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A B S T R A C T   

Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains un
known how these multiple network components interact, and it remains unknown how they cause the beha
vioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel 
technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal 
structure from fMRI data (causal discovery). We outline a research program for investigating human emotion 
with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in 
neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal dis
covery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further 
constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by 
discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain 
connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be 
extended to animal studies that use combined optogenetic fMRI.   

1. Introduction 

How do networks of brain structures generate human emotions? 
Affective neuroscience has documented a wealth of data, primarily 
from activations observed in neuroimaging studies in response to 
emotional stimuli. This has provided us with an inventory of brain 
structures that participate in emotions, but little knowledge of their 
precise causal role. Studies in humans with direct electrical stimulation 
of structures such as the amygdala have shown causal links between 
brain regions and emotional responses, but these additional findings 
still leave us with scant knowledge of how emotions are implemented at 
the network level in the brain. The question is pressing for translational 
reasons as well. Deep-brain stimulation is being explored for a large 
number of neurological and psychiatric diseases, but with quite vari
able success. There are clear case studies of remarkable amelioration of 
depression, for instance—but only in some cases, limiting the general
izability of the results (Kennedy and al, 2011; Mayberg et al., 2005). 

We think of emotions as functional, central brain states defined by 
their cause-and-effect relationships with other brain processes, and 

with stimuli and behaviors. Which stimuli reliably cause emotions? 
How do emotions in turn cause behavioral responses? And – the topic of 
this paper – how do different brain regions interact with one another 
during emotion processing? The basic problem can be sketched in re
lation to the amygdala as schematized in Fig. 1. The amygdala is acti
vated by threat-related stimuli, lesions of the amygdala impair threat- 
related responses and (in humans) aspects of the experience of fear, and 
stimulation of the amygdala produces defensive behaviors (very 
roughly). Nobody nowadays would conclude that “fear is in the 
amygdala”. Instead, the amygdala helps to orchestrate the many dif
ferent causal effects of a fear state. To understand these effects we need 
to map the causal relations between the amygdala and other brain re
gions, through which such effects are mediated. We know almost 
nothing about these causal relations in the human brain. 

Studies in animals have begun to dissect the circuits responsible for 
processing emotion, and of course offer methodological tools that are 
unavailable in humans. For instance, experimental manipulation of 
brain activity in rodents and monkeys has provided insights into the 
causal roles of particular circuits, such as the extended amygdala 
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(Amaral and Adolphs, 2016; Shackman and Fox, 2016) and the hy
pothalamus (Lin et al., 2011). Behavioral dependent measures, while 
they need to be interpreted carefully, have given us strong evidence for 
how specific neuronal populations can cause specific emotional beha
viors related to fear and aggression. One main limitation with these 
animal studies has been achieving a whole-brain field-of-view. Al
though specific circuits can be manipulated, e.g. through optogenetic or 
chemogenetic activation, the downstream effects are typically mea
sured in only a very small subset of brain regions. One exciting future 
combination of methods is concurrent optogenetic stimulation with 
whole-brain fMRI (Lee et al., 2010; Liang et al., 2015), or with ultra
sound imaging. However, the homology to human emotions remains a 
major limitation (Adolphs and Anderson, 2018). 

Elucidating the causal networks that underlie emotion processing is 
one of the most important but also most difficult challenges faced by 
affective neuroscience. It is important because only an account at the 
level of causal mechanisms can really explain brain processing, and 
because only such an account can yield insights that allow us to ma
nipulate brain function (for instance, with interventions aimed to treat 
mood disorders). Yet it is difficult because most of the data from the 
human brain are correlational in nature, making it unclear how to infer 
causality from typical neuroimaging and electrophysiological studies. 
Here we demonstrate the promise of a new technique – concurrent 
electrical stimulation and fMRI – and a new method in causal discovery 
– the fast greedy equivalence search – to obtain large-scale causal 
models that describe how different brain regions interact. We begin by 
briefly reviewing some of the findings from affective neuroscience, with 
an emphasis on the amygdala, and then outline the logic of causal 
discovery, before presenting our approach and pilot data to support it. 

2. Emotion and the amygdala 

Data from lesion studies and fMRI in humans, and from a range of 
approaches in animals, consistently implicate the amygdala (Fig. 2), the 
medial prefrontal cortex, the insula, the hypothalamus, and the peria
queductal gray in emotions. These structures function as components of 
considerably more distributed systems, and attempts to localize parti
cular emotions (fear, sadness, etc.) to any one of these structures have 
been largely unsuccessful (Lindquist et al., 2012), even though specific 
emotions can be classified from distributed activation patterns in neu
roimaging studies (Kragel and LaBar, 2015; Nummenmaa and 
Saarimäki, 2017; Saarimäki et al., 2015; Wager et al., 2015). While 
debates about how to interpret the data thus far remain (Adolphs, 
2017a, b;2017b; Barrett, 2017a, b2017b), neuroimaging and electro
physiological findings have supported a picture of emotion states im
plemented by distributed cortical and subcortical circuits. But what 
exactly does a structure such as the amygdala contribute to processing 
fear (or any other emotion) and at what point in the distributed pro
cessing of that emotion does it exert meaningful causal effects on the 
other components of the network? 

The amygdala together with the bed nucleus of the stria terminalis 
(Fox and Shackman, 2017) appears to serve a role as an organizing 
center in these circuits, coordinating the multiple cognitive, autonomic, 
and behavioral effects of an emotion (Davis, 1992; Whalen and Phelps, 
2009). Both the known structural connectivity of the amygdala (in 
monkeys and rodents) and structure-function relationships in particular 
tasks, such as Pavlovian fear conditioning, strongly support this view 
(Fig. 3). Yet the direct evidence for causal relationships is difficult to 
obtain in humans, and remains sparse even in animals. 

While lesion studies argue for the necessary role of a brain structure, 
they do not elucidate the neural mechanisms through which the le
sioned tissue contributes to normal function. Lesions of the amygdala, 
in animals as well as humans (Amaral and Adolphs, 2016) result in 
impairments in fear processing. In humans, these can include strikingly 
selective deficits in the recognition of fear from facial expressions 
(Adolphs et al., 1994) and in the conscious experience of fear to ex
teroceptive threats (Feinstein et al., 2011) but not to certain inter
oceptive stimuli (Feinstein et al., 2013). However, studies in monkeys 
have shown that the consequence of an amygdala lesion on the brain is 
extremely complex, including widespread network changes in many 
other regions (Grayson et al., 2016). So although amygdala lesions have 
effects on emotional behaviors and conscious experience, under
standing the causal mechanisms explaining this effect require addi
tional measures. Indeed, some current theories of the conscious ex
perience of emotion argue that the amygdala's role in feelings and 
emotions is mediated entirely through cortical structures (LeDoux and 
Brown, 2017). 

Similarly, lesions of the ventromedial prefrontal cortex (vmPFC) can 
lead to alterations in emotional behavior, such as impaired autonomic 
responses (Bechara et al., 1996), dysregulation of anger (Koenigs and 
Tranel, 2007), and atypical moral judgment (Koenigs et al., 2007). 
Once again, it is difficult from this to infer the causal mechanisms, 
which may involve additional brain regions with which the vmPFC is 
connected. For instance, lesions of the vmPFC result in abnormal acti
vation of the amygdala when lesion patients undergo fMRI (Motzkin 
et al., 2015). 

Thus almost all of the evidence for the causal mechanisms behind 
emotions is very indirect and tenuous. It derives from a combination of 
structural connectivity studies in animals (the basis for most of Fig. 3), 
piecemeal assembly of evidence across very different studies in the 
literature (much of the basis of Fig. 2), or flawed inference of causation 
from correlation (nearly everything based on neuroimaging alone, or 
electrophysiology alone). While this problem is well known, it is also 
well ignored, in the hope that sheer accumulation of correlative data of 
various kinds could in and of itself provide us with an understanding of 
the causal mechanisms. 

Here we describe a research program that could take us from these 
heterogeneous beginnings to a principled approach for investigating 
causal architecture for emotions. Which brain regions are involved, 
how are they causally related to one another, and how do they in turn 
cause particular components of emotions? We suggest (and will show 
below) that parts of this broad and ambitious aim can in fact already be 
addressed with human neuroimaging data alone, using a novel causal 
discovery approach which we detail here. Parts of the aim also require 
new methods that make possible direct causal perturbation in the 
human brain, which we have recently developed (Oya et al., 2017). We 
provide initial results and a workflow for generating causal models 
from both of these types of data. 

3. Causal discovery 

The range of methods for analyzing brain function at the network 
level vary from essentially descriptive (such as looking at correlations 
between regions, i.e., standard functional connectivity approaches) to 
methods for inferring parameters of pre-specified models (such as dy
namic causal modeling (DCM) (Friston, 2011; Friston et al., 2013)). All 

Fig. 1. Amygdala connectivity with other structures. Schematized here as a very sim
plified causal graph are some of the main known interactions between the amygdala and 
cortical (prefrontal and temporal cortex) as well as subcortical (periaqueductal gray) 
structures, each of which in turn cause different components of an emotion that we can 
measure (which are hypotheses in this figure, just to make the conceptual point). Note 
that in the present paper we are omitting the periaqueductal gray for methodological 
reasons (insufficient spatial resolution in the parcellation scheme used for analysis of our 
MRI datasets), and we are focusing just on the brain networks, and not yet on the emotion 
measures (see Fig. 4). 
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of these have tradeoffs: standard “functional connectivity” from corre
lations does not provide a causal model; DCM is limited by our 
knowledge of the physiological basis of the BOLD response, the lack of a 
search algorithm over models, and poor scalability. In its classical im
plementation, for instance, DCM can only test very simple models (10 – 
20 nodes) that are too restrictive for understanding realistic whole- 
brain networks (Smith, 2012; Smith et al., 2011). It should be noted 
that there are continuous improvements, such as the novel regression- 
DCM approach, which has been scaled to 66 regions with 300 free 
parameters (Frässle et al., 2015, 2017). But the primary challenge for 
DCM remains unsolved: how does one constrain reverse inference and 
search efficiently over candidate models given measured data? The 
number of candidate DCM models is enormous even for a small number 

of nodes, and there exists no efficient algorithm to search over all of 
them. The sweet spot, we believe, lies in the middle between standard 
functional connectivity approaches and physiologically-based models 
like DCM: causal modeling that takes advantage of the strengths of 
current BOLD-fMRI, and that enables the integration of experimental 
and observational data. 

Causal models can be thought of as generative models that make 
predictions about what we might observe and about how we might 
achieve certain effects through experimental manipulation (e.g., brain 
stimulation to treat a mood disorder) (Pearl, 2009; Spirtes et al., 
2000b). The usual way to depict the causal relationships between 
variables (causes from one brain region to others, in our case) is with a 
drawing called a causal graph. Fig. 3 above could be interpreted this 

Fig. 2. Meta-analytic mapping of brain activations for emotion. 
Neurosynth maps for the keyword “emotion” yielded results from 
790 fMRI studies (www.neurosynth.org). In the top panels (in 
blue) are the “forward inference” maps (all activations above a 
statistical threshold having to do with “emotion”). However, most 
or all of these regions are also activated in many other studies that 
do not have anything to do with emotion. A more specific analysis 
would ask which regions were activated only by those studies 
containing the keyword “emotion”, and not in studies that did not 
contain the word “emotion”. This “reverse-inference” map is 
shown in the bottom panels (in red). Both analyses highlight the 
prevalence of reporting the amygdala, and to some extent the 
prefrontal cortex. This large bias in the literature has resulted in a 
strong belief that the amygdala is causally involved in emotion, a 
conclusion that is not yet warranted from the extant data. 

