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ABSTRACT

As climate change alters precipitation patterns, stakeholders will need to understand how perfor-
mance of green stormwater infrastructure (GSI) could change in response. As an alternative to
using on-site monitoring, which may not always feasible, we propose that changes in performance
could be tracked using annual rainfall measures (e.g., maximum daily rainfall per year). We
estimated performance of GSI in 17 U.S. cities using rainfall measures by establishing linear
relationships with specific performance metrics (e.g., frequency of discharge). Prediction accuracy
was evaluated in 2 cities for the period 2020 to 2060 by comparing performance predicted from
rainfall trends from regional climate models (RCMs) with simulated performance in SWMM using
the same RCMs as input. Findings suggest that tracking rainfall measures can provide insight into
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the hydrologic performance of green infrastructure by predicting the direction of change, as well

as, the magnitude within 25% to 50% percent change.

1. Introduction

Green stormwater infrastructure (GSI) is urban drainage
infrastructure designed to increase infiltration of runoff,
reducing and delaying flows entering sewer systems (U.S.
EPA, 2016). GSI is an alternative to conventional storm-
water infrastructure, or ‘grey infrastructure, which is
designed to convey water quickly away from urban envir-
onments for storage and treatment, or for discharge
directly to surface water. GSI has been suggested as part
of the solution to combined sewer overflows in a number of
cities (Casal-Campos et al., 2015; Fischbach et al., 2017;
Kloss et al., 2006), as well as suggested to help mitigate the
effects of increasing urban runoff expected under
a changing climate (Demuzere et al., 2014; Foster et al.,
2011; Thakali et al., 2018).

Bioretention basins, or rain gardens, are one of the most
widely implemented types of GSI (Davis et al, 2009)
because they can be used to abate runoff from impervious
areas to comply with stormwater management targets
(Allegheny County Sanitary Authority, 2012) and/or to
avoid local stormwater fees (Baltimore City Department
Public Works, 2017; CH2MHILL, 2014; Chagrin
Watershed Partners, 2017; Environmental Finance Center
at the UNC School of Government, 2017). Research into
the hydrologic performance of these basins using on-site
monitoring data has been promising. Dietz and Clausen
(2005) reported rain gardens in Connecticut captured

more than 99% of input runoft over a period of one-year,
while Chapman and Horner (2010) report that 48% to 74%
of incoming runoff was captured over a 2.5-year period in
a monitored bioretention basin in Seattle, Washington.
After monitoring three rain garden systems in the U.S.
East Coast, Davis et al. (2012) showed that these systems
completely contained small rainfall events, and discharge
from larger events was linear with respect to input volume.
Variations in bioretention basin performance are
strongly linked to the rainfall characteristics in the local
region, as well as to the design characteristics of the basin.
Using meteorological conditions at 35 different
U.S. locations from 2012 to 2014, Jennings (2016) simu-
lated the performance of a hypothetical bioretention
basin, considering different surface depths, storage
volumes, and infiltration rates. Expected total runoft
reduction ranged from 51.3% to 99.8%, with the least
effective basins along the East and Gulf Coast and the
most effective basins in the Midwest. Although adjusting
bioretention basin characteristics altered performance
(Jennings, 2016), poor performance was mostly attribu-
ted to areas with high rainfall totals and high-intensity
events. Rainfall conditions have also been shown to influ-
ence clogging of green infrastructure and thus to affect
required maintenance schedules (William et al., 2018).
The relationship between rainfall and green infra-
structure performance is increasingly relevant because
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climate change is expected to alter the timing, magni-
tude, and intensity of rainfall in many regions, with the
largest increases expected in sub-daily rainfall
(Brommer et al., 2007; Groisman et al., 2012; IPCC,
2014; Melillo et al., 2014; Westra et al., 2014). Since
rainfall and hydrologic performance are linked, changes
in rainfall caused by climate change are also expected to
alter the ability of green infrastructure to reduce com-
bined sewer overflows, mitigate urban runoff, or comply
with stormwater management regulations. Findings
from prior research, primarily focused on changes in
GSI discharge quality, are consistent with other climate
impacts studies that illustrate that future impacts are
deeply uncertain and depend on the climate change
scenario used in modeling (Cook et al., 2017; Hall,
2014; Kianfar et al., 2016; Musau et al.,). Zhang et al.
(2019) evaluated the pollution treatment performance
of constructed wetlands and found notable differences
in performance when different climate models were
used. As a result, recommended sizes of systems
required to meet water quality targets for the future
varied depending on the assumed future scenario.

As a result of this uncertainty, green infrastructure
systems may need to be altered over time using adaptable
designs that allow for many possible future states to be
managed (De Neufville & Scholtes, 2011; Gregersen &
Arnbjerg-Nielsen, 2012; Lempert & Schlesinger, 2001;
Mostafavi, 2018). Monitoring data could be used to track
performance over time (Bartos et al., 2018; Kerkez et al,
2016) to inform stakeholders when maintenance or adap-
tation is required. However, on-site monitoring of GSI
requires funding, expertise, and calibrated equipment,
and thus may not be feasible at every installation.
Adaptation decisions could also be informed based on
modeling future GSI performance using climate change
scenarios; however, given the uncertainty and complexity
of climate models, more straightforward techniques are
needed. Since previous studies have linked GSI perfor-
mance and maintenance to rainfall characteristics (e.g.,
Davis et al,, 2012; Jennings, 2016; William et al., 2018),
one such technique may be to use publicly available rainfall
observations as a proxy for expected system performance.
A better understanding of the critical features of rainfall
patterns (i.e., intensity, frequency, and inter-storm timing)
that affect current performance of GSI could inform how
performance should be expected to change over time as
rainfall changes. The present work makes a contribution to
the literature by developing and demonstrating a novel
method that tracks performance of bioretention basins
over time using annual rainfall measures. The accuracy of
this method is then evaluated by comparing its predictions
to simulated performance of an example bioretention sys-
tem using future climate scenarios.

2. Approach and data

Bioretention systems are used as an example system to
identify whether available rainfall measures are useful
proxies for system performance because bioretention
systems are one of the most widely implemented types
of green infrastructure (Davis et al., 2009). The design
characteristics of an existing rain garden system in
Pittsburgh, PA, are used in order to illustrate the method.

The approach for this analysis consists of five steps,
shown in Figure 1. The first step of the analysis defines
the performance metrics of interest that could be
tracked over time. The second step uses observed
rainfall data and continuous hydrologic simulation
to estimate the historical hydrologic performance of
the site over a 30-year period (1983 to 2014).
Performance metrics are then calculated from simula-
tion results. The third step defines and calculates
annual rainfall measures (indices) and establishes
which of these indices is most indicative of annual
performance by calculating correlations with the
annual performance metrics. In the fourth step, pro-
jections from climate models were used to determine
how these rainfall indices are expected to change.
Then, based on the expected changes in the rainfall
indices (for those determined to the most indicative of
the performance metric in step 3), future changes in
the performance metrics are predicted. In the final
step, projections from the climate models are used
for simulation of the bioretention basin under future
conditions (2020 to 2060). Future simulation results
are then compared to the performance changes pre-
dicted based on rainfall indices. Table 1 presents the
time periods, dates, and data sources for each of these
analyses, and the following sections present more
details about each.

2.1. Hydrologic performance metrics

Hydrologic performance of the rain garden was assessed
using several annual metrics. The first metric, Runoff
Capture Efficiency, also known as the Bioretention
Abstraction Volume (Davis et al., 2012) or Reduction
from Infiltration (Jennings, 2016), depicts the fraction of
runoff water that does not reach the sewer system. This
metric is a useful indicator of performance because it
describes how much water the rain garden can capture
relative to the amount of rainfall received. This is deter-
mined as the amount of water that infiltrates through the
basin into the ground below as a percentage of total
stormwater that enters the site, normalized by the
amount of rainfall that was received in that year.
Evapotranspiration is not included in this calculation
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Figure 1. Overview of steps used to predict performance of the bioretention basin using annual rainfall measures.

Table 1. Analyses carried out in this study and associated time periods.

Time Time
period Dates step Cities

Data source

Observed July 2015 to July 2018 5-minute Pittsburgh

On-site rain gauge and water depth sensors (Civil & Environmental Consultants, Inc and 3

Rivers Wet Weather 2018)

Historical January 1983 to 1-hour  All cities in
December 2014 sample

Future January 2020 to 1-hour 2 selected
December 2059 cities

National Centers for Environmental Prediction (NCEP) (NOAA, 2016)

4 NA-CORDEX RCM/ESM simulations (Mearns et al., 2017)

(refer to the Hydrologic model and site section for
explanation).

The second metric, Volume of Discharge, also
referred to as Overflow Volume (Hathaway et al,
2014) represents the total amount of stormwater that
was discharged from the rain garden to the sewer system
each year, either due to discharge from under drain
pipes or from excess surface runoft that drains into the
surface drain and is then discharged to the sewer. Since
both mechanisms could cause discharge (overflow) to
the sewer, they are not considered separately in the
modeling or in this manuscript. This metric is especially
useful for tracking the amount of runoff that is dis-
charged to combined sewers; additional stormwater
entering the combined system could lead to combined
sewer overflows downstream of the rain garden.
Reducing on-site discharge could decrease the amount
of total overflows to the river.

