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Key Points:

+ Extreme daily rainfall changes for the United States from five widely used pub-
lic downscaled climate projection datasets are compared.

e Large differences in magnitude and spatial patterns of extreme precipitation changes
exist between datasets.

+ High-end extremes (i.e., 100-year event) increase 10-50 % faster than low-end ex-
tremes (i.e., 2-year event) at the continental scale.
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Abstract

Impacts modelers and stakeholders use publicly available datasets of downscaled climate
projections to assess and design infrastructure for changes in future rainfall extremes. If
differences across datasets exist, infrastructure resilience decisions could change depending
on which single dataset is used. We assess changes in U.S. rainfall extremes from 2044-2099
compared with 1951-2005 based on 227 projections under RCP4.5 and RCP8.5 from five
widely used datasets. We show there are large differences in the change magnitude and
its spatial structure between datasets. At the continental-scale, the datasets show between
10 % and 50 % larger increases in high-impact events than in more frequent extremes. These
differences largely contribute to the overall uncertainty for short average recurrence intervals
(ARI) extremes (2- to 10-year), while uncertainties due to short record length dominate
long ARIs (25- to 100-year). The results indicate that robust infrastructure planning should
consider these uncertainties to enable resilient infrastructure under climate change.

Plain Language Summary

Observed extreme rainfall magnitudes have increased since 1950, and climate model
projections indicate that these increases will continue throughout the 21st century in many
areas. Adapting and designing infrastructure for climate change requires future extreme
rainfall projections at high resolutions. Global Climate Model (GCM) output resolution
is generally much coarser, and methods have been developed to create relevant climate
information at regional-scales. Today, multiple open datasets exist that provide downscaled
projections of future rainfall extremes. We analyze changes in future daily extremes using
five widely used datasets in climate change impacts assessments and decision-making. We
found large differences between datasets in how much and where extreme events will intensify
by the end of the 21st century. This and other sources of uncertainty need to be considered
when designing resilient infrastructure.

1 Introduction

Extreme rainfall events have intensified in magnitude and become more frequent in
many regions of the United States (U.S.) since 1950 (DeGaetano, 2009; Hoerling et al., 2016)
and climate model simulations project these increases will continue throughout the 21st
century (Prein et al., 2017). Observed and anticipated changes in rainfall extremes affect
many sectors, including existing and proposed infrastructure such as stormwater systems. In
the U.S., stormwater infrastructure is designed using federal, state and local design standards
based on historical extreme rainfall probabilities, and most new infrastructure is similarly
not designed to consider future climate change (Lopez-Cantu & Samaras, 2018; Wright et
al., 2019). Making infrastructure systems resilient to future conditions involves identifying
risks and vulnerabilities to inform climate resilient strategies (IPCC, 2014). However, it is
not straightforward to develop these strategies because it requires making decisions under a
deeply uncertain future climate (Hallegatte, 2009). Yet, taking no action is also a decision,
and large economic damages can occur in the case of no adaptation (Martinich & Crimmins,
2019).

Many stakeholders incorporate future climate conditions into their planning and anal-
yses by using downscaled global climate model (GCM) output to inform hydrologic models
or update current engineering design standards (Forsee & Ahmad, 2011; Kuo et al., 2015).
Although the downscaling process is necessary to match the spatial and temporal resolution
to the required resolution by the specific application (Cook et al., 2017), different downscal-
ing methods and resolutions can potentially give different results (Cook et al., 2020; Onof
& Arnbjerg-Nielsen, 2009; Sunyer et al., 2012; Arnbjerg-Nielsen et al., 2015; Wu et al.,
2019). For the Contiguous United States (CONUS), there are several downscaled climate
projection datasets covering at least the late 20th century and the 21st century (Mearns et
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Table 1. Some of the publicly available downscaled climate products for the United States and

an overview of their characteristics.

