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Abstract. We consider cooperative multiagent resource sharing problems over time-varying
communication networks, where only local communications are allowed. The objective is to minimize
the sum of agent-specific composite convex functions subject to a conic constraint that couples agents’
decisions. We propose a distributed primal-dual algorithm, DPDA-D, to solve the saddle-point
formulation of the sharing problem on time-varying (un)directed communication networks; and we
show that the primal-dual iterate sequence converges to a point defined by a primal optimal solution
and a consensual dual price for the coupling constraint. Furthermore, we provide convergence rates
for suboptimality, infeasibility, and consensus violation of agents’ dual price assessments; examine
the effect of underlying network topology on the convergence rates of the proposed decentralized
algorithm; and compare DPDA-D with centralized methods on the basis pursuit denoising and
multichannel power allocation problems.
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1. Introduction. Let {gt}t€R+ denote a time-varying graph of N computing
nodes. More precisely, for ¢ > 0, the graph has the form Gt = (N, "), where N £
{1,...,N} and &' C N x N is the set of directed edges at time t. Suppose each node
i € N has a private constraint function g; : R™ — R™ and a private cost function
@i : R™ — RU {400} such that

(1.1) ©i(&) £ pi(&) + fi(&),

where p; : R™ — RU{+4o0} is a proper, closed convex function (possibly nonsmooth),
and f; : R" — R is a smooth convex function. Assuming each node ¢ € N has only
access to ;, g; and a closed convex cone K C R™, consider the following problem:

(1.2) min (&) £ Y ¢i(&) st g€ 2D al&) € K,

Rn
&€ ieEN ieEN

where & € R™ denotes the local decision of node i € A/ and n £ D ien M

ASSUMPTION 1. For all i € N, the function f; is differentiable on an open set
containing dom p;, and V f; is Lipschitz with constant Ly, ; the prox map of p;,

(1.3) prox,, (6) £ argmin { () + 5 lles — &}
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is efficiently computable, where ||.|| denotes the Euclidean norm. Moreover, g; is
K-convez 7, Chapter 3.6.2] and Lipschitz continuous with constant Cg, and has a
Lipschitz continuous Jacobian, Jg;, with constant Lg,.

In this paper, we design a distributed algorithm for solving (1.2) and provide
a unified approach for analyzing the convergence behavior of the proposed method,
regardless of whether the communications over the time-varying graph {G*} are uni-
directional or bidirectional. To this aim, we need some definitions and assumptions
related to the time-varying graph {G'}. To unify the notation, we assume all edges
are directed and consider undirected graphs as a special case of directed graphs.

t,in A

DEFINITION 1. For any t > 0, G' = (N, ") is a directed graph; let N, {je
N (4,0) € UL} and NP 2 {j € N2 (i) € ELYU{i} denote the in-neighbors
and out-neighbors of node i € N at time t, respectively; and let dt = |N;""|—1 be
the out-degree of node i € N'. G* = (N, E") is called undirected when (i,7) € E' if and
only if (§,i) € E'. For undirected G, let Nt £ N"™\ {i} = N;"°"\ {i} denote the
neighbors of i € N, and dt = |N}| represents the degree of node i € N at time t.

ASSUMPTION 2. When G' is a (general) directed graph, node i € N can receive
data from j € N only if j € N;"™, ice., (j,i) € E', and can send data to j € N only
if j € NP e, (i,§) € E'; on the other hand, when G' is undirected, node i € N
can send and receive data to and from j € N at time t only if j € N}, i.e., (i,]) € E*.

Our objective is to solve (1.2) in a decentralized fashion using the computing nodes
in A/ while the information exchange among the nodes is restricted to edges in £! for
t > 0 according to Assumption 2. We are interested in designing algorithms which
can distribute the computation over the nodes such that each node’s computation is
based on the local topology of G and information only available to that node.

Decentralized optimization over communication networks has drawn attention
from a wide range of application areas: coordination and control in multirobot net-
works, parameter estimation in wireless sensor networks, processing distributed big
data in machine learning, and distributed power control in cellular networks, to name
a few. In these examples, the network size can be prohibitively large for centralized
optimization, which requires a fusion center that collects the physically distributed
data and runs a centralized optimization method. This process has expensive com-
munication overhead, requires large enough memory to store and process the data,
and also may violate data privacy in case agents are not willing to share their data
even though they are collaborative [35]. Therefore, a common objective of today’s
big data networks is to use decentralized optimization techniques to avoid expensive
communication overhead required by the centralized setting and to enhance the data
privacy. The communication networks in these application areas may be directed, i.e.,
communication links can be unidirectional, and/or the network may be time-varying,
e.g., communication links in a wireless network can be on/off over time due to failures
or the links may exist among agents depending on their interdistances.

In the remainder of this section, as a brief preliminary, we discuss the primal-
dual algorithm PDA proposed in [9] to solve convex-concave saddle-point problems
with a bilinear coupling term, explain its connections to ADMM-like algorithms, and
briefly discuss some recent work related to ours. It is worth noting that the saddle-
point (SP) problem formulation of (1.2) contains a coupling term that is not bilinear
due to nonlinear {g;};cnr; therefore, PDA is not applicable. Next, in section 2, we
propose DPDA-D, a new distributed algorithm based on PDA and extending it to
handle nonlinear constraints, for solving the SP formulation of the multiagent sharing
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problem in (1.2) when the topology of the connectivity graph is time-varying with
(un)directed communication links. After we state the main theorem establishing the
convergence properties of DPDA-D, we provide the proof of the main theorem in
section 3. Subsequently, in sections 4, 5, and 6, we discuss certain details related to
the applicability of the method in practice. In section 7, we compare our method with
Prox-JADMM [15] on the basis pursuit denoising problem, and with Mirror-prox [22]
on the multichannel power allocation problem; and finally, in section 8 we state our
concluding remarks and briefly discuss potential future work.

1.1. Preliminary. In this paper, we study an inexact variant of the PDA pro-
posed in [9], extending it to handle nonlinear constraints, to solve the SP formulation
of (1.2) in a decentralized manner over a time-varying communication network. There
has been active research on efficient algorithms for convex-concave saddle-point prob-
lems min, maxy, £(x,y), e.g., [8, 14, 21, 32]. PDA [9] also belongs to this family and
is proposed for the convex-concave SP problem:

(1.4) min max £(x,y) = ®(x) + (T(x),y) — h(y),

xEX yey
where X' and ) are finite-dimensional vector spaces, ®(x) £ p(x) + f(x), p and h
are possibly nonsmooth convex functions, f is a convex function and has a Lipschitz
continuous gradient defined on dom p with Lipschitz constant L, and T : X — ) is
a linear map. Briefly, given x° € X, y® € Y and algorithm parameters v, v, > 0,
PDA consists of two proximal-gradient steps that can be written as

(1.5a)
X4 argmin p(x) + F2) + (VS0 3= x) + (200, %) + Do),
(1.5b)

y* e argmin A(y) — (2T(x") —T(x"),y) + ViDy(y,y’“%
y y
where D, and D, are Bregman distance functions corresponding to some continuously
differentiable strongly convex functions ¥, and 7, such that dom1, O dom p and
dom v, D domh. In particular, D,(x,%) £ 9,(x) — V(%) — (Vp,(X), x — X), and
D, is defined similarly. Abusing the notation, below we use T' also to denote the
corresponding matrix, i.e., T(x) = Tx.

In [9], it is shown that, when the convexity modulus for ¢, and ¢, is 1, if v, v, > 0

are chosen such that (i - L)i > 02,.(T), then for any x,y € X x Y,
(1.6)

‘C(iK7Y) - [’(Xa yK) < %(li()gxo) + iDy()ﬂyO) - <T(X - Xo)ay - y0> )
holds VK > 1, where x** £ L Zszl x¥ and y* £ & Zszl y*.

It is worth mentioning the connection between PDA and the alternating direction
method of multipliers (ADMM). Indeed, when implemented on minyex+ yey{®*(v)+
h(y): v+ T"y = 0}, preconditioned ADMM is equivalent to PDA [8, 9], where X'*
denotes the dual space and ®* is the convex conjugate of ®. There is also a strong
connection between the linearized ADMM algorithm proposed by Aybat et al. in [5]
and PDA proposed in [9]—see section 1.4 in the online technical report [1].

Notation. ||-|| denotes the Euclidean or the spectral norm depending on its
argument, i.e., for a matrix R, ||R| = omax(R). Given a convex set S, let os(-)
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denote its support function, i.e., o05(0) £ sup,,cs (¢, w), let 15(-) denote the indicator
function of S, i.e., 1g(w) = 0 for w € S and equal to +oc otherwise, and let Ps(w) =
argmin{||v — w|| : v € S} denote the Euclidean projection onto S. For a closed convex
set S, we define the distance function as ds(w) £ ||Ps(w) — w||. Given a convex cone
K € R™, let K* denote its dual cone, i.e., K* £ {§ € R™: (§,w) >0 VYw € K}, and
K° £ —K* denote the polar cone of K. Note that for any cone K € R™, ox(0) = 0
for § € K° and equal to +oo if 0 & K°, i.e., ox(0) = 1o (0) VO € R™. Given a convex
function h : R™ — R U {400}, its convex conjugate is h*(w) £ supyegn (w,8) — h(0),
and for differentiable h : R™® — R™, Jh : R™ — R™*" denotes the Jacobian of h.
Throughout the paper, ® denotes the Kronecker product, II denotes the Cartesian
product, and I, is the n x n identity matrix. @-norm is defined as ||z||, 2 (2TQ2)?
for any positive definite matrix Q.

1.2. Our previous work on resource sharing. In [2], we considered (1.2)
when g;(§) = r; — R;; is affine for i € NV, over a static and undirected communication
network G = (N, &) as a dual consensus problem. Using Lagrangian duality, we
reformulated it as an SP problem, ming maxyexo Y ;e n 0i(&i) + (X sen Ri&i — 74, Y),
which can be written in a distributed form through creating local copies of dual
variable y € R™ as (P) : ming maxy { >, 0i(&) + (Ri& — iy vi) = v € K° Vi €
N, yi =y; V(i,j) € £}, where & = [§]ien and y = [y;]ien- Using M, the edge-node
incidence matrix of G, the consensus constraints y; = y; for (¢,j) € £ can be written
as My = 0. Furthermore, by dualizing the consensus constraints, we obtain another
SP problem, equivalent to (P), in the form of (1.4):

1.7 min  max minL(€,w, min max L(§w,y),
(L.7) in | max min £(§,w,y) = mir Jemax (& w.y)

where L(&,w,y) £ 3 .o i(&) + (Ri& — i, yi) — (w, My). The equality in (1.7)
holds as long as K is a pointed cone—hence int (K°) # @; therefore, for each fixed &,
inner max, and miny, can be interchanged. The saddle-point problem on the right
side of (1.7) is special case of (1.4) with a separable structure. Exploiting this special
structure, we customized PDA in (1.5) and proposed Algorithm DPDA-S. In [2] we
showed that Algorithm DPDA-S can solve the sharing problem (1.2) with an affine
conic constraint in a decentralized way and established its convergence properties
provided that the node—speciﬁc primal-dual step-sizes {7;, k; };enr and the algorithm
parameter v > 0 satisfy = > L;, and (— - Lfl)(— —2vd;) > |Ri||* Vi € N, where
d; denotes the degree of 1 € N for the static G. Our result in [2] refines the error
bound in (1.6) and establishes the O(1/k) ergodic rate in terms of suboptimality and
infeasibility of the DPDA-S iterate sequence—see Theorem 2 in [2].

The arguments used for proving Theorem 2 in [2] cannot be used for the time-
varying directed communication network setting considered in this paper since the
undirected network is encoded through the use of an My = 0 constraint. However,
when the topology is time-varying or when the edges are directed, it is not immediately
clear how one can represent this problem as an SP problem. To extend our previous
results to a more general setting of time-varying topology with possibly directed edges,
in this paper we develop a new SP formulation that can impose consensus over the dual
variables while the formulation is independent of the changing topology. Finally, the
new method can also handle nonlinear conic constraints on resource sharing in (1.2).