Similarly, the third metric, Frequency of Discharge,
represents the number of times per year that stormwater
was discharged to the sewer system. This metric is also

of interest to stakeholders within combined sewer ser-
vice areas since they may be limited to an allowed
frequency of combined sewer overflows (CSOs)
per year. For instance, communities in Washington
State are required to reduce CSOs to an average of one
per year, per outfall (Washington State Legislature,
2000). Tracking the frequency of discharge from rain
gardens over time could help municipalities to mini-
mize upstream discharges in order to meet strict
requirements like these. Frequency of Discharge is cal-
culated by counting the number of times that there was
flow present in the outfall pipe from the system to the
sewer.

The fourth and final metric is the Maximum Surface
Detention Time, which calculates the maximum length
of time that water is stored on the surface of the bior-
etention basin. Stormwater regulations in Pennsylvania
and elsewhere require basins to drain fully in less than
48 h (PA DEP, 2006), so this metric is used to assess how
well these basins are meeting this requirement.
Although back-to-back rainfall events have been
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shown not to be a concern (Wadzuk et al., 2017), other
authors have used this metric to determine risk of mos-
quito breeding in standing surface water, which may
pose a threat in certain regions (Jennings et al., 2015;
Sell et al., 2009). Surface Detention Time is calculated as
the length of continuous time that the depth of water on
the surface is greater than 0. The basin is considered
“drained” if water is not present for 30 min or longer.
The metric can be used to assess the number of times
per year that water ponds on the surface for longer than
a specific time period (e.g., 48 h) or, if the threshold is
not exceeded, how close it comes to this level and at
what frequency.

2.2. Hydrologic model and site

2.2.1. Example site

The example site used for the simulation is located in
Pittsburgh, Pennsylvania (40.46, —79.92) within the
Allegheny River Basin. The site was selected because it
has characteristics typical of bioretention basins, includ-
ing a vegetated surface layer that allows for ponding,
a subsurface soil layer that promotes infiltration,
a gravel layer that provides additional subsurface sto-
rage and encourages infiltration, and an underdrain to
control releases to the sewer system (Davis et al., 2009;
Jennings, 2016; PA DEP, 2006).

FLOW SCHEMATIC
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Figure 2 presents a schematic of the site and
a profile view of the storage layers of the bioreten-
tion basin. Runoff that enters the rain garden from
impervious areas or from an upstream rain garden is
infiltrated and stored in a 61 cm deep engineered soil
layer (71 m’ of storage), where it is available for
uptake by the plants. Water then enters a 30.5 cm
deep gravel layer (36 m’ of storage), which consists
of 10 cm (4 in) of protective chinking stone and
20.5 cm (8 in) of crushed stone. This layer sits atop
a ~ 150 mm perforated underdrain that is controlled
with a weir and an orifice. When inflow exceeds
infiltration, water can pond on the surface to
a depth of 7.6 cm (3 in). Underdrain and surface
flows from the rain garden are routed to a solid PVC
pipe that discharges to the combined sewer system.
Post-construction soil samples report the soil as 86 -
88% sand, 10% silt, and 2 - 4% clay (A&L Great
Lakes Laboratories, Inc, 2015). More details about
the site are presented in Section 2.1 of the Appendix.

2.2.2. Continuous hydrologic simulation

The PC Stormwater Management Model (PCSWMM)
Version 7.1 (Computational Hydraulics Int, 2018) was
used to model the site using continuous hydrologic
simulation, which characterizes system response over
time and accounts for antecedent soil moisture

PROFILE VIEW

Surface drain Surface ponding layer

(8 cm)
Soil layer
(61 cm)
c

Gravel layer
(30.5 cm)

000000000000 —

DOOOO 00000«

Q0000 00000

N
Under drain

Figure 2. Flow schematic of site and model (not to scale), left, and profile view of the bio-retention layers, right. The impervious areas
drain to the surface of each garden. Rain garden 1 can drain to rain garden 2 through surface runoff or under drain flow.



conditions for consecutive storm events. PCSWMM was
also selected for its ability to model multi-layer biore-
tention systems. Evapotranspiration was not considered
in the model because prior studies have found that
runoff reductions from evapotranspiration (ET) are
negligible (Jennings, 2016; Jennings et al, 2015).
Jennings (2016) found that across 35 locations in the
U.S. evapotranspiration from bioretention basins con-
tributed only 0.16% to 1.06% of runoff reduction. Brown
and Hunt (2010) reached a similar conclusion when the
found ET to only account for 3% to 5% of stormwater
attenuation in a bioretention cell. The contribution
from ET is small because the process takes place only
during daytime dry weather. The very small contribu-
tion from ET is within the bounds of uncertainty of the
performance of the RG and thus excluded from the
modeling presented here.

In the model, runoff enters the rain garden from
four sources: two roof areas, one pavement area, and
one upstream rain garden (see Figure 2). Both rain
gardens are modeled as bioretention cells with a soil
layer, gravel layer, and an underdrain. Although the
project site contains two rain gardens, and both were
modeled, in order to limit the scope and ease com-
prehension of results, only the downstream rain gar-
den that has the potential to drain to the sewer was
evaluated for performance. Table A3 in the Appendix
presents the sub-basin areas and cumulative runoff
volumes.

Subcatchment and conduit parameter values were
estimated using a combination of as-built drawings
(CH2MHILL, and Viridian Landscape Studio, 2011),
literature sources, and model default values. Surface,
soil, storage, and underdrain parameters specific to the
bio-retention cells were based on typical ranges for bio-
retention cell parameters provided in the SWMM
Reference Manual (Rossman & Huber, 2016). Specific
values within these ranges were initially estimated based
on pre-existing field sampling (A&L Great Lakes
Laboratories, Inc, 2015), as-built  drawings
(CH2MHILL, and Viridian Landscape Studio, 2011),
and when no information was available, mid-point
values of the range or model default values. Parameter
values were adjusted within a reasonable range so that
simulated annual performance metrics for Pittsburgh
were fairly aligned with observed performance values
calculated using on-site data collected in Pittsburgh.
Table 2 presents a subset of the model parameters for
the bioretention basin of interest. Additional parameter
values and information relating to their selection are
reported in Section 2.2 of the Appendix, along with
more information about the on-site data collected in
Pittsburgh.
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Table 2. Selected parameters of the bioretention basin (down-
stream) from the SWMM model.

Parameter (units) Value

Estimation method/source

As-built drawings (CH2MHILL, and Viridian
Landscape Studio, 2011)

As-built drawings (CH2MHILL, and Viridian
Landscape Studio, 2011)

As-built drawings (CH2MHILL, and Viridian
Landscape Studio, 2011)

Surface berm 3
height (in)
Surface slope (%) 0.01

Soil thickness (in) 24

Soil porosity 0.36 Soil sampling (A&L Great Lakes Laboratories,
(volume Inc, 2015); Adjustment to reflect observed
fraction) performance

Soil conductivity 20 SWMM Reference Manual range (Rossman &
(in/hr) Huber, 2016); Adjustment to reflect

observed performance

Storage layer 12 As-built drawings (CH2MHILL, and Viridian
thickness (in) Landscape Studio, 2011)

Storage layer 2.5  As-built drawings (CH2MHILL, and Viridian
seepage rate Landscape Studio, 2011); Adjustment to

(in/hr) reflect observed performance

2.3. Historical performance of the rain garden

2.3.1. Historical precipitation data

Although the example site is located in Pittsburgh, this
configuration could be present in other locations. Rain
garden performance has been shown to be dependent
on rainfall patterns (e.g., duration and frequency of
storms) (Jennings, 2016), thus several different loca-
tions were evaluated. Bukovsky climate regions
(Bukovsky, 2011), which are smaller and more hydro-
logically similar than NOAA climate regions
(Bukovsky et al., 2019), were used to identify cities
that were representative of the various U.S. climate
zones. One city per Bukovsky climate region was
selected for a total of 17 U.S. cities: Amarillo, TX;
Boise, ID; Boston, MA; Boulder, CO; Charlotte, NC;
Chicago, IL; El Paso, TX; Fargo, ND; Memphis, TN;
Missoula, MT; New Orleans, LA; Phoenix, AZ;
Pittsburgh, PA; Portland, OR; St. Louis, MS; San
Antonio, TX; and San José, CA. Hourly observed pre-
cipitation data for the period from 1983 to 2014 were
obtained from the NOAA National Center for
Environmental Information (NOAA, 2016) for the
weather station located closest to the city. Exact coor-
dinates are provided in Table Al in the Appendix.

2.3.2. Historical simulation and performance metrics
The historical rainfall data from the period 1983 to
2014 were used to evaluate the hypothetical historical
performance of the rain garden system. The hourly
historical simulation results were then used to calculate
the annual performance metrics in each city.
Annual percent capture was calculated as the total
stormwater infiltrated below the RG divided by the
sum of flows entering the RG each year. Volume of
discharge was calculated as the annual sum of hourly
volumes from the outflow pipe, which were converted
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from hourly flow rates. Frequency of discharge was
calculated by counting the number of hours where
the outflow pipe contained flow. Maximum surface
drainage time was calculated as the maximum amount
of consecutive time each year where the depth on the
surface of the RG was above 0.1 mm.