Fig. 3. Connectivity of the central nucleus of the amygdala. The illustration summarizes the function of this amygdala nucleus in coordinating emotion components through its multiple 
causal effects on other brain regions. Note that the picture is in fact considerably more complicated, since the central amygdala also closely interacts with the adjacent bed nucleus of the 
stria terminalis in triggering the target effects shown here (Shackman and Fox, 2016). Reproduced from (Davis, 1992). 
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way: the amygdala causes effects in the brainstem and hypothalamus 
which in turn cause effects in brain and behavior that are our depen
dent measures. Direct causal connections are taken to be relative to the 
set of variables depicted, thus a chain of three variables A→B→C 
without a direct arrow from A to C would indicate that B causally 
screens off A from C, that is, B completely mediates the causal effect of 
A on C. In terms of brain structures, we would think of this as region A 
providing inputs to B which in turn provides inputs to C, but without 
any direct connections from A to C. 

Temporal order is often taken to be fundamental to causality, but for 
causal discovery it can be misleading. Intuitively, we would expect the 
cause A to precede its effect B, but if both A and B are effects of a 
common cause C, then B may well take longer to manifest itself than A, 
giving the impression as if A caused B. For causal discovery from fMRI 
data, actual temporal order of action potential events cannot be re
solved, since these operate at a millisecond range that exceeds the 
temporal resolution of hemodynamic measures. Moreover, if one con
sidered temporal order (which some analyses of BOLD-fMRI indeed 
attempt; (Friston et al., 2013)), one must take into account the inter
actions between the sampling rate and the rate at which the true un
derlying process operates, as well as regional differences in hemody
namic coupling. For Granger Causality, the appropriate temporal 
resolution and the absence of unmeasured common causes are the key 
assumptions supporting a valid inference from data to causal relations 
(Granger, 1969). Concerns about these, among others, suggest that 
Granger Causality is not well-suited for the causal analysis of fMRI, 
despite its common application (Smith, 2011; Stokes and Purdon, 
2017). 

Instead, another class of causal discovery algorithms disregard 
temporal order and use the independence structure observed in the data 
in order to infer the underlying causal structure (see Eberhardt, 2017) 
for an accessible brief review). The general idea of using the in
dependence structure for causal inference goes back to the Principle of 
Common Cause (Reichenbach, 1956): if two variables are dependent, 
then either one causes the other, or vice versa, or there is a common 
cause of the two variables. Conversely, if two variables are in
dependent, then they cannot (in general) be causes of one another or 
effects of a common cause. The independence and dependence structure 
found in data can thus be used to constrain candidate causal models 
that would explain the observed data. 

The simplest case in which a fully oriented causal structure can be 
uniquely determined from observational data is when there are three 
variables A, B and C, and A and C are probabilistically independent, but A 
and B, and C and B are dependent. If there are no unmeasured confounders, 
then this independence structure provides a signature that uniquely iden
tifies A→B←C as the causal graph connecting the variables. More generally, 
it is well understood how to use the observed independence structure over 
the variables to constrain the underlying causal structure. Even if the causal 
structure cannot be uniquely identified, the set of equivalent causal struc
tures can be identified (the equivalence class consists of all causal structures 
consistent with the observed data). Our results below demonstrate the 
power of this approach, using a new variant of a causal discovery algorithm 
(Ramsey et al., 2016) that scales to large sets of resting-state fMRI data 
(here, the Human Connectome Project dataset and the MyConnectome 
Project dataset). Our variables (the nodes of the causal graph; A,B,C etc.) 
will be the brain regions into which a whole brain is parcellated, and whose 
causal relations are the question of interest. 

It is worth contrasting the results of the causal inference algorithm with 
purely correlation-based techniques commonly applied to resting-state fMRI 
data. If the true causal structure has the form A→B←C, then the Pearson 
correlation matrix will have all non-zero entries except for the correlation of 
A and C. The inverse correlation matrix will have no non-zero entries, since 
all partial correlations conditional on all remaining variables are non-zero; 
in particular A is not independent of C given B. However, if the true causal 
structure is A→B→C, then all Pearson-correlations will be non-zero, while 
the partial correlation of A and C given B is zero. As the two simple 

examples above indicate, an adjacency structure based on either the Pearson 
correlation matrix, or on the inverse correlation matrix (partial correlation), 
is not a representation of the causal structure. Causal inference algorithms 
disentangle exactly what inferences can be drawn about the presence and 
absence of causal connections from the independence structure (see also  
Fig. 7). 

Another way of inferring causal models is through experimental inter
vention. Whereas the approach above relies on conditional probabilities 
that are merely observed, such as analysis of resting-state fMRI data, ex
perimental intervention corresponds to the conditional probabilities pro
duced through what Judea Pearl coined as the “do” operator (Pearl, 2009). 
This is the type of data often sought in animal studies of emotion, for in
stance through optogenetic manipulation of the activity of a node (brain 
region) with full or partial experimental control. This concept also underlies 
the essence of randomized controlled trials: by randomizing subject as
signment to treatment group, one is experimentally intervening and (in the 
large sample limit) breaking all confounding causes (Fisher, 1990). Once 
again, we can think of wanting to infer A→B in a brain (with A and B as 
distinct regions of interest) where there are many other possible causes at 
work. This time we experimentally activate A to see if we observe a change 
in B. To the extent that the activation fully controls A, this experimental 
manipulation amounts to breaking all the causal effects that could act on A 
(all the arrows going into A), in particular those that might act as con
founders in an observational setting. As we will show in our Results below, 
in humans this can now be accomplished through the rare opportunity of 
electrically stimulating the amygdala while measuring whole-brain fMRI. 
While the electrical stimulation will not fully control the pattern of acti
vation, it can still help us to infer causal relationships with respect to the 
amygdala: It can help confirm that the relations detected in the observa
tional dataset (such as resting-state fMRI) are not spurious, and possibly 
even help to orient causal arrows that could not be oriented from merely 
observational data. 

In sum, the particular causal discovery algorithm that we used takes the 
observational (e.g., resting-state fMRI) data and tries to identify a sparse 
graph structure that accounts for all of the dependencies (the standard 
Pearson correlation matrix of the data). Our subsequent direct electrical 
stimulation experiments provide a completely different, interventional, set 
of data for comparison, validation, and possible further inference and re
finement of the causal graph. The final result leverages at least three ap
plications. First, it can be used to generate hypotheses, and interpret data, 
from many fMRI studies: studies that use emotional stimuli to produce brain 
activations, for example, could now be interpreted in terms of a causal 
mechanism implemented among the brain regions that instantiates an 
emotion state. Second, the results could be used to make neuroanatomical 
predictions: in their strongest interpretation they imply actual anatomical 
connectivity corresponding to the edges in the graph. And third, they make 
predictions about the effects of interventions through deep brain stimula
tion—predictions that could be used for strategically guided treatment of 
mood disorders. All of these are future goals of the framework we present 
here. The Methods below outline our overall approach, the Results provide 
preliminary findings, and the Discussion notes the limitations and hurdles 
still remaining to be solved (cf. Fig. 4). 

4. Methods 

Our approach is roughly hierarchical in nature (Fig. 4) and consists 
of three main steps. These three steps are based on the analysis of ex
isting resting-state data from large databases, comparison to resting- 
state data from individual neurosurgical patients, and comparison with 
the patient's graph using direct electrical stimulation-fMRI data from 
that patient. Future extensions beyond the scope of the present paper 
include (in red): formally integrating information from the large data
sets as prior constraints for analysis of each patient's data; comparing, 
and combining, results across multiple patients; and leveraging the 
results into hypotheses that could be tested with additional experiments 
and additional methods—hypotheses about anatomical connectivity, 
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about individual differences, and about clinical intervention efficacy. 

4.1. Step 1: Causal inference from observational resting-state fMRI data 
with a large number of samples 

We first searched for causal graphs using observational data alone, 
taking advantage of large publicly available, high quality datasets. 

4.1.1. Datasets 
We used data from two public repositories, the 1200 subjects release 

of the Human Connectome Project (HCP) (Van Essen et al., 2013) and 
the MyConnectome Project (MCP) (Laumann, 2015; Poldrack, 2015). 
Both of these feature resting-state fMRI data with a large number of 
samples. They yield largely complementary information: the HCP pro
vides data from almost 1200 subjects, which we can combine to de- 
emphasize individual-subject idiosyncrasies and thus extract a network 
structure with the highest level of generalizability; by contrast, the MCP 
data comes from a single subject scanned almost 100 times over the 
course of one year and allows us to derive a very reliable causal graph 
at the single subject level, with inevitable idiosyncrasies compared to 
the group-level graph derived from the HCP data. 

Acquisition parameters and preprocessing of the resting-state fMRI 
data in both projects are described in their respective original pub
lications (HCP, (Glasser et al., 2013); MCP, (Poldrack, 2015)). Briefly, 
in the HCP dataset, each subject underwent two sessions of resting-state 
fMRI on separate days, each session with two separate 15 min acqui
sitions generating 1200 volumes (customized Siemens Skyra 3 T MRI 
scanner, TR = 720 ms, TE = 33 ms, flip angle= 52°, voxel size = 2 mm 
isotropic, 72 slices, matrix = 104 × 90, FOV = 208 mm × 180 mm, 
multiband acceleration factor = 8). The two runs acquired on the same 
day differed in the phase encoding direction (left-right and right-left), 
which leads to differential signal intensity especially in ventral 

temporal and frontal structures. We used only the right-left phase en
coding dataset, since this optimized signal in the right medial hemi
sphere, enabling the best comparisons to the electrical stimulation of 
the right amygdala in the neurosurgical patient #384 we describe 
further below. For the MCP dataset, a single subject underwent one 
10 min resting-state run, generating 518 volumes in each of 89 “pro
duction” sessions acquired on separate days (Siemens Skyra 3-Tesla 
MRI scanner, TR = 1160 ms, TE = 30 ms, flip angle = 63°, voxel size 
= 2.4 mm × 2.4 mm × 2.0 mm, 68 slices, inter-slice distance factor = 
20%, axial-coronal tilt 30 degrees above AC/PC line, matrix = 96 × 
96, FOV = 230 mm FOV, multiband acceleration factor = 4). The HCP 
data was downloaded in its minimally preprocessed form, i.e. after 
motion correction, B0 distortion correction, coregistration to T1- 
weighted images and normalization to MNI space; while the MCP data 
was downloaded in its fully processed form (in native space), including 
minimal preprocessing and followed by resting-state specific denoising 
as described in (Laumann, 2015): censoring of frames with framewise 
displacement > 0.25 mm; regression of signals from whole brain, white 
matter and ventricles and their derivatives; regression of 24 movement 
parameters derived by Volterra expansion; and bandpass filtering 
0.009 < f < 0.08 Hz. For consistency with MCP data, we replicated the 
same denoising pipeline (minus frame censoring) in Python (v2.7) and 
applied it to the minimally preprocessed data from the HCP. 