1.3. Related work. Now we briefly review some recent work on the distributed
resource sharing problem. From the application perspective, algorithms and their ba-
sic convergence analysis have been studied for the economic dispatch problem (EDP),
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e.g., [38] for power-flow networks and [20, 43] for smart-grids. The variants of EDP
considered in [20, 38, 43] are special cases of (1.2). In particular, each node i € A has
a convex objective function f;, usually a quadratic function; p;(&;) = 1y, (&;), where
X; is a local simple convex set, g;(&;) = & — ri, and K = {0}. In [38], the aim is to
optimize the total power generation cost in a DC power-flow model; [20, 43] also study
a similar problem considering random wind power injection—both papers establish
basic convergence results without any rate guarantees. The distributed resource al-
location problem can also arise in controlling and coordinating internet services over
hybrid edge-cloud networks, for which a distributed ADMM algorithm is proposed
in [23] to solve a problem in the form of (1.2) with K = {0} and g¢;(&) = & — 4.
Yang et al. [42] study EDP considering communication delays in directed time-varying
network topology, and an algorithm based on push-sum protocol is proposed.

From the theoretical point of view, there has been active research on the distrib-
uted resource allocation problem. In [16], a distributed Lagrangian method (DLM)
has been proposed for solving a particular case of (1.2) on a static network; more
precisely, the objective is to minimize the sum of local convex functions subject to
local convex compact sets and a coupling constraint of the form » .\ & —r; = 0.
In [16], the authors establish the convergence rate of O(log(k)/v/k) for the dual func-
tion values estimated at the time-weighted average of dual iterates. Reference [17]
gives a gradient balancing protocol to solve (1.2) in which p;(-) =0, ¢;(&) =& — 4
and K = {0}. The authors show that the generated sequence &* = [£F];cnr satisfies
Sien Ji(€F) — 9" < O(1/k) and is feasible for all k under the assumption that the
initial point £° = [€9)ienr is feasible—¢* denotes the optimal value; moreover, a linear
rate is established when each f; is strongly convex. For a similar formulation as in [17],
an asynchronous gradient-descent method is proposed in [25] for time-varying undi-
rected communication networks; the proposed algorithm produces a feasible iterate
sequence such that mine_; __x max; jen |V fi(&f) — V£i(&5)|| < O(1/Vk) when each
fi is convex and has a Lipschitz gradient. However, none of these methods can solve
(1.2) in its full generality over a time-varying and directed communication network.

In [11], a method based on ADMM is proposed to reduce the computational
work of ADMM due to exact minimizations in each iteration. First, a dual consensus
ADMM is proposed for solving (1.2) over an undirected static network in a distributed
fashion when KC = {0}, g:(&) = Ri&i—ri, and ¢;(&) = pi(&)+ fi(A:i&:) for p; and f; as
in (1.1). To avoid exact minimizations in ADMM, an inexact variant taking proximal-
gradient steps is analyzed. Convergence of the primal-dual sequence is shown when
each f; is strongly convex—without a rate result; and a linear rate is established in
the absence of the nonsmooth p;, i.e., ©;(&) = fi(A;&;), and assuming each A; has
full column-rank and f; is strongly convex, i.e., ¢; is strongly convex.

In [10], a proximal dual consensus ADMM method, PDC-ADMM, is proposed
by Chang to minimize ), s ¢; subject to coupling equality and agent-specific con-
straints over both static and time-varying undirected networks—for the time-varying
topology, they assumed that agents are on/off and communication links fail ran-
domly with certain probabilities. The goal in the paper is to solve ming{> ", ©;(&;) :
Yoien Riki =1, & € Xi, i € N}, where ¢; is closed convex, &; = {§; € S+ Ci&; <
d;}, and S; is a convex compact set for each ¢ € M. The polyhedral constraints &; € X;
are handled using a penalty formulation without requiring projections onto them. It
is shown that both for static and time-varying cases, PDC-ADMM have a O(1/k)
ergodic convergence rate in the mean for suboptimality and infeasibility; that said,
in each iteration, costly eract minimizations involving ¢; are needed. To alleviate
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this burden, Chang also proposed an inexact PDC-ADMM taking prox-gradient steps
when ¢, (&) = pi(&) + fi(A4:&) and A; is a linear map for each i € N, and showed
O(1/k) ergodic convergence rate when each f; is strongly conver and differentiable
with a Lipschitz continuous gradient for i € N.

In [12], a consensus-based distributed primal-dual perturbation (PDP) algorithm
using a diminishing step-size sequence is proposed. The objective is to minimize a
composition of a global network function (smooth) with the sum of local objective
functions (smooth), i.e., F(> ;o fi(x)), subject to local compact sets and an inequal-
ity constraint, ), \- gi(x) < 0, over a time-varying directed network. It is shown that
the primal-dual iterate sequence converges to an optimal primal-dual solution; how-
ever, no rate result is provided. There are fewer papers on resource allocation over
time-varying directed networks. Gu et al. [19] consider a special case of (1.2) with
K = {0}, g:(&) = & — 1y, fi convex, and p;(&;) = 1x,(&;), where X; is convex and
compact for i € A. Assuming a Slater point exists which implies boundedness of a
dual optimal set, the authors proved the O(log(k)/v/k) rate result. Reference [41] has
the same setting in [19] with X; = [§Z,§’,] Assuming each f; is smooth and strongly
convex, a distributed method is proposed and its convergence is shown without pro-
viding a rate result. Finally, while we were preparing this paper, we became aware
of recent work [26, 30]. Reference [26] also uses Fenchel conjugation and the dual
consensus formulation to decompose separable constraints. A distributed algorithm
on time-varying balanced® directed communication networks is proposed for solving
saddle-point problems subject to consensus constraints. Assuming each agents’ local
iterates and subgradient sets are uniformly bounded, it is shown that the ergodic
average of the primal-dual sequence converges with a O(1/ \/E) rate in terms of the
saddle-point evaluation error; however, when the method is applied to constrained op-
timization problems, no rate in terms of suboptimality and infeasibility is provided.
The other recent work in [30] investigates the connection between the decentralized
resource allocation problem and the decentralized consensus optimization problem
where the objective is to minimize the sum of convex functions subject to local closed
convex sets and ), & — 13 = 0 over static undirected networks. Utilizing the mir-
ror relationship between the optimality conditions of these problems, they proposed a
method for solving the decentralized resource allocation problem and proved an o(1/k)
rate of convergence in terms of squared residuals of first-order optimality conditions.

2. A distributed algorithm for time-varying network topology. In this
section, we develop a distributed algorithm for solving (1.2) when the communication
network topology is time-varying, under the following assumption.

ASSUMPTION 3. A primal-dual solution to (1.2) exists and the duality gap is 0.

Clearly this assumption holds if a Slater point for (1.2) exists, i.e., there exists
some £ € relint(dom pNdom g) such that g(€) € int(—K). The existence of a Slater
point is also assumed in many related papers, e.g., [12, 19, 26, 30, 32]. When K = {0}
and g;(§) = R — r; for i € N, Assumption 3 trivially holds if there exists some
€ € relint(dom ¢) that is feasible, i.e., >, .\ Ri& — i = 0.

Since 1x(-) = supyepm {(y, ) — O';C( )}, one can reformulate (1.2) as

(2.1) min max { Z vi(&i) < > ailé), > - Uzc(l/)}

iEN

LA directed graph G is balanced when each node has an equal number of in-degree and out-degree.
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According to Assumption 3, a dual optimal solution, y* € K° exists and the duality
gap is 0 for (1.2). Suppose each node i € N has its own estimate y; € R™ of a dual
optimal solution, and y = [y;];cnr denotes these estimates in long-vector form. We
define the consensus set as

(2.2) Cé{yEleN‘: JyeR™ st. y;=y Vie N}

Suppose we are given a (possibly trivial) bound B € (0, 00] such that ||y*|| <B.
For instance, if a Slater point is available, then a nontrivial bound B € (0,00) on
dual solutions can be obtained by solving a convex problem in a distributed way; on
the other hand, when the Slater condition holds for (1.2) but a Slater point is not
available, then the nodes can collectively compute a Slater point (see Section 6). Let
Bo 2 {y € R™ : |ly|| < 2B} and B £ TenBo, ie., B={y: |vl< 2B, i € N'}.
Finally, we also define the bounded consensus set,

(2.3) CAcnB={yeR™I. 3geB, cR™ st. y;=y VieN}.

We can equivalently reformulate (2.1) as the following dual consensus problem:

(2.4) minmax L(&,¥) 2 Y (#i(&) = (@:(&): ) —ox(w)),
¢ yec =

i.e., any saddle point of (2.4) is also a saddle point of (2.1), which follows from the

definitions of ok (-) and C. Define £ : R™ x R™VI x R™WI 5 R U {400} such that

(25) LEw,y)2)] (%(fi) —(9:(&), vi) — UIC(Z/i)) —(w,y) +oz(w)-15(y).
ieN

Note that for any £ € domyp, we have max zL(§,y) = maxy miny £(§,W,y);

hence, (2.4) can be equivalently written as follows:

(2.6) mﬁin {m}gxmin E(E,W7y)} = r%ainmaxﬁ(f,w,y)7
wW W Yy

where interchanging maxy, and min,, is trivially justified when B is bounded; in
case B = 400, i.e., By = R™, one can directly verify that min, max, £(§,w,y) =
miny maxy £(§,w,y) and is equal to ¢(§) if g(§) € —K, and +oo otherwise.

Since we can equivalently solve ming v max, £(£, w,y) in (2.6) to solve (1.2), we
next generalize PDA iterations in (1.5a)—(1.5b) to solve this saddle-point problem.

DEFINITION 2. Let X 2 TLenyR™ X ienR™ and X 3 x = [ w']T for & =
[&ilien € R™ and w € R™, where n £ 3", n; and ng = m|N|; let Y £ ey R™
and Y 2y = |yilien € R™. Given parameters v > 0, and 7;,k; > 0 fori € N, let
D, £ 21, D, £ diag([;-In)ien), and D £ diag([;-Lnlien). Defining v, (x) =
%ETDTE + %WTDWW and 1, (y) £ 3y "Dy leads to the following Bregman distance

. _ =112 12 — —2

functions: D.(x,X) = % H§ — EHD, + % |lw — WHD’Y, and Dy(y,y) = % lly — yHDN.
To simplify notation, also define Z= X xY and Z>z=[x"y']T.

