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An understanding of the origins of giant magnetostructural coupling is developed for the compound
MnAs, a magnetic material that has served as a prototype for many promising technologies including
caloric refrigeration, magnetic actuation, and spintronics. We demonstrate that strong coupling
between magnetism and crystal structure arises from an orbital-specific competition between exchange
energies and kinetic (bonding) energies and that thermally activated spin-fluctuations drive the
unusual first-order phase transition from high to low symmetry upon heating. The underlying
mechanism raises the prospect of an exotic paramagnetic state featuring local fluctuations in atomic
positions and bonding on the time scale of the moment fluctuations. The results should inform the
design of new materials with enhanced magnetostructural coupling, found at the border between
structural and magnetic stability.

Since the 1950s [1–6], MnAs has served as the proto-
typical material for strong coupling between magnetism
and crystal structure. Upon heating, a dramatic first-
order magnetostructural phase transition is observed at
TC = 318 K, whereupon the ferromagnetic (FM) hexagonal
structure transforms to a lower-symmetry paramagnetic
(PM) orthorhombic structure with a 2.5% smaller unit
cell volume. As the temperature is further increased, the
hexagonal structure is recovered via a continuous transi-
tion around Tt = 398 K. The transition at TC is of great
interest because it can be actuated by temperature, field,
and mechanical stress. In particular, a moderate mag-
netic field can be used to drive giant entropy changes in
MnAs, enabling magnetic refrigeration based on the mag-
netocaloric effect [7–9]. Other promising magnetocalorics,
such as Gd5(Si,Ge)4, MnFe(P,X), and doped LaMnO3

display similarly strong coupling [10–16]; however, the mi-
croscopic mechanism governing giant magnetostructural
coupling in MnAs and related materials remains an open
question.

In the ground state structure of MnAs, Mn is arranged
on a hexagonal lattice [Fig. 1(a)], with large spacing
(3.72 Å) within the basal plane and short spacing (2.85 Å)
perpendicular to the plane. Upon heating above 318 K or
applying pressures above 2 kbar [17], first-order transitions
to orthorhombic symmetry are observed [Fig. 1(b)]. In
these transitions, alternating rows of Mn move towards
each other within the plane to create Mn–Mn zigzag
chains with shorter contacts lengths (3.38 Å at ambient
pressure), while alternating rows of As atoms move a
similar distance in the perpendicular direction. We refer
to the magnitudes of these modes within the orthorhombic
cell as δMn = ∆ Mnz/c and δAs = ∆Asx/a, indicating
deviations of the atoms’ fractional coordinates from their
ideal hexagonal positions. At 318 K and ambient pressure,
δMn and δAs are 0.027 and 0.025, respectively [18].

There have been numerous attempts to explain the

FIG. 1. Structure of MnAs in its (a) hexagonal and (b)
orthorhombic forms. In (a), the orthohexagonal cell is shown
in dashed lines and, at the bottom, the arrows indicate the
directions of the atomic displacements that give rise to the
orthorhombic structure. (c) The previously proposed C-type
antiferromagnetic structure of the orthorhombic phase. All
correlations out of the shown plane are ferromagnetic.

behavior of MnAs [4–6, 19–22]. Goodenough and cowork-
ers proposed that the transitions are Mn3+ high-spin to
low-spin transformations [6, 17, 23]. Conversely, Bean
and Rodbell proposed a phenomenological model where
a first-order transition can be realized in a sufficiently
compressible material with a strongly volume-dependent
magnetic exchange [4, 5]. More recent computational
efforts have concluded that the orthorhombic structure
above TC is actually antiferromangetic (AFM), with the
Mn moments alternating direction along the zigzag chains
[C-type AFM, Fig. 1(c)] [19, 24–26]. However, neutron
diffraction points to a PM state without long-range order
[3], and paramagnetic scattering experiments [27, 28] and
chemical substitution studies [29] indicate ferromagnetic
correlations and a local moment magnitude that remains
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approximately constant across TC . Furthermore, a vari-
ety of unusual physical properties reported in MnAs are
largely unexplained, including the large amounts of lo-
cal atomic disorder [30, 31], anomalous elastic properties
[32, 33], and extremely low thermal conductivity [34]. Mi-
croscopic understanding consistent with the experimental
situation has, so far, clearly been missing.

Here, we use electronic structure calculations on or-
dered and disordered magnetic states to establish physical
mechanisms for both the pressure-driven and temperature-
driven phase transitions in MnAs. Both transitions are
found to arise from orbital-specific competition between
kinetic energy and different types of exchange energies:
intra-atomic Hund’s coupling for the pressure-driven
transition, and interatomic magnetic exchange for the
temperature-driven transition. Furthermore, our calcula-
tions suggest that this competition may become dynamic
in the paramagnetic phase as magnetic fluctuations couple
with large fluctuations in interatomic spacing. This is
expected to result in an unusual disordered phase, which
can explain the anomalous elastic and transport behavior.

