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Abstract13

Impacts modelers and stakeholders use publicly available datasets of downscaled climate14

projections to assess and design infrastructure for changes in future rainfall extremes. If15

differences across datasets exist, infrastructure resilience decisions could change depending16

on which single dataset is used. We assess changes in U.S. rainfall extremes from 2044-209917

compared with 1951-2005 based on 227 projections under RCP4.5 and RCP8.5 from five18

widely used datasets. We show there are large differences in the change magnitude and19

its spatial structure between datasets. At the continental-scale, the datasets show between20

10 % and 50 % larger increases in high-impact events than in more frequent extremes. These21

differences largely contribute to the overall uncertainty for short average recurrence intervals22

(ARI) extremes (2- to 10-year), while uncertainties due to short record length dominate23

long ARIs (25- to 100-year). The results indicate that robust infrastructure planning should24

consider these uncertainties to enable resilient infrastructure under climate change.25

Plain Language Summary26

Observed extreme rainfall magnitudes have increased since 1950, and climate model27

projections indicate that these increases will continue throughout the 21st century in many28

areas. Adapting and designing infrastructure for climate change requires future extreme29

rainfall projections at high resolutions. Global Climate Model (GCM) output resolution30

is generally much coarser, and methods have been developed to create relevant climate31

information at regional-scales. Today, multiple open datasets exist that provide downscaled32

projections of future rainfall extremes. We analyze changes in future daily extremes using33

five widely used datasets in climate change impacts assessments and decision-making. We34

found large differences between datasets in how much and where extreme events will intensify35

by the end of the 21st century. This and other sources of uncertainty need to be considered36

when designing resilient infrastructure.37

1 Introduction38

Extreme rainfall events have intensified in magnitude and become more frequent in39

many regions of the United States (U.S.) since 1950 (DeGaetano, 2009; Hoerling et al., 2016)40

and climate model simulations project these increases will continue throughout the 21st41

century (Prein et al., 2017). Observed and anticipated changes in rainfall extremes affect42

many sectors, including existing and proposed infrastructure such as stormwater systems. In43

the U.S., stormwater infrastructure is designed using federal, state and local design standards44

based on historical extreme rainfall probabilities, and most new infrastructure is similarly45

not designed to consider future climate change (Lopez-Cantu & Samaras, 2018; Wright et46

al., 2019). Making infrastructure systems resilient to future conditions involves identifying47

risks and vulnerabilities to inform climate resilient strategies (IPCC, 2014). However, it is48

not straightforward to develop these strategies because it requires making decisions under a49

deeply uncertain future climate (Hallegatte, 2009). Yet, taking no action is also a decision,50

and large economic damages can occur in the case of no adaptation (Martinich & Crimmins,51

2019).52

Many stakeholders incorporate future climate conditions into their planning and anal-53

yses by using downscaled global climate model (GCM) output to inform hydrologic models54

or update current engineering design standards (Forsee & Ahmad, 2011; Kuo et al., 2015).55

Although the downscaling process is necessary to match the spatial and temporal resolution56

to the required resolution by the specific application (Cook et al., 2017), different downscal-57

ing methods and resolutions can potentially give different results (Cook et al., 2020; Onof58

& Arnbjerg-Nielsen, 2009; Sunyer et al., 2012; Arnbjerg-Nielsen et al., 2015; Wu et al.,59

2019). For the Contiguous United States (CONUS), there are several downscaled climate60

projection datasets covering at least the late 20th century and the 21st century (Mearns et61
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Table 1. Some of the publicly available downscaled climate products for the United States and

an overview of their characteristics.

