Neuropsychologia 145 (2020) 106571

journal homepage: www.elsevier.com/locate/neuropsychologia

Contents lists available at ScienceDirect

Neuropsychologia

NEUROPSYCHOLOGIA

Causal mapping of emotion networks in the human brain: Framework and @ #)

initial findings

Check for
updates

Julien Dubois™, Hiroyuki Oya®, J. Michael Tyszka"”, Matthew Howard III°, Frederick Eberhardt”,

Ralph Adolphsﬂ,b,c,‘;_

2 Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA

® Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
© Chen Neuroscience Institute, California Institute of Technology, Pasadena, CA 91125, USA
d Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA

© Department of Neurosurgery, Human Brain Research Laboratory, University of Iowa, IA 52241, USA

ARTICLE INFO ABSTRACT

Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains un-
known how these multiple network components interact, and it remains unknown how they cause the beha-
fMRI vioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel

Keywords:
Emotion

Neurolifnaging technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal
iausadlti' structure from fMRI data (causal discovery). We outline a research program for investigating human emotion
mygdala

with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in
neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal dis-
covery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further
constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by
discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain
connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be
extended to animal studies that use combined optogenetic fMRI.

1. Introduction

How do networks of brain structures generate human emotions?
Affective neuroscience has documented a wealth of data, primarily
from activations observed in neuroimaging studies in response to
emotional stimuli. This has provided us with an inventory of brain
structures that participate in emotions, but little knowledge of their
precise causal role. Studies in humans with direct electrical stimulation
of structures such as the amygdala have shown causal links between
brain regions and emotional responses, but these additional findings
still leave us with scant knowledge of how emotions are implemented at
the network level in the brain. The question is pressing for translational
reasons as well. Deep-brain stimulation is being explored for a large
number of neurological and psychiatric diseases, but with quite vari-
able success. There are clear case studies of remarkable amelioration of
depression, for instance—but only in some cases, limiting the general-
izability of the results (Kennedy and al, 2011; Mayberg et al., 2005).

We think of emotions as functional, central brain states defined by
their cause-and-effect relationships with other brain processes, and
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with stimuli and behaviors. Which stimuli reliably cause emotions?
How do emotions in turn cause behavioral responses? And - the topic of
this paper — how do different brain regions interact with one another
during emotion processing? The basic problem can be sketched in re-
lation to the amygdala as schematized in Fig. 1. The amygdala is acti-
vated by threat-related stimuli, lesions of the amygdala impair threat-
related responses and (in humans) aspects of the experience of fear, and
stimulation of the amygdala produces defensive behaviors (very
roughly). Nobody nowadays would conclude that “fear is in the
amygdala”. Instead, the amygdala helps to orchestrate the many dif-
ferent causal effects of a fear state. To understand these effects we need
to map the causal relations between the amygdala and other brain re-
gions, through which such effects are mediated. We know almost
nothing about these causal relations in the human brain.

Studies in animals have begun to dissect the circuits responsible for
processing emotion, and of course offer methodological tools that are
unavailable in humans. For instance, experimental manipulation of
brain activity in rodents and monkeys has provided insights into the
causal roles of particular circuits, such as the extended amygdala
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prefrontal cortex - - - - - > emotion experience

amygdala periaqueductal gray - - - - - > emotion behavior

temporal cortex - - - - - > emotion perception

Fig. 1. Amygdala connectivity with other structures. Schematized here as a very sim-
plified causal graph are some of the main known interactions between the amygdala and
cortical (prefrontal and temporal cortex) as well as subcortical (periaqueductal gray)
structures, each of which in turn cause different components of an emotion that we can
measure (which are hypotheses in this figure, just to make the conceptual point). Note
that in the present paper we are omitting the periaqueductal gray for methodological
reasons (insufficient spatial resolution in the parcellation scheme used for analysis of our
MRI datasets), and we are focusing just on the brain networks, and not yet on the emotion
measures (see Fig. 4).

(Amaral and Adolphs, 2016; Shackman and Fox, 2016) and the hy-
pothalamus (Lin et al., 2011). Behavioral dependent measures, while
they need to be interpreted carefully, have given us strong evidence for
how specific neuronal populations can cause specific emotional beha-
viors related to fear and aggression. One main limitation with these
animal studies has been achieving a whole-brain field-of-view. Al-
though specific circuits can be manipulated, e.g. through optogenetic or
chemogenetic activation, the downstream effects are typically mea-
sured in only a very small subset of brain regions. One exciting future
combination of methods is concurrent optogenetic stimulation with
whole-brain fMRI (Lee et al., 2010; Liang et al., 2015), or with ultra-
sound imaging. However, the homology to human emotions remains a
major limitation (Adolphs and Anderson, 2018).

Elucidating the causal networks that underlie emotion processing is
one of the most important but also most difficult challenges faced by
affective neuroscience. It is important because only an account at the
level of causal mechanisms can really explain brain processing, and
because only such an account can yield insights that allow us to ma-
nipulate brain function (for instance, with interventions aimed to treat
mood disorders). Yet it is difficult because most of the data from the
human brain are correlational in nature, making it unclear how to infer
causality from typical neuroimaging and electrophysiological studies.
Here we demonstrate the promise of a new technique — concurrent
electrical stimulation and fMRI - and a new method in causal discovery
- the fast greedy equivalence search - to obtain large-scale causal
models that describe how different brain regions interact. We begin by
briefly reviewing some of the findings from affective neuroscience, with
an emphasis on the amygdala, and then outline the logic of causal
discovery, before presenting our approach and pilot data to support it.

2. Emotion and the amygdala

Data from lesion studies and fMRI in humans, and from a range of
approaches in animals, consistently implicate the amygdala (Fig. 2), the
medial prefrontal cortex, the insula, the hypothalamus, and the peria-
queductal gray in emotions. These structures function as components of
considerably more distributed systems, and attempts to localize parti-
cular emotions (fear, sadness, etc.) to any one of these structures have
been largely unsuccessful (Lindquist et al., 2012), even though specific
emotions can be classified from distributed activation patterns in neu-
roimaging studies (Kragel and LaBar, 2015; Nummenmaa and
Saariméki, 2017; Saariméki et al., 2015; Wager et al., 2015). While
debates about how to interpret the data thus far remain (Adolphs,
2017a, b;2017b; Barrett, 2017a, b2017b), neuroimaging and electro-
physiological findings have supported a picture of emotion states im-
plemented by distributed cortical and subcortical circuits. But what
exactly does a structure such as the amygdala contribute to processing
fear (or any other emotion) and at what point in the distributed pro-
cessing of that emotion does it exert meaningful causal effects on the
other components of the network?
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The amygdala together with the bed nucleus of the stria terminalis
(Fox and Shackman, 2017) appears to serve a role as an organizing
center in these circuits, coordinating the multiple cognitive, autonomic,
and behavioral effects of an emotion (Davis, 1992; Whalen and Phelps,
2009). Both the known structural connectivity of the amygdala (in
monkeys and rodents) and structure-function relationships in particular
tasks, such as Pavlovian fear conditioning, strongly support this view
(Fig. 3). Yet the direct evidence for causal relationships is difficult to
obtain in humans, and remains sparse even in animals.

While lesion studies argue for the necessary role of a brain structure,
they do not elucidate the neural mechanisms through which the le-
sioned tissue contributes to normal function. Lesions of the amygdala,
in animals as well as humans (Amaral and Adolphs, 2016) result in
impairments in fear processing. In humans, these can include strikingly
selective deficits in the recognition of fear from facial expressions
(Adolphs et al., 1994) and in the conscious experience of fear to ex-
teroceptive threats (Feinstein et al., 2011) but not to certain inter-
oceptive stimuli (Feinstein et al., 2013). However, studies in monkeys
have shown that the consequence of an amygdala lesion on the brain is
extremely complex, including widespread network changes in many
other regions (Grayson et al., 2016). So although amygdala lesions have
effects on emotional behaviors and conscious experience, under-
standing the causal mechanisms explaining this effect require addi-
tional measures. Indeed, some current theories of the conscious ex-
perience of emotion argue that the amygdala's role in feelings and
emotions is mediated entirely through cortical structures (LeDoux and
Brown, 2017).

Similarly, lesions of the ventromedial prefrontal cortex (vmPFC) can
lead to alterations in emotional behavior, such as impaired autonomic
responses (Bechara et al., 1996), dysregulation of anger (Koenigs and
Tranel, 2007), and atypical moral judgment (Koenigs et al., 2007).
Once again, it is difficult from this to infer the causal mechanisms,
which may involve additional brain regions with which the vmPFC is
connected. For instance, lesions of the vmPFC result in abnormal acti-
vation of the amygdala when lesion patients undergo fMRI (Motzkin
et al., 2015).

Thus almost all of the evidence for the causal mechanisms behind
emotions is very indirect and tenuous. It derives from a combination of
structural connectivity studies in animals (the basis for most of Fig. 3),
piecemeal assembly of evidence across very different studies in the
literature (much of the basis of Fig. 2), or flawed inference of causation
from correlation (nearly everything based on neuroimaging alone, or
electrophysiology alone). While this problem is well known, it is also
well ignored, in the hope that sheer accumulation of correlative data of
various kinds could in and of itself provide us with an understanding of
the causal mechanisms.

Here we describe a research program that could take us from these
heterogeneous beginnings to a principled approach for investigating
causal architecture for emotions. Which brain regions are involved,
how are they causally related to one another, and how do they in turn
cause particular components of emotions? We suggest (and will show
below) that parts of this broad and ambitious aim can in fact already be
addressed with human neuroimaging data alone, using a novel causal
discovery approach which we detail here. Parts of the aim also require
new methods that make possible direct causal perturbation in the
human brain, which we have recently developed (Oya et al., 2017). We
provide initial results and a workflow for generating causal models
from both of these types of data.

3. Causal discovery

The range of methods for analyzing brain function at the network
level vary from essentially descriptive (such as looking at correlations
between regions, i.e., standard functional connectivity approaches) to
methods for inferring parameters of pre-specified models (such as dy-
namic causal modeling (DCM) (Friston, 2011; Friston et al., 2013)). All
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Fig. 2. Meta-analytic mapping of brain activations for emotion.
Neurosynth maps for the keyword “emotion” yielded results from
790 fMRI studies (www.neurosynth.org). In the top panels (in
blue) are the “forward inference” maps (all activations above a
statistical threshold having to do with “emotion”). However, most
or all of these regions are also activated in many other studies that
do not have anything to do with emotion. A more specific analysis
would ask which regions were activated only by those studies
containing the keyword “emotion”, and not in studies that did not
contain the word “emotion”. This “reverse-inference” map is
shown in the bottom panels (in red). Both analyses highlight the
prevalence of reporting the amygdala, and to some extent the
prefrontal cortex. This large bias in the literature has resulted in a
strong belief that the amygdala is causally involved in emotion, a
conclusion that is not yet warranted from the extant data.
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Fig. 3. Connectivity of the central nucleus of the amygdala. The illustration summarizes the function of this amygdala nucleus in coordinating emotion components through its multiple
causal effects on other brain regions. Note that the picture is in fact considerably more complicated, since the central amygdala also closely interacts with the adjacent bed nucleus of the
stria terminalis in triggering the target effects shown here (Shackman and Fox, 2016). Reproduced from (Davis, 1992).

of these have tradeoffs: standard “functional connectivity” from corre-
lations does not provide a causal model; DCM is limited by our
knowledge of the physiological basis of the BOLD response, the lack of a
search algorithm over models, and poor scalability. In its classical im-
plementation, for instance, DCM can only test very simple models (10 —
20 nodes) that are too restrictive for understanding realistic whole-
brain networks (Smith, 2012; Smith et al., 2011). It should be noted
that there are continuous improvements, such as the novel regression-
DCM approach, which has been scaled to 66 regions with 300 free
parameters (Frissle et al., 2015, 2017). But the primary challenge for
DCM remains unsolved: how does one constrain reverse inference and
search efficiently over candidate models given measured data? The
number of candidate DCM models is enormous even for a small number

of nodes, and there exists no efficient algorithm to search over all of
them. The sweet spot, we believe, lies in the middle between standard
functional connectivity approaches and physiologically-based models
like DCM: causal modeling that takes advantage of the strengths of
current BOLD-fMRI, and that enables the integration of experimental
and observational data.