GCM Emissions Downscaled . Highest Downscaling
Dataset . Spatial Resolution = Temporal .
models Scenario . Technique
(degrees) Resolution
BCCAv2 21 2.6, 4.5, 6.0, 8.5 1/8 Daily Statistical
MACA 20 4.5, 8.5 1/24 Daily Statistical
LOCA 32 4.5, 8.5 1/16 Daily Statistical
NA-CORDEX 6* 4.5, 8.5 0.22, 0.44 Hourly Dynamical

% The number of GCM models dynamically downscaled depend on the target resolution and the
emissions scenario.

al., 2013; Pierce et al., 2014; Abatzoglou & Brown, 2012; Maraun et al., 2010) (see Table 1
and Supplementary Information Fig. 2 and Tables 1-3). These datasets vary in downscaling
method used, number of downscaled GCMs, emission scenarios, and horizontal resolution.
The total number of available projections from the datasets in Table 1 is 103 for Representa-
tive Concentration Pathway (RCP) 4.5 and 124 for RCP 8.5. The massive amount of data,
limited guidance or lack of compelling arguments to discard or adopt one or more datasets
in Table 1, in addition to different ease of use among these datasets, are often reasons why
many impact assessments only use a single dataset as input—neglecting possible differences
across the datasets and their influence on the specific study area.

In this study, we assess the daily extreme rainfall climate change signal across the
U.S. from five downscaled climate projection datasets (Table 1) for RCP 4.5 and 8.5. We
use five downscaled climate projection datasets (hereafter, datasets) consisting of multiple
simulations (hereafter, members), while the collection of available projections from all five
datasets for each RCP scenario is referred to as ensemble. We focus on these datasets
because they all downscaled GCMs from the Coupled Model Intercomparison Project Phase
5 (CMIP5), share a common temporal resolution and spatial coverage, comprise two RCP
scenarios, are publicly available, and are frequently used as inputs in climate change impacts
assessments for infrastructure (Cook et al., 2017; Alamdari et al., 2017; Kermanshah et al.,
2017; Gelda et al., 2019).

We use the Generalized Extreme Value (GEV) distribution to describe the extreme
rainfall data and quantify the climate change signal in terms of change factors corresponding
to the ratio between the model future volume (estimated from annual rainfall series for the
2044-2099 period) and model historical volumes (1951-2006) of average recurrence interval
(ARI) events ranging from 2- to 100-year. Additionally, because these datasets are used in a
decision-making context that requires information about the relevant uncertainties (Mullan
et al., 2018), we quantify the relative contribution of three sources of uncertainty; (1) the
GEYV distribution fit uncertainty related to the record length to fit the distribution and its
accuracy to describe the extremes, (2) the dataset selection uncertainty from the different
downscaling methods applied to a set of GCMs and (3) the uncertainty stemming from the
emissions scenario (RCP 4.5 and RCP 8.5).

2 Materials and Methods
2.1 Publicly Available Downscaled U.S. Climate Projections Datasets

The datasets compared in this study can be categorized by the type of downscaling
process used. The Bias Corrected Constructed Analogues (BCCA) version 2, Multivari-
ate Adaptive Constructed Analogues (MACA) and the Localized Constructed Analogues
(LOCA) datasets are products of statistically downscaling a subset of CMIP5 GCMs (Pierce
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et al., 2014; Abatzoglou & Brown, 2012; Maraun et al., 2010). The constructed analog (CA)
method constitutes the base of each statistical downscaling method. CA involves comparing
the GCM control simulations to historical observations, traditionally in terms of anomalies,
but all procedures above use absolute values instead. The historical observations are re-
gridded to match the resolution of the GCM simulations. GCM simulations are typically
bias-corrected using a quantile mapping (QM) approach against other source of historical
observations (Pierce et al., 2014; Abatzoglou & Brown, 2012; Maraun et al., 2010). For a
given GCM day, the goal is to find a set of days (situated within a maximum of 45 days
centered at the GCM target day) in the regridded observations that when combined, they
approximate the climate conditions on the day simulated by the GCM (Hidalgo et al., 2008).