Dataset
GCM

models
Emissions
Scenario

Downscaled
Spatial Resolution

(degrees)

Highest
Temporal
Resolution

Downscaling
Technique

BCCAv2 21 2.6, 4.5, 6.0, 8.5 1/8 Daily Statistical
MACA 20 4.5, 8.5 1/24 Daily Statistical
LOCA 32 4.5, 8.5 1/16 Daily Statistical

NA-CORDEX 6a 4.5, 8.5 0.22, 0.44 Hourly Dynamical
a The number of GCM models dynamically downscaled depend on the target resolution and the

emissions scenario.

al., 2013; Pierce et al., 2014; Abatzoglou & Brown, 2012; Maraun et al., 2010) (see Table 162

and Supplementary Information Fig. 2 and Tables 1-3). These datasets vary in downscaling63

method used, number of downscaled GCMs, emission scenarios, and horizontal resolution.64

The total number of available projections from the datasets in Table 1 is 103 for Representa-65

tive Concentration Pathway (RCP) 4.5 and 124 for RCP 8.5. The massive amount of data,66

limited guidance or lack of compelling arguments to discard or adopt one or more datasets67

in Table 1, in addition to different ease of use among these datasets, are often reasons why68

many impact assessments only use a single dataset as input–neglecting possible differences69

across the datasets and their influence on the specific study area.70

In this study, we assess the daily extreme rainfall climate change signal across the71

U.S. from five downscaled climate projection datasets (Table 1) for RCP 4.5 and 8.5. We72

use five downscaled climate projection datasets (hereafter, datasets) consisting of multiple73

simulations (hereafter, members), while the collection of available projections from all five74

datasets for each RCP scenario is referred to as ensemble. We focus on these datasets75

because they all downscaled GCMs from the Coupled Model Intercomparison Project Phase76

5 (CMIP5), share a common temporal resolution and spatial coverage, comprise two RCP77

scenarios, are publicly available, and are frequently used as inputs in climate change impacts78

assessments for infrastructure (Cook et al., 2017; Alamdari et al., 2017; Kermanshah et al.,79

2017; Gelda et al., 2019).80

We use the Generalized Extreme Value (GEV) distribution to describe the extreme81

rainfall data and quantify the climate change signal in terms of change factors corresponding82

to the ratio between the model future volume (estimated from annual rainfall series for the83

2044-2099 period) and model historical volumes (1951-2006) of average recurrence interval84

(ARI) events ranging from 2- to 100-year. Additionally, because these datasets are used in a85

decision-making context that requires information about the relevant uncertainties (Mullan86

et al., 2018), we quantify the relative contribution of three sources of uncertainty; (1) the87

GEV distribution fit uncertainty related to the record length to fit the distribution and its88

accuracy to describe the extremes, (2) the dataset selection uncertainty from the different89

downscaling methods applied to a set of GCMs and (3) the uncertainty stemming from the90

emissions scenario (RCP 4.5 and RCP 8.5).91

2 Materials and Methods92

2.1 Publicly Available Downscaled U.S. Climate Projections Datasets93

The datasets compared in this study can be categorized by the type of downscaling94

process used. The Bias Corrected Constructed Analogues (BCCA) version 2, Multivari-95

ate Adaptive Constructed Analogues (MACA) and the Localized Constructed Analogues96

(LOCA) datasets are products of statistically downscaling a subset of CMIP5 GCMs (Pierce97
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et al., 2014; Abatzoglou & Brown, 2012; Maraun et al., 2010). The constructed analog (CA)98

method constitutes the base of each statistical downscaling method. CA involves comparing99

the GCM control simulations to historical observations, traditionally in terms of anomalies,100

but all procedures above use absolute values instead. The historical observations are re-101

gridded to match the resolution of the GCM simulations. GCM simulations are typically102

bias-corrected using a quantile mapping (QM) approach against other source of historical103

observations (Pierce et al., 2014; Abatzoglou & Brown, 2012; Maraun et al., 2010). For a104

given GCM day, the goal is to find a set of days (situated within a maximum of 45 days105

centered at the GCM target day) in the regridded observations that when combined, they106

approximate the climate conditions on the day simulated by the GCM (Hidalgo et al., 2008).107

The main difference between BCCAv2, MACA and LOCA lies in the searchable domain108

to find the analogue days. For BCCAv2 and MACA, the analogue days are selected from any109

grid within the domain (CONUS), while in LOCA, the analogues are identified at smaller110

climatically similar regions. Another difference lies in the number of variables that are111

jointly downscaled. In BCCAv2 and LOCA, variables are independently downscaled, while112

in MACA a multi-variate approach is used for variables other than precipitation (Abatzoglou113