Causal models can be thought of as generative models that make
predictions about what we might observe and about how we might
achieve certain effects through experimental manipulation (e.g., brain
stimulation to treat a mood disorder) (Pearl, 2009; Spirtes et al.,
2000b). The usual way to depict the causal relationships between
variables (causes from one brain region to others, in our case) is with a
drawing called a causal graph. Fig. 3 above could be interpreted this
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way: the amygdala causes effects in the brainstem and hypothalamus
which in turn cause effects in brain and behavior that are our depen-
dent measures. Direct causal connections are taken to be relative to the
set of variables depicted, thus a chain of three variables A—B—C
without a direct arrow from A to C would indicate that B causally
screens off A from C, that is, B completely mediates the causal effect of
A on C. In terms of brain structures, we would think of this as region A
providing inputs to B which in turn provides inputs to C, but without
any direct connections from A to C.

Temporal order is often taken to be fundamental to causality, but for
causal discovery it can be misleading. Intuitively, we would expect the
cause A to precede its effect B, but if both A and B are effects of a
common cause C, then B may well take longer to manifest itself than A,
giving the impression as if A caused B. For causal discovery from fMRI
data, actual temporal order of action potential events cannot be re-
solved, since these operate at a millisecond range that exceeds the
temporal resolution of hemodynamic measures. Moreover, if one con-
sidered temporal order (which some analyses of BOLD-fMRI indeed
attempt; (Friston et al., 2013)), one must take into account the inter-
actions between the sampling rate and the rate at which the true un-
derlying process operates, as well as regional differences in hemody-
namic coupling. For Granger Causality, the appropriate temporal
resolution and the absence of unmeasured common causes are the key
assumptions supporting a valid inference from data to causal relations
(Granger, 1969). Concerns about these, among others, suggest that
Granger Causality is not well-suited for the causal analysis of fMRI,
despite its common application (Smith, 2011; Stokes and Purdon,
2017).

Instead, another class of causal discovery algorithms disregard
temporal order and use the independence structure observed in the data
in order to infer the underlying causal structure (see Eberhardt, 2017)
for an accessible brief review). The general idea of using the in-
dependence structure for causal inference goes back to the Principle of
Common Cause (Reichenbach, 1956): if two variables are dependent,
then either one causes the other, or vice versa, or there is a common
cause of the two variables. Conversely, if two variables are in-
dependent, then they cannot (in general) be causes of one another or
effects of a common cause. The independence and dependence structure
found in data can thus be used to constrain candidate causal models
that would explain the observed data.

The simplest case in which a fully oriented causal structure can be
uniquely determined from observational data is when there are three
variables A, B and C, and A and C are probabilistically independent, but A
and B, and C and B are dependent. If there are no unmeasured confounders,
then this independence structure provides a signature that uniquely iden-
tifies A—B<—C as the causal graph connecting the variables. More generally,
it is well understood how to use the observed independence structure over
the variables to constrain the underlying causal structure. Even if the causal
structure cannot be uniquely identified, the set of equivalent causal struc-
tures can be identified (the equivalence class consists of all causal structures
consistent with the observed data). Our results below demonstrate the
power of this approach, using a new variant of a causal discovery algorithm
(Ramsey et al., 2016) that scales to large sets of resting-state fMRI data
(here, the Human Connectome Project dataset and the MyConnectome
Project dataset). Our variables (the nodes of the causal graph; A,B,C etc.)
will be the brain regions into which a whole brain is parcellated, and whose
causal relations are the question of interest.

It is worth contrasting the results of the causal inference algorithm with
purely correlation-based techniques commonly applied to resting-state fMRI
data. If the true causal structure has the form A—B<—C, then the Pearson
correlation matrix will have all non-zero entries except for the correlation of
A and C. The inverse correlation matrix will have no non-zero entries, since
all partial correlations conditional on all remaining variables are non-zero;
in particular A is not independent of C given B. However, if the true causal
structure is A—=B—C, then all Pearson-correlations will be non-zero, while
the partial correlation of A and C given B is zero. As the two simple
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examples above indicate, an adjacency structure based on either the Pearson
correlation matrix, or on the inverse correlation matrix (partial correlation),
is not a representation of the causal structure. Causal inference algorithms
disentangle exactly what inferences can be drawn about the presence and
absence of causal connections from the independence structure (see also
Fig. 7).

Another way of inferring causal models is through experimental inter-
vention. Whereas the approach above relies on conditional probabilities
that are merely observed, such as analysis of resting-state fMRI data, ex-
perimental intervention corresponds to the conditional probabilities pro-
duced through what Judea Pearl coined as the “do” operator (Pearl, 2009).
This is the type of data often sought in animal studies of emotion, for in-
stance through optogenetic manipulation of the activity of a node (brain
region) with full or partial experimental control. This concept also underlies
the essence of randomized controlled trials: by randomizing subject as-
signment to treatment group, one is experimentally intervening and (in the
large sample limit) breaking all confounding causes (Fisher, 1990). Once
again, we can think of wanting to infer A—B in a brain (with A and B as
distinct regions of interest) where there are many other possible causes at
work. This time we experimentally activate A to see if we observe a change
in B. To the extent that the activation fully controls A, this experimental
manipulation amounts to breaking all the causal effects that could act on A
(all the arrows going into A), in particular those that might act as con-
founders in an observational setting. As we will show in our Results below,
in humans this can now be accomplished through the rare opportunity of
electrically stimulating the amygdala while measuring whole-brain fMRI.
While the electrical stimulation will not fully control the pattern of acti-
vation, it can still help us to infer causal relationships with respect to the
amygdala: It can help confirm that the relations detected in the observa-
tional dataset (such as resting-state fMRI) are not spurious, and possibly
even help to orient causal arrows that could not be oriented from merely
observational data.

In sum, the particular causal discovery algorithm that we used takes the
observational (e.g., resting-state fMRI) data and tries to identify a sparse
graph structure that accounts for all of the dependencies (the standard
Pearson correlation matrix of the data). Our subsequent direct electrical
stimulation experiments provide a completely different, interventional, set
of data for comparison, validation, and possible further inference and re-
finement of the causal graph. The final result leverages at least three ap-
plications. First, it can be used to generate hypotheses, and interpret data,
from many fMRI studies: studies that use emotional stimuli to produce brain
activations, for example, could now be interpreted in terms of a causal
mechanism implemented among the brain regions that instantiates an
emotion state. Second, the results could be used to make neuroanatomical
predictions: in their strongest interpretation they imply actual anatomical
connectivity corresponding to the edges in the graph. And third, they make
predictions about the effects of interventions through deep brain stimula-
tion—predictions that could be used for strategically guided treatment of
mood disorders. All of these are future goals of the framework we present
here. The Methods below outline our overall approach, the Results provide
preliminary findings, and the Discussion notes the limitations and hurdles
still remaining to be solved (cf. Fig. 4).

4. Methods

Our approach is roughly hierarchical in nature (Fig. 4) and consists
of three main steps. These three steps are based on the analysis of ex-
isting resting-state data from large databases, comparison to resting-
state data from individual neurosurgical patients, and comparison with
the patient's graph using direct electrical stimulation-fMRI data from
that patient. Future extensions beyond the scope of the present paper
include (in red): formally integrating information from the large data-
sets as prior constraints for analysis of each patient's data; comparing,
and combining, results across multiple patients; and leveraging the
results into hypotheses that could be tested with additional experiments
and additional methods—hypotheses about anatomical connectivity,
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Fig. 4. Proposed framework for causal analysis of emotion networks. In black, analyses
presented in this manuscript; in red, future extensions outside the scope of the present
paper. Abbreviations: HCP: Human Connectome Project dataset. MCP: MyConnectome
Project dataset. rs-fMRI: resting-state fMRI. es-fMRI: concurrent electrical stimulation
with fMRI.

about individual differences, and about clinical intervention efficacy.

4.1. Step 1: Causal inference from observational resting-state fMRI data
with a large number of samples

We first searched for causal graphs using observational data alone,
taking advantage of large publicly available, high quality datasets.

4.1.1. Datasets

We used data from two public repositories, the 1200 subjects release
of the Human Connectome Project (HCP) (Van Essen et al., 2013) and
the MyConnectome Project (MCP) (Laumann, 2015; Poldrack, 2015).
Both of these feature resting-state fMRI data with a large number of
samples. They yield largely complementary information: the HCP pro-
vides data from almost 1200 subjects, which we can combine to de-
emphasize individual-subject idiosyncrasies and thus extract a network
structure with the highest level of generalizability; by contrast, the MCP
data comes from a single subject scanned almost 100 times over the
course of one year and allows us to derive a very reliable causal graph
at the single subject level, with inevitable idiosyncrasies compared to
the group-level graph derived from the HCP data.

Acquisition parameters and preprocessing of the resting-state fMRI
data in both projects are described in their respective original pub-
lications (HCP, (Glasser et al., 2013); MCP, (Poldrack, 2015)). Briefly,
in the HCP dataset, each subject underwent two sessions of resting-state
fMRI on separate days, each session with two separate 15 min acqui-
sitions generating 1200 volumes (customized Siemens Skyra 3 T MRI
scanner, TR = 720 ms, TE = 33 ms, flip angle= 52°, voxel size = 2 mm
isotropic, 72 slices, matrix = 104 X 90, FOV = 208 mm X 180 mm,
multiband acceleration factor = 8). The two runs acquired on the same
day differed in the phase encoding direction (left-right and right-left),
which leads to differential signal intensity especially in ventral
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temporal and frontal structures. We used only the right-left phase en-
coding dataset, since this optimized signal in the right medial hemi-
sphere, enabling the best comparisons to the electrical stimulation of
the right amygdala in the neurosurgical patient #384 we describe
further below. For the MCP dataset, a single subject underwent one
10 min resting-state run, generating 518 volumes in each of 89 “pro-
duction” sessions acquired on separate days (Siemens Skyra 3-Tesla
MRI scanner, TR = 1160 ms, TE = 30 ms, flip angle = 63°, voxel size
= 2.4mm X 2.4mm X 2.0 mm, 68 slices, inter-slice distance factor =
20%, axial-coronal tilt 30 degrees above AC/PC line, matrix = 96 X
96, FOV = 230 mm FOV, multiband acceleration factor = 4). The HCP
data was downloaded in its minimally preprocessed form, i.e. after
motion correction, By distortion correction, coregistration to T;-
weighted images and normalization to MNI space; while the MCP data
was downloaded in its fully processed form (in native space), including
minimal preprocessing and followed by resting-state specific denoising
as described in (Laumann, 2015): censoring of frames with framewise
displacement > 0.25 mm; regression of signals from whole brain, white
matter and ventricles and their derivatives; regression of 24 movement
parameters derived by Volterra expansion; and bandpass filtering
0.009 < f < 0.08 Hz. For consistency with MCP data, we replicated the
same denoising pipeline (minus frame censoring) in Python (v2.7) and
applied it to the minimally preprocessed data from the HCP.