4.1.2. Brain parcellation 
The first step in a network analysis of the brain is the definition of its 

nodes (Sporns, 2013). There are two main approaches to defining 
network nodes in the brain: nodes may be a set of overlapping, 
weighted masks, e.g. obtained using independent component analysis 
(ICA) of BOLD fMRI data (Smith et al., 2013); or a set of discrete, non- 
overlapping binary masks, also known as a hard parcellation. Hard 
parcellations come in many flavors, in terms of what data they are 
based on (anatomical data only, functional data only, or multi-modal), 
and whether they are group-based or individually-derived. Parcellating 
the brain is an area of intense investigation, and significant progress has 
been made in recent years (Glasser et al., 2016; Gordon et al., 2014). 
We eventually aim to utilize the most recent developments in surface- 
based analysis and multi-modal surface matching (MSM) (Robinson 
et al., 2014), which divides the brain into about 400 regions. (Indeed, a 
future aim would be to use voxelwise data for the analyses we describe 
below, and to use causal discovery results to aggregate these into larger 
parcels based on their causal connectivity). However, applying these 
methods to patient data with implanted electrodes is difficult because 
MSM requires several types of data (such as high-resolution anatomical 
scans for precise surface reconstruction, field maps for precise co-re
gistration of functional and anatomical data, and companion task and 
rest scans), which are not always available due to clinical constraints. 
Here, in this proof-of-concept paper, we used a more common volu
metric parcellation in MNI space that divides the brain into 110 regions, 
based on the classical Harvard-Oxford anatomical atlas (http://www. 
cma.mgh.harvard.edu/fsl_atlas.html). Specifically, we derived max
imum probability labels from the probabilistic Harvard-Oxford cortical 
and subcortical atlases distributed with FSL, using a 25% probability 
threshold for label assignment. We omitted one parcel from the Har
vard-Oxford atlas, the brainstem, since this treats the entire region as a 
single functional object, a parcellation that we felt was too coarse for 
our purposes. See Supplementary Table S1 for the complete list of 
parcels we used. 

4.1.3. Timeseries extraction and data selection 
HCP data was already transformed to MNI space (the same space as 

the Harvard-Oxford parcellation that we used) by the minimal pre
processing pipeline (Glasser et al., 2013). We derived a gray matter 
mask for each subject using information in ribbon.nii.gz and 
wmparc.nii.gz (from the individual HCP MNINonLinear directories), 
and restricted Harvard-Oxford parcels to gray matter voxels for each 

Fig. 4. Proposed framework for causal analysis of emotion networks. In black, analyses 
presented in this manuscript; in red, future extensions outside the scope of the present 
paper. Abbreviations: HCP: Human Connectome Project dataset. MCP: MyConnectome 
Project dataset. rs-fMRI: resting-state fMRI. es-fMRI: concurrent electrical stimulation 
with fMRI. 
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subject. For MCP data, MNI-space Harvard-Oxford labels were warped 
to the individual space via the MNI152 T1w template and the cor
egistered average of all 15 MCP T1w anatomical scans (Freesurfer 5.3.0 
recon-all pipeline), using a diffeomorphic symmetric normalization 
(SyN) warp as implemented in ANTs 1.2.0 (antsRegistrationSyN.sh 
script). Similarly, the warp from the MCP T1w average to a mean MCP 
EPI template was estimated and applied to the Harvard-Oxford labels 
using ANTs (the N-back EPIs were used to construct the mean EPI 
template, in place of the rsBOLD EPIs, because the latter were global 
mean-subtracted and therefore unusable for registration; this is possible 
because all MCP EPIs are transformed to the same space in the down
loaded data). The gray matter mask output from the Freesurfer pipeline 
was used in combination with the individual-space Harvard-Oxford 
atlas labels to restrict ROIs to gray matter voxels. Timeseries for all 
Harvard-Oxford parcels were extracted using the 3dROIstats function 
provided by AFNI 17.2.04 (Cox, 2012). 

We generated three datasets from the HCP and MCP data:   

Dataset #1: HCP sparsely sampled (HCPs). For this dataset we chose 
samples sparsely from two resting-state fMRI runs with right-left 
phase encoding (rfMRI_REST1_RL and rfMRI_REST2_RL) from each 
of 880 unique subjects (with complete datasets and relative move
ment root-mean-square less than 0.15 mm for both runs; see subject 
list in Supplementary Table S2a), taking one volume every 35th TR 
(i.e. every 25.2 s). This resulted in 68 samples per subject, for a total 
of 59,840 samples. We split this dataset into 11 completely non- 
overlapping subsets (80 subjects each) for “horizontal” reliability 
analysis, yielding 5440 samples per subset. This provides the most 
general dataset with a large number of samples, pooling over a large 
number of subjects for representativeness, and sampling sparsely to 
eliminate autocorrelation and thus maximize statistical in
dependence between samples. Representativeness across subjects 
here trades off with the possibility of introducing additional de
pendencies in the data due to the pooling of data from multiple 
subjects. The next dataset therefore focuses on data from a single 
individual.   
Dataset #2: MCP sparsely sampled (MCPs). This dataset chose 
samples sparsely from 80 sessions of the MCP (see session list in  
Supplementary Table S2b), taking one volume every 22nd TR (i.e. 
every 25.5 s). This resulted in 23 samples per session, for a total of 
1840 samples. We generated 20 non-overlapping datasets for relia
bility analysis, by shifting the starting volume (note that these da
tasets are not completely independent from one another due to 
autocorrelation of the fMRI BOLD signal).   
Dataset #3: MCP densely sampled (MCPd). This dataset chose all 
volumes from 80 sessions in the MCP yielding a total of 41,440 
samples. We split this dataset into 8 non-overlapping subsets (10 
sessions each) for horizontal reliability analysis, yielding 5180 
samples per subset. 

4.1.4. Causal discovery algorithm 
We used a version of the Fast Greedy Equivalence Search (FGES) 

algorithm for causal discovery (Ramsey et al., 2016), a variant of the 
better known Greedy Equivalence Search (Chickering, 2002) that was 
optimized to large numbers of variables. The algorithm takes as input 
measurements over a set of variables that one can think of as nodes in 
the causal graph, in this case the mean BOLD signal obtained for each 
region of interest in a parcellated human brain (the 110 parcels pro
vided by the Harvard-Oxford atlas). FGES produces as output causal 
graphs that describe inferred direct causal connections between any 
pair of brain regions (the adjacency matrix), and, where possible, the 
orientations of these causal effects, i.e. whether brain region A causes 
BOLD response in brain region B, or vice versa. For any specific output 
causal graph, one can also estimate the strength of each causal con
nection (the effect size of each edge) using a linear Gaussian model. We 
next describe the algorithm in more detail. 

The algorithm is a greedy optimization algorithm that operates in 
two phases, a forward phase in which edges are added to the graph, and 
a backward phase in which edges are removed. Under the assumption 
that the true causal model is causally sufficient (there are no un
measured common causes), acyclic (there are no feedback cycles) and 
that the data is independent and identically distributed and not subject 
to sample selection bias, the FGES algorithm returns in the infinite 
sample limit the Markov equivalence class of the true causal structure 
with probability 1. That is, as sample size increases, the output of FGES 
converges towards (a representation of) a set of causal structures that 
are not distinguishable from the true causal structure on the basis of 
their probabilistic independences. For example, the three causal graphs 
A→B→C, A←B→C and A←B←C together form a Markov equivalence 
class under the given assumptions, since in all three structures A is 
independent of C given B, but no other (conditional) independences 
hold among the variables. Without experimental interventions or fur
ther assumptions (e.g. concerning time order or the parametric form) 
these three causal structures cannot be distinguished. In contrast, (as 
noted earlier in this paper) the causal structure A→B←C has a unique 
independence structure – it only satisfies that A and C are marginally 
independent, but no conditional independence – and therefore forms a 
singleton Markov equivalence class. 

The central idea underlying the FGES algorithm is the insight that 
one can construct a score tracking the posterior probability of a causal 
graph given a dataset such that the score (i) is decomposable into local 
scores for each edge, and (ii) gives the same value for graphs that are 
Markov equivalent. This insight provides the basis for a greedy search 
method that starts with an empty graph over the set of variables and 
then at each stage determines locally whether an edge addition im
proves the global score over the current causal graph. The edge that 
maximally increases the score is then added (in the forward phase of the 
algorithm, or removed, in the backward phase). The Bayes Information 
Criterion (BIC) is a score that decomposes in exactly this way. For a 
graph G over a set of variables V and data set D over V, BIC is defined as 
BIC(G|D) = k ln(n) – 2 ln(L), where L is the maximum likelihood es
timate of the data given the graph, k denotes the number of free 
parameters of the causal model and n is the number of samples. 
Essentially, the likelihood is penalized by a model complexity para
meter k ln(n), since a complete graph (an edge between each pair of 
nodes) will always fit the data perfectly. For directed acyclic graphs the 
joint distribution P(V) over the variables V can be factorized into 

=P V X | pa X( ) ( ))X inV i ii
, where pa X( )i are the parents of variable Xi in 

G. As a result, BIC is decomposable into a sum of local scores of each 
variable given its parents: BIC(G|D)= F X | pa X( ( ))X inV i ii

where pa X( )i
are the parents of variable Xi in G and F is the local scoring function. If 
each variable is a linear function of its parents plus independent 
Gaussian noise, then each P X | pa X( ( ))i i is a Gaussian and the local BIC 
score becomes = +F X | pa X n k n( ( )) ln ( ˆ ) ln ( )i i e i

2
i where ê

2
i is the es

timated error variance of Xi, n is the sample size and ki is the number of 
regressors, including the intercept. Since an added (or removed) edge 
changes the parent set, these local scores enable at each stage of the 
algorithm the efficient determination of the edge that maximally in
creases the global score given a current causal graph. 

The fact that BIC also gives the same score to Markov equivalent 
graphs, and that both an edge-adding (forward) and an edge-removal 
(backward) phase are necessary for consistency of the FGES algorithm 
is not obvious, but we refer the reader to the excellent paper describing 
GES (Chickering, 2002) for details. 

In our implementation we used the FGES algorithm published through 
the Tetrad code package (http://www.phil.cmu.edu/tetrad/) version 6.1.0. 
We did not force the faithfulness assumption and searched to the maximal 
node degree using the implemented SEMBIC score. The implementation has 
one free parameter s that functions as a sparsity parameter by multiplying 
the complexity term k ln(n) of the BIC score, higher values forcing sparser 
structures. We considered values of s from 20 down to 1, in steps of 2 for the 
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HCP and MCP datasets, and starting from 10 down to 1 in single steps, for 
the smaller patient fMRI datasets. 