DEFINITION 3. Suppose @; = p; + fi is a composite convex function defined as
in (1.1) fori € N. Let ®(x) £ p(x) + f(x) and h(y) £ 3, cp hi(yi), where p(x) £
oa(W) + Xicn pil&)s f(x) & Xicn fil&) and hiys) = oxc(yi) + L, (i) for i € N.
Let G : R™ — R™ such that G(&) = [g:(&)]ien VX € X and define T : R" xR™0 — R"0
such that T(x) & —G(&) — w; hence, JT(x) = [-JG(&) — 1,,].
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With the aim of solving (1.2) as an SP problem, let ®, h, and T be as given
in Definition 3, and consider minyex maxycy ®(x) + (I'(x),y) — h(y). Hence, given
the initial iterates £°, w®,y? and parameters v > 0, 7;,k; > 0 for i € A, choosing
Bregman functions D, and D, as in Definition 2, and setting v, = v, = 1, we propose
a modified version of PDA iterations to handle nonlinear T'(-); indeed, after linearizing
T(x) around x* in (1.5a), the iterations in (1.5) can be written as follows for k > 0:

(2.7a)

1
wht  argminoz(w) — (y¥, w) + —[|lw — v¥||?,
w 2y

(2.7b)

Vk+1 k+1,

—w
(2.7¢)

€1 4 argmin pi(€) + (VF(€h) ~ Tar(€) ol &)+ 56— €I, i € N

(2.7d) 1

. 1 .
e argmin (2g,(65) = i) + 207 = oy + o —llvi — P i €N,
y: €K°NBo K

where we initialize v® = w?. The reason we introduced an auxiliary sequence {v*};>¢
such that v = [vF];cn will be explained shortly. Briefly, in its currently stated form,
the computation in (2.7) can be considered as linearized PDA iterations—7'(-) in
(1.5a)—(1.5b) is linearized around x*; however, this naive scheme is not suitable for
our purposes, i.e., the w**! update in (2.7a) is not practical to be computed in
a distributed manner. Therefore, instead of setting vF*! to w**1 we will replace
(2.7b) and assign v¥*! to an approximation of w**! such that this approximation
can be efficiently computed in a distributed way—this modified version of (2.7) will
be analyzed as an inexact variant of linearized PDA.
Using the extended Moreau decomposition for proximal operators, for & > 0,

k+1

. 1 2
w = argmm os(w) + 2— ||w — (vk + ’yyk)H = prox,ygg(vk +9y"),

(2.8) Pyt = Pe(Avh 4y )}

For an arbitrary y = [yilien € R™, Pz(y) can be computed as Pz(y) = 1 ®
argminge s, 3,enllz — will?= 1 @ argming e, & — Ry Sien vill? where 1 € RV
denotes the vector of all ones. Hence, we can write Pz(y) = P (W ® L,)y), where

W LT e RIWIXINT Equivalently,

(2.9) Psly) =Ps(1®@p(y)), where p(y)

INIZy’

iEN

Note that Pg(y) =y Vy € Y when B = oo; and for B < oo, Pi(-) is easy to compute
locally since B = IL;en By and P, (y) = ymin{l, 2B/||y|} for y € R™. Furthermore,
the &-step and y-step of the PDA implementation in (2.7) can also be computed
locally at each node; however, computing w**! requires communication among the
nodes. Indeed, evaluating the average operator p(-) is not a simple operation in
a decentralized computational setting which only allows for communication among
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neighboring nodes (see Assumption 2). To overcome the issue with decentralized
computation of the averaging operator p(-), we will use multicommunication rounds
to approximate p(-) and analyze the resulting primal-dual iterations as an inezact
primal-dual algorithm. In [13], the idea of using multicommunication rounds has also
been exploited within a distributed primal algorithm for wunconstrained consensus
optimization problems over undirected communication networks.

We define a communication round as an operation over G such that every node
simultaneously sends and receives data to and from its neighboring nodes accord-
ing to Assumption 2—the details of this operation will be discussed shortly. We
assume that communication among neighbors occurs instantaneously and nodes op-
erate synchronously; and we further assume that for each iteration k > 0, there exists
an approximate averaging operator R¥(-) which can be computed in a decentralized
fashion and approximates P5(-) with a decreasing approximation error in .

ASSUMPTION 4. Given a time-varying network {G'}ier, such that G' = (N, E")
for t > 0, suppose that there is a global clock known to all i € N. Assume that
the local operations in (2.7¢) and (2.7d) can be completed between two tics of the
clock for all i € N and k > 1, and every time the clock ticks a communication
round with instantaneous messaging between neighboring nodes takes place subject to
Assumption 2. Suppose that for each k > 0 there exists R¥(-) = [RE(:)]iens such that
RE(:) can be computed with local information available to node i € N and decentralized
computation of R¥ requires qi communication rounds. Furthermore, we assume that
there exist T' >0 and o € (0,1) such that NT' > 1 and for all k > 0, R* satisfies

(2.10) R¥(w) € B, |RF(w) — Pz(w)||< N Ta [|w| V¥V weR™.

The “unit time” is defined to be the length of the interval between two tics of the
clock. The assumption that every node i € N can finish its & and y; updates in one
unit time is mainly for the sake of notational simplicity throughout the analysis. All
of our results still hold as long as there exists a uniform bound A € Z such that the
local operations in (2.7c) and (2.7d) can be completed in A unit time for all i € N
and k£ > 1. In the rest, we assume that A = 1 as in Assumption 4.

Consider the kth iteration of PDA as shown in (2.7). Instead of setting v**!
to wht! as in (2.7b), we propose approximating w**! using the inexact averaging
operator R¥(:) = [R¥(-)];en of Assumption 4 and set vF*! to this approximation.
This way, we can skip the (2.7a) step and avoid explicitly computing w**! as in (2.8),
which requires using the exact averaging to compute Pz(-). More precisely, to obtain
an inexact variant of (2.7), we replace (2.7b) with the following:

k1 1ok | ok _pk(1 k| k
(2.11) v <—~y[;v tyb—R (Vv +y)}.

Thus, PDA iterations in (2.7), for solving the saddle-point formulation, ming v, max,
L(&,w,y), of the distributed resource allocation problem in (1.2), can be computed
inexactly, but in a decentralized way for a time-varying connectivity network {G*};>0
provided that RF satisfying Assumption 4 exists for {G'};>0. We call this inexact
version of the linearized PDA Algorithm DPDA-D, and the node-specific compu-
tations of DPDA-D are displayed in Figure 1 below. Indeed, the iterate sequence
{£k7 vk, yk}kzo generated by Algorithm DPDA-D is the same sequence generated by
the recursion in (2.11), (2.7¢), and (2.7d). As emphasized previously, the sequence
{wk}kzo will not be explicitly computed; instead we will use it in the analysis of the
inexact algorithm. Next, we discuss the existence of inexact average operators RF
satisfying Assumption 4 under various assumptions on time-varying network {G'};>o.
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Algorithm DPDA-D ( €%, v, {7, ki Yien )

Initialization: v? <0, 22«0 ieN
Iteration k: (k > 0)
1. vf « %vf +yF, vf“ — v —YRE(VE), i €N, where v©=[vf]ien

2. ¢« prox, (ff T (Vﬁ(&f) - Jgi(éf)Tyf)) ieN

3.y e P (3 = o (20(€871) el + (ol - b)), i

Fic. 1. Distributed PDA for time-varying {G'} (DPDA-D).

2.1. Inexact averaging operators. Let ¢ € Z, be the total number of com-
munication rounds done before the kth iteration of DPDA-D, in Figure 1, and let
qr € Z4 be the number of communication rounds to be performed within the kth it-
eration while evaluating R*. According to Assumption 4, each node i € N can finish
ff“ and yf“ computations within one unit of time, i.e., between two consecutive
tics of the clock, Vk > 0, and communication rounds occur every time the global clock
tics; hence, G! represents the connectivity network at the time of tth communication
round Vt € Z,. Thus, only {G'}icz, among {G'}icr, is relevant since the topology
of the time-varying network is only pertinent at those times when communication
happens among neighboring nodes. For implementation in practice, it is sufficient for
each node to count the number of global clock tics since the last update.

DEFINITION 4. Let V' € RWIXIVI be o matriz encoding the topology of Gt =
(N, E) in some way for t € Z,. We define Wt 2 VIVt VSTl for any t,s €
Zy such thatt > s+ 1.

Let {G'} be a time-varying directed graph; we adopt the information exchange
model in [29] satisfying the assumptions stated in Assumption 5.

ASSUMPTION 5. For all t € Zy, (i) every i € N knows N;"°" and there exists
¢ € (0,1) such that fori e N, V5 > ¢ if j € N and Vi = 0 otherwise. (ii) G* is
M -strongly-connected, i.e., there exist an Z > M>1 (possibly unknown to nodes) such
that the graph with edge set Y, = EZE&MA E is strongly connected for k € 7., .

2.1.1. Undirected {G'}icz,. Let {G'} be a time-varying undirected graph;
N} is defined as in Definition 1, and d! = |N}| for i € N. For the undirected case,
we assume {V'}iez, is doubly stochastic and satisfies Assumption 5. For instance,
V' can be set as the Metropolis edge weight matrix [6] corresponding to G, i.e., for
each i € N set Vi, = (max{d}, d} +1)" for j € N, Vi, = 0 for j ¢ N} U {i} and
Vi=1- ZjeNif, sz Suppose that there exists dyax such that df < dpax Vi € N and
t € Z, . Under this assumption, it is trivial to check ¢ = (dmax + 1)1

For V! satisfying (i) in Assumption 5, given any w € R, the matrix-vector
multiplication Viw € RWI can be computed in a distributed way, i.e., the ith compo-
nent (V'w); = 37, vuqiy Vijws can be computed at node i € N requiring only local
communication of ¢ with nodes in N}. The next result shows how this distributed
operation can be used to approximate the average (also see [31]).

LEMMA 2.1. Let {V'}icz, be a sequence of doubly stochastic matrices satisfying

Assumption 5. For any s,t € Z, such that t > s, [[(W" @1, )w —1®@p(w)| <
Sat=*|w|| for any w = [w;]icar € R™, where o = (1 — #)I/ZM.
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Proof. The proof immediately follows from [29, Lemma 5]. |
For w = [w;]iens € R™ such that w; € R™ for i € N, define

(2.12) RF(w) £ Pg (Wt @ 1,,) w)

to approximate Pg(-) in (2.8). Note that R*(-) can be computed in a distributed
fashion requiring ¢ communications with the neighbors for each node. In particular,
components of R¥(w) can be computed at each node as R¥(w) = [RF(w)];en such
that Rf(w) £ Pg, (X jeniugiy Wifﬂ’“’t’“w]—). Moreover, the approximation error,
RF(w) — Pz(w), for any w can be bounded as in (2.10) using the nonexpansivity of
P and Lemma 2.1. More precisely, R* defined in (2.12) satisfies Assumption 4.

2.1.2. Directed {G*}iez,. Let {G'} be a time-varying directed graph, and
NP NEO™ be defined as in Definition 1 for i € A, Recall d! = |N;""|—1. Since
the definition of C in (2.3) does not depend on the topology of the network, using the
push-sum protocol [24] within DPDA-D, one can also handle time-varying directed
communication networks. Indeed, given any w = [w;];car, nodes can inexactly com-

pute Pz(w) in a distributed fashion with increasing approximation quality; consider
the weight-matrix sequence {V'};cz, : for any ¢t > 0,

1 . .
(2.13) V=g i TENIT V=00 JENT ie N
J

For w = [w;]iens € R™ such that w; € R™ for i € N, define
(2.14) R¥(w) £ Py (diag(W T+t 1y @1,)~H (Wt @ 1,,) w)
to approximate Pz(-) in (2.8). R¥(:) can be computed in a distributed fashion requir-

ing g communication rounds and is a compact representation of push-sum operation.

LEMMA 2.2. Consider RF defined in (2.14) for k > 0. Assuming {Qt}tez+ 18
uniformly strongly connected (M -strongly connected), (2.10) holds for some I > 0

and o € (0,1) such that T < 8NVM gnd o < (1 - NﬁM)ﬁ,
Proof. The result follows from the proof Lemma 1 in [27]. d
3. Convergence of algorithm DPDA-D. Define Cy = Y, .\ Cy /N and
Ry £ max{[|€" — &°||, . [|€" — €"[|,}/VN, where L' £ diag([(1+ Ly, + Cy,)LnJien)
and Ly = diag([(Lg, ) In Jien)-

THEOREM 3.1. Suppose Assumptions 1, 2, 3, and 4 hold. For any ~ > 0, let the
primal-dual step-sizes {T;, ki }ienr be chosen such that for some 8 > 0,

-1
(3.1) 7= (max{1, Ly, + BLy,} + Cy,) ™', ki = (C’gi + 5;) VieN.

Given B € (0,00], starting from v = y° = 0 and an arbitrary &Y, let {(ék, vF) eso be
the primal, and {yk}kzo be the dual iterate sequence generated by Algorithm DPDA-
D, displayed in Figure 1, using qx € Zy communication rounds for the kth iteration
such that Co = 3322 o a% (k+1) < co. For anyy >0, if 3 > 0 is chosen as discussed
below, then {(ﬁk,yk)}kzo converges to (£*,y*) such that y* = 1 ® y* and (€, y*)
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is an optimal primal-dual solution to (1.2). Moreover, both infeasibility, F(EKQ_/K),
and suboptimality, \@(EK) — (&), are O(1/K), i.e., VK > 1,

(32)  FE"55) 2 delr") + I de (~a@)) < 202,

)= ole) + Il (~0€™)) < 202 pen )

(3.3) 0< p(€"

for some A(v,B) € Ry, where EK =+ Zszl £ and y¥ = + Eszl y* for K > 1.
Case 1. If a dual bound is known, i.e., B < oo, then (3.2) and (3.3) hold for
B = 2B; moreover, setting the free parameter v = (N3/2T'CoB)~" gives

(3.4) A, B) = O(NB(Ri +C,B) + N3/2FOOB).