4.1.2. Brain parcellation

The first step in a network analysis of the brain is the definition of its
nodes (Sporns, 2013). There are two main approaches to defining
network nodes in the brain: nodes may be a set of overlapping,
weighted masks, e.g. obtained using independent component analysis
(ICA) of BOLD fMRI data (Smith et al., 2013); or a set of discrete, non-
overlapping binary masks, also known as a hard parcellation. Hard
parcellations come in many flavors, in terms of what data they are
based on (anatomical data only, functional data only, or multi-modal),
and whether they are group-based or individually-derived. Parcellating
the brain is an area of intense investigation, and significant progress has
been made in recent years (Glasser et al., 2016; Gordon et al., 2014).
We eventually aim to utilize the most recent developments in surface-
based analysis and multi-modal surface matching (MSM) (Robinson
et al., 2014), which divides the brain into about 400 regions. (Indeed, a
future aim would be to use voxelwise data for the analyses we describe
below, and to use causal discovery results to aggregate these into larger
parcels based on their causal connectivity). However, applying these
methods to patient data with implanted electrodes is difficult because
MSM requires several types of data (such as high-resolution anatomical
scans for precise surface reconstruction, field maps for precise co-re-
gistration of functional and anatomical data, and companion task and
rest scans), which are not always available due to clinical constraints.
Here, in this proof-of-concept paper, we used a more common volu-
metric parcellation in MNI space that divides the brain into 110 regions,
based on the classical Harvard-Oxford anatomical atlas (http://www.
cma.mgh.harvard.edu/fsl_atlas.html). Specifically, we derived max-
imum probability labels from the probabilistic Harvard-Oxford cortical
and subcortical atlases distributed with FSL, using a 25% probability
threshold for label assignment. We omitted one parcel from the Har-
vard-Oxford atlas, the brainstem, since this treats the entire region as a
single functional object, a parcellation that we felt was too coarse for
our purposes. See Supplementary Table S1 for the complete list of
parcels we used.

4.1.3. Timeseries extraction and data selection

HCP data was already transformed to MNI space (the same space as
the Harvard-Oxford parcellation that we used) by the minimal pre-
processing pipeline (Glasser et al., 2013). We derived a gray matter
mask for each subject using information in ribbon.nii.gz and
wmparc.nii.gz (from the individual HCP MNINonLinear directories),
and restricted Harvard-Oxford parcels to gray matter voxels for each
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subject. For MCP data, MNI-space Harvard-Oxford labels were warped
to the individual space via the MNI152 Tlw template and the cor-
egistered average of all 15 MCP T1w anatomical scans (Freesurfer 5.3.0
recon-all pipeline), using a diffeomorphic symmetric normalization
(SyN) warp as implemented in ANTs 1.2.0 (antsRegistrationSyN.sh
script). Similarly, the warp from the MCP T1w average to a mean MCP
EPI template was estimated and applied to the Harvard-Oxford labels
using ANTs (the N-back EPIs were used to construct the mean EPI
template, in place of the rsBOLD EPIs, because the latter were global
mean-subtracted and therefore unusable for registration; this is possible
because all MCP EPIs are transformed to the same space in the down-
loaded data). The gray matter mask output from the Freesurfer pipeline
was used in combination with the individual-space Harvard-Oxford
atlas labels to restrict ROIs to gray matter voxels. Timeseries for all
Harvard-Oxford parcels were extracted using the 3dROIstats function
provided by AFNI 17.2.04 (Cox, 2012).
We generated three datasets from the HCP and MCP data:

Dataset #1: HCP sparsely sampled (HCP;). For this dataset we chose
samples sparsely from two resting-state fMRI runs with right-left
phase encoding (rfMRI_REST1_RL and rfMRI_REST2 RL) from each
of 880 unique subjects (with complete datasets and relative move-
ment root-mean-square less than 0.15 mm for both runs; see subject
list in Supplementary Table S2a), taking one volume every 35th TR
(i.e. every 25.2s). This resulted in 68 samples per subject, for a total
of 59,840 samples. We split this dataset into 11 completely non-
overlapping subsets (80 subjects each) for “horizontal” reliability
analysis, yielding 5440 samples per subset. This provides the most
general dataset with a large number of samples, pooling over a large
number of subjects for representativeness, and sampling sparsely to
eliminate autocorrelation and thus maximize statistical in-
dependence between samples. Representativeness across subjects
here trades off with the possibility of introducing additional de-
pendencies in the data due to the pooling of data from multiple
subjects. The next dataset therefore focuses on data from a single
individual.

Dataset #2: MCP sparsely sampled (MCP;). This dataset chose
samples sparsely from 80 sessions of the MCP (see session list in
Supplementary Table S2b), taking one volume every 22nd TR (i.e.
every 25.55s). This resulted in 23 samples per session, for a total of
1840 samples. We generated 20 non-overlapping datasets for relia-
bility analysis, by shifting the starting volume (note that these da-
tasets are not completely independent from one another due to
autocorrelation of the fMRI BOLD signal).

Dataset #3: MCP densely sampled (MCP,4). This dataset chose all
volumes from 80 sessions in the MCP yielding a total of 41,440
samples. We split this dataset into 8 non-overlapping subsets (10
sessions each) for horizontal reliability analysis, yielding 5180
samples per subset.

4.1.4. Causal discovery algorithm

We used a version of the Fast Greedy Equivalence Search (FGES)
algorithm for causal discovery (Ramsey et al., 2016), a variant of the
better known Greedy Equivalence Search (Chickering, 2002) that was
optimized to large numbers of variables. The algorithm takes as input
measurements over a set of variables that one can think of as nodes in
the causal graph, in this case the mean BOLD signal obtained for each
region of interest in a parcellated human brain (the 110 parcels pro-
vided by the Harvard-Oxford atlas). FGES produces as output causal
graphs that describe inferred direct causal connections between any
pair of brain regions (the adjacency matrix), and, where possible, the
orientations of these causal effects, i.e. whether brain region A causes
BOLD response in brain region B, or vice versa. For any specific output
causal graph, one can also estimate the strength of each causal con-
nection (the effect size of each edge) using a linear Gaussian model. We
next describe the algorithm in more detail.
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The algorithm is a greedy optimization algorithm that operates in
two phases, a forward phase in which edges are added to the graph, and
a backward phase in which edges are removed. Under the assumption
that the true causal model is causally sufficient (there are no un-
measured common causes), acyclic (there are no feedback cycles) and
that the data is independent and identically distributed and not subject
to sample selection bias, the FGES algorithm returns in the infinite
sample limit the Markov equivalence class of the true causal structure
with probability 1. That is, as sample size increases, the output of FGES
converges towards (a representation of) a set of causal structures that
are not distinguishable from the true causal structure on the basis of
their probabilistic independences. For example, the three causal graphs
A—B—C, A<~B—C and A<-B<-C together form a Markov equivalence
class under the given assumptions, since in all three structures A is
independent of C given B, but no other (conditional) independences
hold among the variables. Without experimental interventions or fur-
ther assumptions (e.g. concerning time order or the parametric form)
these three causal structures cannot be distinguished. In contrast, (as
noted earlier in this paper) the causal structure A—B<-C has a unique
independence structure — it only satisfies that A and C are marginally
independent, but no conditional independence — and therefore forms a
singleton Markov equivalence class.

The central idea underlying the FGES algorithm is the insight that
one can construct a score tracking the posterior probability of a causal
graph given a dataset such that the score (i) is decomposable into local
scores for each edge, and (ii) gives the same value for graphs that are
Markov equivalent. This insight provides the basis for a greedy search
method that starts with an empty graph over the set of variables and
then at each stage determines locally whether an edge addition im-
proves the global score over the current causal graph. The edge that
maximally increases the score is then added (in the forward phase of the
algorithm, or removed, in the backward phase). The Bayes Information
Criterion (BIC) is a score that decomposes in exactly this way. For a
graph G over a set of variables V and data set D over V, BIC is defined as
BIC(G|D) = k In(n) - 2 In(L), where L is the maximum likelihood es-
timate of the data given the graph, k denotes the number of free
parameters of the causal model and n is the number of samples.
Essentially, the likelihood is penalized by a model complexity para-
meter k In(n), since a complete graph (an edge between each pair of
nodes) will always fit the data perfectly. For directed acyclic graphs the
joint distribution P(V) over the variables V can be factorized into
PV)=]1 Xinv X;l pa(X;)), where pa(X;) are the parents of variable X; in
G. As a result, BIC is decomposable into a sum of local scores of each
variable given its parents: BIC(G|D) =}, xiny F (Xil pa(X)) where pa (X))
are the parents of variable X; in G and F is the local scoring function. If
each variable is a linear function of its parents plus independent
Gaussian noise, then each P(X;| pa(X;)) is a Gaussian and the local BIC
score becomes F(X;lpa(X;)) = nln (a;zl.) + k; In (n) where o;zl. is the es-
timated error variance of X;, n is the sample size and k; is the number of
regressors, including the intercept. Since an added (or removed) edge
changes the parent set, these local scores enable at each stage of the
algorithm the efficient determination of the edge that maximally in-
creases the global score given a current causal graph.

The fact that BIC also gives the same score to Markov equivalent
graphs, and that both an edge-adding (forward) and an edge-removal
(backward) phase are necessary for consistency of the FGES algorithm
is not obvious, but we refer the reader to the excellent paper describing
GES (Chickering, 2002) for details.

In our implementation we used the FGES algorithm published through
the Tetrad code package (http://www.phil.cmu.edu/tetrad/) version 6.1.0.
We did not force the faithfulness assumption and searched to the maximal
node degree using the implemented SEMBIC score. The implementation has
one free parameter s that functions as a sparsity parameter by multiplying
the complexity term k In(n) of the BIC score, higher values forcing sparser
structures. We considered values of s from 20 down to 1, in steps of 2 for the
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HCP and MCP datasets, and starting from 10 down to 1 in single steps, for
the smaller patient fMRI datasets.

