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Abstract—In this paper, matching of correlated high-
dimensional databases is investigated. A stochastic database
model is considered where the correlation among the database en-
tries is governed by an arbitrary joint distribution. Concentration
of measure theorems such as typicality and laws of large numbers
are used to develop a database matching scheme and derive
necessary conditions for successful matching. Furthermore, it is
shown that these conditions are tight through a converse result
which characterizes a set of distributions on the database entries
for which reliable matching is not possible. The necessary and
sufficient conditions for reliable matching are evaluated in the
cases when the database entries are independent and identically
distributed as well as under Markovian database models.

I. INTRODUCTION

The exponential growth in both storage and sharing of
sensitive data in today’s interconnected world has led to major
privacy and security concerns. Databases containing micro-
information such as movie preferences, transaction data, and
health records are published and shared routinely in order
to develop methods to improve recommendation systems,
analyze financial markets, and facilitate research [1]. In order
to preclude leakage of private information, the members’
identities are often masked prior to publishing the database
[2]-[4]. However, it has been shown through several practical
attack scenarios that such basic measures are insufficient
in protecting the members’ identities and privacy. Some of
the well-known instances of privacy breaches include the
attack on the ostensibly anonymized Netflix prize database
using publicly available data on the internet movie database
(IMDB) [3], the de-anonymization of a Massachusetts hospital
discharge database using the cross-correlations with a public
voter database [5] and breaches caused by the release of
anonymized AOL search data [6].

Despite the various practical attack algorithms proposed in
the literature, a rigorous effort to investigate the conditions for
successful matching has been missing until recently. In [7], the
authors take the first step in this direction and provide condi-
tions for reliable matching by analyzing the performance of the
maximum a-posteriori probability (MAP) algorithm for a gen-
eral class of stochastically correlated databases. They provide
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conditions for the existence of successful matching algorithms
as a function of the value of the cycle mutual information
between the two databases. A related research direction uses
differential privacy techniques to reduce members’ privacy risk
by adding noise to database entries (in addition to anonymizing
member identities) [8]. The objective of differential privacy is
publishing databases in which the effect of changes in a single
entry element on the aggregated information in the database
is negligible. In [4], the authors consider a relevant problem
where the tradeoff between utility and privacy is investigated
when database anonymization (removing member identities)
and obfuscation (adding noise to database entries) is used to
ensure privacy preservation.

In this paper, we propose database de-anonymization
(database matching) schemes and derive theoretical guarantees
for successful de-anonymization. We consider a stochastic
database model, where the database entries are correlated
through a general joint distribution. Our formulation of the
database matching problem differs from the one in [7] in
several ways. First, in [7] it is required that a successful
de-anonymization algorithm match all of the database entries
correctly, whereas in this work we require that the fraction of
entries which are matched correctly converge to one as the size
of the database grows asymptotically. This relaxed criterion for
successful matching plays a crucial role in the applicability of
concentration of measure theorems used in this work. Second,
we consider a more general formulation where database entries
may be generated based on discrete distributions or probability
measures which are characterized by densities.

We build upon our work on de-anonymization of graphical
data [9], [10], and fingerprinting de-anonymization attacks
[11], and use concentration of measure theorems to pro-
pose a typicality matching scheme, where database entries
are matched based on their joint typicality with respect to
the underlying distribution. We leverage an extension of the
Shannon-McMillan-Breiman theorem [12] to provide sufficient
conditions for the success of the proposed scheme. In the
next step, Fano’s inequality [13] is used to provide tight
necessary conditions for successful matching. We evaluate
these results for two special classes of stochastic database
models: i) LI.D. database model where the database entries
are generated independently based on identical distributions,
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and ii) Markovian database model where each database entry
vector is generated based on a Markov random process. The
Markovian database model is of interest in various applications
particularly those that model time-series data. For instance,
health records databases follow the the Markovian stochastic
model as the members’ future health condition is related to its
past through the present condition [14].