The main difference between BCCAv2, MACA and LOCA lies in the searchable domain
to find the analogue days. For BCCAv2 and MACA, the analogue days are selected from any
grid within the domain (CONUS), while in LOCA, the analogues are identified at smaller
climatically similar regions. Another difference lies in the number of variables that are
jointly downscaled. In BCCAv2 and LOCA, variables are independently downscaled, while
in MACA a multi-variate approach is used for variables other than precipitation (Abatzoglou
& Brown, 2012). Also, while the BCCAv2 and MACA methods use a linear combination
of 30 days to construct the CA at each point, a single day out of the 30 identified that is
closest to GCM target day pattern across the neighboring region to each point is used in the
LOCA procedure (Bracken, 2016; Pierce et al., 2014). Finally, the MACA method applies
a final bias-correction step (once again QM) to the downscaled output, in contrast to the
BCCA and LOCA methods.

The final dataset we assess is the North American branch of the Coordinated Regional
Downscaling Experiment (NA-CORDEX), which is a dynamically downscaled dataset. There
are projections available in two different resolutions (see Table 1), and since they include
different members (see Supplementary Tables S2-S3), we treated each as an individual
dataset. Dynamical downscaling techniques use physics-based models or regional climate
models (RCM) constrained to a smaller region and are driven by GCM projections at the
boundaries to produce higher resolution projections. The dataset corresponds to a collec-
tion of high-resolution projections from different GCM-RCM combinations and emissions
scenarios (Mearns et al., 2014). Fig. S1 shows a detailed comparison of the methodological
steps of the process followed to produce each dataset.

2.2 Estimation of Future Changes in Daily Rainfall Extremes

To compare the extreme rainfall climate change signal between datasets, we first regrid-
ded all ensemble members to the NA-CORDEX 0.44° grid (i.e. the coarsest grid spacing
across datasets used in this study) using a conservative remapping approach (Jones, 1999)
to minimize differences stemming from the datasets’ output spatial resolution.

For each ensemble member, extreme rainfall was characterized using a stationary GEV
distribution fitted to series of annual maxima (Coles, 2001) for two periods, one future period
between 2044 and 2099, and a historical period from 1950 to 2006. The GEV distribution
is defined as,

Fla) = 6<1(+Z)mg> E£0 )

e 7 £E=0

where u, o, ¢ are the parameters of the GEV distribution defining its location, scale
and shape, respectively. The best estimate and its 95% confidence interval (CI) of the
parameters (computed through a bootstrapping function implemented in the R package ex-
tRemes (Gilleland, 2019)) were estimated using the generalized maximum likelihood (GML)
method, which extends the maximum likelihood (ML) method by adding a constraint that
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restricts the shape parameter to take values within an physically coherent range (Adlouni
et al., 2007; Martins & Stedinger, 2000). We used the same prior distribution for the shape
parameter as defined in (Martins & Stedinger, 2000).

For each grid cell per dataset member, the 1/¢-year ARI change factor (or climate
signal) was defined as the ratio between the future precipitation volume and the historical
volume for each ARI quantile, ¢, and was estimated as,

F71 (q;/ifutvo—futvgfut) (2)
F_l (Qa Hetrls Octrls gctrl) ’

Xg, fut =

where firut, Ofut, Epue are the GEV parameters of the distribution fitted to future
period (2044-2099), fictr, Octri, Eetri are the GEV parameters of the distribution fitted to
the historical (1950-2006) model period, and X, the change factor computed for ¢ equal to
0.5 (2-year), 0.2 (5-year), 0.1 (10-year), 0.04 (25-year), 0.02 (50-year), and 0.01 (100-year)
ARI events.

For the BCCAv2 dataset that included multiple downscaled realizations for the same
GCM, each individual run change factors were averaged. Also, because the number of
members in each RCP scenario, members that were not common in both RCP scenarios
where discarded (see Supplementary Tables S1-S3). Across datasets, the set of members
is different, which makes a comparison of the impact of downscaling method on future
extreme precipitation challenging. Although here we focus on the complete set of available
members per dataset to stay consistent with how these datasets are used in the literature,
we repeated the analysis by using the CMIP5 GCM model (CanESM?2) that is downscaled
in all five datasets to assess the effect of using different GCMs in each dataset.