Although the FGES algorithm does return orientation information
for the causal edges in the graph, when those orientations are shared
across all structures in the equivalence class, we focus in this paper
principally on the adjacency structure (the causal “skeleton”). There are
several reasons for this decision: (i) While (Ramsey et al., 2016) report
very high accuracy (precision and recall) for the recovery of adjacency
and orientation information in simulations using FGES, we show in our
simulations (see Supplementary material, “FGES Simulation”) that
such results obtain only for the setting in Ramsey et al. (2016) using
extremely sparse graphs (number of edges equal to the number of
variables). We found that precision and recall measures were lower for
both adjacencies and orientations, in simulations that matched the
somewhat denser graphs we find here (with ~10% of possible edges
present, i.e. ~500 rather than ~100 edges). See Supplementary Fig. S1
for the details of these simulation results. In particular the recall for
edge orientations dropped significantly relative to the set of orienta-
tions that could theoretically be determined when switching from the
extremely sparse graphs to the graph density we found here: many
fewer edges that could be oriented were oriented. (ii) When we ex-
plored small subsets of real data using a (less-scalable) SAT-based
causal discovery algorithm (Hyttinen et al., 2014) (see Supplementary
material, “SAT-based causal discovery algorithm”), we found that
while the adjacency information was largely shared between FGES and
the SAT-based algorithm when applied to the same dataset, the or-
ientation information varied widely. See Supplementary Fig. S2. (iii)
Finally, the overall aim of the research plan we are outlining here is to
use the electrical stimulation to provide a ground truth for orienting
some of the causal adjacencies we find. In future work we hope to
triangulate on the determination of causal orientation from a variety of
angles. For all these reasons, we omit analyses of edge orientation in the
results presented below.

4.1.5. Strategy for the discovery of reliable causal graphs

Setting a low sparsity parameter s in the FGES algorithm produces
graphs with a larger number of edges, as one would expect, and con-
sumes more computational time (a highly nonlinear effect). Conversely,
setting a high s eliminates many edges but produces a graph whose
edges are based on stronger evidence (vertical reliability). In essence,
this is a tradeoff between sensitivity and specificity. For the HCP; da-
taset, we settled on a sparsity parameter s = 8, for which ~80% of the
causal graph edges were reproducible across 11 independent HCPg
datasets (horizontal reliability, see below); this sparsity setting for the
HCP; dataset yielded 10% of the edges of the complete graph. We also
find that s = 8 provides a good trade-off in the accuracy measures in
our simulations on synthetic data (see Supplementary material). For the
MCP and patient datasets, we subsequently set sparsity settings to also
produce 10% of the edges of the respective complete graphs (which
corresponded to similar sparsity values for the MCP dataset, but a much
lower sparsity setting for the patient dataset); see Fig. 6.

We defined horizontal reliability (in the HCPs dataset) as follows:
We ran FGES on each of the 11 independent HCP; datasets for each
value of the sparsity parameter. For a given sparsity value we then
counted the number of times each adjacency appeared across the 11
resulting graphs, yielding for each adjacency a value from 0 to 11. We
then simulated 1000 sets of 11 random graphs with the same adjacency
density as the 11 real graphs of a fixed sparsity had (on average), so as
to estimate how often each co-occurrence score (from 0 to 11) would
occur by chance. Horizontal reliability of an adjacency A was finally
defined as the proportion of adjacencies that have a lower (or equal) co-
occurrence count if 11 graphs (of fixed density) were generated by
chance than the co-occurrence count observed for A. See
Supplementary Figure S3 for plots of the null-distribution for different
graph densities, and for the co-occurrence count that corresponds to the
95% reliability cut-off that we use in the subsequent analysis. This
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definition allows us to compare graphs of different sparsities more
fairly, since denser graphs will necessarily present more co-occurrences
by chance than sparser graphs, which is adjusted for by our estimate of
the empirical chance distribution. Of course there are many ways one
could define horizontal reliability measures and our measure breaks
down for very dense graphs. Moreover, this measure does not capture
the reliability of absences of adjacencies. Nevertheless, we found it to
be a useful first pass to make adjacency reliability comparable across
different graph densities for relatively sparse graphs.

4.1.6. Graphs with weighted edges and reconstruction of the Pearson
correlation matrix

In addition to obtaining binarized adjacency matrices—graphs that ei-
ther had an edge or no edge between nodes — we derived graphs that had
edges with parametric weights—strong or weak causal connections corre-
sponding to varying effect sizes. From such graphs with edge coefficients
one can reconstruct the Pearson correlation matrix of the original data. The
FGES algorithm returns the Markov equivalence class of causal structures,
i.e. structures that all share the same (conditional) independences and de-
pendences. Following the standard implementation in the Tetrad code
package, we extracted one directed acyclic graph (DAG) from this equiva-
lence class and then fit a maximum likelihood linear Gaussian structural
equation model to the DAG using the dataset that was fed to FGES in the
first place. That is, we fit a model of the form v = B v+ e to the data,
where v is a vector of variables representing the 110 parcels, B is a lower
triangular matrix (with a zero diagonal; cf. Fig. 7), whose non-zero entries
correspond to the edges in the DAG (note that all DAGs in the equivalence
class share the same adjacencies), and e is a vector of independent Gaussian
errors, one for each node, with e~N (0,S,), where S, is a diagonal covar-
iance matrix. Essentially, the model is fit by iteratively regressing each node
on the set of its parents as defined by the DAG extracted from the
equivalence class.

We used the fully parameterized linear  Gaussian
structural equation model (defined by B and S,) to reconstruct the
data covariance matrix Cy, which is given by
C, = E(w")=(I — B)"'E(ee')I — B)™" = (I — B)"!S,(I — B)™ where I is
the identity matrix. After standardization C, can be compared to the ob-
served Pearson Correlation matrix using the coefficient of determination R?
to indicate the amount of variance explained (R? is shown at the top of the
matrices in Fig. 7).

4.1.7. Comparisons and validations
We began by making comparisons that quantify the reliability and
generalizability of the methods.

(a) Reliability of group-level whole-brain causal discovery graphs across
groups of subjects in the HCP; data. We performed causal discovery
separately for the 11 subsets of the HCP; dataset (each derived by
sparsely sampling a new group of 80 HCP subjects) and compared
their graphs for different sparsity settings, as described above
(Fig. 6).

(b) Comparison of the rs-fMRI Pearson correlation matrix to the causal
graph. The whole-brain causal graphs we produced with our criteria
are relatively sparse (10% complete), and the question arises
whether they indeed capture much of the structure in the Pearson
correlation matrix. To address this point, we reconstructed the
Pearson correlation matrix from a causal graph with weighted
edges. These comparisons are shown in Fig. 7.

(c) HCPs causal graph vs. MCP; causal graph. We wanted to see whether the
graph derived from a single subject is similar to the graph derived across
many subjects. We did this by comparing one sparsely sampled HCP
dataset (subset #1), which comes from many (80) subjects, to an equally
sparsely sampled MCP dataset (subset #1), which comes from a single
subject with many (80) sessions. We kept only the horizontally reliable
edges (r=0.95) for this comparison. If the results were similar, this
would confirm that the MCP dataset is representative (and so can be
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reasonably compared to the patient's dataset in step 2 below). This
comparison is also shown in Fig. 7.

(d) MCPs causal graph vs. MCP, causal graph. We also compared results
in the sparsely sampled MCP dataset to the densely sampled MCP
dataset (dense sampling being the only option with the patient's
dataset for whom much less data is available, see steps 2 & 3). This
comparison addresses the question of whether autocorrelation in
the data might be a problem for causal discovery, which assumes
independence between samples. This comparison is also shown in
Fig. 7.

4.2. Step 2: Causal inference from observational resting-state fMRI data in
single neurosurgical patients

In this step we conducted the same analyses as in Step 1 in a new
dataset: that obtained from resting-state fMRI in neurosurgical patients
who required chronic invasive intracranial monitoring as part of their
treatment for medically intractable epilepsy. This step was carried out
in each patient who was scheduled to undergo es-fMRI (see Step 3),
before electrode implantation. The motivation for this Step 2 is twofold.
First, given that the patients who participate in the es-fMRI experiment
are all epilepsy patients with longstanding seizures, their brain con-
nectivity may be atypical. The rs-fMRI graph obtained from the patients
can thus be used either to exclude those patients who show abnormal
connectivity (or have otherwise unusual fMRI data), or as the basis for
refining the graphs from Step 1 (which are all from healthy individuals
without epilepsy) to better match the patients’ brain architecture.
Second, the rs-fMRI data provide an independent, baseline dataset in
the patients to which the es-fMRI data can be compared. An additional
benefit is that the rs-fMRI data are obtained prior to electrode im-
plantation, thus yielding signal in all parcels with a whole-brain field-
of-view; by contrast, in the es-fMRI data there is typically substantial
signal dropout in parcels where there are metallic contacts from depth
electrodes or electrocorticography grids (including at the site of the
electrical stimulation, of course).

4.2.1. Patients

We tested four neurosurgical patients who each had bilateral elec-
trodes implanted in the amygdala. An electrocorticography (ECoG)
monitoring plan was generated by the University of Iowa comprehen-
sive epilepsy program after considering each patient's clinical require-
ments. All experimental procedures were approved by the University of
Iowa Institutional Review Board, who had available our gel phantom
safety experiments for their evaluation prior to any human experiments
(Oya et al., 2017). Written informed consent was obtained from all
subjects. Patient #384 was a fully right-handed 37-year-old male; #307
a fully right-handed 29-year-old male; #303 a fully right-handed 34-
year-old female; and #294 a fully right-handed 34-year-old male (see
Supplementary Table S3). We present analysis of rs-fMRI data only from
patient #384, who had the most es-fMRI runs (see below) and for whom
we performed causal discovery in the es-fMRI data.

4.2.2. Data acquisition

Resting-state fMRI runs for patient #384 were acquired on a 3 T
MRI scanner (Discovery 750w, GE Healthcare, Chicago, IL) with a 32
channel receive-only head coil. Each resting-state run consisted of 130
T2*-weighted EPI volumes (eyes open, central cross-hair fixated) ac-
quired with the following parameters: TR = 2260 ms, TE = 30 ms, flip
angle = 80 degrees, voxel size = 3.4mm X 3.4mm X 4.0mm, 30
slices, matrix = 64 X 64, FOV = 220 mm. We obtained 5 such runs for
#384. A field map (dual-echo GRE, TR = 500ms, flip angle = 60
degrees, voxel size = 4.4mm X 4.4mm X 4.0 mm), high resolution
T1-weighted (IR-FSPGR, TI = 450 ms, flip angle = 12 degrees, voxel
size = 1.0mm X 1.0mm X 0.8 mm) and T2-weighted scans (CUBE
TSE TR = 3200 ms, TE = maximum, echo train length = 140, voxel
size = 1.0 mm isotropic) were acquired in the same session.
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4.2.3. Data preprocessing and denoising

All data were minimally preprocessed using the HCP fmriVolume
pipeline (v3.5.0). In summary, after rigid-body motion correction, B,
distortion correction was performed using the field map, and the mean
EPI image was registered to the T1lw image using boundary-based re-
gistration. All steps, including a final MNI space transformation, were
concatenated and applied to the original fMRI time series in a single 3D
spline interpolation step. Finally, this MNI-space time series was
masked and intensity-normalized to a 4D global mean of 10000.
Following this minimal preprocessing, we further applied the same
denoising procedure described in Step 1 above (regression of nuisance
signals and motion, bandpass filtering).