Case 2. If the dual bound does not exist, set B = oo within DPDA-D. As-
suming qi > 10gy o (24NT'(k + 1)) for k > 0, there exists § > 0 such that (3.2)

and (3.3) hold VB > [3; moreover, selecting v = N%FCORQQC gives A(v,5) =
O(N2D3C3R2max{1, ||y*||*}). Finally, when g; is affine fori € N and {r;} are inde-
pendent of B,y = (N2T'C) =" leads to A(v, ) = O(N3T2C2(R2+Cymax{1, |y*||°})).

Remark 3.1. We assume agents know ¢ as a function of k at the initialization;
hence, synchronicity can be achieved among nodes if simply each node counts the
number of times the global clock tics, where at each tic one communication round
occurs according to Assumption 4.

Remark 3.2. Suppose we are given (0,1) > @ > «a. For any ¢ > 0, choosing
qr = [(2+ c)log 5(k + 1)] for k > 0 satisfies the condition in Theorem 3.1, i.e.,
Co =Y ot (k+1) <141, Moreover, this choice of {gx}rez, implies that the
total number of communication rounds right before the Kth iteration is equal to
ti = ZkK;Ol ar = (2+ ¢)[(K — 1) logy /5 (K) + logy /5(e)], where e is Euler’s number.

COROLLARY 3.2. Under the premise of Theorem 3.1, let {G'} be an undirected
time-varying graph and {qx} be as in Remark 3.2 with (0,1) > @ = wa for some
v > 1. Let Q(e) be the total number of communications needed to compute an e-
optimal and e-feasible solution (€°,y¢) for v = 1/O(VN), i.e., F(€°,y) < € and
|p(€°) — p(€%)|< €. If a dual bound B < oo is known, then Q(€) = (’)(N?4 log(&)). If

a Slater point does not exist, i.e., B = 0o, then Q(e) = (’)(N:'5 log(g)); moreover,

Qe) = (Q(N?4 log(%)) is achieved when g; is an affine function for i € N.

Proof. Theorem 3.1 implies that (£°,y¢) can be computed in K¢ = A(v,5)/e
DPDA-D iterations, which requires tx. = O(K¢log(K¢)/log(1)) communications
in total (see Remark 3.2). Lemma 2.1 implies that I' = 1/N; hence, setting v as
described in Theorem 3.1, we bound A(v, 3) with O(N) for Case 1, O(N*®) for Case
2 in general, and with O(N) when g;’s are linear. Thus, the result follows from

log(L1) > ¢/N?, where ¢ can be as small as O(1/N). |

Note that when {G'} is a general time-varying directed graph, we employ the
push-sum protocol with I' = NVM (see Lemma 2.2), which leads to exponential O(1)
bounds, e.g., A(7, ) = O(NNM+3 B) for Case 1. To the best of our knowledge, poly-
nomial bounds for directed graphs in N is still an open question [28]. That said, setting
{ar} as in Remark 3.2, DPDA-D can compute an e-solution in O(2log(1)) commu-
nications even for general directed graphs and choosing g, = (2 + ¢)log; /5(k + 1) in
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Case 1 leads to O(1) constant N2VM+15 which is better than the O(% log(1)) result
in [19, 27] with the O(1) constant of N2N™+2 The method in [19] has log(k) /Vk rate
and requires exact minimization of convex f; over compact X; at each iteration. The
method in [27] can be used to solve the dual of (1.2) when p; is the indicator function
of some compact convex set X; and f; is convex for i € N but the subproblem that
needs to be solved at each iteration is fairly complicated as in [19].

Remark 3.3. Since Z,;“;la‘%k < oo for any p > 1, if one chooses ¢ = Vk
for k > 1, then tx = 25;01 qr = O(K'F1/P). This choice of {gy}kez, , unlike the
one in Remark 3.2, is independent of the parameter o € (0,1) but leads to a larger
Co =332 % (k+1) = O(a/log?(a)) for a € (1/e,1). On the other hand, a priori
running DPDA-D, a practical way to estimate a € (0,1) is to run an average of
consensus iterations with a random initialization until iterates stagnate around the
average; this leads to a rate coefficient «o; for i € N. Next, nodes can do a max
consensus to compute & = max;ex «; and use it to set g = (2 + ¢)logy /5 (k +1).

Remark 3.4. Suppose the dual bound is not available. If g, = (2+c)log; 5 (k+1)
for some ¢ > 0 and (0,1) > @ > «, then g, > log;,,(24NT'(k + 1)) Vk > K 2
[(24NT)Y/ ()] If g = Vk for some p > 1, then g > log, /,(24NT'(k + 1)) Vk >

K = [(log; o (24NT') +plog; ;, p)P]. Hence, the rate results of Theorem 3.1 will hold
after the transient period of K iterations.

3.1. Auxiliary results to prove Theorem 3.1. Let {Ek,vk,yk}kzo be the
iterate sequence generated by DPDA-D as shown in Figure 1 and {Wk}kzo be the
auxiliary sequence where w* is given in (2.8) for & > 1 and we set w° £ v0 = 0.
We first define the error sequence {e*};>o: let ef = (vF — w¥)/y V& > 0; hence,
e =e! =0 and for k > 0, we have

(3.5) o = Py (Ivh 4 yF) - RE (LvF 4 yF).

In order to prove Theorem 3.1, we first prove Lemma 3.3, which helps us to bound
L(E* vk y) — L(&,v,y") for any given (€,v,y) € Z and k > 1, where £ is defined
in (2.5); and then we provide a few other technical results which will be used together
with Lemma 3.3 to show the asymptotic convergence of {¢€*,v*, y*} in Theorem 3.1.

DEFINITION 5. Let D, and Dy be the diagonal matrices given in Definition 2.
Define a diagonal matriz C £ diag([Cy,lien’), and H £ [C Iy]. Given some 8 > 0,
define the symmetric matrix

[]‘3(5) ]ﬁﬁ} where  D(B) £ [D}fﬁ) 1%&7

(1>

Q(B)

D.(B) & diag([%—max{l7 Ly, +BLg, }ien) and D, & diag([%]ie/\/). Letu: ZxZ —

_ = _ o T
R*N such that u(z,2) £ [[||& - &|lfen [lwi —@illlien [y = Gilllica] € RPN,
LEMMA 3.3. Let X, Y, and Z be the spaces defined in Definition 2. Let {ik}kzo C
X be the primal and {yk}kzo C Y be the dual iterate sequences generated by Algo-
rithm DPDA-D in Figure 1, using some positive step-sizes, {7;, k;}icnr and vy, and
T
initializing from an arbitrary £ and v° = y° = 0, where X* = [ﬁk VkT]T for k> 0.

Define {x*} and {z*} such that x* = [EkT wkT]T € X and z¥ = [kay"“‘T]T €z
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for k > 0. Let {Br}r>0 be such that By > max;en Hyf“ for k >0, and then for any
x=[" wlT €X, andy € Y, {zF}150 C Z satisfies

ﬁ(xkﬂ,y) _ ,C(X,ykJrl)
< [Du(3,%%) + Dy (y,y*) = (T(x) = T(x"), y —y")]
= [Da(x,x" ) + Dy (y, y**) = (T(x) = T(x*), y — y**)]

(3.6) + EM(z) — Ju(z"1,2") TQ(Bk) u(z",2F) vk >0,

where u(-,-) is given in Definition 5, z¥ = [ka ykT]T, D, and D, are Bregman
functions in Definition 2, T(-) is given in Definition 3, E**1(z) £ ||e®|| ||w — w* ||+
ol HQe’“‘1 - ekH ||y - yk+1H, and eF & (vF —wk) /vy for k >0,

Proof. Given {v*};>0 generated as in Figure 1, let the {w*}; >0 sequence be
defined according to (2.7a)—recall that the {w*};>( sequence is never actually com-
puted in practice; this sequence will help us in our analysis of DPDA-D.

Let @, h, and possibly nonlinear map T'(-) be as given in Definition 3; hence, our
objective is to compute a saddle point for minyex maxyey ®(x) + (T'(x),y) — h(y) to
solve (1.2). Using this notation and the fact that v¥ = w* 4 vye* for k > 0, we can
represent {ék }, {w*}, and {y"*} sequences in a more compact form as follows:

(3.7a)

K = argmin. p(x) + f(x") + (VS (") + IT(c) Ty* + Uel, x = xb) + Da,x"),
xE

(3.7b)

¥ = argmin h(y) — (27(1) = T(x) = y(2¢5 — &), y) + D, (v, y%).
yey

where U = [0 I,,,]T € R(+m0)xn0 and {vk} is updated according to (2.11). Let
Sk(w) & <ek, W — wk+1>. Since p is a proper, closed, convex function and D, is a
Bregman function, Property 1 in [39] applied to (3.7a) implies that for any x € X,

(3.8)  p(x) = p(x"*1) + (VF(x") +IT(x") Ty", x —xH1)
> Dy (x,XF1) = Dy (x,%%) + Dy (xXF1, x) — S (w).

Moreover, the convexity of f; and Lipschitz continuity of Vf; implies that for any
& €R™,

fi(&) = ful(€D) + (Vfi(€h), & — &F) > fi(€FT)

(V) 6 — ey - L

k—‘rl k2
Lo ekt — ehP.

Similarly, since —y¥ € K*, the K-convexity of g; and Lipschitz continuity of Jg; imply
—{gi(&), vF) Z—(gi(ﬁf), i) = (Jau€) Ty, &= ¢&F)

BiLy,

— (g€, uk) = (Tauleh) Tk, & - - P

k+1 §k||

Summing the last two inequalities first for each 7, then summing over 7 € A, and
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(3.9) ®(x) — (") + (T(x) - T(x"*), y*)
> Dw(x,xk"'l) — D,(x, Xk) + % ka'H — ka%k — S{C(W)7

where

and D% £ diag([(= — (L, + BrLg,)n,Jien)-

i

Finally, since h is a proper, closed, convex function and D, is a Bregman function,
Property 1 in [39] applied to (3.7b) implies

(3.10)  h(y) — h(y*™) = 2T (x"*") - T(x"), y —y**")
2
> Dy(y,y"™) = Dy(y, y") + 5 [|y* = ¥"||p, —S5(),

where S5 (y) = v ((2e*! — ), y — y*1). Summing (3.9) and (3.10) and rearrang-
ing the terms yields

LM y) = Lx, ¥ 1) <8%(2) + [Da(e,x%) + Dy (y,9%) = (T(x) = T(x"), y = y*) ]

- [Dz(x7 x*) 4+ Dy (y, y* ) - <T(X) —T(x"), y - y'““> ]
2 1
Bt 2
Using the Cauchy—Schwartz inequality and Lipschitz continuity of g; for all i € N,
one can bound S*(z) as follows:

S*(z) < |le"||lw —w"
+7l12e" ! — e¥[[[ly — y* |- gu(z" T, 2") TQ(B) u(z* T, 2*)
Vxe X, ye€)Y, and k> 0. 0

Given some 3 > 0, the next lemma gives a sufficient condition on the local step-
sizes for Q(f) to be positive (semi)-definite.

LEMMA 3.4. Consider Q(B) given in Definition 5 for some 3 > 0. If positive
{7i, Kitien and v satisfy 7; < m, ki < % an_d (T% — max{1,Ly, +
BLg}(E =) > Cz Vi € N, then Q(B8) = 0. Moreover, Q(8) = 0 if the strict

inequalities in the last condition are relaxed to >-relation for some i € N.