Although the FGES algorithm does return orientation information 
for the causal edges in the graph, when those orientations are shared 
across all structures in the equivalence class, we focus in this paper 
principally on the adjacency structure (the causal “skeleton”). There are 
several reasons for this decision: (i) While (Ramsey et al., 2016) report 
very high accuracy (precision and recall) for the recovery of adjacency 
and orientation information in simulations using FGES, we show in our 
simulations (see Supplementary material, “FGES Simulation”) that 
such results obtain only for the setting in Ramsey et al. (2016) using 
extremely sparse graphs (number of edges equal to the number of 
variables). We found that precision and recall measures were lower for 
both adjacencies and orientations, in simulations that matched the 
somewhat denser graphs we find here (with ~10% of possible edges 
present, i.e. ~500 rather than ~100 edges). See Supplementary Fig. S1 
for the details of these simulation results. In particular the recall for 
edge orientations dropped significantly relative to the set of orienta
tions that could theoretically be determined when switching from the 
extremely sparse graphs to the graph density we found here: many 
fewer edges that could be oriented were oriented. (ii) When we ex
plored small subsets of real data using a (less-scalable) SAT-based 
causal discovery algorithm (Hyttinen et al., 2014) (see Supplementary 
material, “SAT-based causal discovery algorithm”), we found that 
while the adjacency information was largely shared between FGES and 
the SAT-based algorithm when applied to the same dataset, the or
ientation information varied widely. See Supplementary Fig. S2. (iii) 
Finally, the overall aim of the research plan we are outlining here is to 
use the electrical stimulation to provide a ground truth for orienting 
some of the causal adjacencies we find. In future work we hope to 
triangulate on the determination of causal orientation from a variety of 
angles. For all these reasons, we omit analyses of edge orientation in the 
results presented below. 

4.1.5. Strategy for the discovery of reliable causal graphs 
Setting a low sparsity parameter s in the FGES algorithm produces 

graphs with a larger number of edges, as one would expect, and con
sumes more computational time (a highly nonlinear effect). Conversely, 
setting a high s eliminates many edges but produces a graph whose 
edges are based on stronger evidence (vertical reliability). In essence, 
this is a tradeoff between sensitivity and specificity. For the HCPs da
taset, we settled on a sparsity parameter s = 8, for which ~80% of the 
causal graph edges were reproducible across 11 independent HCPs 

datasets (horizontal reliability, see below); this sparsity setting for the 
HCPs dataset yielded 10% of the edges of the complete graph. We also 
find that s = 8 provides a good trade-off in the accuracy measures in 
our simulations on synthetic data (see Supplementary material). For the 
MCP and patient datasets, we subsequently set sparsity settings to also 
produce 10% of the edges of the respective complete graphs (which 
corresponded to similar sparsity values for the MCP dataset, but a much 
lower sparsity setting for the patient dataset); see Fig. 6. 

We defined horizontal reliability (in the HCPs dataset) as follows: 
We ran FGES on each of the 11 independent HCPs datasets for each 
value of the sparsity parameter. For a given sparsity value we then 
counted the number of times each adjacency appeared across the 11 
resulting graphs, yielding for each adjacency a value from 0 to 11. We 
then simulated 1000 sets of 11 random graphs with the same adjacency 
density as the 11 real graphs of a fixed sparsity had (on average), so as 
to estimate how often each co-occurrence score (from 0 to 11) would 
occur by chance. Horizontal reliability of an adjacency A was finally 
defined as the proportion of adjacencies that have a lower (or equal) co- 
occurrence count if 11 graphs (of fixed density) were generated by 
chance than the co-occurrence count observed for A. See  
Supplementary Figure S3 for plots of the null-distribution for different 
graph densities, and for the co-occurrence count that corresponds to the 
95% reliability cut-off that we use in the subsequent analysis. This 

definition allows us to compare graphs of different sparsities more 
fairly, since denser graphs will necessarily present more co-occurrences 
by chance than sparser graphs, which is adjusted for by our estimate of 
the empirical chance distribution. Of course there are many ways one 
could define horizontal reliability measures and our measure breaks 
down for very dense graphs. Moreover, this measure does not capture 
the reliability of absences of adjacencies. Nevertheless, we found it to 
be a useful first pass to make adjacency reliability comparable across 
different graph densities for relatively sparse graphs. 

4.1.6. Graphs with weighted edges and reconstruction of the Pearson 
correlation matrix 

In addition to obtaining binarized adjacency matrices—graphs that ei
ther had an edge or no edge between nodes – we derived graphs that had 
edges with parametric weights—strong or weak causal connections corre
sponding to varying effect sizes. From such graphs with edge coefficients 
one can reconstruct the Pearson correlation matrix of the original data. The 
FGES algorithm returns the Markov equivalence class of causal structures, 
i.e. structures that all share the same (conditional) independences and de
pendences. Following the standard implementation in the Tetrad code 
package, we extracted one directed acyclic graph (DAG) from this equiva
lence class and then fit a maximum likelihood linear Gaussian structural 
equation model to the DAG using the dataset that was fed to FGES in the 
first place. That is, we fit a model of the form v = B v+ e to the data, 
where v is a vector of variables representing the 110 parcels, B is a lower 
triangular matrix (with a zero diagonal; cf. Fig. 7), whose non-zero entries 
correspond to the edges in the DAG (note that all DAGs in the equivalence 
class share the same adjacencies), and e is a vector of independent Gaussian 
errors, one for each node, with e SN~ (0, )e , where Se is a diagonal covar
iance matrix. Essentially, the model is fit by iteratively regressing each node 
on the set of its parents as defined by the DAG extracted from the 
equivalence class. 

We used the fully parameterized linear Gaussian 
structural equation model (defined by B and Se) to reconstruct the 
data covariance matrix Cv, which is given by 

= = =C vv I B ee I B I B S I BE E( ) ( ) ( )( ) ( ) ( )v e
t t t t1 1 where I is 

the identity matrix. After standardization Cv can be compared to the ob
served Pearson Correlation matrix using the coefficient of determination R2

to indicate the amount of variance explained (R2 is shown at the top of the 
matrices in Fig. 7). 

4.1.7. Comparisons and validations 
We began by making comparisons that quantify the reliability and 

generalizability of the methods.  

(a) Reliability of group-level whole-brain causal discovery graphs across 
groups of subjects in the HCPs data. We performed causal discovery 
separately for the 11 subsets of the HCPs dataset (each derived by 
sparsely sampling a new group of 80 HCP subjects) and compared 
their graphs for different sparsity settings, as described above 
(Fig. 6).  

(b) Comparison of the rs-fMRI Pearson correlation matrix to the causal 
graph. The whole-brain causal graphs we produced with our criteria 
are relatively sparse (10% complete), and the question arises 
whether they indeed capture much of the structure in the Pearson 
correlation matrix. To address this point, we reconstructed the 
Pearson correlation matrix from a causal graph with weighted 
edges. These comparisons are shown in Fig. 7.  

(c) HCPs causal graph vs. MCPs causal graph. We wanted to see whether the 
graph derived from a single subject is similar to the graph derived across 
many subjects. We did this by comparing one sparsely sampled HCP 
dataset (subset #1), which comes from many (80) subjects, to an equally 
sparsely sampled MCP dataset (subset #1), which comes from a single 
subject with many (80) sessions. We kept only the horizontally reliable 
edges (r≥0.95) for this comparison. If the results were similar, this 
would confirm that the MCP dataset is representative (and so can be 
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reasonably compared to the patient's dataset in step 2 below). This 
comparison is also shown in Fig. 7.  

(d) MCPs causal graph vs. MCPd causal graph. We also compared results 
in the sparsely sampled MCP dataset to the densely sampled MCP 
dataset (dense sampling being the only option with the patient's 
dataset for whom much less data is available, see steps 2 & 3). This 
comparison addresses the question of whether autocorrelation in 
the data might be a problem for causal discovery, which assumes 
independence between samples. This comparison is also shown in  
Fig. 7. 

4.2. Step 2: Causal inference from observational resting-state fMRI data in 
single neurosurgical patients 

In this step we conducted the same analyses as in Step 1 in a new 
dataset: that obtained from resting-state fMRI in neurosurgical patients 
who required chronic invasive intracranial monitoring as part of their 
treatment for medically intractable epilepsy. This step was carried out 
in each patient who was scheduled to undergo es-fMRI (see Step 3), 
before electrode implantation. The motivation for this Step 2 is twofold. 
First, given that the patients who participate in the es-fMRI experiment 
are all epilepsy patients with longstanding seizures, their brain con
nectivity may be atypical. The rs-fMRI graph obtained from the patients 
can thus be used either to exclude those patients who show abnormal 
connectivity (or have otherwise unusual fMRI data), or as the basis for 
refining the graphs from Step 1 (which are all from healthy individuals 
without epilepsy) to better match the patients’ brain architecture. 
Second, the rs-fMRI data provide an independent, baseline dataset in 
the patients to which the es-fMRI data can be compared. An additional 
benefit is that the rs-fMRI data are obtained prior to electrode im
plantation, thus yielding signal in all parcels with a whole-brain field- 
of-view; by contrast, in the es-fMRI data there is typically substantial 
signal dropout in parcels where there are metallic contacts from depth 
electrodes or electrocorticography grids (including at the site of the 
electrical stimulation, of course). 

4.2.1. Patients 
We tested four neurosurgical patients who each had bilateral elec

trodes implanted in the amygdala. An electrocorticography (ECoG) 
monitoring plan was generated by the University of Iowa comprehen
sive epilepsy program after considering each patient's clinical require
ments. All experimental procedures were approved by the University of 
Iowa Institutional Review Board, who had available our gel phantom 
safety experiments for their evaluation prior to any human experiments 
(Oya et al., 2017). Written informed consent was obtained from all 
subjects. Patient #384 was a fully right-handed 37-year-old male; #307 
a fully right-handed 29-year-old male; #303 a fully right-handed 34- 
year-old female; and #294 a fully right-handed 34-year-old male (see  
Supplementary Table S3). We present analysis of rs-fMRI data only from 
patient #384, who had the most es-fMRI runs (see below) and for whom 
we performed causal discovery in the es-fMRI data. 

4.2.2. Data acquisition 
Resting-state fMRI runs for patient #384 were acquired on a 3 T 

MRI scanner (Discovery 750w, GE Healthcare, Chicago, IL) with a 32 
channel receive-only head coil. Each resting-state run consisted of 130 
T2*-weighted EPI volumes (eyes open, central cross-hair fixated) ac
quired with the following parameters: TR = 2260 ms, TE = 30 ms, flip 
angle = 80 degrees, voxel size = 3.4 mm × 3.4 mm × 4.0 mm, 30 
slices, matrix = 64 × 64, FOV = 220 mm. We obtained 5 such runs for 
#384. A field map (dual-echo GRE, TR = 500 ms, flip angle = 60 
degrees, voxel size = 4.4 mm × 4.4 mm × 4.0 mm), high resolution 
T1-weighted (IR-FSPGR, TI = 450 ms, flip angle = 12 degrees, voxel 
size = 1.0 mm × 1.0 mm × 0.8 mm) and T2-weighted scans (CUBE 
TSE TR = 3200 ms, TE = maximum, echo train length = 140, voxel 
size = 1.0 mm isotropic) were acquired in the same session. 

4.2.3. Data preprocessing and denoising 
All data were minimally preprocessed using the HCP fmriVolume 

pipeline (v3.5.0). In summary, after rigid-body motion correction, B0 

distortion correction was performed using the field map, and the mean 
EPI image was registered to the T1w image using boundary-based re
gistration. All steps, including a final MNI space transformation, were 
concatenated and applied to the original fMRI time series in a single 3D 
spline interpolation step. Finally, this MNI-space time series was 
masked and intensity-normalized to a 4D global mean of 10000. 
Following this minimal preprocessing, we further applied the same 
denoising procedure described in Step 1 above (regression of nuisance 
signals and motion, bandpass filtering). 