The problem of database matching under the I.I.D. database
model is closely related to that of matching of Erdos-Rényi
graphs [15], where given a pair of stochastically correlated
graphs, the objective is to find the canonical labeling of the
vertices in the second graph based on the labeling of the
first one. The pair of adjacency matrices of two Erdos-Rényi
graphs resemble a pair of I.ID. databases. However, there are
fundamental differences between the two matching problems.
In graph matching, mislabeling a single vertex affects the
adjacency matrix entries corresponding to all of the edges con-
nected to that vertex [9]. Consequently, each mislabeled vertex
results in a permutation of the adjacency matrix, whereas in
database matching, mislabeling a member does not affect the
database entries. Consequently, we are able to derive necessary
and sufficient conditions for reliable database matching under
general stochastic models which would not be possible in the
graph matching problem.

In order to derive the aforementioned necessary and suf-
ficient conditions for reliable database matching, we build
upon the arguments used in classical information theory to
characterize the capacity of point-to-point (PtP) channels with
memory [13]. To this end, we construct an analogy between
the ‘codebook’ used in PtP channel coding problem and
the labeled database in database matching. In this analogy,
the labeled database entries are passed through a noisy test-
channel to produce the unlabeled database entries. Successful
matching of the database entries is analogous to reliable data
transmission over the channel. While, the analogy between
the channel coding problem and database matching is helpful
in deriving necessary and sufficient conditions for successful
matching, there are significant differences in the mathematical
formulation of the problems. One main difference is that in
channel coding, the codebook is designed to maximize the
transmission rate, whereas in database matching, the database
is given and cannot be modified to facilitate matching.

The rest of the paper is organized as follows: Section III
provides the formulation of the database matching problem.
Section IV describes the mathematical tools used in our anal-
ysis. Section V explains the proposed matching scheme and
provides sufficient conditions for successful matching. Section
VI provides necessary conditions for successful matching.
Section VII evaluates these conditions under several stochastic
models of interest. Section VIII concludes the paper.

II. NotarioN

We represent random variables by capital letters such as
X,U and their realizations by small letters such as x,u.
Sets and multisets are denoted by calligraphic letters such
as X,U. The set of natural numbers, and the real numbers

are shown by N, and R respectively. The random variable 1g
is the indicator function of the event & Random processes
are shown by sans-serif letter X,Y. For the random process
X = (X1, X», - - ), the probability measure corresponding to the
vector X" = (X;,X,,-+,X,) is denoted by P, x. The process
X is said to be generated based on Px = (P, x)nen- The set of
numbers {1,2,--- ,n},n € N is represented by [n]. For a given
n € N, the n-length vector (xy,x2,...,x,) is written as x".

III. ProBLEM FORMULATION

In this section, we provide the mathematical formulation of
the database matching problem. A database consists of a set of
entries, each containing information corresponding to one of
the members of the database. An entry is a real-valued vector
generated based on a predetermined probability distribution.
The following formally defines a database.

Definition 1 (Deterministic Database). An unlabeled database
(UDB) is a multiset Dy, = {u € R"|i € [n]}, where
u!" = (i1, i, ,Uim), i € [n] are called the entries of the
database, m € N is the length of the entries, and n € N
is the size of the database. A labeled database (LDB) 5,,1,,,
is characterized by the pair (Dy,,,®), where the bijective
mapping © : [n] — [n] is called the labeling function. The
entry u is said to correspond to the member indexed by O(i).

In this work, we study matching of randomly generated
databases, when the size and length of the database grows
asymptotically large. It is assumed that the information about
the ith member is completely described by a random process

= (Up1,Upp,--+), where i = O(@’). The ith entry in
a database with length m consists of the first m random
variables in the random process. The random variables in each
database entry, which correspond to the same member, may be
correlated with each other. However, entries corresponding to
different members are assumed to be generated independently
of each other. As a result, a randomly generated database is
completely described by its size m, entry length n, and the
underlying distribution for each of its entries Py,, i € [n]. This
is formalized below.