1
St (2) & S (w)+55 () + (TOH) = Tk, yH 1 —yb )=~ [|xh 1 — x| et

2
ok
Hy y ’DN'

Proof. Given a permutation matrix

Iy 0 O
P20 o0 Iy|,
0 Iy O

Q(B) = 0 is equivalent to PQ(B)P~! = 0. Since v > 0, the Schur complement
condition implies

(3.11)
D‘r(ﬁ) -C 0 f)
A -1 _ _ B _ T(B) -C 0 0
PQBP ! = OC _[;,;V ;;Z -0 < { e ]_DH] - {0 IN:| > 0.
v

Note D, () = 0; hence, using the Schur complement again, one can conclude that
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the condition on the right-hand side of (3.11) holds if and only if D, — Iy —
CD,(8)"'C > 0, and equivalently (- —7) — (+ — max{1, Ly, + 8Ly, })~'C;, > 0
Vi € N. Hence, the conditions in Lemma 3.4 are both necessary and sufﬁ(nent for
Q(B) = 0. If the strict inequalities in the last condition are relaxed to include equality
for some i € NV, then it is sufficient for Q(3) = 0. O

Note that if {y*} C B, then we can set f¥ = 2B Vk > 0; hence, Lemma 3.4
implies that if the local step-size condition in (3.1) holds (possibly with equality for
some i € N), then Q(B*) in (3.6) is positive (semi)-definite Yk > 0, which helps to
simplify the analysis of Theorem 3.1.

3.2. Proof of Theorem 3.1. Using the two technical lemmas in the appendix,
we are ready to prove Theorem 3.1. The proof is divided into three subsections,
where we first show that the dual iterate sequence {y*} stays bounded even if a dual
bound is not provided, i.e., B = 0o; second, we prove the convergence of the iterate
sequences; finally, we provide rate statements for the infeasibility and suboptimality.

Under Assumption 3, a saddle point (£*,w*,y*) for ming v, maxy L(§, w,y) ex-
ists, where L is given in (2.5); moreover, any saddle point (£, w*, y*) satisfies that

* = 1® y* for some y* € By such that (£*,y*) is a primal-dual solution to (1.2).
Thus, y* € K° and L(€",w*,y*) = p(£"). Indeed, this implies (y*, w*) —oz(w*) =0,
which leads to ), w;y = 0, i.e., w* € C°. Hence, we have 0 = (y*,w*) = o5(w"),
and it trivially follows that if (£*, w*,y*) is a saddle point of £ with w* # 0, then
(£%,0,y*) is another saddle point of £. Therefore, under Assumption 3, there is al-
ways a saddle point of the form (£*,0,y*), i.e., with w* = 0. In the rest, let z* be a
saddle point with components (£*,0,y*).

Next, we state few useful observations later used in the proof. Given some 5 > 0,
when primal-dual step-sizes are chosen as stated in (3.1), Lemma 3.4 implies that
Q(B) = 0 and it follows from the definitions of D, D,,, and T that Vz,z’ € Z,

(3.12)  Da(x,x) + Dyly,y') — (T(x) - T(x), y—Y'>
i 2
> > dmax{l, Ly, + BLy }|& — €I + H w|* + 1y =Yl
1€EN
Moreover, the error term E¥*1(z), defined in Lemma 3.3, trivially satisfies

(313)  EM(z) <A@+t DG W = wl+ly" T —yl) ¥ k>0

3.2.1. Boundedness of dual iterate sequence. Next, we show that {y" te>o
and {w" }k>o are bounded. More specifically, our aim is to show that there exist
B,s,v € Ry such that if we choose the step-sizes as in (3.1) for any v > 0 and 8 > j,
then

(3.14) max{[lyf[[} <8, W<, [lef]|<vatk
1€

Vk > 0, where g_1 £ 0 and ¢y £ 0. Below we provide the analysis for two sperate
cases. We first define two quantities that are repeatedly used in the proof. Define
Co =Y 72 a%-1k < +oo, which implies Cy > 1. Let Ag = D, (x*,x°)+D,(y*,y°)—
(T(x*) = T(x°), y* —y°). Since we initialize w® = y* = 0, the proof of Lemma 3.4
2 o+ ||y*||]23m. Recall the definitions of C; and R, given
in section 3. Using (3.1), we get

* 2 . - ~ . -
(815) Ao < l€ = &lp + Iy b, < (B+DNRZ+(Cy+ 30N ylI” = Ao.

implies that 4y <

In the rest we assume C’g > 1.
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Case 1. Bound B on |ly*| is available, i.e., B € (0,00). In this part, we assume
that a nontrivial dual bound B € (0, 00) is available. Suppose we set 3 = 2B and we
choose the step-sizes as in (3.1) for some v > 0 and 3 > 3. Trivially, from (2.7d), we
have max;cn Hny < 2B < B for k > 0. Hence, Lemma 3.3 shows that Vk > 0, (3.6)
holds for 8; = 5. Moreover, the step-size conditions in (3.1) and Lemma 3.4 imply
that Q(B) = 0. Therefore, for any ¢ > 0, dropping the last term in (3.6), summing
over k € {0,...,¢}, and using Jensen’s inequality, we get Vz € Z,

(3.16) (£+ (LE™,y) - Lix,51)
< [Dax,x") + Dy (y,¥°) = (T(x) = T(x"), 5~ ¥°) |

B [D,T(x, Xe+1) 1 Dy(y,y“l) _ <T(x) B T(x“l) e+1 } ZEkJrl

where x/*1 £ (“_1) Z”l xF and yit! & (é+1) ZEH y*. For any ¢ > 0, setting z = z*
in (3.16) and using £(x“*!,y*) — L(x*, ") > 0 and (3.12) we obtain
¢
(3.17) WPy =y P Ao+ Y B ().
k=0

Hence, using (3.13), (3.17), and the fact that w* =0 V¢ > 0, we have

FE Wy =y D < & I Py -y
{41
(3.18) < Ao+ Yyl |+l D G IwHI+ly ™ — y*I)-
k=1
Next, we use Lemma 9.2 with uj, = %HW’“H—I—Hy* —y*|, Sk = %Ao for k > 0, and
A = 8(2||e¥|| + ||e*~||) for & > 1. Note (3.12) and w° = y° = 0 imply that
Ao > 7 ly*[|*; hence, we have u2 < Sy. Thus, Lemma 9.2 implies that V/ > 0,

(3.19)
41 041 2 041 A
LWy =y <SS Y Mty — + ( ZM) < 242 | e"]| +,/ 2,
k=1

For each i € N and k > 0, the definition of R* in (2 10) implies RE(y) €
Bo ¥y hence, from (2.11), [of* < [Jof + 7! FIHAIREGVY + ¥y (lvf (|44 B;
thus, max;enr ||vf || < 4vBk for k > 0, and we trivially get the following bound:

(3.20) Iv¥|<4yW/N Bk V k> 0.
Hence, for k > 0, since ||y*||< 2v/N B, it follows from (2.10), (3.5), and (3.20) that
(3:21) [le"T|< N Ta®||iv" + y*||< 2N*?Bla® (2k + 1) = v =4N*?BI.

Therefore, ||e¥|| satisfies (3.14) for v = 4N3/2BT". Using this result within (3.19), we
obtain

{41
(3.22)  [[W'TH < 249w > %tk + \/BAgy < ¢ £ 2490 C + /BAgy VL >0.
k=1
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Case 2. Bound B on ||y*|| is not available, i.e., B = oco. We set B = 400 in
Algorithm 1. We prove the claim in (3. 14) using induction; indeed, we construct
B,s,v e R+ and show for any v > 0, # > 3 and K > 1 that 1f (3.14) holds Vk € T =
{0,.. — 1}, then ||e|| < va?*-1K also holds and this implies ||w/| < ¢ and
max;e N{HyZ H} < B, which would complete the induction.

Since v¥ = w? = 0 and y° = 0, (3.14) trivially holds for k¥ = 0. Suppose for some
B > 0, (3.14) holds for k € Z; hence, max;en{||y¥||} < B for k € Z, and using the
same arguments as in Case 1, it can be shown that (3.16), (3.17), (3.18), and (3.19)
hold V¢ € Z. Next, using (3.5), (3.19) implies that

le® || = HP ( K- 1+eK—1+yK—1) _RE-1 (%WK—l_,’_eK—l_i_yK—l)H

Kl 84
< N Tt [ [t |+24 > [le¥||l+ /= + ly"|
k=1 v
P /84
(3.23) < N T'vais— (oﬂK—Q(K —1)+24 Z ¥ 1k + ( 20 ly ||>/1/>
k=1

The assumption qx > logy o (24NT'(k + 1)) for k > 0, and g1 = 0 imply that

a1k < for k > 0. Thus, for v £ ZNT(|y*|| + ,/8‘40) (3.23) is indeed
“I

24NF

bounded above by va?%-1 K, which proves the induction on He . Hence, using this

result within (3.19) for £ = K — 1, we obtain

K 84 8A
(3:24) JIWEIy Il 240 Y S0kt [ == + iy | < 24vCy +4 | L+l
k=1

where Cp £ 317, wX|| < 43 and

max;en{||yX ||} < B for all B > (52 NTCy + 1) ,/8‘4‘J +\/>Hy ||) Hence, using the
bound on Ay in (3.15), we derive a sufficient condition on S:

(325) B> (SNTCy+ )WN (IIy*II +\/ ((6+1) + (Cyg + 27 lly* ))

Note that (3.25) implies that there exists 3 € R such that 8 > ||y*|| and V3 > 3 and
¢ =70, (3.14) holds when the step-sizes are chosen as in (3.1) using 8. Thus, when
primal step-sizes [1;];enr are chosen sufficiently small and {gx} are chosen such that
qr > 1087/, (24NT'(k + 1)) and 3777, a%1k < oo, both {y*} and {w*} are bounded.
Moreover, solving the quadratic inequality in (3.25), we get

(326)  5=O(LNT2CER2 + N/ *TCo( |yl +\/L(R2 + Gy lly*[1))).

If g; is an affine function (L,, = 0) Vi € N, then choosing g as before and setting
7 = (max{1, Ly, } + C,,) ! for i € N guarantees that {y"*}; and {w"}; are bounded.
Moreover, since D, does not depend on (3, the term (3 + 1) R2 on the right-hand side
of (3.25) becomes R2; thus,

8= 0(N20Cy (ly"l| + /2 (B2 + Cy v ) ))-
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3.2.2. Convergence of iterates. In section 3.2.1, we showed that there exist
B,s,v € Ry such that if we choose the step-sizes as in (3.1) for any v > 0 and 8 > 8,
then (3.14) holds V& > 0. Consider a saddle point z* = [x* 'y*']|T of £ in (2.5),
where x* = [E*TW*T]T. Trivially, (3.13) and (3.14) imply that

o
(3.27) ZE’““ ) < 3ymax{Z lw* = w4y =y} Y et < oo
k=0

Evaluating (3.6) at z = z*, we get

(3.28) 0 < L(xFFL y*) — £(x*,y*) <af —aFftl — bk 4 c*

for k > 0, where a¥ £ D, (x*,x") + Dy(y*,y*) — (T(x*) = T(x*), y* —y*), b* £
3 Hu(zk-s-l’zk)Hé(ﬁ)’ and c* & E*¥*1(z*) for k > 0. Clearly, b* > 0 and c* > 0 for

k > 0. Moreover, from (3.12), we get a* > 0 for k > 0. Since Y ;o E*"1(z*) < oo,
Lemma 9.1 implies that limy_, a® exists. Thus, {a’“} is a bounded sequence; and
due to (3.12), {z*} is bounded as well. Consequently, there exists a subsequence
{z"~},, such that z¥» — z# as n — oco. Thus, there exists N; such that Vn > Ny, we

have ||zF» — 2#|| < §. Moreover, Lemma 9.1 also implies Y77 Hu(zk"’l,zk)Hg(B) <

oo. Since Q(B) = 0, for any € > 0, there exists Ny such that Vn > Ny, we have
||ZFn ! — 2k 5. Therefore, by letting N = max{Ny, No} we get [|z"» 1 — 2#|| <
€, ie., zFrtl — z# as n — 00.