4.2.4. Causal discovery

The same analyses as in Step 1 were conducted. The major differ-
ence with Step 1 is, of course, the amount of observational data avail-
able for a single neurosurgical patient. While the HCP dataset had a
large number of datapoints collected over a large number of subjects,
and the MCP had a large number of datapoints collected over the course
of over one year for a single subject, in the clinical setting we typically
only obtained three to five 5 min rs-fMRI runs with 130 volumes each,
i.e. between 400 and 800 observations. The autocorrelation of the fMRI
signal, and other factors such as high motion, further reduce the ef-
fective number of independent observations available for causal dis-
covery. Note that we have to determine the presence or absence of 5995
(110 choose 2) adjacencies, and the edge coefficients for those that are
present, and another 110 parameters for the error variances — the
problem is thus underconstrained with this dataset and yields less re-
liable estimates (hence our proposed use of graphs derived from more
data as priors, cf. Fig. 4).

4.2.5. Comparisons and validations
Once again, we carried out a set of comparisons similar to those
listed above under Step 1, but this time using the patient's rs-fMRI
dataset. We also wanted to establish that the patient has largely normal
resting-state connectivity, and thus made the following comparison:
Comparison (e): HCP and MCP causal graphs vs. patient causal
graph. This comparison is shown in Fig. 7.

4.3. Step 3: Causal inference from interventional fMRI data: es-fMRI in the
amygdala

While Steps 1 and 2 relied exclusively on observational data, in Step
3 we intervene on one node of the causal network, the amygdala, using
the es-fMRI technique that we recently developed. All further technical
details are described in (Oya et al., 2017), and we only summarize them
briefly here.

4.3.1. Patients

The same four neurosurgical patients described in Step 2. We con-
ducted a standard whole-brain voxelwise GLM analysis of the data on
all four patients. We only carried out a (parcellated) causal graph dis-
covery in the patient who had the most es-fMRI runs (patient #384).

4.3.2. Safety of es-fMRI

The safety of concurrent electrical stimulation and fMRI was pre-
viously established (Oya et al., 2017) through measures in a gel
phantom, followed by carrying out the procedure in several patients.
This demonstrated that induced currents, mechanical deflections of
electrodes, and electrode or tissue heating were well controlled and all
within acceptable safety levels. The electrical stimulation-fMRI ex-
periments were performed after the final surgical treatment plan was
agreed upon between the clinical team and the patient, and it was
justified to move the patient to the MRI scanner (within 16 h prior to
the electrode removal surgery).
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4.3.3. Intracranial electrodes and localization

The four patients were implanted with a combination of subdural
surface strip and grid electrodes and penetrating depth electrodes; we
stimulated only through the macro contacts on the depth electrodes
located within the amygdala. Localization of the electrodes was done as
follows. We routinely obtain two baseline (pre-implantation) structural
MRI volumes, two post-electrode implantation structural MRI volumes
right after implantation, another two structural MRI volumes at the
time of the es-fMRI session, and a volumetric thin-sliced CT scan (1 mm
slice thickness). Electrode contacts are identified on the post-im-
plantation MRI/CT volumes and transferred onto the pre-implantation
baseline MRI volumes. Great attention is paid to possible post-surgical
brain shift, which is corrected with a 3D thin-plate spline warping
procedure (Oya et al., 2009). For the delineation of the sub-nuclei of the
amygdala, we utilized a non-linear warping applied to an atlas of the
human brain (Mai et al., 1997) to draw borders of the sub-nuclei of the
amygdala on the subject's brain.

4.3.4. Electrical stimulation

Bipolar electrical stimulation was delivered through the intracranial
electrodes using a battery-driven isolated constant current stimulator
(IZ-2H stimulator, Tucker-Davis technology's, Alachua, FL, USA, and
Model 2200 isolator, A-M systems, WA, U.S.A.). We used biphasic
charge-balanced constant current stimulus waveforms of +9/—3 or
+12/—4mA, delivered at 100 Hz 5-9 pulses; see Fig. 5, and Table S3).
Mean in-situ electrode impedance measured at the time of the experi-
ments was 4.08 (sd = 1.65) kQ for 100 Hz stimulation.
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Fig. 5. Electrical stimulation with concurrent fMRI. Reproduced from (Oya et al., 2017).
The figure schematizes the es-fMRI protocol used. Each gray block is one whole-brain
fMRI volume, red is the electrical stimulation shown at increasing magnification from top
to bottom. Electrical stimuli were delivered to the subjects between EPI volume acqui-
sition, during a 100 ms blank period, ensuring no temporal overlap with RF transmission
nor with gradient switching. Modified charge-balanced constant-current bi-phasic pulses
were used.
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4.3.5. Experimental design and data acquisition

We used a simple block design with 30s (stimulation-) ON blocks al-
ternating with 33 s (stimulation-) OFF blocks. For ON blocks, electrical sti-
mulation was applied during a 100 ms gap between consecutive EPI vo-
lumes, when all gradients were effectively switched off; this served to
minimize stimulation-induced artifacts in the fMRI data and reduce the
possibility of interactions between the external electrical stimulations and
RF or gradient switching-induced potentials in the electrodes. There were 10
ON blocks per run, for a total run duration of approximately 11 min. All
scans were performed in a 3T MRI scanner using the quadrature single
channel T/R head coil (patient #294: Siemens Trio; other patients: Siemens
Skyra; TR = 2900 ms, TR delay = 100 ms, TE = 30 ms, flip angle = 90°,
voxel size = 3.2mm X 3.2mm X 3.0 mm, 44 slices, matrix = 68 X 68,
FOV = 220 mm). During the scanning session, we carried out between one
and four es-fMRI runs (#384: 4 runs; all other patients, 1 run). A Tlw
structural image was also acquired in the same experimental session (MP-
RAGE, TR = 2530 ms, TE = 3.52ms, TI = 100 ms, flip angle = 10°, 1 mm
isotropic resolution).

4.3.6. Whole-brain, voxelwise GLM analysis

We ran a standard whole-brain voxelwise GLM analysis, contrasting
blocks ON and blocks OFF. Preprocessing was as described in our previous
work (Oya et al., 2017). Briefly, the first two EPI volumes were discarded;
slice-timing differences were compensated; motion correction was per-
formed; retrospective denoising was applied using FIACH (Tierney et al.,
2016); principal component noise regressors (n = 6) were calculated and
used for regressing out the effect of noise; the patient's T1w structural vo-
lume was co-registered to that patient's mean EPI volume; spatial smoothing
with a Gaussian kernel of FWHM (full-width at half-maximum) = 8 mm
was applied; EPI time series were detrended by least squares fit of Legendre
polynomials of order 5; frame censoring was applied for TRs with framewise
displacement > 0.5 mm (Siegel et al., 2014). The hemodynamic response
was modeled using a boxcar function of duration 50-90 ms (depending on
the actual duration of the stimulus) convolved with a single parameter
gamma function (peak at 55, the amplitude of the basis function was nor-
malized to peak values of 1). These analyses were performed in subject
space, with subsequent warping of the results to MNI space. Statistical
parametric maps were thresholded at p < 0.001(uncorrected); only clusters
spanning more than 20 voxels were reported. This analysis was used in 4
patients to generate standard whole-brain, voxelwise analyses of activations
evoked by amygdala stimulation (Fig. 10 below). The activation produced
by the electrical stimulation showed good temporal stability across different
runs within the same subject (see Supplementary Figure S4).

4.3.7. Parcellated analyses: causal discovery, and simple ON-OFF contrast

All es-fMRI data from patient #384 was minimally preprocessed and
denoised as described in Step 1, for parcellated analyses (to match the
preprocessing and denoising of the MCP dataset). BOLD signal was aver-
aged within gray matter-masked Harvard-Oxford parcels to create parcel
timeseries, and concatenated across runs. We used all collected volumes
from all es-fMRI runs as samples for causal discovery analysis (cf. Step 2).
We also performed a simple t-test between samples ON and samples OFF in
the parcellated concatenated data, accounting for a 5 s hemodynamic delay.
We corrected the resulting p-values for multiple comparisons across 110
parcels using the Benjamini-Hochberg false discovery rate (FDR-corrected),
and used Cohen's d as a measure of effect size (shown in Fig. 9).

4.3.8. Comparisons and validations

As for the comparisons we made in the preceding Step 1 and Step 2,
we wanted to obtain convergent evidence, and we wanted to use the es-
fMRI data to augment the causal graphs we had obtained from the prior
steps. We thus compared Pearson correlation matrices as well as causal
graphs at the whole-brain level to those derived from the other datasets,
and we specifically examined the edges that were connected with the
right amygdala across datasets. We carried out the following compar-
isons:
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Comparison (f): All resting-state causal graphs (HCP, MCP, patient) corresponding to increased agreement (reliability) with higher sparsity

compared with the es-fMRI causal graph. This comparison is shown settings (Fig. 6b). Based on these initial results, we chose to use a sparsity
in Fig. 7. setting of 8 (green curve in Fig. 6¢, green marker on Fig. 6b; see color
Comparison (g): The subgraphs comprising edges connected to the legend inset in Fig. 6¢) for the HCP dataset, which yielded 10% of the edges
right amygdala, constituting direct causal connections with other of the complete graph (a graph with an edge between every possible pair of
brain structures (compared across all the datasets). This is shown in nodes) (dashed line in Fig. 6a). This 10% complete graph nonetheless was
Fig. 8. These subgraphs to the amygdala do not use weighted edges able to reproduce the original Pearson correlation matrix of the dataset very
and only depict whether there is an edge there or not (binary). well, accounting for 91.6% of the variance (Fig. 7a). We then set the

Comparison (h): GLM analyses of the es-fMRI compared to the sparsity parameter in the other datasets (MCP;, MCPy, and patient; see color
causal subgraphs of edges connected to the amygdala. The GLM legend inset in Fig. 6a) to a value that produced graphs with approximately

analyses are shown in Fig. 9 (plotted as Cohen's d). this same total number of edges (10% of the complete graph, Fig. 6a). Fig. 6
thus justifies our choice of the sparsity parameters used for the causal
5. Results graphs derived from our different datasets, on which subsequent compar-

isons were based.
5.1. Parameter setting for causal discovery and reproducibility across