Finally, the dataset mean climate change signal for the 2-, 5-; 10-, 25-, 50- and 100-year
ARI was defined as the average of equally weighted member change factors in a dataset.
We specifically chose these ARIs to produce actionable results, given that the selected
ARIs are used as standards for designing water infrastructure in the U.S. (Lopez-Cantu
& Samaras, 2018). To test the climate change signal’s significance for each dataset and
ARI, we first constructed a series of 100 artificial rainfall volumes for both the future and
the historical period, where each volume was estimated through a GEV distribution whose
parameters where randomly selected (with replacement) from the GEV parameters of any
dataset member estimated in earlier steps. We then compare the future and historical
artificial rainfall volumes, and detect statistically significant (at the 0.01 level) differences
between both periods using the Mann-Whitney rank test.

2.3 Analysis of Uncertainty Sources and their Contribution to the Overall
Uncertainty in the Projected Changes in Rainfall Extremes

To understand how important potential differences between datasets are in the overall
uncertainty context, we identified other two main sources that contribute to uncertainty in
the projected change of rainfall extremes. We define the uncertainty due to dataset selection
(dataset variance), D(r), uncertainty due to the GEV distribution fitting (distribution fit
variance) and due to the emissions scenario (scenario variance), and contextualize these
uncertainties in a similar way to (Hawkins & Sutton, 2009).

The dataset variance component by ARI was estimated as,

Ng
1 1
D(a) = A E varg (Nd E J;asdm> , (3)
S s m=1

where D(a) is the dataset variance component in the a-year event change factors. zqsdm
is the a-year event change factor in RCP scenario s projected by member m in dataset d,
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and Ny is the total number members in dataset d, and N, is the number of scenarios (in
our case two, RCP 4.5 and 8.5). D(a) measures the a-year change factor variability across
datasets.

The distribution fit variance was estimated using the change factors computed by all
combinations of dataset members, scenarios and GEV parameters estimates (mean and 95%
CI). The distribution fit variance component by ARI was estimated as,

F(a) = N Zvard ( 1 ;[d im) , 4)
S S

where F'(a) is the distribution fit variance in the projected a-year event change factors.
xU ,  is the a-year event change factor in scenario s computed using the GEV parameters
of the 95% CI upper endpoint, and xL_, | the a-year event change factor in scenario s
projected by member m in dataset d computed using the GEV parameters of the 95%
CI lower endpoint. The difference x;fs dm " acgs 4m corresponds to the change factor spread
resulting from the uncertainty in the GEV parameters and depends on the confidence level
chosen. Ny is the total number of members in dataset d, and Ny is the total number of
scenarios. F'(a) measures how much the a-year change factor varies due to the GEV fitting

accuracy on average per member, dataset and scenario.

Finally, the scenario variance component by ARI was estimated as,

1 1
S(a) = varg E ; m Z Zasdm | » (5)

where S(a) is the scenario variance in the projected a-year event change factors. zgsdam
is the a-year event change factor in RCP scenario s projected by member m in dataset d,
Ny is the total number members in dataset d, and IV, is the total number of datasets in the
ensemble (i.e. five different datasets).

Assuming that the three sources of uncertainty are independent, the total variance in
the projected change factors can be written as,

T(a) = D(a) + F(a) + S(a), (6)

The contribution of each source of uncertainty can be found by dividing each by the
total variance.