Note that (3.14) implies ||*|| — 0 as k — oo for any {gx} such that Y37, a%k <
+o0. Recall that v, (x) = § [|€]5, + 3 [WI|5,, and ¢, (y) = 3 [[y||5, are the strongly
convex functions corresponding to Bregman distance functions D, and D,, respec-
tively. In particular, D(x,X) = ¥5(x) — ¥2(X) — (Vi (X), x —X), and D, is de-
fined similarly. The optimality conditions for (3.7) imply that ¥n € Z,, q" €
ap(xk”*l) and p" € Oh(y*»+1), where q" £ wa(xk") — ng;(xk”“) — (Vf(xFe) +
JT(xk)Ty +Ue ), and p" £ Vb, (yF) — Vb, (y*n 1) 4 27 (xknt1) — T(xFn) +

v(2ekn 1 — ekn). Since Vb, and Vi, are contmuously differentiable on dom p and
dom h, respectively, and since p and h are proper, closed convex functions, it follows
from Theorem 24.4 in [37] that dp(x*) > lim, q" = —Vf(x*) — JT(X#)Ty#, and
Oh(y™) 2 lim,, p" = T(x%), which also implies that z# is a saddle point of (1.4).

Since (3.28) is true for any saddle point z*, by setting z* = z* in (3.28), one
can conclude that s# £ limy, s* > 0 exists, where s* £ D, (x#,x*) + D, (y*#,y"*) —
(T(x#*) = T(x*), y# —y*) for k > 0. Since lim, (T'(x#) — T'(x*»),y# —y*) =0
(from zF» — z7), clearly s# = lim,,_,o, s*» = 0, which together with (3.12) implies
that z¥ — z7#.

3.2.3. Convergence rate. Recall that we initialize v' = w® = 0 and y° = 0;
K a

hence the 1nequahty in (3. 16) can be written more explicitly as follows: let &
= Zk 15 ,and wK £ sz , wF and then for any &, w, and y, and VK > 1,

K

(3.29) L&, w5 y) - L& w,35) <O(2)/K

where ©(2) £ 2 [wl2+(y, W)+ Sien |5 16— €0 125 sl + (9:(6) — 94(60), 03)
+ ZK ' EFt1(z). Given the step-size condition in (3.1), the Schur complement con-
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1
P

C.—

9 Ty

o j‘m

dition guarantees that [ =T ] for any i € NV; therefore,

3‘1\) o

(330 0 <3 [l — &Il + 5w+, w +ZE’““

iEN

In the rest fix K >1anda saddle point (&%, w*,y*) of £ in (2.5) such that w* = 0.
Let g = 2 ||y | Pree (= 9(€))/IPie( - 9( €))le K°, and define X = [3K];cn
such that 39X = §% Vi € N, ie, 5 = 1 ® ¥ € C, and also define wX £
|| Pee (S’K)Hil Peo(y5), where C O C defined in (2.2) is a closed convex cone and
C° denotes its polar cone. Note that y* € C and wX € C° imply <§'K,WK> < 0.
Recall that every closed convex cone @ C R™ induces an orthogonal decomposition on
R , 1.e., according to Moreau decomposition for any y e R™, there exist y' € Q and
y? 6 Q° such that y = y +y and y 1L y?in partlcular yl = PQ( ) and y? = Poo (y).
Thus, (WX, §5) = (WX, Pe(y )+Pco( )) = ||Pee (55)|| = de(35). Note that
for each i € A/ we have 3 € K° since y € K°Vk=1,...,K and K is convex; hence,
ok (gX) = 0 for i € N. Moreover, wX € C° implies oc( V) = 1co(WE) = 0; and
since C C C, we also have os(Ww) < o¢(W’) = 0. Therefore, we can conclude that

os(W) =0 since 0 € C. These observations imply that
(3.31) LW 5% =€) = Y (a6, 5°) — de(3").
ieN

Similarly, from the definition of §* € K°, — 32, <gz(§K) 95 = 2|ly* || dic(—g(€X)),
and since % € C, we also have <V_VK, yK> —og(w ) < supy, <W, y > —og(w) =
15(y%) = 0. Note ox (§%) = 0 since §* € K°. Thus, we conclude that £ satisfies

K K - 2K . 2K
(3.32) LE" W 55) > o€ ) + 2yl de - 9(€"))-

Combining (3.31) and (3.32), we get

(3.33) c@K K55 - e v ")
(&) — o€ + 21yl de( — 9€")) +de 3" ) + Y (aite

€N
Moreover, <§/K, v?/K> <0, (3.29), and (3.30) imply that

(3.34)

EE W, 5) — £(e w37 < 0(a) /i < Mt i P o A0

where 25 = [¢"7 (WF)T (35)T]T and A1 2 £ + 5,00 (216 — Q1P+E |-
Recall that we fixed a saddle point (£*, w*,y*) such that w* = 0; hence, we have
L&, w*,y*) = (&) and o5(w*) = 0. Moreover, since (§*, w*,y*) is a saddle point,
we have E(EK,W*,y*) — L(&",w*,y*) > 0 and L(&*,w*,y*) — L(&", w*, y5) > 0;
therefore, these facts imply that

(335 Y (0(€), 520, w€) —p(€) + Iyl de( - 9€5)) 20,

1EN
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where we used y* € K°, i.e., (y*,y) < (y*, Pre(v)) < |ly*|| dc(y) Yy € R™. Therefore,
combining (3.33), (3.34), and (3.35) gives us the infeasibility and consensus results in
(3.2) and also the upper bound in (3.3); while the inequality on the left in (3.35) gives
us the lower bound for the suboptimality.

To show that A(vy, () is finite and independent of K, we bound ZkK:_Ol Ek+1(zK).
As in (3.27), using (3.13), (3.14), and (3.19), we get

K—1 .
D 1 D B ARl D 9l
(3.36) 2 Ay < 30C (1 + /B4y + 7(240Cy + 3VN |ly* H))

(recall Y77 ||e" || = vCp). Below we specify the bound in (3.36) for both cases.

For Case 1 where B is known, v = 4N3T'B (see (3.21)) and ||y*|| < B; hence,
using these facts and the bound on Ay given in (3.15) within (3.36), we get

Ay < N3TCoB O(1+ VIN(BRE + B2C,) + YNETCoB).

Moreover, the second inequality in (3.15) implies A; = O(% + N(BR2 + B2Cy) +
yNB?). Our aim is to optimize the O(1) constant of A; + Ay via carefully selecting
the free parameter . Setting v = (N3/2T'CyB)~! gives A(v, 8) = O(NB(R2+C,B)+

N32TCuB(1 + \/ %£2)) which implies the N dependency in (3.4).

For Case 2, where B is not known, v = 23 NT(|ly*|| + %)fsee the discussion
below (3.23); hence, from (3.36), we get Ay < O(N*T*C§(Ag 4+ yNmax{1, ly*[121).
For the sake of simplicity, suppose ||y*|| > 1. Moreover, A; = (’)(% + Ap), and since
Ag < Ag (see (3.15)), Ay + Ag = O(% + N2I'2C2 Ap). Selecting y = N32TCoR2, (3.15)
and the bound on § in (3.26) together imply that Ay + Ag = O(N%F3C§Ri||y*||2),
assuming N 2D > Cy/R% and N > 1/R2, which are reasonable since we are interested
in the bounds when N is large. Moreover, when g;’s are linear functions (L,, = 0) the
bound Ay can be simplified, i.e., Ag = N(R2 + (C, + 577) ly*|I). Therefore, choosing
= (N2TCp)~", we get Ay + Ap = O(N°T2CE(RZ + Cy [ly*|1*))-

Remark 3.5. For Case 1, assuming » o, a% (k + 1)? < 400 in addition to Cy <
+00, one can observe that using (3.20) and (3.21), the O(1) term takes a sim-
pler form: A(y,8) = A1 + 22(:_01 ER1(zK) < % + N(BR2 + B?Cy) + YyNB? +
12N3TB[Yr, a® 1k + 4/NBy Y1 a®1k(k +1)).

4. Fully distributed step-size rule. Recall that the step-size selection rule
in (3.1) of Theorem 3.3 requires some sort of coordination among the nodes in N
because there is a fixed v > 0 coupling and affecting all nodes’ step-size choice. To
overcome this issue, we will define «; > 0 for each node, which are node-specific and
can be chosen independently. Let D., £ diag([%lm]ie/\/) = 0 and define v £ [vi]ien
and C 2 {pe)y: JjeRm st F=pi=9 YieN, |jgl < 2B}—here, p =
[pilienr- Recall the definition of the Bregman distance function given in Definition 2:
D,(x,x) = 1 ||¢ - EH;, + 1w — v‘vH%w. Switching to D, as defined above, (2.7a)

2
k+1

should be replaced with w1 < argmin,, oz(w) — (y*, w) + 3||lw — vk||%)7. Using
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1
the change of variables % £ D2 w, it can be rewritten as

1

_1 1 1 _1
(4.1) whtl < D2 argmin oz (W) + §||W —(D2vF + DS 2yM)|%,
W
1
where we use the fact that oz(D,>W) = oz (W). Now, we can write (4.1) in a
proximal form and using Moreau’s decomposition, we get
1 1 1
whtl =D, > prox, (D3 vF + D, 2y")
ST 1 1, EER
=D, > (D3v" + D, 2y" — Pa(Div" + D, *y")).
~ 1
Note that p € C implies that D2p = 1y ® § for some § € R™ such that ||g|| < 2B.

1 ~
Therefore, for y = [y;]iear € R™, the projection of D, %y onto C can be computed as

_1 _1 2 _1 1 _1 _1 2
Ps(Dy ?y) = argmin %HD7 2y — pH =D,?2 <1 ® argmin §HD7 2y -D,2(1® Q)H >
peC llgll<2B

-1 1
(42) = Dry QPB(M(]_]_T ®Im)D,Yly)
ieN i
Let P,(y) £ 1y ® Pg, (ﬁ DN ’yiyi); hence, we get that
(4.3) whtl = D! (Dyvk +y* — P (DvE yk)>.

Thus, we propose approximating P.(-) using an approximate convex combination
operator R%(-) = [RF()]ien such that it can be computed in a distributed way, i.e.,
Rf() can be computed at ¢ € N using local communication. More precisely, suppose
R§ satisfies a slightly modified version of Assumption 4, where (2.10) is replaced with

(4.4) RE(w)eB  |RE(w) —Py(w)[|[< N Ta® |w| VweR™.
Provided that such an operator exists, instead of (2.11), we set vFT1 as follows:
(4.5) v Do (Dﬁ,vk +y* - REDVF + yk)).

With this modification, we can still show that the iterate sequence converges to a
primal-dual optimal solution with O(1/K) ergodic rate provided that primal-dual
step-sizes {7, K; }ienr and {7;}ien are chosen such that 7, = (max{1, Ly, + BL,,} +
Co) ™Y, ki = (Cy, + )P Vie N.

In the rest of this section, for both undirected and directed time-varying commu-
nication networks, we provide an operator Rﬁ satisfying (4.4). For y = [yi]ien € Y,

define p,(y) £ ﬁ Y ien Yivi; hence, we have P, (y) = 1nx ® Ps,(p,(y)). There-
fore, we should consider distributed approximation of p,(y). Given y; € R™ and
~v; > 0, which are only known at node i € N, we next discuss extensions of techniques
discussed in Section 2.1 to compute the convex combination ), v Yi%i/> icnr Vi-

First, suppose that {G'} is a time-varying undirected graph and {V'};cz, a corre-
sponding sequence of weight matrices satisfying Assumption 5. For w = [w;];en € Y
such that w; € R™ for i € N, define

(4.6) RE(w) £ Py ((diag(W!rTamtey)~tiyietants o T,) D'w)
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to approximate P, (-) in (4.3). Note that R%(-) can be computed in a distributed fash-
ion requiring g communications with the neighbors for each node. Using Lemma 2.1,
it is easy to show that R’fY given in (4.6) satisfies the condition in (4.4).

