of graphical models that G; and G5 belong to, the
pdfs f1 and f> represent the graphical structure of G; and G,
respectively.

3.1. Ising Model

For a graph G; in the family of Ising models, each node
u € V; is associated with a binary random variable X" €
{—1,1}. The pdf of the random vector X; associated with G;
is given by

for A > 0, and Z; is the partition function given by

Zi S Z exp

X;e{-1,1}r

Soarxexy| . 0

u,veV;

Note that the parameter A in (2) controls the dependence
among the nodes in the graph. In [15], it is shown that recov-
ering the graph structure from the data becomes more difficult
as A approaches 0 or grows to infinity.

We denote the family of Ising models by Z, and the fam-
ily of (—similar pairs of Ising models by Z¢. Furthermore,
we consider a restricted subclass of Ising models, given by

If},’;f, - that consists of pairs of graphs with each graph hav-

ing at most k number of edges and at most |6k |, for some
6 € (0,1), edges in the cluster with common structure, each
node in the graph having a degree of at most d, and the paths
of length  or less between any two non-connected nodes in
the graph can be blocked by blocking at most n number of
nodes. For convenience in notations, throughout the paper we
use the shorthand 7 to refer to Ig”z’ n~- Restrictions on the
maximum degree and the number of edges in the graph are
motivated by practical applications in which the models are
sparse. Restriction on the number of edges in the graph in
the shared cluster is motivated by the fact that the size of the
shared cluster determines the maximum number of edges al-
lowed within it, which may be significantly less than the total
number of edges allowed in the graphs. Restrictions on the
paths between any two disconnected nodes are of interest as
existing literature suggests polynomial time recovery of the
graphs in several cases [26].

3.2. Gaussian Model

In this paper, we assume that the mean of the pdf associ-
ated with Gaussian model is a zero vector. Hence, for a graph
G;, the joint distribution of X; with inverse covariance matrix
>J; is given by

1

fi(X) = exp (lXiTZiXZ-). 4)
(£ N2

Note that the off diagonal elements of X; reflect the edge
structure of the graph G;, i.e., the element at a coordinate
(u,v) in X;, given by X;(u,v), is non-zero if and only if
E"" € E;.

We denote the class of Gaussian models by G and the class
of ¢ —similar Gaussian graphical models by G¢. The recovery
of the Gaussian model is contingent upon the matrix elements
of the inverse-covariance matrix [18]. Therefore, for a graph
G;, we also define

(2m)Pdet

i(u,v) |
1 Uv YU YU A £ min ‘ S , 5
filXi) = 7. XP Z ACXGXT ] M b uweVs /5 (u,u) (v, v) ®
v u,veV;
which reflects the scale-invariant minimum value of the ma-
where trix ;.
e In this paper, we consider the following sub-class of Gaus-
AU A { A ifE ) S ’ ) sian model. A pair of graphical models G; and G» belong to
0, otherwise the class Qfl (\) if and only if they are (—similar, have a de-
5293

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on January 10,2021 at 16:13:34 UTC from IEEE Xplore. Restrictions apply.



gree of at most d, and satisfy min{A%, A5} > \.

3.3. Recovery Criteria

Given the collection of samples X* and X3', the aim

of the graph decoder G(AT', XJ') is to form estimates for
the graphs G; and Gs. We first provide the graph recovery
criteria for Ising models and Gaussian models, which have
been adopted in the existing literature for recovering single
graphs [17, 18].

3.3.1. Ising Model

For Ising models, we adopt an approximate graph recov-
ery criteria, that is, we tolerate at most a pre-specified number
of erroneous decisions, denoted by ¢ > 0, about the edges in
the recovery of each graph. The probability of error in the
approximate graph recovery over the class 7 is defined as

L

P min {|E;AE|} > q , (©6)

ie{1,2}

max [P

q
z G1,G2€1

where |E1AE1| is the edit distance between E; and F; given
by |E7AEZ‘ = |(E1\E'L) @] (EL\ET)‘ Note that ‘EzAEIL‘ rep-
resents the number of modifications to be made in the edge

structure to transform G; to Gi, and ¢ characterizes the mis-
match between the estimated and true graphs.