Definition 2 (Random Database). An (m, n, {Py,}ic(n)-UDB is
a stochastically generated multiset D,,, = {U" € R"|i € [n]},
where U!" = (U;1,U;p, -+ ,Uin),i € [n] consist of the first
m variables in the stationary random processes U;,i € [n]
which is generated according to Py,. An (m,n,{Py,}icrn)-LDB
Z_),,,’n = (D, ®) consists of an (m,n,{Py,licin))-UDB D,y
and a labeling function @.

We consider pairs of correlated databases. It is assumed that
the two databases have equal size and their entries correspond
to the same set of members. Pairs of entries corresponding to
the same member are called matching entries. These entries
are correlated with each other and are generated based on a
joint distribution and independent of all other entries.

Definition 3 (Correlated Databases) A pazr of correlated
databases (CLDB) is a pair (Z) " ) where Z)mn =

m,n? m n
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(D), 00, j € {1,2), and DY), = (U € R"i € [n]} is
an (m,n, {PUm},E[,,]) UDB. Two entries U( M and U(Z)m are
called matchlng if @) = 0D (). The matchmg entries
U; D and U; D™ qre a pair of correlated processes generated
accordlng to the Jjoint distribution PU(n ue- Entries which are

not matching are generated mdependentliz of each other.

Remark 1. For brevity, we assume that the entries cor-
responding to distinct members in the pair of correlated
databases are distributed identically and independently of
each other. More precisely, we assume that Pyoyo =
PU(‘n,U(_z),Vi € [n]. In this case, a CLDB is completely char-
acterilzed by the tuple (m,n,®V, 0@, Py yo). It is straight-
forward to extend the results presented in this work to the case
when the database entries are generated based on distributions
which are not identical with each other.

The objective in the database matching problem is to
leverage the correlation among the entries of two stochastically
correlated databases to match the labels of their members.
We consider families of databases whose entry length m and
member-set size n, grows asymptotically large, where the
value R = lim,,_c + - logy nyy, is called the rate of growth of the
database For a glven m, n, € N, a matching scheme takes the
pair (Z)m,, ,Dﬁ,f)nm) as its input, where the labeling function
for the first database is given, whereas the second labeling
function is missing. The scheme outputs a reconstruction of
the labeling function for 2)53),, The scheme is said to be
successful if the fraction of members which are matched
correctly approaches one as the length m and size n,, of the
database is increased asymptotically.

Deﬁlmtlon 4 (Family of Databases). A family of CLDBs
(ﬂn)nm Dy )»m € N is a sequence of databases gener-

ated according to Pyi», where (ny)men is an mcreasmg

sequence of natural numbers. Each labeled database Dm -
consists of the pair (z)ﬁ,{?nm,(af,{)), Jj € {1,2}, where Z),(fl),,m =
U e R"i € [n]), and UP™ = (UL UY,. - UL It
is assumed that ®f,{)(i) = ®£,{,)(i),\7’1 < min(m,m’),m,m’ €
N. The family of CLDBs is characterized by the tuple
(M) mens (@m)meN, (®m ey, Puo yo). The rate of growth

(rate) of the database is defined as R = lim,,_,«, %log2 Ny

In this work, we consider families of CLDBs whose rate of
growth is finite.

Definition 5 (Database Matching Algorithm). Consider a
family of CLDBs D D

(M) mens (@m))meN, (@m Iment, Puo yo). A matching scheme is
a sequence of mappings fy : (Z),(i)n ,Di,,z,)nm) - @f,f) The
scheme is called a successful matchmg scheme if

PODU™) =

),m € N characterized by

m n,,, m Ny

OPWP™) = Lasm— oo, (1)
where I is uniformly distributed over [n,,).

It can be noted that the criteria for successful matching
in Equation (1) requires the fraction of members which have

been matched correctly to go to one as the size and length of
the database grow asymptotically. This is in contrast with [7]
where all of the database entries are required to be matched
correctly simultaneously. The relaxation allows us to use the
typicality matching scheme which is described in the next
sections. Our objective is to find the matchability region R,
that is, the set of (R, Pym yo) pairs for which a successful
matching algorithm exists.