2.4. Rainfall indices most indicative of annual
performance

2.4.1. Rainfall index definition

To determine which rainfall indices could most affect rain
garden performance and, therefore, be suitable surrogates
for performance monitoring, an extensive list of annual
precipitation indices was defined. The list was developed
from the literature (e.g., Chen et al., 2015; Karl & Knight,
1998) and through recommendations from the Expert
Team on Climate Change Detection Monitoring and
Indices (Karl et al., 1999; Peterson et al., 2001). Each
index, listed in Table 3, was calculated based on hourly
and daily rainfall amounts using the same observed rain-
fall data that were used in the historical simulation.
Indices were grouped by the aspect of precipitation they
describe: the central tendency of rainfall, magnitude, pro-
portion, or frequency of extremes, or frequency of wet
and dry days. The ‘set’ column represents the different
variations of each index that were tested. Each index was

calculated for each year of historical rainfall data (30 data
points for each index).

2.4.2. Correlation of rainfall indices and performance
metrics
The correlation of the rainfall indices to the annual
performance metrics was used to determine which
indices are most indicative of annual performance.
Correlation was tested using the Pearson correlation
coefficient, which measures the linear relationship
between two data sets that are normally distributed.
The rainfall indices and performance metrics were ver-
ified to be normally distributed using an omnibus test of
normality based on D’Agostino and Pearson (1973) test
combining skew and kurtosis. The null hypothesis could
not be rejected with a p-value of 0.001 for all variables.
Correlations were quantified as negative (represent-
ing an inverse relationship) or positive, and ranging
from low (0 to 0.34), moderate (0.35 to 0.64), high
(0.65 or above), and very high (0.9 or above). Indices
that have high or very high correlations to the perfor-
mance metrics were selected as the indices most indica-
tive of performance. If several rainfall indices were
highly correlated with the same performance metric, it
is possible that these indices are also correlated with
each other. Thus, correlations between indices were
also evaluated. If a given pair of indices was determined

Table 3. Rainfall indices evaluated in this study. The ‘set’ column represents the different variations of each index that were tested.

Index Set Description Implication Indicator
total n/a Total annual precipitation (mm) Wet or dry year
nintd ne (4, g50) Mean or median daily intensity of Intensity of rain days Central tendency
rain days (mm)
ninthr ne(y, g50) Mean or median hourly Intensity of rain hours
intensity of rain hours (mm)
maxnd ne (1,2,3) days Greatest n-day total Measure of extremes Extreme magnitude
precipitation (mm) with duration less than
or equal to drainage
requirement
gpd pe (90,95,99) pth percentile of rain day Intermediate to rare
quantile amounts (mm/day) daily extremes
gph pe (90,95,99) pth percentile of rain hour Intermediate to rare
quantile amounts (mm/hr) hourly extremes
totgp pe (90,95,99) Total rain from daily qth Total from intermediate Extreme total
quantile percentile or greater (mm) to rare extremes
propgp pe (90,95,99) Proportion of total annual Measure of extremes Extreme proportion
quantile rainfall above qth percentile (%) compared to total received
excdn ne (10,25,50) mm Number of rain days with Intermediate to rare Extreme frequency
precipitation = n mm (days) daily extreme events
raind n/a Number of rain days where Daily precipitation
precipitation > 0.1 mm (days) occurrence
ncwd ne (Y, max) Mean or max number of Measure of average to Frequency
consecutive wet days where long-duration storms wet & dry
precipitation > 0.1 mm (days)
ncwh ne (Y4, max) Mean or max number of Measure of average to
consecutive wet hours where long-duration storms
precipitation > 0.01 mm (hours)
ncdd ne (Y4, max) Mean or max number of Measure of risk of

consecutive dry days where
precipitation < 0.1 mm (days)

dryness and antecedent
soil conditions




to be correlated, only one was considered further. The
selection of rainfall indices most indicative of perfor-
mance for individual cities is discussed in the results
section.

2.5. Expected changes in future rainfall and
performance metrics

2.5.1. Source of climate model output

This study used output from regional climate models
(RCMs) from the NA-CORDEX project (Mearns et al.,
2017) to evaluate anticipated future changes in rainfall.
The RCMs in the NA-CORDEX are simulated using
Earth System Models (ESMs) as inputs (Heavens et al.,
2013) over the continuous period from 1950-2099. This
study used the four RCM-ESM combinations (see Table A2
in the Appendix) available at a 1-h time step and simulated
at the 50-km resolution with the RCP 8.5 emissions path-
way, which is the scenario with the highest assumed green-
house gas emissions (Riahi et al., 2011). The 1-h time step
from RCM:s is crucial for continuous hydrologic simulation
models to capture localized rainfall-runoff interactions
(Cook et al., 2017; Durrans et al., 1999) and the 50-km
resolution was chosen over the 25-km resolution because
future rainfall intensities were greater and provide a higher
level of protection (Cook, 2018). More details are provided
in Appendix Section 1.2.1.

Although four RCM-ESM projections were analyzed,
only two are discussed: CanRCM4/CanESM2 (CANCAN)
and RegCM4/MPI-ESM-LR (MPIREG). They provide
a complementary representation of the uncertainty range
that could be expected in the future. The CANCAN model
generally predicts a wetter and more variable future, while
the MPIREG model predicts drier and less variable future.
The CANCAN model will be referred to as the wetter
future, while the MPIREG model will be referred to as the
drier future.

2.5.2. Bias-correction of climate model output

The raw RCM-ESM combinations are an areal average of
precipitation across a 50-km grid cell, which are not
representative of rainfall values at a weather station
(Gregersen et al, 2013). This analysis uses a bias-
correction method, called Kernel Density Distribution
Mapping (KDDM), to adjust the RCM-ESM simulations
to the station scale (McGinnis et al., 2015). Hourly
observed data from the NCEI (NOAA, 2016) for the
stations reported in Table Al in the Appendix for the
period 1950 to 2010 were used to find a non-parametric
relationship with the raw climate model output for
a historical time period (1950-2010). This relationship
was used to adjust the entire gridded climate model time
series (1950-2099) to the station scale. More details are
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provided in the Appendix Section 1.2.2. A major benefit
to the KDDM method is that the timing of rainfall events
simulated from the RCMs are maintained in the bias-
corrected data, which allows the performance analysis to
incorporate changes in the frequency of storm arrival as
well as changes in rainfall intensity.

2.5.3. Predicting future changes in performance
metrics from rainfall projections

To estimate changes in the future, rainfall indices were
calculated for each year of the bias-corrected climate
projections. The percent change of each index was cal-
culated for each year with respect to the median of the
historical rainfall indices over the 30-year period
(1983-2014). In order to evaluate if rainfall indices can
be used as a proxy for on-site performance data, the
change in the rainfall index most indicative of each
performance metric was used to predict how that per-
formance metric would change in the future. For
instance, if the maximum 1-day rainfall value was
most indicative of maximum surface drainage time,
and the maximum 1-day rainfall was expected to
increase by 25-50% based on the climate projections,
then the maximum surface drainage time would be
predicted to increase by a similar magnitude in the
future (assuming there was a positive correlation
between these variables).

2.6. Simulating future performance

The predicted changes in performance metrics (based
on correlations to rainfall indices) were then compared
to the simulated results for the future time period to
determine if the predictions were correct. Using the
calibrated hydrologic simulation model, future perfor-
mance of the RG was simulated for two out of 17 cities
using the bias-corrected climate model projections at
the 1-hourly timestep as inputs. Annual performance
metrics were calculated from the future simulation
results for each city and climate model projection in
the same manner as the historical simulation. Changes
in the performance metrics with respect to the historical
period were compared to predicted changes in perfor-
mance based on the rainfall projections.

3. Results and discussion
3.1. Simulated historical rain garden performance

In most cities, the example bioretention basin per-
formed well during the historical simulation period.
Figure 3 presents the four simulated performance
results for all 17 cities over the period from 1983 to
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Figure 3. Annual rain garden performance over historical period [1983-2014] for 17 cities, including: (a) percent of runoff captured
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2014 along with the rainfall indices that were strongly
correlated to that metric in many cities (discussed in the
following section). The average total annual rainfall in
each city is also shown in the figure, represented as the
size of the marker. The cities are ranked based on this
value, from lowest to highest across the horizontal axis
(Phoenix has the lowest and New Orleans has the high-
est). Panel (a) shows the first performance metric, the
annual percent of runoff captured and the average daily
99th quantile of rainfall for each city, represented by
marker color. Panel (b) presents the volume discharged
to the sewer and total rainfall from > the 95th quantile
(averaged across years) as the color. Panel (c) presents
the frequency of discharge to the sewer and total rainfall
from = the 90th quantile (averaged across years) as the
color. Panel (d) shows the maximum number of hours
to drain the surface and maximum 1-day rainfall (aver-
aged across years) as the color. The median annual value

of the performance metric is represented by the marker
location on the vertical axis, and the range shows the
minimum and maximum annual value during the his-
torical period.

Results show that for more than half of the historical
period, the simulated system captured at least 90% of
rainfall (Figure 3(a)), overflowed fewer than 10 times
(Figure 3(c)), and had a maximum drainage time of
fewer than 4 h (Figure 3(d)) in all but two cities. These
historical performance values are excellent, but not sur-
prising given the large capacity for storage of the rain
garden. Capture efficiency is within the bounds reported
by Jennings (2016) who evaluated simulated rain garden
performance in 35 locations within the contiguous U.S.