& Brown, 2012). Also, while the BCCAv2 and MACA methods use a linear combination114

of 30 days to construct the CA at each point, a single day out of the 30 identified that is115

closest to GCM target day pattern across the neighboring region to each point is used in the116

LOCA procedure (Bracken, 2016; Pierce et al., 2014). Finally, the MACA method applies117

a final bias-correction step (once again QM) to the downscaled output, in contrast to the118

BCCA and LOCA methods.119

The final dataset we assess is the North American branch of the Coordinated Regional120

Downscaling Experiment (NA-CORDEX), which is a dynamically downscaled dataset. There121

are projections available in two different resolutions (see Table 1), and since they include122

different members (see Supplementary Tables S2–S3), we treated each as an individual123

dataset. Dynamical downscaling techniques use physics-based models or regional climate124

models (RCM) constrained to a smaller region and are driven by GCM projections at the125

boundaries to produce higher resolution projections. The dataset corresponds to a collec-126

tion of high-resolution projections from different GCM-RCM combinations and emissions127

scenarios (Mearns et al., 2014). Fig. S1 shows a detailed comparison of the methodological128

steps of the process followed to produce each dataset.129

2.2 Estimation of Future Changes in Daily Rainfall Extremes130

To compare the extreme rainfall climate change signal between datasets, we first regrid-131

ded all ensemble members to the NA-CORDEX 0.44◦ grid (i.e. the coarsest grid spacing132

across datasets used in this study) using a conservative remapping approach (Jones, 1999)133

to minimize differences stemming from the datasets’ output spatial resolution.134

For each ensemble member, extreme rainfall was characterized using a stationary GEV135

distribution fitted to series of annual maxima (Coles, 2001) for two periods, one future period136

between 2044 and 2099, and a historical period from 1950 to 2006. The GEV distribution137

is defined as,138

F (x) =

e−
(
1+ ξ

σ (x−µ)
− 1
ξ

)
ξ 6= 0

e−e
−( x−µσ )

ξ = 0

, (1)

where µ, σ, ξ are the parameters of the GEV distribution defining its location, scale139

and shape, respectively. The best estimate and its 95 % confidence interval (CI) of the140

parameters (computed through a bootstrapping function implemented in the R package ex-141

tRemes (Gilleland, 2019)) were estimated using the generalized maximum likelihood (GML)142

method, which extends the maximum likelihood (ML) method by adding a constraint that143
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restricts the shape parameter to take values within an physically coherent range (Adlouni144

et al., 2007; Martins & Stedinger, 2000). We used the same prior distribution for the shape145

parameter as defined in (Martins & Stedinger, 2000).146

For each grid cell per dataset member, the 1/q-year ARI change factor (or climate147

signal) was defined as the ratio between the future precipitation volume and the historical148

volume for each ARI quantile, q, and was estimated as,149

Xq,fut =
F−1 (q;µfut, σfut, ξfut)

F−1 (q;µctrl, σctrl, ξctrl)
, (2)

where µfut, σfut, ξfut are the GEV parameters of the distribution fitted to future150

period (2044-2099), µctrl, σctrl, ξctrl are the GEV parameters of the distribution fitted to151

the historical (1950-2006) model period, and Xq the change factor computed for q equal to152

0.5 (2-year), 0.2 (5-year), 0.1 (10-year), 0.04 (25-year), 0.02 (50-year), and 0.01 (100-year)153

ARI events.154

For the BCCAv2 dataset that included multiple downscaled realizations for the same155

GCM, each individual run change factors were averaged. Also, because the number of156

members in each RCP scenario, members that were not common in both RCP scenarios157

where discarded (see Supplementary Tables S1-S3). Across datasets, the set of members158

is different, which makes a comparison of the impact of downscaling method on future159

extreme precipitation challenging. Although here we focus on the complete set of available160

members per dataset to stay consistent with how these datasets are used in the literature,161

we repeated the analysis by using the CMIP5 GCM model (CanESM2) that is downscaled162

in all five datasets to assess the effect of using different GCMs in each dataset.163

Finally, the dataset mean climate change signal for the 2-, 5-, 10-, 25-, 50- and 100-year164

ARI was defined as the average of equally weighted member change factors in a dataset.165

We specifically chose these ARIs to produce actionable results, given that the selected166