We began our investigation by performing density func-
tional theory-based calculations (DFT) [35–37] on MnAs
using a generalized gradient approximation (PBEsol [39]).
Starting with the experimental ambient pressure hexago-
nal [40] and orthorhombic [18] structures and ferromag-
netic moments, we fully relaxed the lattice parameters and
internal atomic coordinates. This resulted in cells with
volumes respectively 13% and 19% smaller than experi-
ment, in contrast with the typical slight overestimation of
volumes often associated with the PBEsol approximation
[41]. Additionally, the DFT energy of the orthorhombic
cell was found to be lower than that of the hexagonal
cell by 181 meV f.u.−1, a result that is clearly unphysical
given that the experimental ground state is ferromagnetic
and hexagonal. Previous DFT studies have not addressed
this inconsistency [25, 42], presumably because a full re-
laxation into the global orthorhombic minimum was not
investigated.

Employing the DFT+U electron correlation correction
via Dudarev’s U − J = Ueff formalism [43] localizes the
Mn d states that are systematically too diffuse in stan-
dard DFT [44] and brings both the lattice parameters
and magnetic moments (3.4µB per Mn) of the hexagonal
cell into good agreement with experiment for Ueff = 1.2 eV
with the PBEsol functional [Fig. S1,S2]. Perhaps more
importantly, this Ueff proves to be the critical variable
to correct the energetics, and the hexagonal cell is now
92 meV f.u.−1 lower in energy than the orthorhombic one.
We also tried calculations with the standard PBE func-
tional , and found very similar results: without U , the
volumes are underestimated and the ground state is in-
correct. The energetics and volume, however, can be
corrected with a small Ueff = 0.5 eV, which gives similar
results to PBEsol with Ueff = 1.2 eV [Fig. S3].

Proceeding with PBEsol and Ueff = 1.2 eV, we found

FIG. 2. (a) 2D energy surface of ferromagnetic MnAs as a
function of Mn distortion and As distortion. (b) 1D energy
surfaces of ferromagnetic (FM), antiferromagnetic (AFM), and
paramagnetic (PM) MnAs as a function of Mn distortion. (c)
Corresponding Mn local moment magnitudes.

that the metastable orthorhombic state has a smaller
Mn moment than the hexagonal ground state (2.4 µB

vs. 3.4µB). This moment and the DFT lattice param-
eters closely match (within 2 %) the experimental state
obtained at low temperatures by applying pressure [45].
This indicates that the pressure-driven transition is con-
sistent with a high-moment to low-moment transition.
However, the volume of this orthorhombic cell is still
16% smaller than the ambient pressure orthorhombic cell
observed at 318 K, and the δMn is much larger (0.061 vs.
0.027); therefore this low-moment cell can only explain
the pressure-driven transition, not the thermally-driven
transition.

We further investigated the energy surface of ferro-
magnetic MnAs during its transition from high-moment
hexagonal to low-moment orthorhombic as a function
of δMn and δAs. Figure 2(a) shows a 2D energy surface
created from 900 calculations where Mn z and As x po-
sitions were held fixed, while all other coordinates and
the lattice parameters were allowed to freely relax. We
obtain a double-welled energy surface with local min-
ima at the hexagonal structure (δMn = 0, δAs = 0) and
in the low-moment orthorhombic structure (δMn = 0.061,
δAs = 0.053), with the barrier between these wells indi-
cated with a white dashed line running principally ver-
tically on the phase diagram. This analysis shows that
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the transition is driven by the Mn sublattice: moving
the Mn atoms without movement of the As atoms can
traverse the phase transition line, but not vice-versa. We
therefore proceed to plot the 1D energy surface and lo-
cal Mn moment as a function of δMn only [Fig. 2(b-c)],
where the As x position is now allowed to freely relax
along with the other structural parameters. Here, a sharp
drop in moment from 3.4µB to 2.4µB is observed as the
hexagonal-to-orthorhombic phase boundary is crossed.

When we instead impose the C-type AFM structure,
the energy surface looks very different. The potential is
now single-welled, with an energy maximum at δMn = 0
and minimum at δMn = 0.05. Additionally, the local mo-
ment is virtually independent of δMn. The magnetic stabi-
lization energy (FM minus AFM), which is proportional
to Mn-Mn magnetic exchange energy along the zigzag
chain, is at its most negative at δMn = 0, and changes sign
to positive (favoring AFM) for δMn > 0.035, consistent
with a previous extended Heisenberg model investigation
[42]. Notably, the experimental ambient-pressure 318 K
orthorhombic cell has δMn = 0.027, and δMn decreases
as temperature rises. [46] Therefore, ambient-pressure
MnAs always falls within the regime where ferromagnetic
exchange dominates (δMn < 0.035), corroborating the ex-
perimental observation that the paramagnetic correlations
are ferromagnetic, not antiferromagnetic. [27, 28]