These historical simulation values can be used to set
thresholds for evaluating performance degradation over
time, as well as for scheduling maintenance. If the basin
performs well when evaluated across the historical



rainfall conditions, stakeholders may want to undertake
adaptation or maintenance actions when percent cap-
ture (or another metric) falls below a threshold that is
considered unsatisfactory, for example, 80% volumetric
capture per year. However, if the basin is already per-
forming near or below this 80% value based on the
historical evaluation, then stakeholders may want to
accept a lower threshold, or consider expanding the
basin.

These findings suggest that cities with lower total
annual rainfall tend to perform better because there is
less rainfall overall that needs to be captured. However,
total annual rainfall is not the only indicator of perfor-
mance. The magnitude and total quantity of extreme
rainfall are also important indicators of how well a rain
garden will perform in a city. As expected from the
correlation analysis, cities with the highest daily 99th
quantile rainfall (e.g., in Figure 3(a), San Antonio and
New Orleans) captured the least amount of runoff.
Cities with the highest total rainfall from extremes dis-
charged the most stormwater with the highest frequency
(e.g., in Figure 3(b,c), Memphis and New Orleans).
Finally, cities with high maximum I-day rainfall
(Figure 3(d)) values had the longest surface drainage
times.

3.2. Strong relationships between rainfall indices
and performance metrics

The relationships between rainfall indices and perfor-
mance metrics were confirmed by evaluating the strength
of their correlations. During the historical period, strong
correlations exist between the performance metrics and
several rainfall indices in many cities. Figure 4 shows the
number of cities (out of 17) where a strong correlation
(>0.64) exists between the rainfall index and perfor-
mance metric as a heat map. The rainfall indices that
have the highest number of strong correlations for each
performance metric are outlined in dark blue. The total
number of cities where strong correlations were found
between performance metrics and rainfall indices are
shown in the last row of the figure.

In more than half of cities, strong correlations exist
between the performance metrics and at least one rainfall
index. However, some cities have very few or no strong
correlations between rainfall indices and performance
metrics, including Portland, Missoula, San José, Boston,
and Boise. The rain garden performed very well in these
cities, with zero, or nearly zero, discharge in almost
every year. In these cases, it does not rain enough to result
in a discharge, and thus, there are not enough data to
establish strong correlations between performance metrics
and rainfall indices.
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Figure 4. Number of cities (out of 17) where a strong correlation
exists between rainfall indices (rows) and rain garden perfor-
mance metrics (columns) in the historical period [1983-2014].
The rainfall indices that have the highest number of strong
correlations for each performance metric are outlined in blue.

0

In cities where strong correlations do exist, the
performance metrics tend to be strongly correlated
to rainfall indices related to the magnitude or total
quantity of extreme rainfall. For instance, the percent
captured and the maximum drainage time are
strongly correlated to the maximum I1-day rainfall
in the largest number of cities, meaning that the
magnitude of maximum daily rainfall that occurs in
a year can provide an indication of how much rainfall
was captured or how long the surface took to drain.
Similarly, the total amount of rainfall from extremes
(e.g., the quantity of rain received that is greater than
the 90th quantile storm) can be used to understand
how much and how often runoft was discharged from
the system. This analysis confirms that when ade-
quate data are available, strong relationships can be
established between performance metrics and rainfall
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indices, and as a result, tracking rainfall indices can
be used to evaluate rain garden performance.

3.3. Rainfall indices most related to performance
during historical simulation

In order for rainfall indices to be used as a proxy for
performance, a specific rainfall index should be selected
as representative of the performance metric of interest
to the stakeholder. If multiple performance metrics are
of interest to the stakeholder, then multiple rainfall
indices may be tracked as a proxy for each metric.
However, the index used to represent a performance
metric may not be the same as the general trends
observed across all the cities (and described in the pre-
vious section). Selecting a rainfall index as representa-
tive of a performance metric requires location-specific
analysis because the indices with strong correlations to
individual performance metrics vary depending on the
city. Figure 5 highlights this fact by showing correlations
between performance metrics and rainfall indices for
two specific cities, Pittsburgh and Memphis, which
were selected because they have higher amounts of
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rainfall than many cities in the western U.S. and are
thus more likely to employ green infrastructure to
reduce stormwater runoff. Taking the example of fre-
quency of discharge, the indices with strong correlation
to this metric are indeed different in each city, and
different from the results across all cities, discussed
previous section. In Pittsburgh, the frequency of dis-
charge is most highly correlated to the magnitude and
frequency of extreme rainfall, while in Memphis, it is
more strongly related to the total rainfall. These correla-
tions vary depending on the city because rainfall pat-
terns vary in frequency, magnitude, and total quantity in
each city, and the rain garden system will respond
differently to these differences.

Figure 5 also shows that for a specific city, several
rainfall indices can be strongly correlated to the same
performance metric. For instance, the volume of dis-
charge in Memphis is strongly correlated to the total
from >90th quantile, and the number of rain days
>50 mm. Many of these indices are also strongly corre-
lated with each other (refer to Section 3.1 in the
Appendix), and it is not immediately clear which one
of these indices should be selected as most indicative of
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Figure 5. Correlations between rainfall indices and all performance metrics in Pittsburgh (left) and Memphis (right) for historical
period [1983-2014]. Grey colors represent positive correlations, while reds represent negative correlations.



the performance metric. Multiple indices could be
tracked, but need not be if they are related to each other.

To select the index most indicative of a specific per-
formance metric, analysts may want to choose the rainfall
index that is easiest to calculate, like the maximum I-day
rainfall, or that is easily understood by stakeholders, like
the number of rain days above 25 mm. Alternatively, it
may be important to ensure that the strength of correla-
tions are robust against a margin of uncertainty for para-
meter estimation. In this case, a sensitivity analysis could
be conducted to determine which correlations remain
strong when model parameters are altered. Similarly,
model parameters could be modified to represent poten-
tial changes in site conditions that are unrelated to rain-
fall, like soil conductivity. The indices with correlations
most robust against changes would be selected. Finally, an
alternative approach is to select the index with the highest
absolute correlation, even if the correlation is only mar-
ginally higher than other indices.

In this analysis, the last approach was used to select the
indices most indicative of the four performance metrics in
both cities. If two or more indices had the same correlation
to a performance metrics, then the index that was easiest to
interpret was selected. For instance, in Memphis, the total
annual rainfall and the total from > the 90th quantile both
have a strong correlation of 0.71 to the frequency of dis-
charge. The total annual rainfall was selected as most
indicative of frequency of discharge because the meaning
is more intuitive than the other index. The indices selected
as most indicative of each performance metric in each city
are summarized in Figure 6.

3.4. Expected changes in rainfall and predicted
changes in performance metrics

Each rainfall index in Figure 6 has a relatively high
correlation to the related performance metric, which
means that if the rainfall index changes, the perfor-
mance metric is expected to change in a similar manner.
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This section presents projected changes in precipitation
in the future for the selected rainfall indices, and then
discusses how performance would be predicted to
change, based on these projections.

Figure 7 presents the percent change of each rainfall
index for the two selected climate model projections
(drier and wetter future) for Pittsburgh and Memphis.
The box and whisker plots represent the range of
the percent change across all future years (2020 to
2059). The colored line shows the median over the
future period, the box outline shows the 25th and 75th
quantiles, and the whiskers show the 5th and 95th
quantiles. Outliers are shown as orange dots (drier
future) and purple stars (wetter future). The grey box
represents the historical range (in terms of percent
change from the median). The indices highlighted with
color are those that were selected as most indicative of
each performance metric in the previous section (see
Figure 6). Blue highlight refers to the capture efficiency,
yellow to the volume discharged, green to the frequency
of discharge, and pink to the maximum drainage time.

In Pittsburgh, both climate model scenarios project
similar changes: increases in extreme rainfall (e.g., max-
imum 1-day rainfall) and in the average number of con-
secutive dry days (index to the far right of the graph). This
results in total annual rainfall remaining similar to the past.
The drier future (orange) generally predicts smaller
increases in extremes and less variability than the wetter
future (purple). The index most indicative of the runoff
capture efficiency, proportion of rainfall from the 90th
quantile or greater, is expected to increase (median
value), and climate projections suggests that the propor-
tion of extremes will surpass the historical upper bound in
50-75% of future years. As a result, capture efficiency is
expected to decrease in the wetter and drier climate sce-
narios, with several years below the historical lower bound.
The average hourly intensity, most indicative of volume of
discharge and maximum drainage time in Pittsburgh, is
predicted to increase (median value) in the wetter scenario,

Performance metric

Recommended rainfall indices

Pittsburgh

Memphis

Percent captured
quantile

Proportion of total from 90"

Daily 95" quantile

Volume discharged Hourly mean

Nb. days where rainfall > 50
mm

Frequency of discharge
mm

Number days with rain > 25

Total annual rainfall

Maximum drainage time
quantile

Total rainfall from > 99"

Max 5-day rainfall

Figure 6. Rainfall indices most indicative of performance for historical period [1983-2014]. The colors for each performance metric

correspond to the rainfall indices presented in Figure 7.
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Figure 7. Percent change in rainfall indices for two climate model simulations, drier future (orange) and wetter future (purple) in
Pittsburgh (top) and Memphis (bottom). The box and whisker plots represent the range of the percent change for each year and each
climate model for the future period [2020-2059], with respect to the historical period [1983-2014]. The middle line of the box plot
represents the median over the 40-year future period; the box outline shows the 25th and 75th quantiles, and the whiskers show the
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represents the historical range (in terms of percent change from the median). The black dashed line at zero represents no future
change. The indices highlighted with color are those that were selected as most indicative of each performance metric, including
capture efficiency (blue), volume discharged (yellow), frequency of discharge (green), and maximum drainage time (pink).

but still remain within the historical range. Based on
projected increases in number of days where rainfall
>25 mm, frequency of discharge is expected to increase
in both climate scenarios, with fewer than 25% of years
outside of the historical range. Finally, the total rainfall
from the 99th quantile or greater, most indicative of max-
imum drainage time, is predicted to increase (median
value), with fewer than 50% of years falling outside the
historical range.