3.3.2. Gaussian Model

As discussed earlier, the Gaussian models are charac-
terized by the inverse covariance matrix and the non-zero
off-diagonal elements represent the edges between the nodes.
Note that the edge structure can be determined by estimating
the support of the inverse covariance matrix (i.e., the non-zero
off-diagonal elements). We list the two recovery criteria used
for Gaussian models as follows.

1. Exact Recovery: Under this criterion, we aim to per-
form joint model selection for the two graphs to recover
the edge structure of both graphs exactly based on the
given collection of graph samples, XT* and X3'. For
Gaussian models, exact recovery is equivalent to esti-
mating the corresponding support sets of the inverse co-
variance matrices Y1 and X5. We define Pg as the prob-

ability of error in exact recovery over the class gg(A),
ie.,
Pg £ PG(A], X5) # (G1,G2)] - (7)

max
G1,G62€G5(N)

2. Inverse Covariance Matrix Estimation: Under this cri-
terion, the graph decoder aims to estimate the inverse
covariance matrices 1 and ¥5. Note that estimating
the numerical values of the inverse covariance matrix
and estimating the support set of the inverse covariance
matrix are fundamentally different tasks [18]. Define

f]i as the estimate of 3;. Then, the maximal probabil-
ity of error in the inverse covariance matrix estimation

is defined as

Pg(s) £
max P | min |5 - Difle <3/2| , (8)
G1,02€65(n)  Li€{1,2}
where || - ||oo denotes the {,-norm.

3.4. Comparison with Existing Works

When graphs G; and Gs are recovered jointly under the
aforementioned criteria, a total of 2n graph samples are used,
for which we establish performance guarantees on the prob-
ability of error for the corresponding criterion. Let ng be the
number of samples necessary for recovering a single graph
under the different criteria with the same performance guar-
antees. Such sample complexities have been analyzed in [17]
and [18]. To analyze the difference between the two settings,

we define D £ 2(ng, — n).

4. MAIN RESULTS

In this section, we provide the necessary conditions on the
sample size n for any graph decoder to recover a pair of struc-
turally similar graphs, and compare them with the existing
results for single graphs. Note that the necessary conditions
provided in this paper are algorithm-independent and there-
fore, provide benchmarks for the sample complexity analysis
of any designed algorithm.

4.1. Ising Models

We provide the results for approximate recovery of
(—similar graphs in the class Z, and discuss the scaling
behavior of the gap between the results in this section and the
existing results for single graphs. To describe the results for
this setting, we denote the binary entropy function by

h(0) £ —Ologh — (1 — ) log(1l —6), for 6 € (0,1) . (9)

Theorem 1 (Class Z with k& < p/4). Consider a pair
of (—similar graphs Gy and Gs in the class I with pa-
rameters k < p/4 and n < LgJ For any graph de-

coder G : X' x X3 — T that tolerates the distortion q =

en—1)%k
\-62077([2(7717713'\/+1))Jf0rsome m e {07 ety L%J _77}’ ﬁ € (05 %)
and c € (1/n,1], and achieves P% < §, the sample complexity
satisfies

n > max {41, A2} (1 —§ —o(1)) (10)

where we have defined

4. 22(L=0)klog(p(1 — ) + kflog(Cp) — 2qlogp
! kA tanh A ’
(11)
—e)n— 1+ (tanh A\)7Yt?! m
e (1 + (cosh 2))(1—e)n—1 (717&&“ /\g'y+1) )
2 2Xen
x (1 =¢/2)log2 — h(B)) . (12)
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To gain more insight from Theorem 1, we note that the terms
A; and A, have different scaling behavior in A, p, and d.
Therefore, it is imperative to explore different regimes of vari-
artion of parameters that characterize the sample complexity.