Second, suppose that {G} is a time-varying M-strongly-connected directed graph,
and {V'};cz, the corresponding weight-matrix sequence as defined in (2.13) within
Section 2.1.2—so that (4.6) can be computed over a time-varying directed network.
Given any w = [w;];en and {7; bienr, the results in [27] immediately imply that for any
s € Ly, the vector (diag(W"*~)~'W"*®I,,)D;'w converges to the consensus convex
combination vector 1y ® p,(w) with a geometric rate as ¢ increases. Indeed, this can
be trivially achieved by using a different initialization for the push-sum method. Next,
we state a slightly modified version of the convergence result in Lemma 2.2.

LEMMA 4.1. Suppose that the digraph sequence {G'}¢>1 is uniformly strongly con-
nected (M-strongly connected), where G* = (N, EY). Given node-specific data {w;}icn
CR™ and {7v;}ien C Ry, for any fixed integer s > 0, the following bound holds for
all integers t > s:

VN e
5 2 il 0=
1EN

diag(W"*y @ L)~ (W"* @ L,) DI'w — 1y @ py(w)]| < i .

1
for some § > Nﬁ and0 < a < (1 - W) M where N = |N| and Ymin = mingen ;.

Proof. The proof follows from Corollary 2 and the proof of Lemma 1 in [27]. 0O

Thus, RE(-) defined in (4.6) satisfies the requirement [[RE(w) — P, (w)[|<
NT a9 ||w|| in (4.4) for
Ll s
’Ymin\/]v (SO&

and for some a € (0,1) and J > 0 as stated in Lemma 4.1.

5. A distributed algorithm for static network topology. We extend the
results in [2] to nonlinear constraint functions {g; }ienr. Given an undirected, static
communication network G = (N, £), following the discussion in section 1.2, the corre-
sponding SP problem for the static network is given as ming w maxy { >, 0i (&) —
(9:(&), i) —(w, My): y; € K° Vi € N'}. In Figure 2, we propose a modified version
of the DPDA-S algorithm [2] (see Section 1.2) to solve (1.2) over G.

Algorithm DPDA-S ( %, v, {7, kiYien )

Initialization: 30 < 0, s% < 0, €N

Step k: (k > 0)
Logbt e prox,,, (68— m(VAE) = IgTut)), o e e Gh -8, €N
2. yF*  Prons, [yf — K (2gi(£f“) —gi(&H) + wpf“)], ieN
3. sFT oyt Sl i eN

F1G. 2. Distributed PDA for static G (DPDA-S).

DPDA-S needs only one communication round per iteration; moreover, since
DPDA-S does not require inexact averaging (hence no error accumulation), its analysis
is much simpler than and directly follows from the analysis of DPDA-D. The following
theorem states the convergence rate for the iterates of DPDA-S.
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THEOREM 5.1. Suppose Assumptions 1, 2 with Gt = G for t > 0 and 3 hold. For
any v > 0, let the primal-dual step-sizes {7;, k; bienr be chosen such that

(5.1) 7 = (max{l, Ly, + BLg,} + Cy) ™", ki = (Cy, +Y(ddmax +3))71 VieN.

for some 3 > 0. Given B € (0,00], let By = {y € R™ : ||y| < 2B}. Starting from
sO =y = 0 and an arbitrary £°, let {(Ek)}kzo be the primal, and {y*}r>o be the
dual, iterate sequence generated by DPDA-S, displayed in Figure 2. For any v > 0,
if B> 0 is chosen as discussed below, then {({fk,yk)}kzo converges to (€, y*) such
that y* = 1 ® y* and (€*,y*) is an optimal primal-dual solution to (1.2). Moreover,

both infeasibility, F(EK,}?K), and suboptimality, |<p(€K) — (&Y, are O(1/K), i.e.,

G2) FE )2 1Myl de (—o€")) < 202,
63 0<e@) - ol€) + vl e (~o@)) < M pEr gx)

VK > 1, where Ay, 8) = 55 + Xien 116 — 17+ lv*|1>.
Case 1. If a dual bound is known, i.e., B < oo, then (5.2) and (5.3) hold for
B = 2B; moreover, setting vy = (NB)™1 gives A(v,8) = O(NB(R2 + CyB + 1)).
Case 2. If the dual bound does not exist, then set B = oo within DPDA-
S. There exists 3 > 0 such that (5.2) and (5.3) hold V3 > B; moreover, select-
3

ing v = R2\/N/dmax leads to A(y,3) = O(N2/dmaxR2 max{1,|jy*||’}) and 3 =
O(V/Ndpax max{1, ||y*||}) for N sufficiently large.?
Proof. The results follow from the analysis of DPDA-D in section 3 and [2]. 0O

Remark 5.1. In [2, Theorem 2], the rate result is provided for the case that g; is
affine for 4 € /. For this case, a dual bound is not needed; hence, the suboptimality
and infeasibility rate is O(A/K) for some A = O(N(R2 + C, |y*||*)) when v = 1/N.

6. Computing a dual bound. Recall that the definition of C in (2.3) involves
a bound B such that ||y*|| < B for some dual optimal solution y*. In this section, we
show that given a Slater point we can find a ball containing the optimal dual set for
problem (1.2). To this end, we first derive some results without assuming convexity.

Let ¢ : R — RU {400} and g : R™ — R™ be arbitrary functions of & and
K C R™ be a cone. For now, we do not assume convexity for ¢, g, and K, which are
the components of the following generic problem:

(6.1) p* £ minp(§) st g(§) € K :y ek,

where y € R™ denotes the dual vector. Let ¢ denote the dual function, i.e.,
s [ infep(§)—yg(§) ifye Kk

(6.2) q(y) = { —00 otherwise

We assume that there exists § € ° such that ¢(§) > —oo. Since ¢ is a closed concave
function, this assumption implies that —q is a proper closed convex function. Next
we show that for any § € domgq = {y € R™ : ¢(y) > —oo}, the superlevel set
Qy = {y € domgq : q(y) > q(y)} C K° is contained in a Euclidean ball centered
at the origin, of which the radius can be computed efficiently. A special case of this
dual boundedness result is well known when I = R’} [40]—see Lemma 1.1 in [33];
however, it is not trivial to extend this result to an arbitrary cone K with int(K) # 0.

2For simple bounds, we assume N > 1/R2 and v/ Ndmax > Cq/R2.
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LEMMA 6.1. Let € be a Slater point for (6.1), i.e., £ € relint(dom o) such that

—g(€) € int(K). Then Vy € domq, the superlevel set Q5 is bounded as follows:

(6.3) lyll < (#(€) — a(@))/r* Yy € Qg

where 0 < r* £ min,{—w'g(€) : |wl|= 1, w € K*}. Note that this is not a
convex problem due to the equality constraint; instead, one can upper bound (6.3)
using 0 < 7 < r*, which can be efficiently computed by solving a convex problem

(6.4) P& quli}n{—w—rg(f) s wlh=1, we K*}.

Proof. For any y € Qy C K°, we have that

(6.5) 4(9) < qly) = inf{p() - y g(€)} < (&) -y g(8),

which implies that 3" g(€) < ©(§) — q(7). Since —g(€) € int(K) and y € K°, we
clearly have 5 g(€) > 0 whenever y # 0. Indeed, since —g(€) € int(K), there exist
r > 0 such that —g(€) + ru € K V||u||< 1. Hence, for y # 0, by choosing u = y/|y||
and using the fact that y € K°, we get that 0 > (—g(&) + 7y/||lyl|) "y. Therefore,
(6.5) implies that Yy € Qg, rllyl< y g(€) < (&) — a(y); hence, |ly|< £&22®,
Now, we will characterize the largest radius 7* > 0 such that B(—g(§),r*) C K,
where B(—g(€),r) = {—g(€) + ru : |lu| < 1}. Note that 7* > 0 can be written
explicitly as follows: 7* = max{r : di( — g(&) + ru) < 0 Vu s.t. |ul|< 1}. Let
v(r) £ sup{dic( — g(&) +ru) : |lu|| < 1}; hence, r* = max{r : ~(r) < 0}. Note that
for any fixed u € R™, dx-(— g(&) +ru) as a function of 7 is a composition of a convex
function di(-) with an affine function in r; hence, it is convex in r € R Yu € R™.
Moreover, since the supremum of convex functions is also convex, y(r) is convex in r.

From the definition of di(-), we have

6.6 y(r) = sup inf ||€ 4+ g(€) —rul| = sup inf sup w' (&4 g(€) —ru).
(00 ") \|u|\§1€€’<” © : lluf| <1 8K Jwj<1 =)

Since {w € R™ : |w||< 1} is a compact set, and the function in (6.6) is a bilinear
function of w and & for each u, the inner infg and sup,, can be interchanged to obtain

v(r) = sup sup inf w! (f —|—g(§) - ru)
lul|<1 ||w|<18€K

= sup w' (g(€) —ru) = sup w'g(€) +rfuwl.

flul| <1 llw]|<1
llw]| <1 weL*
well”
Let w*(r) be one of the maximizers. It is easy to see that ||w*(r)|| = 1, since the

supremum of a convex function over a convex set is attained on the boundary of the
set. Therefore,

y(r) = HSIﬁgleg(E) + 7.

wek™
Since r* = max{r: (r) <0},
(Py): r* = max{r cr < —sup{w' g(&): |w|=1, we IC*}} = HrnHiE1 —w' g(€).
wek™”
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Note that (P;) is not a convex problem due to the boundary constraint, ||w|= 1.
Next, we define a related convex problem:

—w'g(€) <r* = min —w'g()
lwll1=1 [lw]|=1
wer™ wekr”

to lowerbound r* so that we can upper bound the right-hand side of (6.3). Let w* be
an optimal solution to (P;) and define w = w*/||w*||;. Clearly, ||@w|1=1and @ € K£*.
Moreover, since |w*||1> |[Jw*||= 1 we have that

- - 1
0<7= min —w'g(€)<-w' g€ =—
=2 ©) © [w* ]l

we

Remark 6.1. Consider the problem in (1.2). Given a Slater point &, one needs to
solve the minimization problem (6.4) in a distributed fashion, e.g., using the method
in [3], to obtain a dual bound B € (0,400). Suppose ¢;(-) > ¢ Vi € N and N is
known by all agents. Once 7, the optimal value to (6.4), is computed, one can set
B = (p(€) — N¢)/7, i.e., § = 0. Moreover, if a Slater point exists but is not available,
one can solve the problem of £ = argming F (3o 9i(&)) in a distributed fashion
using methods proposed in [12] to obtain a Slater point where F : R™ — R is a
generalized logarithm function for the proper cone K (see [7, section 11.6.1] for the
definition). Next, B can be computed as discussed previously.

Remark 6.2. Let g; : R® — R be the components of g : R — R" forj =1,...,m,
ie., g(&) = [g9;(&)]]L,- When K =R, [33, Lemma 1.1] implies that for any y € dom g
and £ such that ¢g;(§) <0Vj=1,...,m, every y € Qj satisfies ||y|| < (p(&)—q(y))/7,
where 7 £ min{—g;(€) : j=1,...,m}. Note that our result in Lemma 6.1 gives the
same bound since r* = min,{-w'g(€) : |w|=1, w e RT} =7.

7. Numerical experiments. We implemented the DPDA-D algorithm and
tested its performance on two different sets of problems.

7.1. Basis pursuit denoising (BPD) problem. Let £* € R" be an unknown
sparse vector, i.e., most of its elements are zero. Suppose r € R™ denotes a vector of
m < n noisy linear measurements of £ using the measurement matrix R € R™*",
ie., [|[RE" —r|| < e for some € > 0. The BPD problem can be formulated as

(7.1) min ¢, st |RE 7] <e

BPD appears in the context of compressed sensing [18] and the objective is to recover
the unknown sparse £* from a small set of measurement or transform values in r.