In Memphis, the two climate model simulations pre-
dict opposing trends. The wetter future predicts that
Memphis will have considerably more total rainfall,
due to higher intensities, while the drier future predicts
Memphis will have about the same median total, due in

part to long dry spells and some years with more varia-
bility. The rain garden is thus predicted to perform
much worse in the wetter scenario, and sometimes
better in the drier future scenario. Based on changes in
the daily 95th quantile, capture efficiency in Memphis
would be expected to decrease in both scenarios, with
50% to 75% of future years capturing less runoff than
was observed in the historical period. Changes in num-
ber of days where rainfall >50 mm in both future sce-
narios indicate that median volume of discharge would
be expected to decline, including some years with higher
volumes discharged than in the past.

Based on changes in the total annual rainfall in the
drier future, increases in the frequency of discharge are



predicted, with less than 25% of future years having
more discharge events than in the historical period. In
the wetter scenario, the median total annual rainfall
remains about the same, but some years are expected
to have more discharge events than in the past, and
some years fewer events because variability increases.
Finally, since the maximum 5-day rainfall increases in
both scenarios (median), maximum drainage time
would increase overall. This increase is larger in the
drier future, with about 50% of years expected to have
longer drainage times than in the past. In the wetter
future, about 25% of years are expected to have drainage
times higher than in the historical period.

The predictions for each performance metric are sum-
marized in Figure 8 for both climate model projections
(drier and wetter future) and cities (Pittsburgh and
Mempbhis). The predicted values were estimated using the
corresponding rainfall indices shown in Figure 7. Plus
signs (+) signify that an increase in the median perfor-
mance metric was predicted, based on the projected
change in the rainfall index associated with the perfor-
mance metric. Minus signs (-) signify that a decrease in
the median performance metric was predicted, based on
the associated rainfall index. The number of plus signs
refer to the predicted magnitude of change (less than
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25%, between 25% and 75%, or greater than 75%). The
arrows signify that some of the future years were predicted
to fall outside the upper (1) or lower () historical bounds.
The number of arrows conveys the percentage of future
years that were predicted to be outside the historical range:
less than 25% (one arrow), between 25% and 50% (two
arrows), and more than 50% of years (three arrows). An
X implies that none of the future years were predicted to lie
outside the historical range. For all performance metrics
except percent capture, the direction of change is equal to
the direction of change of the rainfall index.
However, percent capture is inversely correlated with the
associated rainfall indices, thus an increase in the associate
rainfall index leads to a predicted decrease in the percent
capture (or vice versa). The predicted changes in perfor-
mance metrics are compared to the change in performance
metrics calculated using the hydrologic simulation model
and future bias-correction climate model projections.

3.5. Simulated future rain garden performance

The previous section identified trends in the rainfall
indices most indicative of the performance metrics, and
provided a hypothesis for how the rain garden would
perform based on these trends (see Figure 8). This section

Pittsburgh Memphis
Predicted Simulated Predicted Simulated
from from from from
correlations SWMM correlations SWMM
Percent - VA EEE 2 e 22 2 R AN A
Captured |Wetter |- Jdbl- L] LU Ll
Volume + X ++ 1 +++ ™M | ++ D
Discharged |Wetter |+ X ++ M | +++ D |+ P
Frequency of ++ 1 ++ 1 + 1 - N
Discharge Wetter |++ 1 ++ 1 + ™MN |+ L
Maximum ++ X ++ ++ ™M |+ ™MD
Drainage Time |Wetter |++ 1 ++ ++ M |++ ™M
LEGEND
+ /- median increase / decrease of less than 25%
++ / -- median increase / decrease of 25 - 75%
+++ / --- median increase / decrease greater than 75%
X All future years stay within historical bounds
/I\/ \l/ < 25% years outside historical upper/lower bounds
/]\/l\ / \]/\]/ 25-50% years outside historical upper/lower bounds
/]\/]\/l\ / \]/\]/ \I/ > 50% years outside historical upper/lower bounds

Figure 8. Predicted and simulated changes in performance metrics in the future [2020-2059] for both cities (Pittsburgh and Memphis)
and both climate model scenarios (drier and wetter future) with respect to the historical period [1983-2014]. Predicted changes are
based on projected changes in rainfall indices most indicative of each performance metric and simulated changes are calculated from
the SWMM model simulations using climate projections. For all performance metrics except percent capture, the direction of change is
equal to the direction predicted by the rainfall index. However, percent capture is inversely correlated with the associated rainfall
indices, thus an increase in the associate rainfall index leads to a predicted decrease in the percent capture.
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presents the simulated performance of the rain garden in
the future and identifies whether simulated performance
shows patterns consistent with the predictions. Figure 9
presents the simulated performance of the rain garden in
the two future scenarios (shown in orange and purple),
and in the historical period, for reference (shown in
black). The y-axis shows the cumulative probability (%)
and the x-axis shows the magnitude of each performance
metric in percent, volume (L/yr), number, and hours for
the four metrics, respectively. The median value for each
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scenario is highlighted with a vertical, dashed line, while
historical range is represented by vertical, grey shading.
These results are also summarized in Figure 8 as magni-
tude of simulated change (less than 25%, between 25%
and 75%, or greater than 75%) and the percentage of
future years that were simulated to be outside the histor-
ical range (less than 25%, between 25% and 50%, and
more than 50% of years).

Overall, the simulated future performance follows
the trends from the rainfall indices; however, predicted
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and simulated results sometimes vary in the magnitude
of predicted change and the number of years expected to
fall outside the historical range. In Pittsburgh, the med-
ian capture efficiency decreases significantly (p = 0.001)
in both climate futures, as predicted, and the median
capture efficiency declines as predicted (by less than
25%). However, the simulated range was smaller than
predicted by the rainfall indices, meaning fewer years
fell outside the historical bounds. In the future simula-
tions, about 30% (wetter future) and 20% (drier future)
of future years surpassed the historical bound for cap-
ture efficiency in Pittsburgh.

In Pittsburgh, median volume discharged increases sig-
nificantly (p = 0.001), by a larger amount that was predicted
in both future scenarios (between 25% and 75%, not less
than 25%). More years were hydrologically simulated to be
outside the historical range than predicted based on the
rainfall index. Frequency of discharge is modeled to
increase by exactly 25% in both future scenarios, from
a median of 3 to 4 per year, which is within the predicted
range from the rainfall index. Maximum surface drainage
time increases significantly (p = 0.001) from 2 to more than
3 h in both futures, using hydrologic simulation. These
simulated results are consistent with the predictions using
the rainfall indices, except for in the drier scenario. The
drainage time was predicted to fall within the historical
range for all years; however, hydrologic simulation results
show 5% to 10% of years exceeding historical bounds. In
general, for Pittsburgh, hydrologically simulated changes
match predicted changes from rainfall projections, but the
range varies, especially for percent captured and volume
discharged. This may be because these two metrics had the
weakest correlations out of the four metrics considered.

In Mempbhis, the hydrologically simulated and pre-
dicted performance values are less consistent than in
Pittsburgh. In both future scenarios, the hydrologically
simulated results show the rain garden performing bet-
ter than predicted using rainfall indices by capturing
more rainfall and discharging less runoft. The frequency
of discharge increased as predicted in the wetter sce-
nario, but in the drier scenario, the number of events
decrease, rather than increase (by less than 25%). This is
the only case where the median performance metric was
predicted to increase and instead it decreases in the
simulation results. In a few cases, performance was
predicted to be more variable than the simulated results
show. For instance, some years were predicted to have
more discharge events that in the past, and others fewer;
however, simulated results show only a few years with
fewer discharge events, and none with more. In general,
for Memphis, predicted values both overestimate and
underestimate the hydrologically simulated range, how-
ever, differences are usually within a margin of 25%.

SUSTAINABLE AND RESILIENT INFRASTRUCTURE . 15

Predictions for Pittsburgh more closely matched the
hydrologic simulations than predictions for Memphis.
However, this is not necessarily a result of the strength
of the correlations in each location. In some cases, the
correlation was weaker in Pittsburgh (e.g., for percent
capture); however, the median predictions in Pittsburgh
still better match the simulated results. The difference in
the predictive ability between the two cities is likely
a result of the rain garden properties and rainfall patterns
in each city. Extreme rainfall is expected to get more
intense in Memphis than in Pittsburgh, which would
lead to predictions of lower performance. However,
given the large capacity of the rain garden, and timing
of storms, performance was higher than expected.