At ambient pressure and 318 K, the observed
δMn = 0.027 is close to the crossover in FM and AFM en-
ergies, consistent with the formation of a spin-fluctuation-
based paramagnetic state. Since the dynamics of such
a state are out of reach for DFT calculations, we sim-
ulate the paramagnetism using a special quasirandom
structure (SQS) methodology [47], which has recently
been applied successfully to paramagnets [48–51]. This
approach involves constructing a supercell [we used the
96-atom supercell shown in Fig. 5(a)] and adjusting quasir-
andom up and down moments on the Mn atoms such that
the local spin-spin correlations match the correlations of
an infinite paramagnet (see Supplemental Material for
details). When this disordered local moment cell is fully
relaxed [gray star in Fig. 2(b-c)], it adopts an orthorhom-
bic structure with the individual Mn and As atoms each
relaxing differently in accordance with the broken local
symmetries of the disordered cell. Overall, the average
δMn is 0.035 ± 0.006. Even though this SQS calculation
represents a static model for a dynamic phenomenon
(paramagnetism), the agreement with experiment is re-
markably good: the fully-relaxed SQS cell has an average
local magnetic moment of 3.2µB per Mn, comparing well
with 3.1µB from paramagnetic neutron scattering [27].
The relaxed lattice parameters are also all within 3% of
their experimental 318 K values [18] (Table S2).

Fig. 2(b-c) also shows an energy surface for the dis-
ordered state, calculated using a smaller 64-atom SQS
by fixing the δMn values but allowing all other structural
degrees of freedom to relax. This surface shows a very

shallow minimum around δMn = 0.035 and a maximum at
δMn = 0. We note that, by construction, the SQS calcula-
tions give higher energies than the ordered states, as the
entropy which stabilizes the paramagnet is not considered
in the calculated energy.

From these calculations, we can see that it is the
high-moment ferromagnetism that establishes the high-
symmetry lattice: any pressure or temperature sufficient
to disrupt this magnetic configuration towards PM, AFM,
or low-moment FM states will simultaneously drive a
structural distortion to orthorhombic. To understand the
origins of this behavior, we investigated the orbital bond-
ing properties of MnAs. While Mn sits in a nearly perfect
octahedron in the hexagonal structure, we found that the
expected octahedral crystal field splitting is absent from
the electronic structure [Supplemental Material Fig. S5].
This indicates that direct Mn-Mn interactions beyond the
immediate Mn-As coordination shell play a significant
role in the electronic structure, reminiscent of the FeAs
family of superconductors which also exhibit strong and
unusual magnetostructural coupling [52, 53].

FIG. 3. (a-d) Projected Mn d-orbital partial densities of states
for the ferromagnetic, hexagonal structure, using a projection
scheme oriented around the Mn-Mn contacts. Majority spin
states are shown as positive DOS values, and minority as
negative. (a-b) dx2−y2 , dxy, dyz, and dxz orbitals are all fully
spin-polarized, stabilized by Hund’s coupling. (c) The dz2
orbital is more dispersive and is stabilized by Mn-Mn bonding,
as shown in (d) the partial charge density of the minority spin
channel within 1 eV below the fermi level.

We therefore reoriented the d orbital basis according
to the Mn-Mn contacts, as illustrated in Figs. 3(d) and
Fig. 4(a). In this scheme, the dz2 orbital lobes point
out of the plane, along the nearest-neighbor Mn-Mn con-
tact, while one lobe of the dx2−y2 orbital points along
the Mn-Mn zigzag contact that is activated by the dis-
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FIG. 4. Single-orbital properties of MnAs in the FM (a-e) and C-type AFM (f-i) structures. (a) Mn dx2−y2 orbitals oriented
along Mn-Mn contacts. (b,d) Projected partial dx2−y2 DOS for the hexagonal and orthorhombic structures, respectively. (c)
Projected dx2−y2 moment and negative integrated crystal orbital Hamilton populations (–iCOHP) of the Mn-Mn zigzag contact
as a function of Mn distortion. (e) Partial charge density of the minority spin channel within 1 eV below the fermi level for
low-moment ferromagnetic, orthorhombic MnAs. (f-i) show the same data as (a-e), except for the AFM case.

tortion. In the hexagonal structure, dx2−y2 and dxy are
degenerate, and dyz and dxz are degenerate. As shown in
Fig. 3, all of the Mn d orbitals except dz2 show partial
DOS that are approximately half-filled with the major-
ity spin states localized about 2.5 eV below the Fermi
level with unoccupied minority spin states above. This
electronic structure is stabilized by Hund’s coupling (i.e.
intra-atomic exchange), which is the driving force for the
splitting of majority and minority spin states. Since only
the majority spin states are occupied, this splitting lowers
the energy. Conversely, the dz2 orbital shows a much
more dispersive DOS consistent with a band formed by
Mn-Mn bonding along the short contacts Fig. 3(d). For
this orbital, it is the kinetic energy benefit associated with
chemical bonding that stabilizes the electronic structure.