ARIs are used as standards for designing water infrastructure in the U.S. (Lopez-Cantu167

& Samaras, 2018). To test the climate change signal’s significance for each dataset and168

ARI, we first constructed a series of 100 artificial rainfall volumes for both the future and169

the historical period, where each volume was estimated through a GEV distribution whose170

parameters where randomly selected (with replacement) from the GEV parameters of any171

dataset member estimated in earlier steps. We then compare the future and historical172

artificial rainfall volumes, and detect statistically significant (at the 0.01 level) differences173

between both periods using the Mann-Whitney rank test.174

2.3 Analysis of Uncertainty Sources and their Contribution to the Overall175

Uncertainty in the Projected Changes in Rainfall Extremes176

To understand how important potential differences between datasets are in the overall177

uncertainty context, we identified other two main sources that contribute to uncertainty in178

the projected change of rainfall extremes. We define the uncertainty due to dataset selection179

(dataset variance), D(r), uncertainty due to the GEV distribution fitting (distribution fit180

variance) and due to the emissions scenario (scenario variance), and contextualize these181

uncertainties in a similar way to (Hawkins & Sutton, 2009).182

The dataset variance component by ARI was estimated as,183

D(a) =
1

Ns

∑
s

vard

(
1

Nd

Nd∑
m=1

xasdm

)
, (3)

where D(a) is the dataset variance component in the a-year event change factors. xasdm184

is the a-year event change factor in RCP scenario s projected by member m in dataset d,185
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and Nd is the total number members in dataset d, and Ns is the number of scenarios (in186

our case two, RCP 4.5 and 8.5). D(a) measures the a-year change factor variability across187

datasets.188

The distribution fit variance was estimated using the change factors computed by all189

combinations of dataset members, scenarios and GEV parameters estimates (mean and 95%190

CI). The distribution fit variance component by ARI was estimated as,191

F (a) =
1

Ns

∑
s

vard

(∑Nd
m=1

(
xUasdm − xLasdm

)
Nd

)
, (4)

where F (a) is the distribution fit variance in the projected a-year event change factors.192

xUasdm is the a-year event change factor in scenario s computed using the GEV parameters193

of the 95% CI upper endpoint, and xLasdm, the a-year event change factor in scenario s194

projected by member m in dataset d computed using the GEV parameters of the 95%195

CI lower endpoint. The difference xUasdm - xLasdm corresponds to the change factor spread196

resulting from the uncertainty in the GEV parameters and depends on the confidence level197

chosen. Nd is the total number of members in dataset d, and Ns is the total number of198

scenarios. F (a) measures how much the a-year change factor varies due to the GEV fitting199

accuracy on average per member, dataset and scenario.200

Finally, the scenario variance component by ARI was estimated as,201

S(a) = vars

(
1

Ne

∑
d

1

Nd

Nd∑
m=1

xasdm

)
, (5)

where S(a) is the scenario variance in the projected a-year event change factors. xasdm202

is the a-year event change factor in RCP scenario s projected by member m in dataset d,203

Nd is the total number members in dataset d, and Ne is the total number of datasets in the204

ensemble (i.e. five different datasets).205

Assuming that the three sources of uncertainty are independent, the total variance in206

the projected change factors can be written as,207

T (a) = D(a) + F (a) + S(a), (6)

The contribution of each source of uncertainty can be found by dividing each by the208

total variance.209

3 Results210

3.1 Future Daily Rainfall Extremes Comparison Between Datasets211

The datasets’ multi-member means show increased extreme precipitation over nearly212

all CONUS. CONUS-averaged change factors generally increase with ARIs (see Fig.1a),213

indicating that the most untactful extreme events increase the most. Between datasets,214

the spread of the CONUS distribution of change factors is different, and, for each dataset,215

the spread increases with ARIs. For example, 5-year change factors from simulations in-216

cluded in the LOCA dataset ranges from 0.98 to 1.29 under RCP8.5, while the 50-year217

change factors range from 0.95 to 1.53. Despite exhibiting the least average bias compared218

to observed extremes (see Fig. S2–S4), the MACA multi-member mean change factors are219

considerably larger than those of the other datasets. Notably, BCCAv2 shows the lowest220

multi-member mean change factors which are mostly constant across ARIs (Fig. 1a and221
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Supplementary Figs 5b–10b). We found similar patterns when analyzing the change fac-222

tors of the downscaled output of the common member across datasets (GCM: CanESM2)223