4. Conclusions and future work

In this study, annual measures, or indices, of rainfall were
evaluated as indicators of hydrologic performance of green
infrastructure systems over time. Historical performance
metrics were strongly correlated with rainfall indices linked
to the magnitude and total quantity of extreme rainfall in
a year, and findings suggest that tracking these rainfall
indices can provide insight into the future performance of
green infrastructure, without the use of hydrologic simula-
tion or on-site sensors. The specific rainfall index used to
track performance varies by city because the strength of
correlations changes depending on the rainfall patterns in
each city. The accuracy of performance predictions was
evaluated in two specific cities, Pittsburgh and Mempbhis,
and findings show that the rainfall indices were able to
predict the direction of change and the magnitude of
change within 25% to 50% in most cases. In some cases,
the magnitude of change varied from simulated results, and
so did the number of years expected to fall outside the
historical range.

The accuracy of predictions was not consistently related
to the strength of the correlations between the rainfall index
and performance metric, which suggests that there are
other factors, such as the design characteristics of the
green infrastructure, which would need to be considered
to improve the prediction accuracy. It may be possible to
apply a regional correction factor to the magnitude of
change predicted by the rainfall index in order to determine
the magnitude of change in performance. However, regres-
sion or more advanced machine learning models that take
into account design characteristics may be needed to
increase the accuracy of performance predictions from
annual rainfall measures.

Developing regional equations of performance for
green infrastructure systems as a function of annual rain-
fall measures would allow GSI performance to be tracked
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by stakeholders without sophisticated climate models,
hydrologic simulations, or on-site sensors. This study
demonstrated the promise of this approach; however,
additional work is needed to identify the type of changes
in rainfall or performance that should result in adapta-
tion or redesign of GSI systems. Due to the variability of
rainfall patterns, any one year surpassing a threshold may
not be indicative of future trends. Defining acceptable
performance thresholds, while not the focus of this study,
is an important area that merits further attention.
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Appendix
1. Data

1.1. Observed rainfall data from 17 U.S. cities

One city per Bukovsky climate region (Bukovsky, 2012;
Bukovsky et al, 2019) was selected, for a total of 17
U.S. cities, including Amarillo, TX; Boise, ID; Boston, MA;
Boulder, CO; Charlotte, NC; Chicago, IL; El Paso, TX; Fargo,
ND; Memphis, TN; Missoula, MT; New Orleans, LA; Phoenix,

Table A1. Characteristics of cities used in this study.

Bukovsky climate Elevation
City State region (m) Latitude Longitude
Amarillo TX C. Plains 1100 352 -101.7
Boise ID Great Basin 815 436 -116.2
Boston MA  North Atlantic 4 424 -71.0
Boulder CO  S.Rockies 1654 40.0 —-105.3
Charlotte NC  Mid Atlantic 234 35.2 -80.9
Chicago IL Great Lakes 187 41.8 —87.8
El Paso 1R Mezquital 1201 31.8 -106.4
Fargo ND  N. Plains 273 46.9 —-96.8
Memphis TN Deep South 79 35.1 —-90.0
Minneapolis MN  Prairie 254 449 -93.2
Missoula MT  N. Rockies 972 46.9 -114.1
New LA Southeast 6 29.9 -90.1
Orleans
Phoenix AZ  Southwest 337 334 -112.0
Pittsburgh  PA  Appalachia 367 404 -80.0
Portland OR  Pacific NW 6 45.6 -1226
St. Louis MO  Prairie 176 388 -90.4
San X S. Plains 230 29.5 -98.3
Antonio
San Jose CA Pacific SW 29 373 -121.9

AZ; Pittsburgh, PA; Portland, OR; Saint Louis, MS; San
Antonio, TX; and San José, CA. Table 1 presents character-
istics of the locations where data were obtained.

1.2. Climate model simulations

1.2.1. Source of climate model output. This study uses
output from regional climate models (RCM) from the NA-
CORDEX project (Mearns et al., 2017) to evaluate anticipated
future changes in rainfall. NA-CORDEX is a compilation of
standardized regional climate model simulations available at
an hourly time step, for two different spatial resolutions (50-
km and 25-km), over the continuous time period from 1950 to
2100. These models were chosen over other types of down-
scaled climate models because of their availability at a
1-h time step (Cook, 2018). A sub-daily time step is crucial
for continuous hydrologic simulation models that capture
highly variable, localized, and short temporal scales of rainfall-
runoff interactions (Cook et al., 2017; Durrans et al., 1999).

The RCMs in the NA-CORDEX project use Earth System
Models (ESMs) as inputs. ESMs use more complex relation-
ships than those in older Atmosphere-Ocean Global
Circulation Models (AOGCMs) (Heavens et al., 2013). At
the time of the present analysis, four RCM-ESM combinations
were available at the 1-h timestep (presented in Table A2).
This study used all four of these combinations simulated at the
50-km resolution using the RCP 8.5 emissions pathway, which
is the scenario with the highest assumed greenhouse gas
emissions (Riahi et al., 2011). The 50-km resolution was
chosen over the 25-km resolution as a more conservative
analysis since the 50-km-based simulations predicted higher
rainfall intensities for the maximum annual hourly precipita-
tions (Cook, 2018).

RegCM4 was originally developed at the International
Centre for Theoretical Physics (ICTP) and simulated for NA-
CORDEX at the National Center for Atmospheric Research
(NCAR). WRF was developed and simulated at NCAR.
CanRCM4 was developed and simulated at the Canadian
Centre for Climate Modeling and Analysis.
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Table A2. Regional climate model simulations from NA-CORDEX used in this study.

RCM/ESM Regional Climate Model

Combination (RCM) Earth System Model (ESM) Abbreviation
RegCM4/MPI-ESM-  RegCM4 RCM ‘Max Planck Institute Earth System Model at base resolution’ (MPI-ESM-LR) MPIREG

LR
WRF/MPI-ESM-LR WRF RCM MPI-ESM-LR MPIWRF
WRF/GFDL-ESM2M ~ WRF RCM Geophysical Fluid Dynamics Laboratory Earth System Model, Modular Ocean Version” GFDWRF
(GFDL-ESM2M)
CanRCM4/CanESM2  CanRCM4 RCM Second generation Canadian Earth System Model (CanESM2) CANCAN

1.2.2. Bias-Correction of climate model output. The raw
RCM/ESM simulations are an areal average of precipita-
tion across a grid cell (50 km x 50 km). These data are not
representative of rainfall values at the station (or city)
scale, and thus must be adjusted to match the scale of
the observed values. The method used in this analysis to
adjust the RCM-ESM simulations to the station scale is
called Kernel Density Distribution Mapping (KDDM)
(McGinnis et al., 2015). Hourly data from the period
1950 to 2010 were used for this bias-correction. Data
were obtained from the NOAA National Center for
Environmental Information (NOAA, 2016) for the stations
reported in Table Al above.

This method is a type of non-parametric bias-correction
that uses a relationship between the observed rainfall time
series (1950-2013) and the gridded climate model time series
for the historical time period (1950-2013) to adjust the entire
gridded climate model time series (1950-2099) to the station
scale. The relationship between the observed rainfall time
series and the gridded climate model time series is defined
by fitting a transfer function between their empirical cumula-
tive probability distribution functions (CDFs). First, empirical
probability density functions (PDFs) are computed using ker-
nel density estimation; these PDFs are then integrated using
the trapezoid rule to calculate CDFs. Equal points of prob-
ability from the CDFs are mapped against each other and the
resultant mapping is then fitted with a spline. The equation of
this spline is the transfer function between the observed data
and the historical climate model simulation output. The func-
tion is then applied to the 150-year time series of the climate
model simulations to obtain bias-corrected values at the sta-
tion scale.

After this correction, the statistical distribution of the
observations is more consistent with the statistical distribu-
tion of the historical period of the bias-corrected data. The
major benefit of using the KDDM method to convert an RCM
time series to a station scale is that the timing of rainfall events
simulated from the regional climate models at the sub-daily
level are maintained in the bias-corrected data. This allows for
analysis of future rain garden performance not only based on

Table A3. Drainage area characteristics of SWMM model

increases in volume or intensity, but also due to changes in the
frequency of storm arrival that are portrayed in the climate
models.

2. SWMM model and example site

2.1. Example site and model configuration

The site contains two rain gardens that collect water from
adjacent roof and pavement areas. The upstream rain garden
(RG) collects runoff from an impervious area of 400 m?. This
RG drains into a downstream rain garden, which also collects
runoff from an impervious area of 377 m*. The downstream
rain garden has the potential to overflow to the combined
sewer system and is the one that is evaluated for performance
in the study. Runoft that enters either rain garden is infiltrated
and stored in a 61 cm deep engineered soil layer where it is
available for uptake by the plants. Water then enters a 30.5 cm
deep gravel layer, which sits atop a ~150 mm perforated
underdrain. When inflow exceeds infiltration, water ponds
on the RGs to a depth of 76 mm (3 in), enabled by the
elevation difference between the top of the RG and the street.
Ponded water can flow into a vertical surface drain that con-
nects to the underdrain. Flow in the underdrain is controlled
with a weir and an orifice.