In our projection scheme, the dx2−y2 orbital shows large
changes in projected moment when a Mn distortion is
introduced (Fig. 4.), while the other d orbitals are com-
paratively unaffected (Fig. S6). In the ferromagnetic case,
as the distortion forces Mn atoms together, overlap of the
neighboring dx2−y2 orbitals makes full spin-polarization
untenable due to the Pauli exclusion principle, as elec-
trons with the same spin cannot overlap spatially. This
precipitates an electronic transition, seen in the reorgani-
zation of the DOS from a fully spin-polarized, localized
structure in Fig. 4(b) to a much more dispersive struc-
ture in Fig. 4(d). The new electronic structure loses the
Hund’s coupling stabilization, but partially compensates
by forming Mn-Mn bonds along the zigzag chain [Fig. 4(e)].
The competition between Hund’s coupling and bonding is

clearly seen in Fig. 4(c), which shows the dx2−y2 moment
and the Mn-Mn zigzag contact bond strength (estimated
using the integrated crystal orbital Hamilton population
(–iCOHP) [54–58]) as a function of δMn. As δMn increases,
the moment drops precipitously, while the –iCOHP rises
from 0 eV to 0.6 eV, indicating the formation of a Mn-
Mn bond. Furthermore, the orthorhombic distortion also
increases the Mn-As and As-As –iCOHPs [Fig. S7] as
the asymmetric coordination optimizes bond distances.
Altogether, these favorable bonding interactions explain
the local stability of the low-moment orthorhombic state.

Therefore, we can see that the high-moment hexago-
nal to low-moment orthorhombic transition experienced
by MnAs under pressure can be understood as arising
from a competition between Hund’s coupling and chemi-
cal bonding. At ambient pressure, the Hund’s coupling
stabilization outweighs the kinetic energy consideration.
However, the application of pressure forces a reorganiza-
tion of the electrons to comply with the Pauli principle,
destabilizing the high-volume high-moment state in favor
of a lower-moment, more strongly bonded structure.

Even though the AFM state is never observed exper-
imentally, it is informative to consider its behavior in
order to understand how spin flips modify the system
[Fig 4(f-i)]. In the AFM case, the Mn atoms that are
brought together by the distortion have opposite spins
and the Pauli exclusion principle does not come into play.
As the dx2−y2 orbitals begin to overlap, they are able to
hybridize and form a metal-metal bond without disrupt-
ing the spin polarization. For this reason, the Mn local
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moment magnitudes remain approximately constant as
a function of δMn, and bonding and moment can all be
simultaneously optimized at δMn = 0.05. However, this
AFM state is not the ground state due to non-optimized
inter -atomic magnetic exchange [i.e. FM−AFM energy
in Fig. 2(b)]. As discussed previously, this exchange is
optimized at δMn = 0, stabilizing the FM hexagonal
ground state.

Based on the analysis of the FM, AFM and SQS states,
we are now equipped to understand why the ambient-
pressure transition from ferromagnetic to paramagnetic
is coupled to a large structural distortion. The hexagonal
ground state is not optimized from a bonding perspec-
tive, but maximizes both interatomic magnetic exchange
energy and Hund’s coupling and is therefore lower in
energy than all competing states. As temperature rises
and spin-flip fluctuations begin to set in, the magnetic
exchange energy benefit is weakened, and, at 318 K, it
becomes more favorable to structurally distort, forgoing
the interatomic exchange energy in favor of the kinetic
energy (bonding) stabilization of the orthorhombic state.
The spin fluctuations aid this transition by introducing
AFM pairs of Mn atoms along the zigzag chains, allowing
dx2−y2 orbitals to partially maintain their Hund’s cou-
pling stabilization when distorting. Interestingly, all the
competition takes place in the dx2−y2 orbital channel. The
small Mn-Mn contact length along the dz2 orbital causes
it to remain in the bonded state at all temperatures, while
long Mn-Mn contacts along the other orbitals cause them
to stay in their spin-polarized Hund’s coupled states at
all temperatures. Therefore, the key to this transition is
the competition between exchange and bonding energies
in half-filled Mn-Mn orbitals that are just on the verge of
possible overlap.