3 Results
3.1 Future Daily Rainfall Extremes Comparison Between Datasets

The datasets’ multi-member means show increased extreme precipitation over nearly
all CONUS. CONUS-averaged change factors generally increase with ARIs (see Fig.1a),
indicating that the most untactful extreme events increase the most. Between datasets,
the spread of the CONUS distribution of change factors is different, and, for each dataset,
the spread increases with ARIs. For example, 5-year change factors from simulations in-
cluded in the LOCA dataset ranges from 0.98 to 1.29 under RCP8.5, while the 50-year
change factors range from 0.95 to 1.53. Despite exhibiting the least average bias compared
to observed extremes (see Fig. S2-S4), the MACA multi-member mean change factors are
considerably larger than those of the other datasets. Notably, BCCAv2 shows the lowest
multi-member mean change factors which are mostly constant across ARIs (Fig. la and
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Supplementary Figs 5b—10b). We found similar patterns when analyzing the change fac-
tors of the downscaled output of the common member across datasets (GCM: CanESM2)
(Supplementary Fig. S11). A visual comparison between the datasets change factors and
the native-resolution CanESM2 change factors (Supplementary Fig. S11) shows that the
datasets preserve the pattern of change signal to some extent, but the magnitude of the
signal is lower in BCCAv2, while it is higher in MACA. Supplementary Fig. S12-S13 show
a quantitative comparison between the regionally averaged downscaled climate signals and
the GCM climate signals for both RCP 4.5 and RCP 8.5 scenarios. For most of the U.S.,
the averaged climate signal is close to the GCM signal for short ARIs, while it gradually di-
verts with increasing ARI. For all regions and large ARIs, the MACA downscaled CanESM2
change signal is considerably higher than the original GCM signal, while the BCCAv.2 sig-
nal is mostly lower. Climate signals based on LOCA and NA-CORDEX are similar to the
original GCM change signal, with largest differences (i.e. the West region) possibly due to
better orographic representation in the dynamically downscaled NA-CORDEX datasets.

Figure la also shows the datasets agree that daily rainfall extremes intensify more
under RCP 8.5 than under RCP 4.5 on continental scales, consistent with previous studies
comparing both scenarios (Fix et al., 2018). However, the difference between RCP scenarios
varies across datasets (see Fig. 1b). There exist little differences between the RCP 4.5 and
8.5 scenarios in the BCCAv2 dataset, while there is a larger difference in the low-resolution
NA-CORDEX dataset.

In terms of the spatial structure of these changes, the datasets roughly agree on higher
percent increases west of the continental divide and the Ohio River Basin and Northeast
regions (see Fig. S12 for a graphical representation of the regions’ location) for short return
periods (2- to 10-year). In contrast, for larger return periods (25- to 100-year), there is
no clear spatial agreement due to an increase in noisiness, yet the signal is statistically
significant at the 0.01 level in all datasets for at least more than 40 % of CONUS. For the
25-year ARI, the change signal is statistically significant in more than 50% of the grid
cells in CONUS for RCP 4.5 and more than 73 % for RCP 8.5 (see Table S5 for statistical
significance of other ARISs).

In general, there are noticeable differences in change factors of the dynamically down-
scaled NA-CORDEX datasets compared to the statistically downscaled methods, particu-
larly over orographic regions (See SI Section S3).

Figures 1b—c shows the magnitude and the spatial structure of the 25-year ARI multi-
member mean climate change signal which considerably differs across the five datasets (See
Supplementary Figs 5-10 for other ARIs). For the 25-year ARI on average for CONUS,
the multi-member mean change signal shows an increase of 11 %, 15%, 36 %, 22% and
15% (BCCAv2, LOCA, MACA, NA-CORDEX high and NA-CORDEX low resolution,
respectively) in the 25-year rainfall volume under RCP 4.5 emissions scenario, and 12 %,
18 %, 39 %, 27 % and 23 % under RCP 8.5 by the end of the century. We found negligible
percent change differences between scenarios on average for CONUS for the 25-year event
in BCCAv2, and between 3% and 7% for other datasets.
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Figure 1. Future (2044-2099) extreme rainfall volumes are increasing in all datasets with larger
increases for large ARI events and under RCP 8.5 compared to the past (1951-2005). Multi-member
mean extreme rainfall signal averaged across the U.S. for different ARIs (a), spatial distribution of
the 25-year event change factors under RCP 4.5 (b), and RCP 8.5 (c). Each dataset member was

weighted equally in the multi-member mean computation.