1. XA = w(min{1/,/7, 1/mﬁ}: In this regime, we can
verify that the term A, grows exponentially in A%p
and AY*'m, and dominates the sample complexity.
By comparing As with the corresponding result for a

s1ngle graph we observe that D scales exponentially in
A25 and A7

2. A= O(min{1/,/7, l/mwﬂ} In this regime, the term
A; dominates the sample complexity and as A — 0,
tanh A scales according to O(\) and therefore, A;

scales according to Q(max {7, myT }logp). Also, by
comparing with the corresponding result for a single
graph, we conclude that D scales at the same rate as

the sample complexity, i.e., 2(max{n, m }logp).

4.2. Gaussian Models

In this section, we consider the class of Gaussian graph-
ical models and provide information-theoretic bounds on the
sample size n for recovering ( —similar graphs.

4.2.1. Exact Recovery

Theorem 2 (Class gg( ). For a pair of (—similar graphs Gy
and Gy in class G5(\) with X € [0,
G: XXX} — Qg( ) that achieves Pg ~—> 0, the sample
size n for each graph satisfies

n > max{By,B2}(1 - ¢

} for any graph decoder

—o(1)), 13)

_1}
, (14

where we have defined

Cp—d\ _ p—(p—d
Blémax{k)g( ) — 1 log (")

82 ’ 4\2
log (°7) — 1
B, £max Ogdgd) T
log (1 + ﬂ) T TH(d—D)A
log (P~5P) — 1
1 L) X (15)
3 log (1 + m) =Y

We compare the results in Theorem 2 with that in [18]. Note
that the terms B; and B, have different scaling behavior with
respect to A, and therefore it is imperative to characterize the
scaling behavior of all the terms to characterize the gain in
sample complexity under joint model selection over model
selection of a single graph.

1. A = @(é): In this regime, the sum of edge weights
in the neighborhood of every node remains bounded.
Also, By and B, scale differently with A\. The terms
Bj scale according to (d? log(max{¢,1 — (}p — d)).
Also, the first term in B; is dominant when { — 1.
The corresponding result for a single graph from [18]

is 4)\2 (log( ) 1). Therefore, under the regime
when B; dominates the sample complexity, we have
D = Q(d? log(max{C, 1 — C}p — d)).

2. A= 0(1) and X € [0,1/2]: In this regime, the sam-
ple complexity is dominated by B which scales as
Q (%). By comparison with the correspond-
ing result for recovering a single graph, we have D =
Q (%) in this regime.

4.2.2. Inverse Covariance Matrix Recovery

Theorem 3. For a pair of (—similar graphs G, and G5 in
class gg(/\), if there exists a graph decoder such that Pg <
1/2, then the sample complexity satisfies

log (de> 2 log (M) -2
842 ’ 462

(16)

n > max

The bound in (16) captures the sample complexity corre-
sponding to inverse covariance matrix estimation of ( —similar
pair of graphs. In [18], the corresponding result for a single

pd
graph is %. It can be shown that D = 7 62 log< )

when 862 (log (de)
ter of the graph pair consists of more edges than the non
shared cluster. When 452 <log (W) -

D= % log(1 — ¢). Clearly, for fixed ¢, the variation scales
with 0 and becomes significantly large as 6 — 0. However,
when the shared cluster is denser compared to the non-shared
cluster of the graph pair, the bound on the sample complexity
scales with Q(d? log(pd)) when 6 = O(1/d). Also, D scales
according to £2(d?) when § = O(1/d).

5. CONCLUSION

— 2) dominates, i.e., the shared clus-

2) dominates,

In this paper, we have analyzed the problem of joint model
selection of partially similar graphical models in the path-
restricted, edge and degree bounded sub-class of Ising mod-
els and the degree bounded sub-class of Gaussian models. For
Ising models, we have characterized the information-theoretic
bounds on the sample complexity for approximate recovery
of the graph structures. For Gaussian models, we have estab-
lished the information-theoretic bounds on the sample com-
plexity for exact recovery of the graph structures and inverse
covariance matrix estimation. We have also investigated the
scaling behavior of the difference between the sample com-
plexity for joint model selection and that for single graphs
from the results in existing literature.
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