datasets 5.2. Comparing causal graphs with Pearson correlation matrices
We first determined the reproducibility of our causal discovery analysis Before comparing causal graphs, we first compared the standard
by deriving causal graphs from high-quality, large-sample size, statistically Pearson correlation (functional connectivity) matrices derived from our
independent datasets. We began by using the HCPg dataset, which max- datasets: These comparisons are shown in Fig. 7, as the top triangle in each
imizes sample size, cross-subject generalizability, and statistical in- of the plots. As can be seen visually in the figure's top panel (Fig. 7a,b and
dependence of the datasets. Comparing across 11 independent datasets from c), Pearson correlation matrices (top triangle in each plot) from our 3 large-
the HCP,, we obtained graphs at 10 different sparsity settings (Fig. 6). As sample resting-state datasets were very similar — we quantified this simi-
expected, increasing the sparsity parameter resulted in graphs with fewer larity using Pearson correlation as shown in the inset table (Fig. 7f). For the
numbers of edges (moving from left to right on the x-axis of Figs. 6a and d). patient (bottom row, top triangle in each plot), the data were considerably
As well, low sparsity resulted in graphs that were less reproducible across noisier, as expected given the much smaller number of samples, higher
datasets (larger error bars at low numbers on the x-axis, Figs. 6a and d), motion, and clinical setting. Interestingly, the patient's rs-fMRI Pearson
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Fig. 6. Causal graph sparsity and reliability. These panels justify how we chose the particular sparsity settings for all subsequent causal discovery analyses. a: Number of edges produced
(as proportion of the complete graph) as a function of different sparsity parameters across our five datasets. As an example, the densest graph in the HCP, dataset is obtained with the
lowest sparsity value we tested (a sparsity of 2) and produces graphs that are about 25% complete. For our analyses in this paper, we chose a criterion of producing about 10% of the
complete graph (dashed line) across all datasets as a reasonable value that permitted comparisons in all subsequent analyses. b: Fraction of edges in the HCP; graph with horizontal
reliability =0.95 (see Section 4 for a description of our horizontal reliability measure). As sparsity increases (blue dots towards the right) so does the fraction of reliable edges. c¢: The
number of edges in the HCP graph (as a proportion of the maximal number of edges that would be present in the complete graph) seen above a given horizontal reliability. Sparsity is
encoded as line color. The leftmost point of each curve corresponds to observing a given edge only in 1 of the 11 datasets. Observing an edge in a sparse graph (large sparsity parameter s)
is more surprising than observing an edge in a dense graph (small s), which our statistic for horizontal reliability captures (see Section 4, and Supplementary Fig. S3): hence the leftmost
point of each curve shifts to the right for a higher sparsity parameter s. The second leftmost point corresponds to observing one repeat, i.e. to an edge repeating across 2 out of 11 datasets.
Very high sparsity parameters (a sparsity of 20, blue curve) produce very reliable graphs. d: Same as a, except showing number of edges to the right amygdala (parcel #109), which is the
node that we electrically stimulated in the neurosurgical patient. The dashed line corresponds to the number of edges to #109 obtained on average in the HCP, datasets with s=8 (as in a).
Equating the number of edges to #109 is another way to set the sparsity parameters across datasets, which we also explored (see Fig. 8). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Connectivity between brain regions. a-e: Pearson correlation matrices (top triangle) and causal graphs (bottom triangle; direct connections as discovered by FGES, with weights
estimated as described in the Methods section) for all five datasets. HCPy: subset #1 of the sparsely sampled HCP dataset. MCPy: subset #1 of the sparsely sampled MCP dataset. MCPg:
subset #1 of the densely sampled MCP dataset. 384rs: patient #384 rs-fMRI dataset. 384es: patient #384 electrical stimulation dataset. The R? value at the top of each plot indicates the
proportion of variance accounted for by the graph when used to reconstruct the Pearson correlation matrix (see Section 4 for details). f: similarities between these 5 plots (Pearson's r
between the Fisher z-transformed correlation matrices, top triangle; proportion of edges shared in the causal graphs, bottom triangle). To calculate the proportion of shared edges in the
causal graphs, we first binarized the weighted causal graphs, yielding simple adjacency matrices; for HCP and MCP datasets, we kept only reliable edges with r=0.95 to compute overlap.
We then computed the overlap across datasets using the Sorensen-Dice coefficient (3 (adjA # 0 N adjB # 0)/ Y, (adjA # 0 U adjB # 0)).

correlation matrix was more similar to the group-level HCP; dataset (r =
0.46) than to the subject-level MCP; data (r = 0.24). This was also the case
for the patient's es-fMRI whole-brain Pearson correlation matrix (r = 0.45
versus r = 0.26, see further below). We suspect that this may result from
the HCP; dataset smoothing out individual differences, while the MCPg
dataset will retain many idiosyncratic features of the one subject in that
dataset.

We next turned to the causal graphs derived by FGES for each of our
datasets (bottom triangle matrices in the plots). Comparing causal
graphs (bottom triangles) to Pearson correlation matrices (top trian-
gles), visual inspection of Fig. 7 shows that the causal graph reproduces
much of the structure of the correlation matrix, but is considerably
sparser. Most notable at the whole-brain level are the homotopic con-
nections, between corresponding parcels in the left and in the right
hemisphere. These can be seen as the diagonal line visible in both the
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Pearson correlation matrix (upper triangle in each plot) and in the
causal graph (lower triangle in each plot). The patient's rs-fMRI is
noisier, but again one sees this basic structure and can make out the
homotopic connections. Using the Dice coefficient to quantify overlap
between adjacency matrices, we found that 30% of the edges in the
patient's causal graph were also reproduced in the HCP; dataset causal
graph (Fig. 7f).

5.3. Connectivity of the amygdala

In order to provide comparisons with the electrical stimulation re-
sults, we then focused on the direct connections to the right amygdala
(parcel #109) discovered by the FGES algorithm. To visualize edges
connected to the right amygdala, we mapped these roughly onto
a top view of the brain in Fig. 8. Across datasets (HCPs, MCPs/MCPd,
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Fig. 8. Causal discovery of direct connectivity with the right amygdala across all datasets. The two panels of this composite figure represent the causal graph solutions obtained over our 5
datasets (5 colors, see legend at top left), showing direct edges to the right amygdala (parcel #109, circle in yellow; the same location electrically stimulated in patient #384). Left: results
obtained when choosing the sparsity parameter so as to generate approximately 10% of the full graph (cf. Fig. 6a). Right: result obtained when setting the sparsity parameter so as to
generate approximately 7 direct edges to the amygdala (cf. Fig. 6d). Sparsity settings are indicated at the top of the columns, which identify the parcels that had direct edges to the
amygdala in each of the five datasets (colored entries next to the numerical and anatomical labels for all the parcels). For HCP and MCP datasets, we kept only horizontally reliable edges
(r = 0.95). For the 384es dataset, we treated all brain volumes equivalently; unlike a standard contrast analysis, the causal discovery algorithm was not informed about ON and OFF
states. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and patient #384 rs-fMRI and es-fMRI) the right amygdala was re-
liably found to be directly connected to the ipsilateral temporal pole
and hippocampus, and the contralateral amygdala, direct connections
that are supported by tracer studies in monkeys (Freese and Amaral,
2009). However, there were also numerous differences in the results
from the different datasets, which will require future exploration to
fully understand. One future approach we intend to incorporate is to
use the causal graph inferred from one dataset (e.g., the HCP, as it may
be the most reliable due to the largest number of samples provided) as
a prior to help constrain the graphs obtained from other datasets (see
Fig. 4).

Finally, we examined the results of our es-fMRI experiment (Fig. 5).
Using the same parcellated data used for causal discovery (concatenated
data of 4 sessions of es-fMRI in patient #384), we simply contrasted ON and
OFF volumes, as typically done in a standard GLM analysis, to produce a set
of node activations and deactivations. We compare these to the direct
neighbors of the right amygdala found by the FGES algorithm in Fig. 9. The
results show a striking difference between the ON-OFF contrast and FGES
analysis: there is no overlap at all in the sets of parcels judged by the ON-OFF
contrast to be activated by the stimulation, and those judged to be causal
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neighbors of the stimulated amygdala by FGES. This surprising finding raises
methodological questions to which we do not know the full answers yet; we
discuss it further in the Section 6.

To provide a more general comparison, we also show in Fig. 10 a
voxelwise, whole-brain GLM analysis contrasting electrical stimulation-
ON versus electrical stimulation-OFF blocks in all four neurosurgical
subjects in whom we stimulated particular nuclei of the amygdala (for
equivalency across patients who have differing numbers of sessions,
only the first es-fMRI session was used in each patient for this Fig. 10).
Blockwise activation timecourses extracted from significantly activated
ROIs showed absolute BOLD signal changes around 1% during the
electrical stimulation and good reliability across runs (Supplementary
Figure S4, and Oya et al., 2017).

Across our four patients, the results were more heterogeneous, as
Fig. 10 shows. Much of this heterogeneity likely arises from differences
in the specific amygdala nuclei that were stimulated. We therefore
mapped the likely location of our bipolar stimulation with respect to
structural MRIs of each patient's amygdala, referenced to the Mai his-
tological atlas (Mai et al., 1997); see Methods for details. These are
shown in the insets in Fig. 10.



J. Dubois, et al.

Neuropsychologia 145 (2020) 106571

<
,0<( N
ot

&1
P

3 L_SuperiorFrontalGyrus

6 L_InferiorFrontalGyrusParsPpercularis
12 L_MiddleTemporalGyrusPosterior

13 L_MiddleTemporalGyrusTemporoOccipital
14 L_InferiorTemporalGyrusAnterior

16 L_InferiorTemporalGyrusTemporoOccipital
18 L_SuperiorParietalLobule

20 L_SupramarginalGyrusPosterior

21 L_AngularGyrus

22 L_LateralOccipitalCortexSuperior

23 L_LateralOccipitalCortexInferior

27 L_SubcallosalCortex

29 L_CingulateGyrusAnterior

31 L_PrecuneusCortex
L_TemporalOccipitalFusiformCortex
L_OccipitalFusiformGyrus
L_HeschlsGyrus

R_InsularCortex

R_TemporalPole
R_SuperiorTemporalGyrusAnterior
R_SuperiorTemporalGyrusPosterior
R_MiddleTemporalGyrusTemporoOccipital
R_InferiorTemporalGyrusTemporoOccipital
R_PostcentralGyrus
R_SuperiorParietalLobule
R_LateralOccipitalCortexSuperior
R_LateralOccipitalCortexInferior
R_SubcallosalCortex
R_ParacingulateGyrus
R_CingulateGyrusAnterior
R_ParahippocampalGyrusAnterior
R_TemporalFusiformCortexPosterior
R_OccipitalFusiformGyrus

90 R_CentralOpercularCortex

100 LeftPallidum

108 RightHippocampus

109 RightAmygdala

Cohen’s D
o

-0.1
-0.2
-0.3
-0.4

Fig. 9. Comparison of contrast-based and causal discovery-based results for the es-fMRI data in patient #384. This view down onto a brain depicts the statistically thresholded activation
produced by right amygdala stimulation (parcel #109, circled in yellow). Color of each significantly modulated node encodes the effect size of the ON-OFF contrast produced in that
parcel (Cohen's d). Nodes which are found to be directly connected to the right amygdala using the FGES algorithm are circled in pink. Unlike for the ON-OFF contrast analysis, the
location and timing of the experimental manipulation (electrical stimulation of the right amygdala) did not form an explicit part of the input to the FGES algorithm as we ran it for this
analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6. Discussion
6.1. Summary of findings

We outlined a workflow for discovering causal connections in the
human brain, and provided initial validation, measures of reliability,
and comparisons across datasets. We then demonstrated the application
of this workflow to the connectivity of the amygdala, as a case study for
the investigation of causal networks that subserve emotion processing.
However, our approach is quite general and we intend it to be applic-
able to the investigation of any brain structure, not just the amygdala
(and indeed not only to BOLD-fMRI data, or data from humans).

Our approach features two quite novel components, and suggests
several further ones that were beyond the scope of the present study (cf.
Fig. 4). One novel component that can readily be applied by other re-
searchers to sufficiently large resting-state fMRI datasets uses a causal
discovery algorithm. We used a version of the fast greedy equivalence
search (FGES) algorithm on rs-fMRI data parcellated into the 110 nodes
obtained with the Harvard-Oxford parcellation scheme. We demon-
strated excellent reliability across independent samples in two large
datasets, the Human Connectome Project (HCP) dataset, and the My-
Connectome dataset (MCP), and we obtained faithful reconstruction of
standard Pearson correlation matrices from our sparse causal graphs
(Fig. 7).