(Supplementary Fig. S11). A visual comparison between the datasets change factors and224

the native-resolution CanESM2 change factors (Supplementary Fig. S11) shows that the225

datasets preserve the pattern of change signal to some extent, but the magnitude of the226

signal is lower in BCCAv2, while it is higher in MACA. Supplementary Fig. S12–S13 show227

a quantitative comparison between the regionally averaged downscaled climate signals and228

the GCM climate signals for both RCP 4.5 and RCP 8.5 scenarios. For most of the U.S.,229

the averaged climate signal is close to the GCM signal for short ARIs, while it gradually di-230

verts with increasing ARI. For all regions and large ARIs, the MACA downscaled CanESM2231

change signal is considerably higher than the original GCM signal, while the BCCAv.2 sig-232

nal is mostly lower. Climate signals based on LOCA and NA-CORDEX are similar to the233

original GCM change signal, with largest differences (i.e. the West region) possibly due to234

better orographic representation in the dynamically downscaled NA-CORDEX datasets.235

Figure 1a also shows the datasets agree that daily rainfall extremes intensify more236

under RCP 8.5 than under RCP 4.5 on continental scales, consistent with previous studies237

comparing both scenarios (Fix et al., 2018). However, the difference between RCP scenarios238

varies across datasets (see Fig. 1b). There exist little differences between the RCP 4.5 and239

8.5 scenarios in the BCCAv2 dataset, while there is a larger difference in the low-resolution240

NA-CORDEX dataset.241

In terms of the spatial structure of these changes, the datasets roughly agree on higher242

percent increases west of the continental divide and the Ohio River Basin and Northeast243

regions (see Fig. S12 for a graphical representation of the regions’ location) for short return244

periods (2- to 10-year). In contrast, for larger return periods (25- to 100-year), there is245

no clear spatial agreement due to an increase in noisiness, yet the signal is statistically246

significant at the 0.01 level in all datasets for at least more than 40 % of CONUS. For the247

25-year ARI, the change signal is statistically significant in more than 50 % of the grid248

cells in CONUS for RCP 4.5 and more than 73 % for RCP 8.5 (see Table S5 for statistical249

significance of other ARIs).250

In general, there are noticeable differences in change factors of the dynamically down-251

scaled NA-CORDEX datasets compared to the statistically downscaled methods, particu-252

larly over orographic regions (See SI Section S3).253

Figures 1b–c shows the magnitude and the spatial structure of the 25-year ARI multi-254

member mean climate change signal which considerably differs across the five datasets (See255

Supplementary Figs 5–10 for other ARIs). For the 25-year ARI on average for CONUS,256

the multi-member mean change signal shows an increase of 11 %, 15 %, 36 %, 22 % and257

15 % (BCCAv2, LOCA, MACA, NA-CORDEX high and NA-CORDEX low resolution,258

respectively) in the 25-year rainfall volume under RCP 4.5 emissions scenario, and 12 %,259

18 %, 39 %, 27 % and 23 % under RCP 8.5 by the end of the century. We found negligible260

percent change differences between scenarios on average for CONUS for the 25-year event261

in BCCAv2, and between 3 % and 7 % for other datasets.262
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Figure 1. Future (2044-2099) extreme rainfall volumes are increasing in all datasets with larger

increases for large ARI events and under RCP 8.5 compared to the past (1951-2005). Multi-member

mean extreme rainfall signal averaged across the U.S. for different ARIs (a), spatial distribution of

the 25-year event change factors under RCP 4.5 (b), and RCP 8.5 (c). Each dataset member was

weighted equally in the multi-member mean computation.