4.2.4. Causal discovery 
The same analyses as in Step 1 were conducted. The major differ

ence with Step 1 is, of course, the amount of observational data avail
able for a single neurosurgical patient. While the HCP dataset had a 
large number of datapoints collected over a large number of subjects, 
and the MCP had a large number of datapoints collected over the course 
of over one year for a single subject, in the clinical setting we typically 
only obtained three to five 5 min rs-fMRI runs with 130 volumes each, 
i.e. between 400 and 800 observations. The autocorrelation of the fMRI 
signal, and other factors such as high motion, further reduce the ef
fective number of independent observations available for causal dis
covery. Note that we have to determine the presence or absence of 5995 
(110 choose 2) adjacencies, and the edge coefficients for those that are 
present, and another 110 parameters for the error variances – the 
problem is thus underconstrained with this dataset and yields less re
liable estimates (hence our proposed use of graphs derived from more 
data as priors, cf. Fig. 4). 

4.2.5. Comparisons and validations 
Once again, we carried out a set of comparisons similar to those 

listed above under Step 1, but this time using the patient's rs-fMRI 
dataset. We also wanted to establish that the patient has largely normal 
resting-state connectivity, and thus made the following comparison: 

Comparison (e): HCP and MCP causal graphs vs. patient causal 
graph. This comparison is shown in Fig. 7. 

4.3. Step 3: Causal inference from interventional fMRI data: es-fMRI in the 
amygdala 

While Steps 1 and 2 relied exclusively on observational data, in Step 
3 we intervene on one node of the causal network, the amygdala, using 
the es-fMRI technique that we recently developed. All further technical 
details are described in (Oya et al., 2017), and we only summarize them 
briefly here. 

4.3.1. Patients 
The same four neurosurgical patients described in Step 2. We con

ducted a standard whole-brain voxelwise GLM analysis of the data on 
all four patients. We only carried out a (parcellated) causal graph dis
covery in the patient who had the most es-fMRI runs (patient #384). 

4.3.2. Safety of es-fMRI 
The safety of concurrent electrical stimulation and fMRI was pre

viously established (Oya et al., 2017) through measures in a gel 
phantom, followed by carrying out the procedure in several patients. 
This demonstrated that induced currents, mechanical deflections of 
electrodes, and electrode or tissue heating were well controlled and all 
within acceptable safety levels. The electrical stimulation-fMRI ex
periments were performed after the final surgical treatment plan was 
agreed upon between the clinical team and the patient, and it was 
justified to move the patient to the MRI scanner (within 16 h prior to 
the electrode removal surgery). 

J. Dubois, et al.   Neuropsychologia 145 (2020) 106571

8



4.3.3. Intracranial electrodes and localization 
The four patients were implanted with a combination of subdural 

surface strip and grid electrodes and penetrating depth electrodes; we 
stimulated only through the macro contacts on the depth electrodes 
located within the amygdala. Localization of the electrodes was done as 
follows. We routinely obtain two baseline (pre-implantation) structural 
MRI volumes, two post-electrode implantation structural MRI volumes 
right after implantation, another two structural MRI volumes at the 
time of the es-fMRI session, and a volumetric thin-sliced CT scan (1 mm 
slice thickness). Electrode contacts are identified on the post-im
plantation MRI/CT volumes and transferred onto the pre-implantation 
baseline MRI volumes. Great attention is paid to possible post-surgical 
brain shift, which is corrected with a 3D thin-plate spline warping 
procedure (Oya et al., 2009). For the delineation of the sub-nuclei of the 
amygdala, we utilized a non-linear warping applied to an atlas of the 
human brain (Mai et al., 1997) to draw borders of the sub-nuclei of the 
amygdala on the subject's brain. 

4.3.4. Electrical stimulation 
Bipolar electrical stimulation was delivered through the intracranial 

electrodes using a battery-driven isolated constant current stimulator 
(IZ-2H stimulator, Tucker-Davis technology's, Alachua, FL, USA, and 
Model 2200 isolator, A-M systems, WA, U.S.A.). We used biphasic 
charge-balanced constant current stimulus waveforms of +9/−3 or 
+12/−4 mA, delivered at 100 Hz 5–9 pulses; see Fig. 5, and Table S3). 
Mean in-situ electrode impedance measured at the time of the experi
ments was 4.08 (sd = 1.65) kΩ for 100 Hz stimulation. 

4.3.5. Experimental design and data acquisition 
We used a simple block design with 30 s (stimulation-) ON blocks al

ternating with 33 s (stimulation-) OFF blocks. For ON blocks, electrical sti
mulation was applied during a 100 ms gap between consecutive EPI vo
lumes, when all gradients were effectively switched off; this served to 
minimize stimulation-induced artifacts in the fMRI data and reduce the 
possibility of interactions between the external electrical stimulations and 
RF or gradient switching-induced potentials in the electrodes. There were 10 
ON blocks per run, for a total run duration of approximately 11 min. All 
scans were performed in a 3 T MRI scanner using the quadrature single 
channel T/R head coil (patient #294: Siemens Trio; other patients: Siemens 
Skyra; TR = 2900 ms, TR delay = 100 ms, TE = 30 ms, flip angle = 90°, 
voxel size = 3.2 mm × 3.2 mm × 3.0 mm, 44 slices, matrix = 68 × 68, 
FOV = 220 mm). During the scanning session, we carried out between one 
and four es-fMRI runs (#384: 4 runs; all other patients, 1 run). A T1w 
structural image was also acquired in the same experimental session (MP- 
RAGE, TR = 2530 ms, TE = 3.52 ms, TI = 100 ms, flip angle = 10°, 1 mm 
isotropic resolution). 

4.3.6. Whole-brain, voxelwise GLM analysis 
We ran a standard whole-brain voxelwise GLM analysis, contrasting 

blocks ON and blocks OFF. Preprocessing was as described in our previous 
work (Oya et al., 2017). Briefly, the first two EPI volumes were discarded; 
slice-timing differences were compensated; motion correction was per
formed; retrospective denoising was applied using FIACH (Tierney et al., 
2016); principal component noise regressors (n = 6) were calculated and 
used for regressing out the effect of noise; the patient's T1w structural vo
lume was co-registered to that patient's mean EPI volume; spatial smoothing 
with a Gaussian kernel of FWHM (full-width at half-maximum) = 8 mm 
was applied; EPI time series were detrended by least squares fit of Legendre 
polynomials of order 5; frame censoring was applied for TRs with framewise 
displacement > 0.5 mm (Siegel et al., 2014). The hemodynamic response 
was modeled using a boxcar function of duration 50–90 ms (depending on 
the actual duration of the stimulus) convolved with a single parameter 
gamma function (peak at 5 s, the amplitude of the basis function was nor
malized to peak values of 1). These analyses were performed in subject 
space, with subsequent warping of the results to MNI space. Statistical 
parametric maps were thresholded at p < 0.001(uncorrected); only clusters 
spanning more than 20 voxels were reported. This analysis was used in 4 
patients to generate standard whole-brain, voxelwise analyses of activations 
evoked by amygdala stimulation (Fig. 10 below). The activation produced 
by the electrical stimulation showed good temporal stability across different 
runs within the same subject (see Supplementary Figure S4). 

4.3.7. Parcellated analyses: causal discovery, and simple ON-OFF contrast 
All es-fMRI data from patient #384 was minimally preprocessed and 

denoised as described in Step 1, for parcellated analyses (to match the 
preprocessing and denoising of the MCP dataset). BOLD signal was aver
aged within gray matter-masked Harvard-Oxford parcels to create parcel 
timeseries, and concatenated across runs. We used all collected volumes 
from all es-fMRI runs as samples for causal discovery analysis (cf. Step 2). 
We also performed a simple t-test between samples ON and samples OFF in 
the parcellated concatenated data, accounting for a 5 s hemodynamic delay. 
We corrected the resulting p-values for multiple comparisons across 110 
parcels using the Benjamini-Hochberg false discovery rate (FDR-corrected), 
and used Cohen's d as a measure of effect size (shown in Fig. 9). 

4.3.8. Comparisons and validations 
As for the comparisons we made in the preceding Step 1 and Step 2, 

we wanted to obtain convergent evidence, and we wanted to use the es- 
fMRI data to augment the causal graphs we had obtained from the prior 
steps. We thus compared Pearson correlation matrices as well as causal 
graphs at the whole-brain level to those derived from the other datasets, 
and we specifically examined the edges that were connected with the 
right amygdala across datasets. We carried out the following compar
isons: 

Fig. 5. Electrical stimulation with concurrent fMRI. Reproduced from (Oya et al., 2017). 
The figure schematizes the es-fMRI protocol used. Each gray block is one whole-brain 
fMRI volume, red is the electrical stimulation shown at increasing magnification from top 
to bottom. Electrical stimuli were delivered to the subjects between EPI volume acqui
sition, during a 100 ms blank period, ensuring no temporal overlap with RF transmission 
nor with gradient switching. Modified charge-balanced constant-current bi-phasic pulses 
were used. 

J. Dubois, et al.   Neuropsychologia 145 (2020) 106571

9



Comparison (f): All resting-state causal graphs (HCP, MCP, patient) 
compared with the es-fMRI causal graph. This comparison is shown 
in Fig. 7.   
Comparison (g): The subgraphs comprising edges connected to the 
right amygdala, constituting direct causal connections with other 
brain structures (compared across all the datasets). This is shown in  
Fig. 8. These subgraphs to the amygdala do not use weighted edges 
and only depict whether there is an edge there or not (binary).   
Comparison (h): GLM analyses of the es-fMRI compared to the 
causal subgraphs of edges connected to the amygdala. The GLM 
analyses are shown in Fig. 9 (plotted as Cohen's d). 

5. Results 

5.1. Parameter setting for causal discovery and reproducibility across 
datasets 

We first determined the reproducibility of our causal discovery analysis 
by deriving causal graphs from high-quality, large-sample size, statistically 
independent datasets. We began by using the HCPs dataset, which max
imizes sample size, cross-subject generalizability, and statistical in
dependence of the datasets. Comparing across 11 independent datasets from 
the HCPs, we obtained graphs at 10 different sparsity settings (Fig. 6). As 
expected, increasing the sparsity parameter resulted in graphs with fewer 
numbers of edges (moving from left to right on the x-axis of Figs. 6a and d). 
As well, low sparsity resulted in graphs that were less reproducible across 
datasets (larger error bars at low numbers on the x-axis, Figs. 6a and d), 

corresponding to increased agreement (reliability) with higher sparsity 
settings (Fig. 6b). Based on these initial results, we chose to use a sparsity 
setting of 8 (green curve in Fig. 6c, green marker on Fig. 6b; see color 
legend inset in Fig. 6c) for the HCPs dataset, which yielded 10% of the edges 
of the complete graph (a graph with an edge between every possible pair of 
nodes) (dashed line in Fig. 6a). This 10% complete graph nonetheless was 
able to reproduce the original Pearson correlation matrix of the dataset very 
well, accounting for 91.6% of the variance (Fig. 7a). We then set the 
sparsity parameter in the other datasets (MCPs, MCPd, and patient; see color 
legend inset in Fig. 6a) to a value that produced graphs with approximately 
this same total number of edges (10% of the complete graph, Fig. 6a). Fig. 6 
thus justifies our choice of the sparsity parameters used for the causal 
graphs derived from our different datasets, on which subsequent compar
isons were based. 