Eight sub-basins are modeled to represent four roof areas,
two pavement areas, and two rain gardens. At the site, the
outlet of the under drain of the downstream RG flows into
a solid HDPE pipe and then into a perforated under drain. In
the model, the perforated pipe is modeled as an underdrain
(available with the bio-retention feature in the SWMM
model). Underdrain and surface flow of the upstream RG is
routed to the downstream RG. Underdrain and surface flow
from the downstream RG is routed to a solid PVC pipe that
discharges to the combined sewer system. The orifices and
weirs controlling the underdrain flow are accounted for in the
model using storage, orifice, and weir nodes (Rossman, 2015).
Table A3 presents the sub-basin characteristics and flow
patterns.

Drainage Area Sq. Ft Sqg. Meters Slope % Impervious % Zero-Impervious Drains to
Roof 1 1440 134 2% 100 100 Upstream RG
Roof 2 1360 126 2% 100 100 Upstream RG
Pavement 1 1500 139 2% 100 25 Upstream RG
Roof 3 700 65 2% 100 100 Downstream RG
Roof 4 2500 232 2% 100 100 Downstream RG
Pavement 2 860 80 2% 100 25 Downstream RG
Upstream RG 1262 117 0.1% 0 25 Downstream RG
Downstream RG 907 84 0.1% 0 25 Outfall
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Table A4. Annual percent capture during the 4 years in the
observed period calculated from observed data from on-site
sensors (left column) and calculated from SWMM model simula-
tion (right column) over the period July 2015 to July 2018.

Year Observed on-site

Simulated (observed period)

2015 100% 99%
2016 98% 86%
2017 100% 97%
2018 99% 89%

2.2. SWMM model parameter selection

Model parameter values were first selected using
a combination of pre-existing field sampling, as-built draw-
ings, literature sources, model default values, and typical
ranges for bio-retention cell parameters provided in the
SWMM Reference Manual (Rossman & Huber, 2016). Post-
construction soil samples of the downstream RG report the
soil as sand, with 86-88% sand, 10% silt, and 2-4% clay;
whereas, samples from the upstream RG classify the soil as
loamy sand, with 86% sand, 8% silt, and 6% clay (A&L Great
Lakes Laboratories, Inc, 2015).

Monitoring data were also available at the rain garden site
in Pittsburgh. Certain parameters, marked with an asterisk in
Table A5, were adjusted within the ranges provided in the

SWMM Reference Manual so that annual performance
metrics in Pittsburgh were reasonably aligned with observed
performance values. In this way, specific conclusions about
the relationship between rainfall indices and performance
metrics will be representative of a typical bio-retention
basin, as well as typical of real-world conditions.

The site in Pittsburgh was equipped with a rain gauge, soil
moisture probes, and a Conductivity, Temperature, Depth
(CTD) sensor, placed within a cylindrical screen at a 40-inch
(1016-mm) depth, which was used to measure water depth
before it was discharged to the sewer. Data have been collected
from all sensors on a 5-min interval since July 2015. Figure A1l
presents a view of the rain garden site.

The model configuration was simulated over the same time
period where observed data were available, from July 2015 to
July 2018, using the on-site rainfall data at 5-min intervals.
Simulated performance results for this period were compared
to observed performance from the on-site water level sensors
for the same time period. SWMM model parameters for the
bio-retention basins were adjusted until an accuracy of £15%
was achieved. These parameters include soil porosity, soil
conductivity, wilting point, suction head, void ratio, and see-
page rate. Dimensional parameters like soil and surface thick-
ness were not adjusted because they were assumed to be
correct based on information from as-built drawings
(CH2MHILL, and Viridian Landscape Studio, 2011).

Table A5. SWMM model parameters. Parameters marked with an asterisk were adjusted to align simulated results with observed

Data Source

As-built drawings/Google Earth
(McCuen, 2005; Mustaffa, Ahmad, & Razi, 2016)

SWMM Reference Manual (Rossman & Huber, 2016)
SWMM Reference Manual (Rossman & Huber, 2016)
SWMM Reference Manual (Rossman & Huber, 2016)

Rawls, Brakensiek, and Miller (1983); SWMM Reference Manual (Rossman & Huber, 2016)

Rawls, Brakensiek, and Miller (1983); SWMM Reference Manual (Rossman & Huber, 2016)

SWMM Reference Manual (Rossman & Huber, 2016)
SWMM Reference Manual (Rossman & Huber, 2016)

HDPE, PVC (Bishop and Jeppson 1978)

performance.
Downstream
Parameters (units) Upstream RG RG
Subcatchments
N-Imperv/N-Perv 0.01/0.1 0.01/0.1  SWMM default
DStore-Imperv/Perv (in) 0/0.05 0/0.05 SWMM default
Percent Routed 100 100 Site configuration
Suction head (in) 2 2 Green Ampt
Conductivity (in/h) 1 1 SWMM default
Initial soil moisture deficit 0 0 SWMM default
(fraction)
Bio-retention cell — surface
Berm height (in) 3 3 As-built drawings
Vegetation volume (fraction) 0.8 0.8
Roughness (Manning’s n) 0.65 0.65
Slope (%) 0.01 0.01 As-built drawings
Bio-retention cell - soil
Thickness (in) 24 24 As-built drawings
Porosity (volume fraction)* 0.38 0.36
Field capacity (volume fraction) 0.15 0.15
Wilting point (volume fraction)* 0.09 0.09
Conductivity (in/hr)* 2.1 2
Conductivity slope 8 8 SWMM User Manual
Suction head (in)* 1.9 1.8
Bio-retention cell - storage
Thickness (in) 12 12 As-built drawings
Void ratio (voids/solids)* 03 0.3
Seepage rate (in/hr)* 2.5 2.5
Clogging factor 0 0 Default
Bio-retention cell — underdrain
Drain coefficient (in/hr) 0.5 0.5 SWMM User Manual
Drain exponent 0.5 0.5 Default
Drain offset height (in) 2 2 As-built drawings
Conduits
Roughness (Manning’s n) 0.012 0.009
Invert elevation (ft) 904.25 902.25 As-built drawings
Pipe diameter (in) 6 8 As-built drawings
Orifice diameter (in) 2 2 As-built drawings
Top of weir elevation (ft) 905.75 903.75 As-built drawings
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Figure A1. View of rain garden site at East Liberty Presbyterian Church in Pittsburgh, PA. The tipping bucket rain gauge is placed behind
the sign, and the CTD sensor is below ground, near the brown grate. Image source: John K. Buck, Civil & Environmental Consultants, Inc.

Before a comparison between simulated and observed results
could be made, water level data had to be converted to units of
flow (and volume) discharged from RG 1 to the sewer. If the
water elevation of the CTD sensor was recorded to be above the
5 cm (2 inch) pipe invert, then the pipe was determined to either
be full or partially full, depending on whether the water bed
elevation was above the top of the pipe, or not. If the pipe was
partially full, the radial arc of the water depth was calculated, in
order to determine the wetted perimeter of the pipe where water
was flowing. If the pipe was full, the entire cross-sectional area of
the pipe (5 cm) was used to calculate flow through the pipe using
the velocity of water flowing out of an orifice outlet, given the
water head. If the pipe was partially full, the partial area and
velocity were used to calculate flow. Equations (A1) and (A2)
summarize the calculation. Volume was calculated from the flow
rate by multiplying it by the 5-min time interval.

Qlft/s| = A[ff*] * C,[ft/s] (A1)

Q = nr*\/2gh % 0.61 (A2)

4000 ‘HH U“V\ | Hw 1 w“ur’ T ‘Ul

[

where A is the cross-sectional area, Cv is the water velocity,
r is the pipe radius (1 inch), g is the acceleration due to gravity,
h is the water height, and 0.61 is a conversion factor.

Figure A2 presents the on-site precipitation and volume
discharged over the observed period.

Over the 3-year-observed period, percent capture was
calculated to be 98-100% based on water-level sensor data
(refer to Table A4 for annual results). SWMM model para-
meters for the bio-retention basins were adjusted from the
SWMM default values until an accuracy of +15% was
achieved for percent of runoff captured. Using simulated
results over the calibration period, percent capture was
simulated to be 86% to 97%. The annual percent of runoft
captured calculated from on-site data and simulation results
is presented in Table A4.

The bio-retention basins were attributed a surface slope
of 0.1%, a vegetative cover of 85%. gravel layer seepage
rate of 63.5 mm/hr, and an underdrain discharge rate of
12.7 mm/hr. Soil conductivity and porosity are higher in
the upstream rain garden because it has sandier soil. Final
parameter values are listed in Table A5.
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Figure A2. Summary of data from on-site sensors for precipitation (blue lines on top of figure) and volume discharged (red lines on
bottom), which was calculated if water level surpassed the discharge pipe invert elevation.
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Figure A3. Heat map of correlations among rainfall indices for Pittsburgh. Darker colors represent a stronger correlation between

rainfall indices.

3. Additional Results

3.1. Pairwise correlations between rainfall indices
in Pittsburgh

Pairwise correlations between rainfall indices were also exam-
ined to understand if these values are related to each other
before we consider their role in assessing performance of the
rain garden. Figure A3 presents the pairwise correlations
between rainfall indices in Pittsburgh as a heat map matrix.
Orange colors represent a negative correlation and greys
represent a positive correlation. The left and top represent
the same metrics in the same order; however, the top rows use
abbreviated names (see definitions in Table 3 in the main
text).