This interplay between magnetic exchange, magnetic
moment, and structural distortion has interesting impli-
cations for the paramagnetic state. In the fully-relaxed
SQS cell, we observed that the Mn and As atoms relaxed
away from their symmetrical sites by up to 0.2 Å, leading
to very different local environments for different atoms.
Such large local distortions have not been seen in other
paramagnets simulated using the SQS method [48–51].
Figure 5(a) shows the relaxed SQS cell, and Fig. 5(b)
shows all of the atoms from this supercell projected into
a single primitive unit cell. Here, it can be seen that
Mn and As atoms cluster into elongated clouds along the
hexagonal-to-orthorhombic distortion modes; evidently,
the PM state is most stable with a distribution of δMn

and δAs values. In fact, this unusual finding can be con-
nected to the mechanism of magnetostructural coupling
described above. Fig. 5 shows the Mn-Mn spacing (c) and
bond strengths [–iCOHP, (d)] for each of the 48 Mn-Mn
contacts along the zigzag chains in the SQS, plotted as
a function of whether the pairs of atoms have the same
spin direction or opposite spin direction. On average,
the AFM pairs have bond distances 0.1 Å (3%) shorter

FIG. 5. (a) Structurally-relaxed SQS used to simulate the
paramagnetic state. (b) Projection of the supercell atomic
positions into a single orthorhombic cell, showing Mn and
As occupying a distribution of positions along the structural
distortion modes. (c) Distributions of bond distance and (d)
negative integrated crystal orbital Hamilton population for
the 48 unique Mn-Mn zigzag contacts.

than FM pairs, and bond strengths about twice as large.
This is consistent with the idea that the Pauli exclusion
principle disfavors dx2−y2 orbital overlap in FM pairs of
Mn atoms, but not in AFM pairs. Importantly, the other
Mn-Mn contacts in the structure, along other d orbitals,
show no dependence of the bond lengths or strengths on
the spin correlation [Fig. S8], highlighting once again that
the competition-driven coupling occurs selectively in the
Mn dx2−y2 orbitals.

The dependence of Mn-Mn bonding on local spin con-
figuration implies that in the paramagnetic state of MnAs,
thermal spin fluctuations can be expected to couple to
large atomic displacements accompanied by the dynamic
formation and breaking of metal-metal bonds. We predict
this exotic disordered state should be detectable by large
and dynamic local-symmetry breaking [30, 31], as well as
strong magneto-vibrational inelastic neutron scattering,
and anomalous thermal and spin transport. In particular,
the local atomic disorder caused by this state may be
invoked to explain the extremely low thermal conduc-
tivity [34] and the abnormal elastic properties [32, 33].
Furthermore, the mechanisms for magnetostructural cou-
pling driven by competition between exchange and kinetic
energy scales described here are expected to be a general
feature of other systems displaying strong coupling, and
similar features of the disordered magnetic states may be
expected.
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I. Electronic structure calculation methods

A. Density functional theory calculations of ordered magnetic states

Electronic structure calculations were performed using density functional theory (DFT),
as implemented in the Vienna Ab initio Simulation Package (VASP) [1] with projector aug-
mented wave (PAW) pseudopotentials [2, 3] within the Perdew-Burke-Ernzerhof generalized
gradient approximation (GGA) revised for solids (PBEsol) [4, 5]. A DFT+U approach was
adopted, using the U − J = Ueff formalism of Dudarev [6], with the Ueff applied to the Mn
d orbitals.

Once the appropriate Ueff = 1.2 eV value was chosen (see below), calculations of the or-
thohexagonal unit cell [main text Fig. 1(b)] with varying amounts of Mn distortion and As
distortion were performed. During the experimentally observed structural distortion from
hexagonal to orthorhombic, the Mn atoms move principally along the c lattice direction,
while the As atoms move along the a direction. Therefore, the parameters δMn = ∆Mnz/c
and δAs = ∆Asx/a were used to parameterize the distortion space. 900 calculations were
performed on a 30 × 30 grid of δMn and δAs values ranging from –0.03 to 0.08. The Mn z
parameter and As x parameter were kept fixed, while all of the other atomic coordinates
and the unit cell were allowed to freely relax. Structural relaxations with an ionic conver-
gence criterion of 1× 10−4 eV were performed three times iteratively to ensure convergence,
and then static calculations with an electronic convergence criterion of 1 × 10−6 eV were
performed. Monkhorst-Pack k-point grids of 6 × 8 × 6 were used, and all calculations were
initialized with ferromagnetic moments of 3µB on each Mn atom. Spin-orbit coupling was
not included. In all calculations, the final configurations maintained Pnma symmetry and
ferromagnetic ordering.

Similarly, linear potential surfaces only as a function of δMn were calculated, with the
As z coordinate now being allowed to relax freely. For these calculations, an increased
k-point grid of 6 × 11 × 5 was used. The lattice parameters were initialized by linearly
interpolating between the lattice parameters of the fully relaxed hexagonal structure (δMn =
0) and the local minimum energy orthorhombic structure, and then allowed to relax freely.
These calculations were performed using both ferromagnetic and C-type antiferromagnetic
moment initializations, and in all cases the magnetic ordering type stayed consistent with the
initialization during relaxation. The results from each of these calculations were analyzed
to obtain the crystal orbital Hamilton population (COHP) for nearby atoms and projected
densities of states using the LOBSTER code [7–11]. The projected densities of states were
calculated using a non-standard orientation of the d orbital basis set, as described in the
main text and below. In order to do this, the static VASP calculations that fed into the
LOBSTER calculations were performed with the MnAs structure rotated in 3d space such that
correct Mn-Mn contacts were oriented along the cartesian z and x directions. pymatgen [12]
was used to perform some of the cell manipulations and analysis, and VESTA [13] was used
to visualize the structures and charge densities.