5.2. Comparing causal graphs with Pearson correlation matrices 

Before comparing causal graphs, we first compared the standard 
Pearson correlation (functional connectivity) matrices derived from our 
datasets: These comparisons are shown in Fig. 7, as the top triangle in each 
of the plots. As can be seen visually in the figure's top panel (Fig. 7a,b and 
c), Pearson correlation matrices (top triangle in each plot) from our 3 large- 
sample resting-state datasets were very similar – we quantified this simi
larity using Pearson correlation as shown in the inset table (Fig. 7f). For the 
patient (bottom row, top triangle in each plot), the data were considerably 
noisier, as expected given the much smaller number of samples, higher 
motion, and clinical setting. Interestingly, the patient's rs-fMRI Pearson 

Fig. 6. Causal graph sparsity and reliability. These panels justify how we chose the particular sparsity settings for all subsequent causal discovery analyses. a: Number of edges produced 
(as proportion of the complete graph) as a function of different sparsity parameters across our five datasets. As an example, the densest graph in the HCPs dataset is obtained with the 
lowest sparsity value we tested (a sparsity of 2) and produces graphs that are about 25% complete. For our analyses in this paper, we chose a criterion of producing about 10% of the 
complete graph (dashed line) across all datasets as a reasonable value that permitted comparisons in all subsequent analyses. b: Fraction of edges in the HCPs graph with horizontal 
reliability ≥0.95 (see Section 4 for a description of our horizontal reliability measure). As sparsity increases (blue dots towards the right) so does the fraction of reliable edges. c: The 
number of edges in the HCPs graph (as a proportion of the maximal number of edges that would be present in the complete graph) seen above a given horizontal reliability. Sparsity is 
encoded as line color. The leftmost point of each curve corresponds to observing a given edge only in 1 of the 11 datasets. Observing an edge in a sparse graph (large sparsity parameter s) 
is more surprising than observing an edge in a dense graph (small s), which our statistic for horizontal reliability captures (see Section 4, and Supplementary Fig. S3): hence the leftmost 
point of each curve shifts to the right for a higher sparsity parameter s. The second leftmost point corresponds to observing one repeat, i.e. to an edge repeating across 2 out of 11 datasets. 
Very high sparsity parameters (a sparsity of 20, blue curve) produce very reliable graphs. d: Same as a, except showing number of edges to the right amygdala (parcel #109), which is the 
node that we electrically stimulated in the neurosurgical patient. The dashed line corresponds to the number of edges to #109 obtained on average in the HCPs datasets with s=8 (as in a). 
Equating the number of edges to #109 is another way to set the sparsity parameters across datasets, which we also explored (see Fig. 8). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

J. Dubois, et al.   Neuropsychologia 145 (2020) 106571

10



correlation matrix was more similar to the group-level HCPs dataset (r = 
0.46) than to the subject-level MCPs data (r = 0.24). This was also the case 
for the patient's es-fMRI whole-brain Pearson correlation matrix (r = 0.45 
versus r = 0.26, see further below). We suspect that this may result from 
the HCPs dataset smoothing out individual differences, while the MCPs 

dataset will retain many idiosyncratic features of the one subject in that 
dataset. 

We next turned to the causal graphs derived by FGES for each of our 
datasets (bottom triangle matrices in the plots). Comparing causal 
graphs (bottom triangles) to Pearson correlation matrices (top trian
gles), visual inspection of Fig. 7 shows that the causal graph reproduces 
much of the structure of the correlation matrix, but is considerably 
sparser. Most notable at the whole-brain level are the homotopic con
nections, between corresponding parcels in the left and in the right 
hemisphere. These can be seen as the diagonal line visible in both the 

Pearson correlation matrix (upper triangle in each plot) and in the 
causal graph (lower triangle in each plot). The patient's rs-fMRI is 
noisier, but again one sees this basic structure and can make out the 
homotopic connections. Using the Dice coefficient to quantify overlap 
between adjacency matrices, we found that 30% of the edges in the 
patient's causal graph were also reproduced in the HCPs dataset causal 
graph (Fig. 7f). 

5.3. Connectivity of the amygdala 

In order to provide comparisons with the electrical stimulation re
sults, we then focused on the direct connections to the right amygdala 
(parcel #109) discovered by the FGES algorithm. To visualize edges 
connected to the right amygdala, we mapped these roughly onto 
a top view of the brain in Fig. 8. Across datasets (HCPs, MCPs/MCPd, 

Fig. 7. Connectivity between brain regions. a-e: Pearson correlation matrices (top triangle) and causal graphs (bottom triangle; direct connections as discovered by FGES, with weights 
estimated as described in the Methods section) for all five datasets. HCPs: subset #1 of the sparsely sampled HCP dataset. MCPs: subset #1 of the sparsely sampled MCP dataset. MCPd: 
subset #1 of the densely sampled MCP dataset. 384rs: patient #384 rs-fMRI dataset. 384es: patient #384 electrical stimulation dataset. The R2 value at the top of each plot indicates the 
proportion of variance accounted for by the graph when used to reconstruct the Pearson correlation matrix (see Section 4 for details). f: similarities between these 5 plots (Pearson's r 
between the Fisher z-transformed correlation matrices, top triangle; proportion of edges shared in the causal graphs, bottom triangle). To calculate the proportion of shared edges in the 
causal graphs, we first binarized the weighted causal graphs, yielding simple adjacency matrices; for HCP and MCP datasets, we kept only reliable edges with r≥0.95 to compute overlap. 
We then computed the overlap across datasets using the Sorensen-Dice coefficient ( adjA adjB adjA adjB( 0 0)/ ( 0 0)). 

J. Dubois, et al.   Neuropsychologia 145 (2020) 106571

11



and patient #384 rs-fMRI and es-fMRI) the right amygdala was re
liably found to be directly connected to the ipsilateral temporal pole 
and hippocampus, and the contralateral amygdala, direct connections 
that are supported by tracer studies in monkeys (Freese and Amaral, 
2009). However, there were also numerous differences in the results 
from the different datasets, which will require future exploration to 
fully understand. One future approach we intend to incorporate is to 
use the causal graph inferred from one dataset (e.g., the HCP, as it may 
be the most reliable due to the largest number of samples provided) as 
a prior to help constrain the graphs obtained from other datasets (see  
Fig. 4). 

Finally, we examined the results of our es-fMRI experiment (Fig. 5). 
Using the same parcellated data used for causal discovery (concatenated 
data of 4 sessions of es-fMRI in patient #384), we simply contrasted ON and 
OFF volumes, as typically done in a standard GLM analysis, to produce a set 
of node activations and deactivations. We compare these to the direct 
neighbors of the right amygdala found by the FGES algorithm in Fig. 9. The 
results show a striking difference between the ON-OFF contrast and FGES 
analysis: there is no overlap at all in the sets of parcels judged by the ON-OFF 
contrast to be activated by the stimulation, and those judged to be causal 

neighbors of the stimulated amygdala by FGES. This surprising finding raises 
methodological questions to which we do not know the full answers yet; we 
discuss it further in the Section 6. 

To provide a more general comparison, we also show in Fig. 10 a 
voxelwise, whole-brain GLM analysis contrasting electrical stimulation- 
ON versus electrical stimulation-OFF blocks in all four neurosurgical 
subjects in whom we stimulated particular nuclei of the amygdala (for 
equivalency across patients who have differing numbers of sessions, 
only the first es-fMRI session was used in each patient for this Fig. 10). 
Blockwise activation timecourses extracted from significantly activated 
ROIs showed absolute BOLD signal changes around 1% during the 
electrical stimulation and good reliability across runs (Supplementary 
Figure S4, and Oya et al., 2017). 

Across our four patients, the results were more heterogeneous, as  
Fig. 10 shows. Much of this heterogeneity likely arises from differences 
in the specific amygdala nuclei that were stimulated. We therefore 
mapped the likely location of our bipolar stimulation with respect to 
structural MRIs of each patient's amygdala, referenced to the Mai his
tological atlas (Mai et al., 1997); see Methods for details. These are 
shown in the insets in Fig. 10. 

Fig. 8. Causal discovery of direct connectivity with the right amygdala across all datasets. The two panels of this composite figure represent the causal graph solutions obtained over our 5 
datasets (5 colors, see legend at top left), showing direct edges to the right amygdala (parcel #109, circle in yellow; the same location electrically stimulated in patient #384). Left: results 
obtained when choosing the sparsity parameter so as to generate approximately 10% of the full graph (cf. Fig. 6a). Right: result obtained when setting the sparsity parameter so as to 
generate approximately 7 direct edges to the amygdala (cf. Fig. 6d). Sparsity settings are indicated at the top of the columns, which identify the parcels that had direct edges to the 
amygdala in each of the five datasets (colored entries next to the numerical and anatomical labels for all the parcels). For HCP and MCP datasets, we kept only horizontally reliable edges 
(r ≥ 0.95). For the 384es dataset, we treated all brain volumes equivalently; unlike a standard contrast analysis, the causal discovery algorithm was not informed about ON and OFF 
states. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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6. Discussion 

6.1. Summary of findings 

We outlined a workflow for discovering causal connections in the 
human brain, and provided initial validation, measures of reliability, 
and comparisons across datasets. We then demonstrated the application 
of this workflow to the connectivity of the amygdala, as a case study for 
the investigation of causal networks that subserve emotion processing. 
However, our approach is quite general and we intend it to be applic
able to the investigation of any brain structure, not just the amygdala 
(and indeed not only to BOLD-fMRI data, or data from humans). 

Our approach features two quite novel components, and suggests 
several further ones that were beyond the scope of the present study (cf.  
Fig. 4). One novel component that can readily be applied by other re
searchers to sufficiently large resting-state fMRI datasets uses a causal 
discovery algorithm. We used a version of the fast greedy equivalence 
search (FGES) algorithm on rs-fMRI data parcellated into the 110 nodes 
obtained with the Harvard-Oxford parcellation scheme. We demon
strated excellent reliability across independent samples in two large 
datasets, the Human Connectome Project (HCP) dataset, and the My
Connectome dataset (MCP), and we obtained faithful reconstruction of 
standard Pearson correlation matrices from our sparse causal graphs 
(Fig. 7). 

The second component, one of the most novel aspects of our study, 
is the application of a new technique in human neurosurgical patients: 
concurrent electrical stimulation and fMRI (es-fMRI). We focused on 
emotion networks by investigating connectivity of the amygdala, the 

target of electrical stimulation. Several broad conclusions could be 
drawn. First, in each patient individually, there was strong consistency 
in the pattern of evoked BOLD activation due to amygdala stimulation: 
there was good session-to-session reproducibility, both in the pattern of 
evoked BOLD activations, and in the magnitude of the response (see  
Supplementary Figure S4, and Oya et al., 2017). Second, there were 
specific differences in the statistical maps resulting from electrical sti
mulation across each of the four patients, as shown in Fig. 10. This 
likely reflects the fact that different amygdala nuclei were stimulated in 
each patient (see insets in Fig. 10), and indeed on different sides of the 
brain (patient #307 had left amygdala stimulation, the other three had 
right amygdala stimulation). However, it is also possible that there are 
individual differences in amygdala connectivity in the patients, a pos
sibility especially pertinent (and clinically relevant) given that all pa
tients had long-standing epilepsy. Studies in additional patients will be 
required to further understand these differences and to determine to 
what extent the activations seen here can be reproduced reliably across 
different patients in whom exactly the same amygdala nuclei are sti
mulated. The accrual of larger sample sizes will be required to address 
this issue. 