The second component, one of the most novel aspects of our study,
is the application of a new technique in human neurosurgical patients:
concurrent electrical stimulation and fMRI (es-fMRI). We focused on
emotion networks by investigating connectivity of the amygdala, the
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target of electrical stimulation. Several broad conclusions could be
drawn. First, in each patient individually, there was strong consistency
in the pattern of evoked BOLD activation due to amygdala stimulation:
there was good session-to-session reproducibility, both in the pattern of
evoked BOLD activations, and in the magnitude of the response (see
Supplementary Figure S4, and Oya et al., 2017). Second, there were
specific differences in the statistical maps resulting from electrical sti-
mulation across each of the four patients, as shown in Fig. 10. This
likely reflects the fact that different amygdala nuclei were stimulated in
each patient (see insets in Fig. 10), and indeed on different sides of the
brain (patient #307 had left amygdala stimulation, the other three had
right amygdala stimulation). However, it is also possible that there are
individual differences in amygdala connectivity in the patients, a pos-
sibility especially pertinent (and clinically relevant) given that all pa-
tients had long-standing epilepsy. Studies in additional patients will be
required to further understand these differences and to determine to
what extent the activations seen here can be reproduced reliably across
different patients in whom exactly the same amygdala nuclei are sti-
mulated. The accrual of larger sample sizes will be required to address
this issue.

The causal discovery analyses, both from resting-state data across
three different datasets (HCP, MCP, and the patient #384's pre-opera-
tive rs-fMRI), and from the rare electrical stimulation with concurrent
fMRI in the four epilepsy patients, all provided novel findings about the
connectivity of the amygdala. Many direct connections that would be
predicted based on the known connectivity of the primate amygdala
(Freese and Amaral, 2009) were also found here. For instance, there
were prominent connections with temporal cortex, prefrontal cortex,
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Fig. 10. Results of concurrent electrical stimulation
of amygdala nuclei and fMRI in four neurosurgical
patients. Shown are GLM results from one session of

Amygdala

nuclei es-fMRI in the four patients, as standard voxelwise,
La whole-brain results (mapped onto the surface). For
BM patient #384 (top), who had four runs, we only used
the first run to generate this figure. Stimulated con-

BL he fi his fi Stimulated
H tacts are shown as small red dots on the structural
P MRIs and are also shown in the leftmost panels with

— Ce

respect to amygdala nuclei based on a non-linear
warping to a histological atlas of the human brain
(Mai et al., 1997). La = lateral nucleus, BM = ba-
somedial nucleus, BL = basolateral nucleus, Ce =
central nucleus, Hp = hippocampus. Cluster-forming
threshold p < 0.001 (uncorrected) with a minimum
cluster size of 20 voxels. See Supplementary Table 54
for the list of clusters for each patient.

and cingulate cortex. Some of the most reliable direct connections
found across datasets were with the temporal pole, hippocampus, and
contralateral amygdala. It is also notable that the es-fMRI results tended
to produce strong activations in temporal and prefrontal cortices, but
strong de-activations in posterior cingulate/retrosplenial cortices
(Fig. 10).

Perhaps most important at a global level is the finding that most of
the correlations seen in standard analyses of functional connectivity
(the Pearson correlation matrices shown in the top triangle plots of
Fig. 7) are due to indirect effects rather than direct causal effects of one
brain region on another (cf. the much sparser causal adjacency matrix
shown in the lower triangle plots in Fig. 7). This is expected, since it is
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well known that not every brain region is connected to every other
brain region, but that connectivity is much sparser than that.

Much more surprising was the finding that, in the es-fMRI dataset,
most or all of the activations observed with standard GLM methods
appear to arise from indirect causal effects, since we did not find them
as direct edges in our causal discovery results (Figs. 9 and 10). Further
analyses that visualize edges that are 2- or even 3-removed from the
amygdala could help to understand how the activations that we found
due to electrical stimulation (Fig. 10) arise at a network-level. It is
worth noting that cortical projections from the amygdala are generally
thought to be modulatory in nature: connections with temporal visual
cortices terminate in superficial cortical layers (Freese and Amaral,
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Fig. 11. Extending the present results to a more comprehensive investigation of emotion.
As also suggested in Fig. 4, we would eventually want to extend the present findings to
actual induction of emotion (either through direct stimulation, or suitable stimuli/tasks),
and to the inclusion of other dependent measures, such as psychophysiological responses
(skin-conductance response, heart-rate changes, pupillometry, etc.) and even verbal re-
ports of the conscious experience of an emotion.

2006), and projections to prefrontal cortex may exert effects via the
dorsomedial thalamus rather than directly (Miyashita et al., 2007). A
full understanding of how network-level effects of the amygdala arise
will require not only further electrical stimulation-fMRI studies, but will
also require the application of other causal discovery algorithms that
can incorporate feedback (see further below, and Supplemental mate-
rial).

Taken together, the results highlight the promise, challenge, and
next steps of this novel framework. We demonstrated that causal dis-
covery analyses can produce graphs that are reliable and that capture
the correlation structure of the observational data. We also demon-
strated that es-fMRI in the amygdala produces robust activations in
distal brain structures. Many of the results fit with what one would
expect given current knowledge of the connectivity of the amygdala:
there is activation in medial prefrontal and cingulate cortices, in insula,
and in temporal cortex, amongst other regions. Yet the notable differ-
ences across individual subjects also highlight the difficulty in ob-
taining reproducible stimulation results across patients, and in ob-
taining a sufficiently large number of samples for reliable causal
discovery. These issues can probably be resolved partly through the
accrual of more data. Other next steps consist in investigating other
nodes in emotion networks, and including results from experiments in
animals. We briefly comment on next steps and extensions below.

6.2. Investigating emotions and feelings

While the present paper focuses its scope on an analysis just of data
from the brain, such data will eventually need to be linked to their
causal effects on the dependent measures that are typically used to infer
emotions—autonomic responses, changes in facial expression, verbal
reports of emotional experience, and a variety of effects on task per-
formance (Fig. 11). Investigating causal connections related to emo-
tions in the brain at rest, as we did here, is clearly suboptimal, because
the different nodes of the network are unlikely to be as interactive
during rest as they are during emotion processing. We would thus want
to apply the causal discovery methods that we document here to fMRI
data that reflects brain states of putative emotions — either induced
through sensory stimuli (e.g., watching emotionally laden film clips
(Gross and Levenson, 1995)), volitional instruction (e.g., asking people
to remember emotional autobiographical events (Damasio and
Grabowski, 2000)) or through direct electrical stimulation of structures
such as the amygdala (Bijanki et al., 2014; Dlouhy et al., 2015; Gloor
et al., 1982; Halgren et al., 1978; Willie et al., 2016). The latter is a
particularly intriguing aspect: as we demonstrated here it is in fact
possible to combine electrical stimulation with concurrent fMRI mea-
sures, and it would offer the most direct test of the putative causal roles
of brain structures in emotion.

This issue would be of very high relevance to the strategic planning
of deep-brain stimulation to treat mood disorders, or indeed more
broadly to treat any number of severe disorders that are medically re-
fractory and that are candidates for treatment through deep-brain sti-
mulation. Alterations in brain connectivity are now thought to underlie
much of psychopathology (Fox et al., 2014; Greicius, 2008; Greicius
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and Kimmel, 2012; Zhang and Raichle, 2010). Both invasive (Lozano
and Lipsman, 2013) and noninvasive (Dayan and al, 2013) neuro-
stimulation are regularly used, and gaining popularity, to treat a
number of neurological and psychiatric diseases, including Parkinson's
and Alzheimer's disease, depression (Fox et al., 2014; Mayberg et al.,
2005; O'Reardon and al, 2007) and memory disorders (Hamani et al.,
2008; Suthana et al., 2012). All of these avenues for treatment show a
frustrating combination of features: they can be extremely effective for
certain patients, yielding dramatic improvements in quality of life; but
they don’t work for others, and we do not understand why. The current
inadequacy in strategic planning of deep brain stimulation for treating
mood disorders, and in predicting personalized outcome, stems from
our ignorance of what deep brain stimulation actually does to the brain.
The framework we presented here seeks to address this important
outstanding question.

The approach we presented here would also help to resolve several
ongoing scientific debates. For instance, the amygdala has long been
thought to be necessary for fear, in humans and in animals (Amaral and
Adolphs, 2016). But the evidence from lesion studies in humans does
not show that the amygdala causes fear (only that absence of the
amygdala interferes with it), as we noted in the Introduction. Electrical
stimulation of the amygdala, which could show that the amygdala
causes fear, has been thought to act through other indirect mechanisms,
for instance via stimulating white matter pathways that instead activate
regions of cortex, which in turn cause the conscious experience of fear
(LeDoux, 2015; LeDoux and Brown, 2017). Our es-fMRI paradigm,
coupled with a causal discovery analysis, as outlined in this paper,
could resolve this issue and ultimately yield an understanding of the
proximal causal substrates for all the different aspects of an emotion,
including its conscious experience.

Our long-term goal is to use causal discovery and es-fMRI to in-
vestigate the neural mechanisms that underlie different components of
emotion. It is notable that all of the es-fMRI experiments we presented
here were performed at a level of stimulation at which the patients were
at chance in discriminating whether they had been stimulated or not,
and no observable measures of emotion were produced (other than
brain activations measured with fMRI). An experiment we plan to do
next is to parametrically increase the amplitude and/or duration of the
electrical stimulation. As one gradually stimulates the amygdala more
and more, measurable components of emotion should be induced: there
might be changes in autonomic responses such as skin-conductance
response (Willie et al., 2016), changes in cognitive bias such as judg-
ments of facial expressions (Bijanki et al., 2014), or changes in reported
conscious experience (Halgren et al., 1978). What changes in the causal
graph that describes the brain networks as these emotion components
are induced? What accounts for the difference between stimulation
trials in which the patient reports feeling nothing, and in trials in which
the patient reports feeling an emotion? These are major unsolved
questions in affective neuroscience that the framework we outline could
begin to address.

6.3. Limitations and assumptions

Many of the assumptions we have made in our causal analysis are
unrealistic for fMRI data. The brain is known to contain many con-
nections with feedback; it is likely that there are unmeasured con-
founders; it is not plausible that the actual causal connections in the
brain are linear Gaussian in form; despite our comparison between
sparsely sampled and densely sampled data (MCP) one may remain
concerned about the i.i.d. assumption of the data. By such a standard,
the present analysis can only be taken to show that rather sparse causal
structures can give rise to the correlations observed resting-state fMRI
data.

In the Supplementary material we do explore what happens when
some of these assumptions are dropped, in particular the assumption of
no feedback (acyclicity) and no unmeasured confounding (causal
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sufficiency). We have applied a SAT-based causal discovery algorithm
(Hyttinen et al., 2014) that does not make these assumptions to a small
subset of three of the datasets considered in this paper (since the al-
gorithm in its current form does not scale to large numbers of variables)
and we compared the results to those from the FGES algorithm. We
found that causal adjacencies are remarkably reliable when the two
methods (FGES and SAT) were applied to the same dataset, but that
orientations of edges in the causal graphs differed. While promising,
these results also indicate that significantly more effort is needed to
scale the methods with weaker background assumptions (SAT) to be
applicable to datasets with many variables (such as a whole brain
parcellated into ca. 100 nodes). We are actively engaged in developing
more scalable versions of the SAT-based method and in the develop-
ment of a fast non-parametric independence test, which would also
allow us to drop the parametric assumption of linear Gaussianity. Such
a test could also be used in other causal discovery algorithms that use
weaker assumptions, such as the various versions of the FCI-algorithm
(Spirtes et al., 2000a). These future developments will require close
collaboration with experts on causal algorithm development.