B. Simulation of paramagnetic state using special quasirandom structures

The paramagnetic state of MnAs was simulated using special quasi random structures
(SQS) [14] obtained using mcsqs program [15] included within the ATAT package. A para-
magnetic SQS is a supercell which is decorated with up and down moments on the Mn
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atoms in such a way as to accurately reproduce the local spin-spin correlations expected in
a random, dynamic paramagnet using just a single cell. A 96-atom SQS with supercell size
2×3×2 of the the primitive orthorhombic cell was generated such that the 12 smallest pair
correlations (radius up to 6 Å) and its first triplet correlation (radius 3.4 Å) match those of
the random state. A full structural optimization was performed on this cell, starting with
lattice parameters and atom positions from the lowest-energy AFM cell. The Mn atoms were
each initialized with magnetic moments of positive or negative 3 µB based on the constructed
SQS, and symmetry was switched off such that the individual Mn and As atoms were each
allowed to move in any direction and locally break the Pnma structural symmetry, and the
cell was allowed to change shape arbitrarily. A Γ-centered k-point grid of 3 × 3 × 3 was
used. This structural optimization was performed several times iteratively, always resetting
the initialized magnetic moments, until a final force convergence of –0.005 meV Å−1 for all
atoms was reached. The atoms all moved substantially away from their Pnma positions,
and the quasirandom magnetic moments on each Mn atom remained stable with an overall
cell moment of nearly zero. A static calculation with energy convergence of 1× 10−6 eV was
then performed, and the COHP was calculated. The resulting cell is shown in table S1.

Additionally, a 64-atom 2 × 2 × 2 SQS was generated such that the 17 smallest pair cor-
relations (radius up to 6.8 Å) match the random state. This cell was used to approximately
obtain an energy surface of the random state as a function of δMn by performing selective
dynamics structural relaxations on the SQS with fixed values of the Mn z parameters while
all other atomic coordinates were allowed to fully relax. Structural optimizations were per-
formed using a Γ-centered k-point grid of size 2 × 4 × 2 and an energy convergence for the
ionic loop of 0.001 eV. For each calculation in the energy surface, these optimizations were
performed three times iteratively to ensure convergence.
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TABLE S1. Relaxed lattice vectors, atom positions and local moments for the 2 × 3 × 2 SQS

lattice vectors (Å):

a 11.196 -0.018 0.003

b -0.017 10.715 0.020

c 0.003 0.024 12.524

atom x y z µ (µB) atom x y z µ (µB)