The causal discovery analyses, both from resting-state data across 
three different datasets (HCP, MCP, and the patient #384's pre-opera
tive rs-fMRI), and from the rare electrical stimulation with concurrent 
fMRI in the four epilepsy patients, all provided novel findings about the 
connectivity of the amygdala. Many direct connections that would be 
predicted based on the known connectivity of the primate amygdala 
(Freese and Amaral, 2009) were also found here. For instance, there 
were prominent connections with temporal cortex, prefrontal cortex, 

Fig. 9. Comparison of contrast-based and causal discovery-based results for the es-fMRI data in patient #384. This view down onto a brain depicts the statistically thresholded activation 
produced by right amygdala stimulation (parcel #109, circled in yellow). Color of each significantly modulated node encodes the effect size of the ON-OFF contrast produced in that 
parcel (Cohen's d). Nodes which are found to be directly connected to the right amygdala using the FGES algorithm are circled in pink. Unlike for the ON-OFF contrast analysis, the 
location and timing of the experimental manipulation (electrical stimulation of the right amygdala) did not form an explicit part of the input to the FGES algorithm as we ran it for this 
analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and cingulate cortex. Some of the most reliable direct connections 
found across datasets were with the temporal pole, hippocampus, and 
contralateral amygdala. It is also notable that the es-fMRI results tended 
to produce strong activations in temporal and prefrontal cortices, but 
strong de-activations in posterior cingulate/retrosplenial cortices 
(Fig. 10). 

Perhaps most important at a global level is the finding that most of 
the correlations seen in standard analyses of functional connectivity 
(the Pearson correlation matrices shown in the top triangle plots of  
Fig. 7) are due to indirect effects rather than direct causal effects of one 
brain region on another (cf. the much sparser causal adjacency matrix 
shown in the lower triangle plots in Fig. 7). This is expected, since it is 

well known that not every brain region is connected to every other 
brain region, but that connectivity is much sparser than that. 

Much more surprising was the finding that, in the es-fMRI dataset, 
most or all of the activations observed with standard GLM methods 
appear to arise from indirect causal effects, since we did not find them 
as direct edges in our causal discovery results (Figs. 9 and 10). Further 
analyses that visualize edges that are 2- or even 3-removed from the 
amygdala could help to understand how the activations that we found 
due to electrical stimulation (Fig. 10) arise at a network-level. It is 
worth noting that cortical projections from the amygdala are generally 
thought to be modulatory in nature: connections with temporal visual 
cortices terminate in superficial cortical layers (Freese and Amaral, 

Fig. 10. Results of concurrent electrical stimulation 
of amygdala nuclei and fMRI in four neurosurgical 
patients. Shown are GLM results from one session of 
es-fMRI in the four patients, as standard voxelwise, 
whole-brain results (mapped onto the surface). For 
patient #384 (top), who had four runs, we only used 
the first run to generate this figure. Stimulated con
tacts are shown as small red dots on the structural 
MRIs and are also shown in the leftmost panels with 
respect to amygdala nuclei based on a non-linear 
warping to a histological atlas of the human brain 
(Mai et al., 1997). La = lateral nucleus, BM = ba
somedial nucleus, BL = basolateral nucleus, Ce = 
central nucleus, Hp = hippocampus. Cluster-forming 
threshold p < 0.001 (uncorrected) with a minimum 
cluster size of 20 voxels. See Supplementary Table S4 
for the list of clusters for each patient. 

J. Dubois, et al.   Neuropsychologia 145 (2020) 106571

14



2006), and projections to prefrontal cortex may exert effects via the 
dorsomedial thalamus rather than directly (Miyashita et al., 2007). A 
full understanding of how network-level effects of the amygdala arise 
will require not only further electrical stimulation-fMRI studies, but will 
also require the application of other causal discovery algorithms that 
can incorporate feedback (see further below, and Supplemental mate
rial). 

Taken together, the results highlight the promise, challenge, and 
next steps of this novel framework. We demonstrated that causal dis
covery analyses can produce graphs that are reliable and that capture 
the correlation structure of the observational data. We also demon
strated that es-fMRI in the amygdala produces robust activations in 
distal brain structures. Many of the results fit with what one would 
expect given current knowledge of the connectivity of the amygdala: 
there is activation in medial prefrontal and cingulate cortices, in insula, 
and in temporal cortex, amongst other regions. Yet the notable differ
ences across individual subjects also highlight the difficulty in ob
taining reproducible stimulation results across patients, and in ob
taining a sufficiently large number of samples for reliable causal 
discovery. These issues can probably be resolved partly through the 
accrual of more data. Other next steps consist in investigating other 
nodes in emotion networks, and including results from experiments in 
animals. We briefly comment on next steps and extensions below. 

6.2. Investigating emotions and feelings 

While the present paper focuses its scope on an analysis just of data 
from the brain, such data will eventually need to be linked to their 
causal effects on the dependent measures that are typically used to infer 
emotions—autonomic responses, changes in facial expression, verbal 
reports of emotional experience, and a variety of effects on task per
formance (Fig. 11). Investigating causal connections related to emo
tions in the brain at rest, as we did here, is clearly suboptimal, because 
the different nodes of the network are unlikely to be as interactive 
during rest as they are during emotion processing. We would thus want 
to apply the causal discovery methods that we document here to fMRI 
data that reflects brain states of putative emotions — either induced 
through sensory stimuli (e.g., watching emotionally laden film clips 
(Gross and Levenson, 1995)), volitional instruction (e.g., asking people 
to remember emotional autobiographical events (Damasio and 
Grabowski, 2000)) or through direct electrical stimulation of structures 
such as the amygdala (Bijanki et al., 2014; Dlouhy et al., 2015; Gloor 
et al., 1982; Halgren et al., 1978; Willie et al., 2016). The latter is a 
particularly intriguing aspect: as we demonstrated here it is in fact 
possible to combine electrical stimulation with concurrent fMRI mea
sures, and it would offer the most direct test of the putative causal roles 
of brain structures in emotion. 

This issue would be of very high relevance to the strategic planning 
of deep-brain stimulation to treat mood disorders, or indeed more 
broadly to treat any number of severe disorders that are medically re
fractory and that are candidates for treatment through deep-brain sti
mulation. Alterations in brain connectivity are now thought to underlie 
much of psychopathology (Fox et al., 2014; Greicius, 2008; Greicius 

and Kimmel, 2012; Zhang and Raichle, 2010). Both invasive (Lozano 
and Lipsman, 2013) and noninvasive (Dayan and al, 2013) neuro
stimulation are regularly used, and gaining popularity, to treat a 
number of neurological and psychiatric diseases, including Parkinson's 
and Alzheimer's disease, depression (Fox et al., 2014; Mayberg et al., 
2005; O'Reardon and al, 2007) and memory disorders (Hamani et al., 
2008; Suthana et al., 2012). All of these avenues for treatment show a 
frustrating combination of features: they can be extremely effective for 
certain patients, yielding dramatic improvements in quality of life; but 
they don’t work for others, and we do not understand why. The current 
inadequacy in strategic planning of deep brain stimulation for treating 
mood disorders, and in predicting personalized outcome, stems from 
our ignorance of what deep brain stimulation actually does to the brain. 
The framework we presented here seeks to address this important 
outstanding question. 

The approach we presented here would also help to resolve several 
ongoing scientific debates. For instance, the amygdala has long been 
thought to be necessary for fear, in humans and in animals (Amaral and 
Adolphs, 2016). But the evidence from lesion studies in humans does 
not show that the amygdala causes fear (only that absence of the 
amygdala interferes with it), as we noted in the Introduction. Electrical 
stimulation of the amygdala, which could show that the amygdala 
causes fear, has been thought to act through other indirect mechanisms, 
for instance via stimulating white matter pathways that instead activate 
regions of cortex, which in turn cause the conscious experience of fear 
(LeDoux, 2015; LeDoux and Brown, 2017). Our es-fMRI paradigm, 
coupled with a causal discovery analysis, as outlined in this paper, 
could resolve this issue and ultimately yield an understanding of the 
proximal causal substrates for all the different aspects of an emotion, 
including its conscious experience. 

Our long-term goal is to use causal discovery and es-fMRI to in
vestigate the neural mechanisms that underlie different components of 
emotion. It is notable that all of the es-fMRI experiments we presented 
here were performed at a level of stimulation at which the patients were 
at chance in discriminating whether they had been stimulated or not, 
and no observable measures of emotion were produced (other than 
brain activations measured with fMRI). An experiment we plan to do 
next is to parametrically increase the amplitude and/or duration of the 
electrical stimulation. As one gradually stimulates the amygdala more 
and more, measurable components of emotion should be induced: there 
might be changes in autonomic responses such as skin-conductance 
response (Willie et al., 2016), changes in cognitive bias such as judg
ments of facial expressions (Bijanki et al., 2014), or changes in reported 
conscious experience (Halgren et al., 1978). What changes in the causal 
graph that describes the brain networks as these emotion components 
are induced? What accounts for the difference between stimulation 
trials in which the patient reports feeling nothing, and in trials in which 
the patient reports feeling an emotion? These are major unsolved 
questions in affective neuroscience that the framework we outline could 
begin to address. 

6.3. Limitations and assumptions 

Many of the assumptions we have made in our causal analysis are 
unrealistic for fMRI data. The brain is known to contain many con
nections with feedback; it is likely that there are unmeasured con
founders; it is not plausible that the actual causal connections in the 
brain are linear Gaussian in form; despite our comparison between 
sparsely sampled and densely sampled data (MCP) one may remain 
concerned about the i.i.d. assumption of the data. By such a standard, 
the present analysis can only be taken to show that rather sparse causal 
structures can give rise to the correlations observed resting-state fMRI 
data. 

In the Supplementary material we do explore what happens when 
some of these assumptions are dropped, in particular the assumption of 
no feedback (acyclicity) and no unmeasured confounding (causal 

Fig. 11. Extending the present results to a more comprehensive investigation of emotion. 
As also suggested in Fig. 4, we would eventually want to extend the present findings to 
actual induction of emotion (either through direct stimulation, or suitable stimuli/tasks), 
and to the inclusion of other dependent measures, such as psychophysiological responses 
(skin-conductance response, heart-rate changes, pupillometry, etc.) and even verbal re
ports of the conscious experience of an emotion. 
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sufficiency). We have applied a SAT-based causal discovery algorithm 
(Hyttinen et al., 2014) that does not make these assumptions to a small 
subset of three of the datasets considered in this paper (since the al
gorithm in its current form does not scale to large numbers of variables) 
and we compared the results to those from the FGES algorithm. We 
found that causal adjacencies are remarkably reliable when the two 
methods (FGES and SAT) were applied to the same dataset, but that 
orientations of edges in the causal graphs differed. While promising, 
these results also indicate that significantly more effort is needed to 
scale the methods with weaker background assumptions (SAT) to be 
applicable to datasets with many variables (such as a whole brain 
parcellated into ca. 100 nodes). We are actively engaged in developing 
more scalable versions of the SAT-based method and in the develop
ment of a fast non-parametric independence test, which would also 
allow us to drop the parametric assumption of linear Gaussianity. Such 
a test could also be used in other causal discovery algorithms that use 
weaker assumptions, such as the various versions of the FCI-algorithm 
(Spirtes et al., 2000a). These future developments will require close 
collaboration with experts on causal algorithm development. 