Given a set of computing nodes N, suppose each node i € N knows r € R™
and stores only n; columns of R corresponding to a submatrix R; € R™*™ such
that n = >, \yni and R = [R;]ienr. Partitioning the decision vector & = [&]ien
accordingly, the BPD problem in (7.1) can be rewritten as follows:

(72) el Ll st I RE—rl<e

1EN

Note that (7.2) can be cast into a form similar to (1.2). Indeed, let x : R = RU{+oc0}
such that x(¢t) = 0 if t = ¢, and 400 otherwise; and let K denote the second-order
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cone, i.e., K ={(y,t) e R"™ xR: |ly|]| <t}. Hence, (7.2) can be written as

teR,gieRu£7 Y %\:/”&”1 +x(t) st < g R& — > cK
1

iEN

First, we test the effect of network topology on the performance of the proposed
algorithm, and then to benchmark this distributed algorithm, we also solve the same
problem in a centralized way using the Prox-JADMM algorithm proposed in [15].
Note that Prox-JADMM solves the problem in a centralized fashion, which naturally
has a faster convergence than a decentralized algorithm. The aim of this comparison
is to show that the convergence of the proposed decentralized algorithm would be
competitive with a centralized method when the nature of the problem requires one
to store and access the data in a decentralized manner. In the online technical report
[1], we also examined the performance of the DPDA-S algorithm [2] and benchmarked
it against Prox-JADMM as well.

7.1.1. Problem generation. In what follows, we consider two different forms of
the problem in (7.1): noisy, i.e., € > 0, and noise free, i.e., ¢ = 0. In our experiments,
we set n = 120 and m = 20. For the noisy case, as suggested in [4], the target signal
&* is generated by choosing k = 20 of its elements, uniformly at random, drawn
from the standard Gaussian distribution and the rest of the elements are set to 0.
Moreover, each element of R = [R;;] is independent and identically distributed (i.i.d.)
with standard normal distribution, and the measurement r = R£* + 7, where n € R™
such that each of its elements is i.i.d. according to Gaussian distribution with mean 0
and variance 02 = k 10~5/10this would generate a measurement vector r with the
signal-to-noise ratio (SNR) equal to S, where SNR(r) £ 101log,, (E[[|RE*|I*]/E[||7]/*])-
In our experiments, we consider S = 30dB or 40dB. Finally, ¢ > 0 is chosen such
that Pr(||n||> < €2) = 1 — o, and we let @ = 0.05. For the noise-free case, the noise
parameters, i.e., 02 and €, are set to 0; hence, the constraint for the noise-free case is
a linear one, i.e., >\ Ri§; = r—the rest of the problem components are generated
as in the noisy case.

Generating an undirected small-world network. Let G, = (N,&,) be
generated as a random small-world network. Given |N| and the desired number of
edges |E,|, we choose |N| edges creating a random cycle over nodes, and then the
remaining |&,|—|N| edges are selected uniformly at random.

Generating a time-varying undirected network. We first generate a random
small-world G, = (N, &,) as described above. Next, given M € Z,, and p € (0, 1),
for each k € Z,, we generate G' = (N, &), the communication network at time
te{(k—1)M,...,kM — 2} by sampling [p |E,|] edges of G, uniformly at random
and we set EFM-1 = £, \ Ufi/ék_fl)M E!. In all experiments, we set M =5, p = 0.8
and the number of communications per iteration is set to g, = 10log(k + 1).

7.1.2. Effect of network topology. In this section, we test the effect of net-
work topology on the performance of DPDA-D on undirected communication net-
works. We consider four scenarios in which the number of nodes N € {10, 40} and
the average number of edges per node, |E¢|/N, is either 1.2 or =~ 3.6. For each sce-
nario, we plot relative suboptimality, i.e., |p(€¥) — p(€%)|/|@(€%)], infeasibility, i.e.,
(I32sen Ri&F —r|| — ), and consensus violation, i.e., max;en [|yf — ﬁ dojeN Tl
versus iteration number k. All the plots show the average statistics over 50 randomly
generated replications. In each of these independent replications, both R and £* are
also randomly generated in addition to random communication networks.
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Fic. 3. Effect of network topology on the convergence of DPDA-D: the top row corresponds to
noise free and the bottom row corresponds to noisy experiments with S = 30dB.

Testing DPDA-D on time-varying undirected communication networks.
We first generated an undirected small-world network G, = (N, &,) as described
earlier. Next, we generated {G'};>0 as described in section 7.1.1. We chose the
initial point & of DPDA-D such that the components are i.i.d with the standard
uniform distribution and set the step-sizes as follows: v = 1, 7, = WllRiH’ and
Ki = W for i € N. The performance of DPDA-D in terms of suboptimality,
infeasibility, and consensus violation is displayed in Figure 3. It is clear that when
compared to the effect of average edge density, the network size || has more influence
on the convergence rate, i.e., the smaller the network the faster the convergence is;
however, the average edge density does not seem to have a significant impact on the
convergence.

7.1.3. Benchmarking DPDA-D against a centralized algorithm. In this
section we benchmark DPDA-D on both undirected and directed networks against
the Prox-JADMM algorithm on BPD problems under three different noise levels:
S =30 dB, S = 40 dB, and noise free, i.e., S = +oo dB. Prox-JADMM is a multi-
block ADMM using Jacobian type updates and the block-i update has an additional
proximal term % ||&; — ff”j, for each i € N, where {P,};cnr are positive-definite ma-
trices satisfying certain conditions. We choose the parameters for the Prox-JADMM
algorithm as suggested in section 3.2 of [15], i.e., by setting the matrix P; in the prox-
imal term to be P, = (NI — 10 R/ R;)/||r||, for i € N, and {P;};,cn are adaptively
updated by the strategy discussed in section 2.3 of [15].

Time-varying undirected network. For undirected time-varying networks we
fix N =10 and [E'|/N = 1.2, i.e., |E,|/N = 1.5—we observe the same convergence
behavior for the other network scenarios discussed in section 7.1.2. In each replication,
we generate the network sequence {G'};>o and choose the parameters as in time-
varying network experiments of section 7.1.2. Figure 4 shows the comparison between
the two methods in terms of suboptimality, infeasibility and consensus violation. We
observe that different noise-levels lead to similar convergence patterns; however, the
lower SNR ratio leads to faster convergence, and the noise-free case has the slowest
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Fic. 4. Comparison of DPDA-D and Prox-JADMM over an undirected time-varying network
for three different noise levels.
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Fic. 6. Comparison of DPDA-D and Proxz-JADMM over a directed time-varying network with
three noise levels.

convergence. For all noise levels DPDA-D is competitive against Prox-JADMM—a
slightly slower rate of DPDA-D is the price we pay for the decentralized setting to
reach consensus on the dual price over the time-varying network.

Time-varying directed network. In this scenario, similar to [34] we consider
the strongly connected directed graph Gg = (N, &;) in Figure 5 with N = 12 nodes
and |E4|= 24 directed edges. We generated {G'};>0 as in the undirected case, but
using G, instead of G,,, with parameters M = 5, p = 0.8, and g = 10log(k+1); hence,
{G'}4>0 is M-strongly-connected. Moreover, communication weight matrices V* are
formed according to rule (2.13), and we used the approximate averaging operator
RFE given in (2.14). We set the step-sizes as in the time-varying undirected case.
Figure 6 illustrates the comparison between DPDA-D and Prox-JADMM in terms of
suboptimality, infeasibility, and consensus violation when the network is both time-
varying and directed. The results of this experiment are similar to those for the
time-varying undirected case; hence, using unidirectional communications instead of
bidirectional did not adversely affect the convergence of DPDA-D.
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Fia. 7. Comparison between DPDA-D and mirror-proz.

7.2. Multichannel power allocation problem. Multichannel power alloca-
tion is a classic problem in information theory. Suppose there are a set of nodes
connected to each other over a time-varying wireless communication network and all
transmitting information to a receiver. Let the communication graph be Gt = (N, £?)
at time ¢ > 0. Each node ¢ € A/ transmits information over a different channel with
bandwidth b; (given) with a signal transmission power s; € [0, u;] watts and the signal
is exposed to Gaussian white (uncorrelated) noise of additive nature, with power w;
watts (given). According to the Shannon—Hartley equation the maximum capacity of
the channel associated with node ¢ € N is b;logy(1 + s;/w;). Suppose we want to
minimize the total power of the system subject to certain capacity requirement ¢ > 0,
e, min{} ;a8 0 D ien Diloge (1 +si/wi) >0, 0 <5 <ug}.

For numerical experiments, we consider the particular setup described in [26]:

(7.3) min Z & st Z bilog(1+¢&;) >4, £€]0, 1]|M,

e=leilien [% ieN

where ¢ = [¢i]iexr € RV and b = [b];ens € RV are chosen uniformly at random
between 0 and 1. We consider both static and dynamic networks; dynamic ones are
generated as in section 7.1.1 with |A|= 50 nodes and |€,|= 150 edges, and the static
one is set to G = (N, &,). In the experiments we set 6 = 5. For benchmarking, we
compared our algorithm against Consensus-Based Saddle-Point Subgradient (CoBa-
SPS)? [26] and Mirror-prox [22]—the former one is a decentralized algorithm while
the latter one is a centralized algorithm. The Mirror-prox algorithm requires the
global Lipschitz constant of VL, where L(€,y) =c"&€+ (3 ,cp bilog(1+&) — 0, y)
for € € [0,1]WV], which is v/2||b|. Mirror-prox and CoBa-SPS also require a bound
on the dual solutions. Similar to [26], for the Slater point & = 1,5, we have that

ly*]| < k)gg)r(r;i%. We compare DPDA-S against CoBa-SPS and Mirror-prox.
Since CoBa-SPS can only handle a static network, when the network topology is
time-varying, we compare DPDA-D only against Mirror-prox, where we set ¢ =
10log(k + 1) within DPDA-D. We choose our step-sizes according to (3.1), where
Ly, =0, Ly, = Cy, = b;, and we set v = 1/|N|. Figure 7 shows the performance of
DPDA-D in terms of suboptimality and infeasibility as well as consensus violation.
The performance of our method is comparable with the centralized Mirror-prox and
a slightly slower rate of DPDA-D is the price we pay for the decentralized setting.
Figure 8 compares the performance of DPDA-S against CoBa-SPS and Mirro-prox.
Although CoBa-SPS finds a feasible solution and remains feasible, the iterates are far

3The code is available online and it is used to implement problem (7.3).
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from optimality; and both suboptimality and consensus violations decrease with a slow
rate. DPDA-S has a superior performance compared to CoBa-SPS. The discontinuity
within infeasibility plots (middle figures) is due to achieving occasional feasibility
when both primal and dual iterates are approaching their optimal solutions.

8. Conclusions. We propose a distributed primal-dual algorithm, DPDA-D, for
solving cooperative multiagent convex resource sharing problems over time-varying
(un)directed communication networks, where only local communications are allowed.
The objective is to minimize the sum of agent-specific composite convex functions
subject to a conic constraint that couples agents’ decisions. We show that the DPDA-
D iterate sequence converges to e-suboptimality/infeasibility within O(1/€) number
of iterations. To the best of our knowledge, this is the best rate result for our setting.
Moreover, DPDA-D employs agent-specific constant step-sizes using local information.
As a potential future work, we plan to analyze convergence rates of similar primal-dual
algorithms under certain strong convexity assumptions.

9. Appendix.

LEMMA 9.1 (see [36]).  Let {a*}, {b*}, {c*}, and {d*} be nonnegative real
sequences such that a*™' < (1 + d¥)a® — bF + & vk > 0, S50 cF < oo, and
Yoo d® < oco. Then a = limy_,o a® exists, and > poy b* < 00.

LEMMA 9.2. Assume that {ux} . C Ry satisfies u3 < So and ui < Si +

Zle N Vk € {1,..., K} for some { S}, nondecreasing in k and {\;}E_, C R.
Then, the following inequality holds Vk € {1,...,K}:
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