Additional information about the distribution of change factors in each dataset (with263

respect to their individual members) can be obtained by examining the interquartile range264

(IQR), which is shown in Fig. S14–S19 for each ARI. For short ARIs, the IQR is generally265

small across CONUS and increases for larger ARI. The NA-CORDEX high-resolution IQR266

is consistently large across ARIs over the Sierra Nevada mountains. The large IQR might267

be affected by the smaller number of downscaled simulations in the NA-CORDEX project268
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at this resolution and the differences in RCM characteristics (i.e. dynamics, land surface269

model, etc).270

3.2 Uncertainty in Future Rainfall Extremes Changes271

In section 2.3, we distinguish three different sources of uncertainty in the projected272

change in rainfall extremes: dataset selection, RCP scenario, and distribution uncertainty,273

and we assess the individual contribution of uncertainty for each source relative to the other274

sources of uncertainty. Figure 2 shows the contribution of the three sources of uncertainty275

to the total variance in the projected percent change in rainfall volume for each grid cell.276

High percentages indicate a larger difference in the projected change factors for a given277

source, compared to the difference of the other sources. There are marked differences in278

the dominant uncertainty with increasing ARI across the U.S. For the 2-year event, the279

dataset selection uncertainty is largest, reaching very large percentages (∼60 %) in several280

grid cells. The dataset uncertainty is especially high in coastal areas in the Northeast281

and the Southeast, as well as in the mountainous regions in the West (see Fig. S12 for282

a graphical representation of the regions’ location). For the 100-year event, the dataset283

selection uncertainty is no longer prominent in comparison to the distribution fit uncertainty,284

which is now dominant (some cells reach about 70 %). Larger contributions to the total285

variance from the scenario uncertainty occur at the 2-year than at the 100-year.286

In most of the Ohio River Basin, the scenario uncertainty contribution is approximately287

between 40 and 50 %, but for the rest of the U.S., the percent is not higher than approxi-288

mately 20 %. On average (Fig. 2b), we found that for short ARIs (< 5-years), the dataset289

selection uncertainty is largest followed by the distribution fit and scenario uncertainty.290

The contribution of uncertainty from the distribution fit increases with ARI and becomes291

dominant for large ARIs (> 5-year). Scenario uncertainty is largest (∼20 %) for short ARIs292

and is negligible for longer ARIs. Note that the scenario uncertainty would increase by293

including lower emission scenarios in the analysis (e.g., RCP2.6). However, this is currently294

not possible due to a lack of downscaled data products over the CONUS.295

Across datasets, the difference in the change factors computed using the GEV 95% C.I.296

upper- and lower-end parameters was similar. For any given dataset and long ARIs, we297

found large variability in the projected change factors due to the extreme value distribution298

fit, which is consistent with previous studies that found that the record length strongly299

affects the estimate of the GEV parameters (Papalexiou & Koutsoyiannis, 2013).300

4 Discussion and Conclusions301

We showed that the magnitude and spatial pattern of the climate change signal in302

U.S. daily rainfall extremes greatly differs across the most commonly-used public down-303

scaled climate model output datasets for the second half of this century. While the set of304

CMIP5 GCMs downscaled in each dataset is different, we found that the differences be-305

tween datasets are likely due to methodological choices within the downscaling framework306

rather than selected GCMs. We compared the climate change signal from the downscaled307

CanESM2 GCM simulations (common in all datasets), to the native resolution CanESM2308

signal. In general, downscaling modifies the original GCM change signals with MACA sim-309

ulations enhancing the original GCM trend for large ARIs (50-, 100-year). Conversely, the310

BCCAv.2 data lowers change signals. Previous studies have shown the original GCM trend311

can be modified by the downscaling method and/or bias correction steps due to improved312

surface representation and capability to solve physical processes at higher resolution in dy-313

namical downscaling, while statistical downscaling can lead to an inflated signal artifact of314

the method because of correcting events that have occurred with very low frequency (Eum315

& Cannon, 2017). The magnitude of the difference in the projected change factors between316

datasets and RCP scenarios is in most cases non-negligible and might represent additional317
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Figure 2. Dataset selection uncertainties dominate future extreme rainfall changes for short

ARIs events while distribution fit uncertainties dominate long ARIs changes. Contribution of each

uncertainty source to the total variance at the grid scale (a) and on average for the CONUS (b).