There are also important limitations to note at the stimulation end. 
Our electrical stimulation is quite imprecise compared to alternative 
approaches that are possible in animal models, such as optogenetics. 
Although we used bipolar stimulation to constrain current spread, and 
although the region of activation near the site of stimulation is fairly 
focal, this is still a large volume of neural tissue (several cubic milli
meters). Not only will this introduce imprecision in the anatomical 
localization of the stimulation, but it will also subsume different ana
tomical subdivisions and cell populations, and even fibers of passage. 
This issue is especially problematic in the amygdala, and may be less 
acute for some surface cortical sites (we are also able to stimulate 
through grids that are on the surface of cortex). Depending on where 
one is stimulating, many different circuits can be activated; or in
hibitory interneurons as well as excitatory neurons can be activated; or 
nearby white matter can be stimulated. 

Our future plans for addressing these limitations are to try to tri
angulate on the results with as many methods as possible. In humans, 
we illustrated two in the present paper. Causal discovery algorithms 
applied to resting-state data will still have the limitations of fMRI, but 
do not have the just mentioned problems associated with electrical 
stimulation. As such, they may be able to provide priors that can help 
constrain the results from electrical stimulation (cf. Fig. 4). We are also 
actively exploring animal models, which will ultimately be essential to 
obtain sufficient resolution and control. Convergent evidence from such 
studies can further help with the interpretation of the results from 
humans. Although there are of course difficult questions about 
homology, it is already the case that a number of studies in nonhuman 
primates has given us very detailed insight into circuits related to fear 
and anxiety, and allowed a considerably finer fractionation both of the 
circuits and of the behaviors than is currently possible in humans (see 
(Fox and Shackman, 2017; Shackman and Fox, 2016) for an overview). 
The overall research program should thus incorporate results from ro
dents, monkeys, and humans. Each of these has somewhat com
plementary strengths and limitations. The rodents currently offer the 
most precise manipulation of circuits through optogenetics, but better 
methods for whole-brain imaging of activations are still needed (such as 
imaging using ultrasound, rather than BOLD-fMRI, for example). The 
monkeys are beginning also to offer optogenetic and chemogenetic 
approaches, although this is still more limited in application than is the 
case in rodents. However, monkeys are of course a better animal model 
for human emotions than are rodents. Finally, human studies will al
ways be limited in the precision with which we can experimentally 
investigate and manipulate circuits, but offer large datasets based on 
fMRI and provide subjective reports of experiences—the dependent 
measure that also determines disorders of emotions we wish to treat. 

Finally, a host of challenges needs to be addressed in order to 
leverage fMRI results to reliable conclusions about the brains of in
dividual people (Dubois and Adolphs, 2016). Relatedly, there is the 
need for more precision in the methods, the neuroanatomy, and the 
cognitive, behavioral, and experiential variables that can be measured. 
This is a very large task, but recent prescriptions in the case of the 
amygdala and fear give us examples of what needs to be done 
(Shackman and Fox, 2016). 

6.4. Comparing causal discovery with standard GLM results 

One of the most striking, and unexpected, findings from our study 
were those shown in Fig. 9. We found that the brain regions activated 
by electrical stimulation of the right amygdala in the es-fMRI dataset 
(as analyzed with standard GLM analysis, contrasting ON-OFF electrical 
stimulation) were completely nonoverlapping with the brain regions 
found to have direct edges (direct causal connections) with the right 
amygdala from FGES. Although we do not have a full explanation of 
this finding, it seems striking enough to warrant further investigations. 
We make the following remarks.  

(i) The direct GLM contrast between the ON and OFF blocks depends 
on knowledge about which data are ON and which data are OFF, as 
specified by the experimenter, but is independent of the measured 
actual activation of the right amygdala. By contrast, FGES operates 
on the complement of this set of information: FGES, as we ran it, is 
not informed about the stimulation at all, but instead uses the 
measured activation of the amygdala and attempts to determine its 
direct causal neighbors. This is a big difference that will need to be 
probed further in future studies. In preliminary explorations we 
did run FGES with the values of the right amygdala replaced by 1/ 
0 for ON/OFF, corresponding to the stimulation blocks (i.e. the 
same information available to the GLM), and we found that the 
right amygdala was causally disconnected from all other nodes. It 
is unclear what explains this result, but it is likely that the number 
of independent ON/OFF samples is inadequate in a blocked design 
(since adjacent trails are strongly depend on one another). Sparse 
event-related designs may circumvent some of these problems in 
future es-fMRI studies.  

(ii) There is some overlap when FGES is run on patient #384's es-fmri 
data and when it is run on the other datasets, as shown in Fig. 8. In 
particular, the ipsilateral temporal pole and hippocampus are 
found to be connected to the amygdala across the board, a finding 
that is also quite consistent with what one would expect from prior 
studies of amygdala connectivity, including direct tracer studies in 
monkeys. Oddly, these two regions do not show up as significantly 
activated by the stimulation according to the ON-OFF GLM con
trast analysis, as can be seen in Fig. 9. Differences in equating the 
statistical thresholding for the GLM and the sparsity settings in our 
FGES analyses may also partly explain these discrepancies. Future 
studies should undertake a more comprehensive analysis over a 
larger range of thresholding and sparsity settings. As well, one 
could undertake a more detailed investigation that specifically 
probes nodes found to be directly connected in the causal analyses, 
and uses them as ROIs for a GLM analysis (cf. also Fig. 4). More 
broadly, there are still many more comparisons required between 
the different sets of results, in order to gain a better understanding 
of which are reliable findings obtainable with all approaches, 
which are reliable findings but can be discovered most sensitively 
only with a subset of the approaches, and which are unreliable 
findings that show up as false positives with some approaches.  

(iii) As we already noted, it is of course quite possible that many of the 
effects revealed with standard GLM contrasts are in fact not due to 
direct causal effects, but reflect indirect and possibly quite complex 
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network-level effects. Fig. 9 shows only the direct causal neighbors 
of the right amygdala from the FGES analysis. Future studies could 
easily extend the analysis to examine nodes that are causally 
connected to the amygdala by one intervening node, two inter
vening nodes, and so forth. Of course, the larger the degrees of 
separation (the larger the number of intervening nodes), the larger 
will be the total set of nodes connected to the amygdala. In fact, it 
would be of interest to explore this parametrically and visualize 
how many degrees of separation are required before a given pro
portion of the complete set of nodes are connected with the 
amygdala (or any other structure of interest). Most broadly, such 
an analysis could reveal general principles of brain network ar
chitecture: what is the average degree of separation between any 
two places in the brain, and how are degrees of separation dis
tributed (do they differ for cortical vs. subcortical structures)? 

(iv) It would be informative to investigate directionality and re
ciprocity in the connections between brain regions. We largely 
omitted this important issue, for two reasons already noted: (1) 
directionality of causal effects appears much less reliable than the 
presence of (undirected) edges and so we omitted it for this reason, 
and (2) reciprocity of connections (feedback) was explicitly as
sumed to be absent in FGES, since that is a background assumption 
required by this efficient causal discovery algorithm. We relaxed 
both of these constraints in an exploratory analysis using a dif
ferent causal discovery algorithm (SAT) in our Supplementary 
material. However, the SAT algorithm currently does not scale to 
more than about 7 nodes, making it too limited for present pur
poses. Future development of causal discovery algorithms that are 
both efficient in how they scale to large numbers of variables, and 
that can relax background assumptions, will be essential to drive 
this field forward. However, even without such new algorithm 
development, one could extend the current studies by focusing 
future work on nodes revealed in the present analysis. For instance, 
if es-fMRI of the amygdala activates the hippocampus, then we 
could electrically stimulate the hippocampus to ask if we can 
produce a symmetrical activation in the amygdala. Such studies 
are certainly possible, and limited only by the density and extent of 
electrode coverage in the patients. 

6.5. Future extensions 

As we already noted, immediate next experiments could be analyses 
carried out on already collected data. The HCP and the MCP datasets 
can be queried in much more detail. One could investigate connectivity 
of other specific nodes of putative emotion networks, including not only 
the amygdala, but also ventromedial prefrontal cortex, insula, and other 
regions. One could investigate individual differences across individuals, 
or groups of individuals, where independent behavioral or ques
tionnaire-based measures related to emotion processing are available 
(some candidates from the HCP would be the Penn emotion recognition 
test, and the positive affect test, which are available for this dataset). 
And of course one could investigate differences between neurotypical 
and clinical populations (e.g., HCP versus ABIDE data to compare ty
pical healthy brain networks to those from people with autism, re
spectively). 

A major challenge will be how to improve the reliability of causal 
graphs obtained from single subjects, especially patients in whom there 
are often a number of additional constraints. The graphs obtained from 
large-sample datasets such as the HCP could be used as priors to con
strain the causal discovery in smaller, noisier datasets from single pa
tients (cf. Fig. 4). While es-fMRI will always be limited to relatively 
short sessions and thus small numbers of samples, one could obtain 
denser rs-fMRI data in the same subjects before the implantation of the 
electrodes, providing additional, subject-specific prior information. 

It is possible to parcellate the fMRI data into a larger number of 
parcels (e.g., the scheme by Glasser et al., 2016 rather than the 

Harvard-Oxford atlas we used, an alternative and more detailed par
cellation we have already explored and which is entirely feasible in 
large sample-size datasets). This could provide new findings that the 
present parcellation scheme obscured through aggregation of func
tionally disparate brain areas. The causal discovery algorithm we used 
scales relatively efficiently with sample size. It would be interesting to 
compare several different parcellation schemes, and to test whether 
more fine-grained ones essentially reproduce the coarser ones or reveal 
different conclusions. Ultimately, it would be extremely interesting to 
run FGES voxelwise over the entire brain, as also suggested in Section 7 
of Ramsey et al. (2016). Not only would this be informative in whether 
or not it reproduces results from more aggregated parcellation schemes, 
but it could actually be a novel source of deriving parcellations in the 
first place. 

Finally, it is possible to stimulate not only multiple brain regions in 
separate sessions, but to stimulate them concurrently in a single session 
(or even in a specific temporal pattern). Theoretically, a relatively 
modest number of stimulations can very efficiently permit estimation of 
the causal graph (Eberhardt et al., 2005). One would like to be able to 
causally intervene on specific brain structures, while collecting data 
with the whole-brain field-of-view of fMRI (or other emerging tech
nologies, such as ultrasound imaging), with complete freedom in the 
choice of brain structures. This, of course, will never be possible in 
human subjects, but requires the application of our approach to animal 
studies. The most powerful future combination will incorporate con
clusions from causal discovery studies in humans with data obtained 
from optogenetic-fMRI in rodents (Lee et al., 2010; Liang et al., 2015). 
Those optogenetic-fMRI studies would also have a further large ad
vantage over human es-fMRI, namely, the ability to stimulate geneti
cally identified neuronal populations. Such studies could in fact explain 
much of the heterogeneity seen in human experiments, since these are 
likely to conflate many different circuits due to their anatomical and 
cell-type imprecision, and would substantially help us to refine emotion 
circuits in the brain. The complementary strengths and limitations of 
human and animal approaches will ultimately be required to fully map 
out the causal connections that underlie emotion (Adolphs and 
Anderson, 2018; Shackman et al., 2018). 
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