There are also important limitations to note at the stimulation end.
Our electrical stimulation is quite imprecise compared to alternative
approaches that are possible in animal models, such as optogenetics.
Although we used bipolar stimulation to constrain current spread, and
although the region of activation near the site of stimulation is fairly
focal, this is still a large volume of neural tissue (several cubic milli-
meters). Not only will this introduce imprecision in the anatomical
localization of the stimulation, but it will also subsume different ana-
tomical subdivisions and cell populations, and even fibers of passage.
This issue is especially problematic in the amygdala, and may be less
acute for some surface cortical sites (we are also able to stimulate
through grids that are on the surface of cortex). Depending on where
one is stimulating, many different circuits can be activated; or in-
hibitory interneurons as well as excitatory neurons can be activated; or
nearby white matter can be stimulated.

Our future plans for addressing these limitations are to try to tri-
angulate on the results with as many methods as possible. In humans,
we illustrated two in the present paper. Causal discovery algorithms
applied to resting-state data will still have the limitations of fMRI, but
do not have the just mentioned problems associated with electrical
stimulation. As such, they may be able to provide priors that can help
constrain the results from electrical stimulation (cf. Fig. 4). We are also
actively exploring animal models, which will ultimately be essential to
obtain sufficient resolution and control. Convergent evidence from such
studies can further help with the interpretation of the results from
humans. Although there are of course difficult questions about
homology, it is already the case that a number of studies in nonhuman
primates has given us very detailed insight into circuits related to fear
and anxiety, and allowed a considerably finer fractionation both of the
circuits and of the behaviors than is currently possible in humans (see
(Fox and Shackman, 2017; Shackman and Fox, 2016) for an overview).
The overall research program should thus incorporate results from ro-
dents, monkeys, and humans. Each of these has somewhat com-
plementary strengths and limitations. The rodents currently offer the
most precise manipulation of circuits through optogenetics, but better
methods for whole-brain imaging of activations are still needed (such as
imaging using ultrasound, rather than BOLD-fMRI, for example). The
monkeys are beginning also to offer optogenetic and chemogenetic
approaches, although this is still more limited in application than is the
case in rodents. However, monkeys are of course a better animal model
for human emotions than are rodents. Finally, human studies will al-
ways be limited in the precision with which we can experimentally
investigate and manipulate circuits, but offer large datasets based on
fMRI and provide subjective reports of experiences—the dependent
measure that also determines disorders of emotions we wish to treat.
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Finally, a host of challenges needs to be addressed in order to
leverage fMRI results to reliable conclusions about the brains of in-
dividual people (Dubois and Adolphs, 2016). Relatedly, there is the
need for more precision in the methods, the neuroanatomy, and the
cognitive, behavioral, and experiential variables that can be measured.
This is a very large task, but recent prescriptions in the case of the
amygdala and fear give us examples of what needs to be done
(Shackman and Fox, 2016).

6.4. Comparing causal discovery with standard GLM results

One of the most striking, and unexpected, findings from our study
were those shown in Fig. 9. We found that the brain regions activated
by electrical stimulation of the right amygdala in the es-fMRI dataset
(as analyzed with standard GLM analysis, contrasting ON-OFF electrical
stimulation) were completely nonoverlapping with the brain regions
found to have direct edges (direct causal connections) with the right
amygdala from FGES. Although we do not have a full explanation of
this finding, it seems striking enough to warrant further investigations.
We make the following remarks.

(i) The direct GLM contrast between the ON and OFF blocks depends
on knowledge about which data are ON and which data are OFF, as
specified by the experimenter, but is independent of the measured
actual activation of the right amygdala. By contrast, FGES operates
on the complement of this set of information: FGES, as we ran it, is
not informed about the stimulation at all, but instead uses the
measured activation of the amygdala and attempts to determine its
direct causal neighbors. This is a big difference that will need to be
probed further in future studies. In preliminary explorations we
did run FGES with the values of the right amygdala replaced by 1/
0 for ON/OFF, corresponding to the stimulation blocks (i.e. the
same information available to the GLM), and we found that the
right amygdala was causally disconnected from all other nodes. It
is unclear what explains this result, but it is likely that the number
of independent ON/OFF samples is inadequate in a blocked design
(since adjacent trails are strongly depend on one another). Sparse
event-related designs may circumvent some of these problems in
future es-fMRI studies.

(ii) There is some overlap when FGES is run on patient #384's es-fmri
data and when it is run on the other datasets, as shown in Fig. 8. In
particular, the ipsilateral temporal pole and hippocampus are
found to be connected to the amygdala across the board, a finding
that is also quite consistent with what one would expect from prior
studies of amygdala connectivity, including direct tracer studies in
monkeys. Oddly, these two regions do not show up as significantly
activated by the stimulation according to the ON-OFF GLM con-
trast analysis, as can be seen in Fig. 9. Differences in equating the
statistical thresholding for the GLM and the sparsity settings in our
FGES analyses may also partly explain these discrepancies. Future
studies should undertake a more comprehensive analysis over a
larger range of thresholding and sparsity settings. As well, one
could undertake a more detailed investigation that specifically
probes nodes found to be directly connected in the causal analyses,
and uses them as ROIs for a GLM analysis (cf. also Fig. 4). More
broadly, there are still many more comparisons required between
the different sets of results, in order to gain a better understanding
of which are reliable findings obtainable with all approaches,
which are reliable findings but can be discovered most sensitively
only with a subset of the approaches, and which are unreliable
findings that show up as false positives with some approaches.

(iii) As we already noted, it is of course quite possible that many of the
effects revealed with standard GLM contrasts are in fact not due to
direct causal effects, but reflect indirect and possibly quite complex
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network-level effects. Fig. 9 shows only the direct causal neighbors
of the right amygdala from the FGES analysis. Future studies could
easily extend the analysis to examine nodes that are causally
connected to the amygdala by one intervening node, two inter-
vening nodes, and so forth. Of course, the larger the degrees of
separation (the larger the number of intervening nodes), the larger
will be the total set of nodes connected to the amygdala. In fact, it
would be of interest to explore this parametrically and visualize
how many degrees of separation are required before a given pro-
portion of the complete set of nodes are connected with the
amygdala (or any other structure of interest). Most broadly, such
an analysis could reveal general principles of brain network ar-
chitecture: what is the average degree of separation between any
two places in the brain, and how are degrees of separation dis-
tributed (do they differ for cortical vs. subcortical structures)?

It would be informative to investigate directionality and re-
ciprocity in the connections between brain regions. We largely
omitted this important issue, for two reasons already noted: (1)
directionality of causal effects appears much less reliable than the
presence of (undirected) edges and so we omitted it for this reason,
and (2) reciprocity of connections (feedback) was explicitly as-
sumed to be absent in FGES, since that is a background assumption
required by this efficient causal discovery algorithm. We relaxed
both of these constraints in an exploratory analysis using a dif-
ferent causal discovery algorithm (SAT) in our Supplementary
material. However, the SAT algorithm currently does not scale to
more than about 7 nodes, making it too limited for present pur-
poses. Future development of causal discovery algorithms that are
both efficient in how they scale to large numbers of variables, and
that can relax background assumptions, will be essential to drive
this field forward. However, even without such new algorithm
development, one could extend the current studies by focusing
future work on nodes revealed in the present analysis. For instance,
if es-fMRI of the amygdala activates the hippocampus, then we
could electrically stimulate the hippocampus to ask if we can
produce a symmetrical activation in the amygdala. Such studies
are certainly possible, and limited only by the density and extent of
electrode coverage in the patients.

@iv)

6.5. Future extensions

As we already noted, immediate next experiments could be analyses
carried out on already collected data. The HCP and the MCP datasets
can be queried in much more detail. One could investigate connectivity
of other specific nodes of putative emotion networks, including not only
the amygdala, but also ventromedial prefrontal cortex, insula, and other
regions. One could investigate individual differences across individuals,
or groups of individuals, where independent behavioral or ques-
tionnaire-based measures related to emotion processing are available
(some candidates from the HCP would be the Penn emotion recognition
test, and the positive affect test, which are available for this dataset).
And of course one could investigate differences between neurotypical
and clinical populations (e.g., HCP versus ABIDE data to compare ty-
pical healthy brain networks to those from people with autism, re-
spectively).

A major challenge will be how to improve the reliability of causal
graphs obtained from single subjects, especially patients in whom there
are often a number of additional constraints. The graphs obtained from
large-sample datasets such as the HCP could be used as priors to con-
strain the causal discovery in smaller, noisier datasets from single pa-
tients (cf. Fig. 4). While es-fMRI will always be limited to relatively
short sessions and thus small numbers of samples, one could obtain
denser rs-fMRI data in the same subjects before the implantation of the
electrodes, providing additional, subject-specific prior information.

It is possible to parcellate the fMRI data into a larger number of
parcels (e.g., the scheme by Glasser et al., 2016 rather than the
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Harvard-Oxford atlas we used, an alternative and more detailed par-
cellation we have already explored and which is entirely feasible in
large sample-size datasets). This could provide new findings that the
present parcellation scheme obscured through aggregation of func-
tionally disparate brain areas. The causal discovery algorithm we used
scales relatively efficiently with sample size. It would be interesting to
compare several different parcellation schemes, and to test whether
more fine-grained ones essentially reproduce the coarser ones or reveal
different conclusions. Ultimately, it would be extremely interesting to
run FGES voxelwise over the entire brain, as also suggested in Section 7
of Ramsey et al. (2016). Not only would this be informative in whether
or not it reproduces results from more aggregated parcellation schemes,
but it could actually be a novel source of deriving parcellations in the
first place.

Finally, it is possible to stimulate not only multiple brain regions in
separate sessions, but to stimulate them concurrently in a single session
(or even in a specific temporal pattern). Theoretically, a relatively
modest number of stimulations can very efficiently permit estimation of
the causal graph (Eberhardt et al., 2005). One would like to be able to
causally intervene on specific brain structures, while collecting data
with the whole-brain field-of-view of fMRI (or other emerging tech-
nologies, such as ultrasound imaging), with complete freedom in the
choice of brain structures. This, of course, will never be possible in
human subjects, but requires the application of our approach to animal
studies. The most powerful future combination will incorporate con-
clusions from causal discovery studies in humans with data obtained
from optogenetic-fMRI in rodents (Lee et al., 2010; Liang et al., 2015).
Those optogenetic-fMRI studies would also have a further large ad-
vantage over human es-fMRI, namely, the ability to stimulate geneti-
cally identified neuronal populations. Such studies could in fact explain
much of the heterogeneity seen in human experiments, since these are
likely to conflate many different circuits due to their anatomical and
cell-type imprecision, and would substantially help us to refine emotion
circuits in the brain. The complementary strengths and limitations of
human and animal approaches will ultimately be required to fully map
out the causal connections that underlie emotion (Adolphs and
Anderson, 2018; Shackman et al., 2018).
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