The total annual rainfall is weakly correlated (0.4) with
the number of rain days. It is most highly correlated with the
90th quantile (0.7), the number of rain days above 25 mm
(0.7), and the maximum 5-day rainfall (0.6). It is very weakly
correlated to the average and maximum consecutive rain days
(0.1), and the proportion of the total from the 90th quantile
or above (0.0).

The proportion of the total rain from the 90th quantile
is a promising metric to consider because rain garden
performance is potentially related to both the amount of
rainfall entering in a given time (total annual) and the
quantity of individual, large storms (90th quantile) dur-
ing that same time period. However, the proportion
between these two metrics is not correlated with either
of them (-0.01 and 0.12, respectively). The propgp is



more closely related to the number of long and extreme
storms, with a moderate correlation to the maximum
5-day rainfall and to the number of rain days above
50 mm. This is coherent because if total rainfall and
90th quantile rainfall both increased, then the ratio of
q90 to the total may not change, even though the indi-
vidual values do. Since propqp is nearly independent of
these individual metrics, it may provide an indication of
performance that neither of these two other metrics can
provide individually.

The strongest positive correlations, apart from those
between the maximum n-day rainfall values, exist between
the total annual precipitation and the 90th quantile (0.7), the
90th quantile and the number of rain days above 25 mm (0.7),
and the number of rain days above 50 mm and the maximum
2-day rainfall (0.7). The highest negative correlation is
between the number of rain days and the average duration
of dry days. The number of days with rainfall above 25 mm
has the highest number of strong correlations (apart from
maximum n-day rainfall), with total annual rainfall, max-
imum 5-day rainfall, and the 90th quantile of daily rainfall.
The number of days with rainfall above 25 mm has the
highest number of strong correlations: to total annual rain-
fall, maximum 5-day rainfall, and the 90th quantile of daily
rainfall.

3.2. Sensitivity of correlation strength to parameter
values

During the process of model parameter adjustment, cor-
relations between rainfall indices and performance
metrics were evaluated. Porosity was reduced from 0.45
to 0.26-0.28 and hydraulic conductivity was reduced from
2.5 (downstream RG) and 3 (upstream RG) to 2 and 2.1,
respectively. Reducing the permeability and porosity leads
to declines in performance and changes in correlations.
Because of the reduced infiltration capacity, the basin
captured a smaller percentage each year, and overflows
increased in volume and frequency. Even with low infil-
tration rates, however, maximum drainage never
exceeded 16 h. Due to the decrease infiltration rate,
correlations between rainfall indices and capture effi-
ciency and between volume discharged strengthened.
This is because the poorer performing rain garden dis-
charged more runoff, and there were more data points
used in the correlation calculation. There is a threshold
for how strong the correlations can get, however. If the
rain garden is discharging too often because the capacity
is so low, correlations will not be strong because even
a small storm can trigger discharge. Correlations to dis-
charge frequency and max drainage time both increased
and decreased as a result of changes in parameters.
However, they generally remained strong (above 0.7),
despite all changes in parameter values. This means that
predicting frequency of discharge and maximum surface
drainage time will be the most robust performance metric
to predict, because correlations are less sensitive to
changes in rain garden design values (e.g., SWMM
model parameters).
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Table A6. Median rainfall indices for each climate model simula-
tion in Pittsburgh for the future period (2020-2059)

Rainfall index CANCAN GFDWRF MPIREG MPIWRF

Total annual rainfall (mm) 1067.5 11534 1056.8 1098.7

Maximum 1-day rainfall (mm) 98.3 108.5 105.9 105.5

Maximum 5-day rainfall (mm) 128.7 136.8 133.5 142.5

90th quantile of daily rainfall 16.4 218 19.0 19.1
(mm)

Proportion of total from 90th 53.1 49.5 49.7 49.1
quantile or above (%)

Number of rain days (days) 155.2 129.7 137.8 137.7

Maximum duration of 15.9 21.0 19.0 18.5
consecutive dry days (days)

Average duration of consecutive 1.5 1.8 17 1.8
dry days (days)

Number of days with rainfall > 9.6 1.3 9.5 9.9
25 mm (days)

Number of days with rainfall > 2.8 33 2.7 26

50 mm (days)

Table A7. Median rainfall indices for each climate model simula-
tion in Memphis for the future period (2020-2059).

Rainfall index CANCAN  GFDWRF  MPIREG ~ MPIWRF

Total annual rainfall (mm) 1216 1539 1384 1505

Maximum 1-day rainfall 88 65 90 71
(mm)

Maximum 5-day rainfall 118 102 132 1m
(mm)

90th quantile of daily 12 19 21 19
rainfall (mm)

Proportion of total from 54 42 45 42
90th quantile or above
(%)

Number of rain days 224 216 179 210
(days)

Maximum duration of 14 13 17 14
consecutive dry days
(days)

Average duration of 13 1.1 13 1.1
consecutive dry days
(days)

Number of days with 10 12 13 13
rainfall > 25 mm (days)

Number of days with 3 1 3 1

rainfall > 50 mm (days)

3.3. Changes in future rainfall in Pittsburgh for all
climate model simulations

Four future climate model scenarios were evaluated to esti-
mate future changes in rainfall indices. However, to ease
comprehension, the main text only discusses two of these
climate scenarios. This section presents results for all four
scenarios for Pittsburgh and Memphis (refer to Table Al for
abbreviations of the climate models). Table A6 summarizes
the median value of each rainfall index in Pittsburgh for the
future period (2020 - 2059) and all climate model simulations.
Table A7 summarizes the median values in Memphis for the
same time period and climate simulations.

Figure A4 presents the range of future rainfall values for
the individual climate model simulations compared to
their values combined into a single uncertainty range
(grey). The box and whisker plots represent the range for
each year and each climate model for the future period



2 L. M. COOK ET AL.

Total annual rainfall [cm]
225

200 . : :
175 g

150

125

100

Max 1-day rainfall [cm]

125 : i
10.0 T

75

50

Max 5-day rainfall [cm]

25 ; .

20 o : o
L) s 13

15 ;

10

No. rain days > 25mm [days]

25 : ‘
20 . .
15

10

5

No. rain days > 50mm [days]

e

95th quantile daily [cm]

s W

Total from = 95th quantile [cm]

60 . T
50
40
30

Prop. total from 2 95th quantile [%]

45
40
35 i
30
25
20

Avg consec. dry days [days]

Now Ao

275
2.50

225

2.00 .
1.75 0 *

1.50 ;

125 m—— - é

1.00 %—%

0.75

Pittsburgh Memphis
City
RCM
Il CANCAN I MPIREG 3 MPIWRF I GFDWRF B Al

Figure A4. Future range of selected rainfall indices in Pittsburgh
(left) and Memphis (right) for the future period (2020 - 2059) for the
four RCMs (first four boxes; 40 values each) and all values combined
into a single uncertainty range (last box; 120 values).

(2020 to 2059). The middle line of the box plot represents
the median.

3.4. Correlation of future rain garden performance
with future rainfall indices

In addition to using historical simulation results to select
indices most indicative of performance, results from hydro-
logic simulations using future climate simulations could also
be considered for rainfall index selection. This section pre-
sents correlations between the future simulated performance
metrics and the rainfall indices calculated from the future
climate model output for Pittsburgh.

Figure A5 presents the correlations between simulated perfor-
mance and the rainfall indices for the historical and future
simulations in Pittsburgh. The four performance metrics,
including percent of runoft captured, volume and frequency of
discharge, and maximum hours to drain the surface are shown as
large columns. Each different simulation (historical, drier future,
and wetter future) is shown within each large column.

Many of the same rainfall indices are correlated to the
performance metrics in a similar manner as the historical
simulation, but correlations generally strengthen because
performance is lower. Correlations for volume discharged
are slightly higher in the simulated future than in the simu-
lated past. This could signify that as rainfall becomes more
extreme, correlations will get stronger, since more volume is
being discharged. Some of correlations for maximum surface
drainage time in the future are weaker than they were in the
historical simulations. This is likely because the time to drain
is consistently higher in all years, meaning less variation
across years. Thus, correlations to the rainfall indices are
weaker in some cases since changes in rainfall do not change
the maximum time to drain.

Overall, the rainfall indices with the strongest correlations
to the performance metrics did not change considerably.
Thus, examining the future correlations would not change
the selection of the indices most indicative of performance,
but it would validate them. As a result, it may not be necessary
to consider using future simulations when developing a list of
indices to track over time. However, for other locations and
design configurations, this result could differ. If bias-corrected
climate simulations are readily available at a sub-daily time-
step, these results should be considered as part of the index
selection process.

3.5. Additional factors to consider

Finally, using rainfall indices to track performance is useful if
performance degrades as a result of changes in rainfall.
However, these indices will not track performance degrada-
tion due to changes in infiltration as a result of clogging or
poor maintenance. To track this type of performance degra-
dation, site visits and/or compaction tests may be necessary.
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Figure A5. Correlation of selected rainfall indices to performancemetrics for the historical and future period (wetter and drier future).
The top subplot (a) shows values for Pittsburgh and the bottom (b) shows values for Memphis. Grey colors represent positive
correlations (from 0 to 1), while reds represent negative correlations (from 0 to —1). Labels on the left show the category of the

rainfall index.
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