High percentages indicate a larger difference in the projected change factors for a given source,

compared to the difference per the other sources.

stress to infrastructure systems designed for historical conditions (Niemczynowicz, 1989;318

Guentchev et al., 2016).319
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Figure 3. Percent covered by each individual dataset IQR of the ensemble IQR defined by the

largest 75th and smallest 25th percentiles of all datasets for the 25-year event under (a) RCP 4.5

and (b) RCP 8.5. Darker purple means that the dataset IQR spans a large portion of the overall

dataset uncertainty range defined above.
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When modelers and stakeholders are evaluating critical areas and decisions in resilience320

assessments, it is prudent to acknowledge the differences between datasets in the projected321

changes in daily rainfall extremes, their multi-member distribution (i.e. the distribution322

of individual members’ change factors), and the implications of using each dataset. Addi-323

tionally, the varying magnitude of uncertainty sources with ARIs emphasizes the need to324

properly manage and propagate uncertainties in climate change impacts assessments and325

decision-making support (Arnbjerg-Nielsen et al., 2015).326

Selecting a specific dataset implies constraining the range of future change factors to a327

range that might not be representative of the full spread of uncertainties. Figure 3 shows328

how much of the ensemble IQR range is represented by the members in each individual329

dataset IQR at the grid scale level for the 25-year ARI event (see Supplementary Figs. S20–330

S25 for other ARIs). A darker purple color means that the IQR from simulations within331

one dataset is similar to the projected IQR from the ensemble and vice versa. Some dataset332

representation percentages stand out in particular regions, for example NA-CORDEX high333

resolution downscaled output provides a better representation of the range of change factors334

overall (for all ARIs) at topographically complex regions. If computational resources are335

limited, and the decision-maker needs to select projections from one dataset, selecting the336

dataset with the darkest purple color for a given grid cell could be an option to at least337

partially represent signals from other datasets. However, this might not be the most robust338

decision, as Figure 3 also shows large spatial noise. Additionally, since the multi-member339

mean is different between datasets, the change factors of the dataset with the largest ensem-340

ble IQR representation might be considerably larger or smaller than other datasets’ change341

factors. In the case of the former, it could be considered by the decision-maker as an added342

layer of safety or robustness, however it could be problematic in the latter case. Moreover,343

a modeler or decision-maker can interpret Fig. 1 and Fig. 3 in a way to understand the344

consequences of selecting a dataset based on different metrics. For instance, selecting the345

MACA dataset because of its low average bias, will lead to large climate change signals, and346

depending on the location of interest, might not be representative of other datasets since347

there is large spatial noise (see Fig. 3).348

In summary, selecting a specific downscaled climate dataset for decision-making and349

neglecting others can result in potentially omitting considerable uncertainty in the range350

of rainfall extremes that inform resilience decisions. Given the differences we found, using351

more than a single dataset is preferable for robust decision-making. However, one limitation352

in these conclusions lies in the comparability of the downscaling method given that only a353

single GCM output (CanESM2) was downscaled across datasets. The differences found in354

dataset statistics (mean and IQR) highlight the need for conducting future downscaling355

efforts on a controlled set of GCM for ease of comparability.356

We show that there is a need for longer records to facilitate more robust estimates of357

very large ARIs, and that the GEV distribution fit uncertainty should be considered by358

decision-makers and modelers when assessing impacts from large ARIs. Large ensemble359

datasets could be used to provide more robust estimates for very large ARIs (e.g. 100-year360

return levels) from model data to reduce the distribution fit uncertainty (Tandon et al.,361

2018). Another promising approach for reducing dataset uncertainties in future extreme362

precipitation estimates are kilometer-scale climate models that better simulate extreme pre-363

cipitation than state-of-the-art coarser-resolution models (Prein et al., 2015).364

In case the computational resources exist to perform impacts assessments under many365

scenarios based on the change factors from all datasets, we support and ease the process366

of generating future scenarios for analyses making available a grid-cell level dataset across367

CONUS for the climate change signal in each of the five datasets. For specific applica-368

tions, decision-makers can use our data and results, coupled with their expertise and risk369

preferences, to inform resilience assessments and decisions. Additionally, it can be used to370

compare with forthcoming downscaled climate projections datasets and completed impacts371
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assessments or explore the impacts of extreme rainfall changes to a local system using a372

large range of possible future changes in daily rainfall extremes.373
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