Additional information about the distribution of change factors in each dataset (with
respect to their individual members) can be obtained by examining the interquartile range
(IQR), which is shown in Fig. S14-S19 for each ARI. For short ARIs, the IQR is generally
small across CONUS and increases for larger ARI. The NA-CORDEX high-resolution IQR
is consistently large across ARIs over the Sierra Nevada mountains. The large IQR might
be affected by the smaller number of downscaled simulations in the NA-CORDEX project
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at this resolution and the differences in RCM characteristics (i.e. dynamics, land surface
model, etc).

3.2 Uncertainty in Future Rainfall Extremes Changes

In section 2.3, we distinguish three different sources of uncertainty in the projected
change in rainfall extremes: dataset selection, RCP scenario, and distribution uncertainty,
and we assess the individual contribution of uncertainty for each source relative to the other
sources of uncertainty. Figure 2 shows the contribution of the three sources of uncertainty
to the total variance in the projected percent change in rainfall volume for each grid cell.

High percentages indicate a larger difference in the projected change factors for a given
source, compared to the difference of the other sources. There are marked differences in
the dominant uncertainty with increasing ARI across the U.S. For the 2-year event, the
dataset selection uncertainty is largest, reaching very large percentages (~60 %) in several
grid cells. The dataset uncertainty is especially high in coastal areas in the Northeast
and the Southeast, as well as in the mountainous regions in the West (see Fig. S12 for
a graphical representation of the regions’ location). For the 100-year event, the dataset
selection uncertainty is no longer prominent in comparison to the distribution fit uncertainty,
which is now dominant (some cells reach about 70%). Larger contributions to the total
variance from the scenario uncertainty occur at the 2-year than at the 100-year.

In most of the Ohio River Basin, the scenario uncertainty contribution is approximately
between 40 and 50 %, but for the rest of the U.S., the percent is not higher than approxi-
mately 20 %. On average (Fig. 2b), we found that for short ARIs (< 5-years), the dataset
selection uncertainty is largest followed by the distribution fit and scenario uncertainty.
The contribution of uncertainty from the distribution fit increases with ARI and becomes
dominant for large ARIs (> 5-year). Scenario uncertainty is largest (~20 %) for short ARIs
and is negligible for longer ARIs. Note that the scenario uncertainty would increase by
including lower emission scenarios in the analysis (e.g., RCP2.6). However, this is currently
not possible due to a lack of downscaled data products over the CONUS.

Across datasets, the difference in the change factors computed using the GEV 95% C.1.
upper- and lower-end parameters was similar. For any given dataset and long ARIs, we
found large variability in the projected change factors due to the extreme value distribution
fit, which is consistent with previous studies that found that the record length strongly
affects the estimate of the GEV parameters (Papalexiou & Koutsoyiannis, 2013).

4 Discussion and Conclusions

We showed that the magnitude and spatial pattern of the climate change signal in
U.S. daily rainfall extremes greatly differs across the most commonly-used public down-
scaled climate model output datasets for the second half of this century. While the set of
CMIP5 GCMs downscaled in each dataset is different, we found that the differences be-
tween datasets are likely due to methodological choices within the downscaling framework
rather than selected GCMs. We compared the climate change signal from the downscaled
CanESM2 GCM simulations (common in all datasets), to the native resolution CanESM2
signal. In general, downscaling modifies the original GCM change signals with MACA sim-
ulations enhancing the original GCM trend for large ARIs (50-, 100-year). Conversely, the
BCCAv.2 data lowers change signals. Previous studies have shown the original GCM trend
can be modified by the downscaling method and/or bias correction steps due to improved
surface representation and capability to solve physical processes at higher resolution in dy-
namical downscaling, while statistical downscaling can lead to an inflated signal artifact of
the method because of correcting events that have occurred with very low frequency (Eum
& Cannon, 2017). The magnitude of the difference in the projected change factors between
datasets and RCP scenarios is in most cases non-negligible and might represent additional
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318 stress to infrastructure systems designed for historical conditions (Niemczynowicz, 1989;
319 Guentchev et al., 2016).
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and (b) RCP 8.5. Darker purple means that the dataset IQR spans a large portion of the overall
dataset uncertainty range defined above.
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When modelers and stakeholders are evaluating critical areas and decisions in resilience
assessments, it is prudent to acknowledge the differences between datasets in the projected
changes in daily rainfall extremes, their multi-member distribution (i.e. the distribution
of individual members’ change factors), and the implications of using each dataset. Addi-
tionally, the varying magnitude of uncertainty sources with ARIs emphasizes the need to
properly manage and propagate uncertainties in climate change impacts assessments and
decision-making support (Arnbjerg-Nielsen et al., 2015).