Mn, up 0.9962 0.0796 0.1095 3.301 As 0.1466 0.0839 0.4570 –0.017

Mn, up 0.4982 0.4146 0.1113 3.141 As 0.6389 0.0796 0.4600 0.069

Mn, up 0.4992 0.7513 0.1053 3.161 As 0.1442 0.4135 0.4583 0.001

Mn, up 0.9980 0.4156 0.6073 3.105 As 0.6460 0.4192 0.4606 0.039

Mn, up 0.4986 0.7489 0.5998 3.271 As 0.1437 0.7508 0.4580 0.041

Mn, up 0.9973 0.7465 0.6048 3.222 As 0.6498 0.7493 0.4585 0.042

Mn, up 0.0030 0.2462 0.3921 3.283 As 0.1422 0.0849 0.9605 –0.090

Mn, up 0.5038 0.2524 0.4001 3.297 As 0.6447 0.0821 0.9578 0.085

Mn, up 0.0041 0.9208 0.3933 3.260 As 0.1445 0.4208 0.9609 –0.054

Mn, up 0.0029 0.2537 0.8928 3.301 As 0.6368 0.4211 0.9613 –0.053

Mn, up 0.5019 0.2452 0.8935 3.318 As 0.1395 0.7491 0.9618 –0.002

Mn, up 0.5025 0.5858 0.8884 3.061 As 0.6420 0.7511 0.9591 –0.042

Mn, up 0.2524 0.2546 0.8639 3.033 As 0.3553 0.2542 0.0427 –0.086

Mn, up 0.7513 0.5854 0.8574 3.219 As 0.8591 0.2487 0.0414 0.034

Mn, up 0.2538 0.5870 0.8593 3.245 As 0.3617 0.5834 0.0410 –0.144

Mn, up 0.2513 0.9112 0.8611 3.298 As 0.8563 0.5834 0.0372 0.053

Mn, up 0.2444 0.0801 0.6392 3.198 As 0.3585 0.9192 0.0418 –0.044

Mn, up 0.7457 0.4107 0.6436 3.231 As 0.8568 0.9118 0.0402 0.045

Mn, up 0.2450 0.4162 0.6418 3.160 As 0.3501 0.2498 0.5388 0.001

Mn, up 0.7475 0.7509 0.6439 3.012 As 0.8577 0.2515 0.5392 0.009

Mn, up 0.2467 0.0816 0.1462 3.382 As 0.3569 0.5806 0.5390 0.048

Mn, up 0.2484 0.4198 0.1463 3.231 As 0.8523 0.5823 0.5414 –0.033

Mn, up 0.7482 0.7471 0.1449 3.237 As 0.3588 0.9163 0.5394 0.050

Mn, up 0.2495 0.7495 0.1437 3.265 As 0.8554 0.9133 0.5384 0.005

Mn, down 0.4985 0.0898 0.1066 –3.280 As 0.1047 0.2527 0.2085 –0.038

Mn, down 0.9961 0.4178 0.1054 –3.186 As 0.6116 0.2501 0.2106 0.070

Mn, down 0.9979 0.7464 0.1091 –3.196 As 0.1093 0.5820 0.2103 0.027

Mn, down 0.4942 0.0835 0.6105 –3.287 As 0.6052 0.5825 0.2108 0.006

Mn, down 0.9971 0.0828 0.6057 –3.420 As 0.1063 0.9125 0.2105 –0.039

Mn, down 0.4950 0.4125 0.6059 –3.368 As 0.6081 0.9172 0.2088 0.050

Mn, down 0.0027 0.5816 0.3955 –3.270 As 0.1106 0.2485 0.7128 –0.101

Mn, down 0.5053 0.5876 0.3930 –3.161 As 0.6048 0.2480 0.7118 0.038

Mn, down 0.5041 0.9125 0.3905 –3.192 As 0.1048 0.5796 0.7099 –0.040

Mn, down 0.0030 0.5845 0.8896 –3.148 As 0.6090 0.5822 0.7086 –0.109

Mn, down 0.0021 0.9204 0.8911 –3.275 As 0.1036 0.9134 0.7106 0.009

Mn, down 0.5008 0.9206 0.8909 –3.290 As 0.6089 0.9159 0.7093 0.039

Mn, down 0.7518 0.2598 0.8599 –3.349 As 0.3991 0.0873 0.2909 0.058

Mn, down 0.7533 0.9138 0.8571 –3.148 As 0.8862 0.0820 0.2907 0.014

Mn, down 0.7535 0.2487 0.3602 –3.297 As 0.3970 0.4183 0.2941 0.015

Mn, down 0.2546 0.2516 0.3489 –3.195 As 0.8932 0.4166 0.2902 0.103

Mn, down 0.7537 0.5840 0.3563 –3.071 As 0.3952 0.7493 0.2902 0.041

Mn, down 0.2534 0.5829 0.3588 –3.123 As 0.8955 0.7512 0.2919 0.053

Mn, down 0.7530 0.9136 0.3564 –3.105 As 0.3819 0.0852 0.7907 –0.045

Mn, down 0.2556 0.9171 0.3539 –3.246 As 0.8866 0.0871 0.7904 0.086

Mn, down 0.7464 0.0834 0.6383 –3.246 As 0.3918 0.4180 0.7912 –0.103

Mn, down 0.2460 0.7469 0.6451 –3.370 As 0.8943 0.4201 0.7882 –0.053

Mn, down 0.7468 0.0821 0.1390 –3.162 As 0.3962 0.7527 0.7872 –0.038

Mn, down 0.7487 0.4207 0.1422 –3.277 As 0.8950 0.7487 0.7879 –0.015
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II. Choice of Ueff parameter

FIG. S1. Dependence of the MnAs distortion energy landscape on the Ueff = U − J parame-

ter added to the Mn d-orbitals. With Ueff = 0, the distorted orthorhombic low-moment structure

is erroneously lower in energy than the true (experimentally observed) hexagonal ground state

(δMn = 0). Upon adding the U correction, the hexagonal state is stabilized relative to the or-

thorhombic state and becomes lower in energy for Ueff = 1.0 eV and above. The curve for the U

value selected for use in our study (Ueff = 1.2 eV) is shown in bold. It should be noted that the

chosen value of Ueff is dependent on the details of DFT calculations. For example, when we at-

tempted to use the standard PBE GGA instead of PBEsol, the qualitative behavior of the energy

curves remained the same but the optimal Ueff was found to be 0.5 eV.
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FIG. S2. Dependence of (a) the local Mn moment and (b-c) fully relaxed lattice parameters

for hexagonal MnAs on Ueff . For each parameter, the experimental value [16, 17] is shown as a

horizontal line. Ueff = 0 gives very large deviations from the experimental situation, while a Ueff

value of 1.2 eV correctly models the moment and underestimates the hexagonal a and c parameters

by just 0.8 % and 2.7 %, respectively.
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III. Calculations using the PBE functional

FIG. S3. Calculations of MnAs performed using the standard PBE functional, instead of PBEsol.

Similar results are found: for Ueff = 0, the Mn local moment (a) and lattice parameters (b-c)

are all smaller than experiment, and the low-moment orthorhombic state around δMn = 0.06 is

erroneously lower in energy than the hexagonal state (d). The application of a small Ueff = 0.5 eV

improves the agreement with experiment, giving very similar results to PBEsol with Ueff = 1.2 eV.
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IV. Comparison of calculated structures and magnetic moments with experiment

TABLE S2. Comparison of experimental lattice parameters, structural parameters, and magnetic

moments with the results of the various DFT calculations. In each case, the calculation best

matching the experimental parameters is bolded.

Hexagonal, FM state (ground state)

a (Å) c (Å) Mn µ (µB)

experiment, 4 K [18, 19] 3.73 5.668 3.4

FM, Ueff = 0 eV 3.58 (–4.1%) 5.34 (–5.9%) 2.5

FM, Ueff =1.2 eV 3.70 (–0.9%) 5.51 (–2.7%) 3.4

Orthorhombic, FM state under pressure

a (Å) b (Å) c (Å) δMn δAs Mn µ (µB)

expt. 38 kbar 295 K [20] 5.495 3.414 6.103 0.050 0.050 2.3

low-moment FM 5.60 (1.9%) 3.39 (–0.8%) 5.97 (–2.1%) 0.060 0.053 2.4

Orthorhombic, PM state at ambient pressure

a (Å) b (Å) c (Å) δMn δAs Mn local µ

(µB)

expt. 318 K [16, 21] 5.72 3.676 6.379 0.027(2) 0.025(2) 3.1(2)

low-moment FM 5.40 (–5.6%) 3.36 (–8.6%) 5.96 (–6.6%) 0.060 0.053 2.4

AFM 5.56 (–2.7%) 3.52 (–4.3%) 6.16 (–3.5%) 0.047 0.050 3.0

SQS 5.60 (–2.1%) 3.57 (–2.8 %) 6.26 (–1.8 %) 0.035 0.036 3.2

S8



V. 2-D maps of moment and volume for ferromagnetic MnAs

FIG. S4. Maps of magnetic moment and unit cell volume as a function of Mn and As distortion

magnitudes, from the calculations shown in main text Fig. 2(a).

VI. Partial DOS for individual Mn d orbitals using conventional octahedral basis

FIG. S5. Hexagonal FM state partial densities of states (pDOS) for the Mn d orbitals in the

conventional octahedral projection scheme. While the t2g and eg sets of orbitals are each approx-

imately degenerate, both sets show multiple peaks and the overall electronic structure does not

exhibit the traditional splitting between localized t2g and eg manifolds. For this reason, we found

this projection scheme to be of limited utility in studying the behavior of MnAs and moved to a

projection scheme oriented around the Mn-Mn contacts (below).
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FIG. S6. Changes in the moment of each Mn d orbital as a function of Mn distortion (δMn) for

the ferromagnetic case. The dx2−y2 , which points one of its lobes along the Mn-Mn zigzag contact

that is activated by the Mn distortion mode, experiences a drastic reduction in moment of 55%

between the hexagonal and low-moment orthorhombic structure. On the other hand, the changes

in the other orbitals are much smaller, emphasizing the importance of the dx2−y2 orbital to the

structural transitions in MnAs.
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FIG. S7. Changes in MnAs bond strengths (estimated using the per cell change in negative

integrated crystal orbital Hamilton population, ∆–iCOHP) as a function of δMn for (a) the fer-

romagnetic spin arrangement and (b) C-type antiferromagnetic spin arrangement. The largest

change in –iCOHP for a single bond is observed in the Mn-Mn zigzag contact, as shown in the

main text Fig. 4. However, since there are many more Mn-As and As-As contacts within the unit

cell, the total changes in Mn-As and As-As –iCOHPs per cell are generally larger than the Mn-Mn

contribution. From these calculations, it can be see that the overall bonding is optimized around

δ= 0.06 for the FM case, and δ= 0.05 for the AFM case.

S11



VII. Additional bond-lengths and –iCOHPs in the relaxed SQS cell

FIG. S8. Distributions of bond distances and –iCOHPs extracted from the relaxed SQS cell, for (a)

the out-of-plane Mn-Mn contacts and (b) the Mn-Mn contacts along the orthorhombic b direction.

These data are analogous to the data shown for the Mn-Mn zigzag contact in the main text Fig. 5.

Unlike the zigzag contact, the two contacts shown here do not exhibit a dependence of bond

length or –iCOHP on the spin correlation. This observation highlights that the competition-driven

magnetostructural coupling is only active in a single Mn d orbital, the dx2−y2 orbital discussed in

the main text.
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