Selecting a specific dataset implies constraining the range of future change factors to a
range that might not be representative of the full spread of uncertainties. Figure 3 shows
how much of the ensemble IQR range is represented by the members in each individual
dataset IQR at the grid scale level for the 25-year ARI event (see Supplementary Figs. S20—
S25 for other ARIs). A darker purple color means that the IQR from simulations within
one dataset is similar to the projected IQR from the ensemble and vice versa. Some dataset
representation percentages stand out in particular regions, for example NA-CORDEX high
resolution downscaled output provides a better representation of the range of change factors
overall (for all ARISs) at topographically complex regions. If computational resources are
limited, and the decision-maker needs to select projections from one dataset, selecting the
dataset with the darkest purple color for a given grid cell could be an option to at least
partially represent signals from other datasets. However, this might not be the most robust
decision, as Figure 3 also shows large spatial noise. Additionally, since the multi-member
mean is different between datasets, the change factors of the dataset with the largest ensem-
ble IQR representation might be considerably larger or smaller than other datasets’ change
factors. In the case of the former, it could be considered by the decision-maker as an added
layer of safety or robustness, however it could be problematic in the latter case. Moreover,
a modeler or decision-maker can interpret Fig. 1 and Fig. 3 in a way to understand the
consequences of selecting a dataset based on different metrics. For instance, selecting the
MACA dataset because of its low average bias, will lead to large climate change signals, and
depending on the location of interest, might not be representative of other datasets since
there is large spatial noise (see Fig. 3).

In summary, selecting a specific downscaled climate dataset for decision-making and
neglecting others can result in potentially omitting considerable uncertainty in the range
of rainfall extremes that inform resilience decisions. Given the differences we found, using
more than a single dataset is preferable for robust decision-making. However, one limitation
in these conclusions lies in the comparability of the downscaling method given that only a
single GCM output (CanESM2) was downscaled across datasets. The differences found in
dataset statistics (mean and IQR) highlight the need for conducting future downscaling
efforts on a controlled set of GCM for ease of comparability.

We show that there is a need for longer records to facilitate more robust estimates of
very large ARIs, and that the GEV distribution fit uncertainty should be considered by
decision-makers and modelers when assessing impacts from large ARIs. Large ensemble
datasets could be used to provide more robust estimates for very large ARIs (e.g. 100-year
return levels) from model data to reduce the distribution fit uncertainty (Tandon et al.,
2018). Another promising approach for reducing dataset uncertainties in future extreme
precipitation estimates are kilometer-scale climate models that better simulate extreme pre-
cipitation than state-of-the-art coarser-resolution models (Prein et al., 2015).

In case the computational resources exist to perform impacts assessments under many
scenarios based on the change factors from all datasets, we support and ease the process
of generating future scenarios for analyses making available a grid-cell level dataset across
CONUS for the climate change signal in each of the five datasets. For specific applica-
tions, decision-makers can use our data and results, coupled with their expertise and risk
preferences, to inform resilience assessments and decisions. Additionally, it can be used to
compare with forthcoming downscaled climate projections datasets and completed impacts
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372 assessments or explore the impacts of extreme rainfall changes to a local system using a
373 large range of possible future changes in daily rainfall extremes.
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