Definition 6 (Matchability Region). The pair (R, Pyo yo) is
said to be matchable, if for any family of CLDBs with rate of
growth R generated according to Py yo, there exists a suc-
cessful matching scheme. The set of all matchable (R, Py yo)
pairs is called the matchability region and is denoted by R.

IV. PRELIMINARIES

In our derivations, we make use of the asymptotic equipar-
tition property (AEP) of random processes. The AEP was first
proved for finite-valued, stationary and ergodic processes using
the Shannon-McMillan-Breiman theorem [16]. An extension
of this theorem was later proved for stationary and ergodic
random processes which take values over a standard Borel
space [12]. In this section, we provide a brief summary of the
latter result and its relevant implications.

Consider a stochastic process X = (Xj, X5,--+), where X;
take values over a standard Borel space. Let the joint distri-
bution on the first n elements in the process (X;, Xz, -+, X,)
be denoted by P,. Assume that P, is absolutely continuous
with respect to the Lebesgue measure so that the density

function f,() Jx, %, x,(-) exists. Conditional densities
&n+1C1) = fx,.1x,.%, x,Cl),n € N are defined in the standard
way.

Definition 7 (Entropy). For the random process X =
(X1,X2,--+) characterized by the family of densities
fx,.x%. x,-1 €N, the relative entropy rate is defined as:

Hrer(X) = 1im B(=10g [gr1 (Xpu1 X1, X2, -+, X))

Lemma 1 (Barron [12]). For the random process X =
(X1,X2,--+) characterized by the family of densities
fx,. % x,- 1 €N, the following holds:

1
— log[ fu(X1, X2, -+, Xu)] = Hrer(X),

where the convergence is in the almost sure sense.

The following is a direct consequence of Lemma 1.
Proposition 1 (Typicality). Define the typical set associated
with the random process X as:

1
A = (]I = ~10g [£,(<)] = Hrer(X)] < €},

where € > 0, and n € N. Then,
1) P(AHX) = 1 as n — co.
2) ¥'e ﬂz(x) = 2 Hrer(+e) < fulx) < 2—n(Hrer(X)—€)
3) 2Hrex(0=0 < M(AN(X)) < 2" Hrer®I) for large enough
n, where M(:) is the Lebesgue measure.
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The AEP holds for pairs of correlated stochastic processes
as well. Consider the pair of processes (X,Y) characterized
by the joint density function f,xy(-) = fx=y(-), where the
density is written with respect to the Lebesgue measure. The
following is a multivariate extension of Proposition 1.

Proposition 2 (Joint Typicality). Define the typical set asso-
ciated with the random processes (X,Y) as:

1
ALKY) = {0, ]I - - log [faxy (", y)] = Hrer(X, )| < €},

where € > 0, and n € N. Then,
1) P(AXX,Y)) = 1 asn— oo.
2) (X", Yy e AXXY) =
2-n(Hrer(X.Y)+e) < fulx™ < 2 —n(Hger(X,Y)—€)
3) 2"HrerXN)=€) < M(AN(X,Y)) < 2" Hrer X)) for Jarge
enough n.

We use the following result which follows from Propositions
1 and 2 using standard information theoretic arguments.

Proposition 3. Consider the correlated pair of stochastic pro-
cesses (X,Y) characterized by the sequence of joint densities
faxy.n € N. Let f,x and f,y be the marginal densities
corresponding to X and Y, respectively. Assume that the
processes X' and Y’ are generated according to the marginals
fux and f,v independently of each other. Then,

P((X/n’ Y/n) c fﬂﬁ(X, Y)) < 2—n(I(X;Y)—3e)’

for large enough n, where the mutual information is defined as
I(X,Y) = HRER(X) + HRER(X) - HRER(X, Y), neNand e > 0.

V. DATABASE MATCHING SCHEME

In this section, we propose a database matching scheme
based on the concept of joint typicality of stochastic pro-
cesses described in the previous section. Recall that in the
problem under consideration, we are given a pair of corre-
lated databases along with the labeling function for the first
database. The objective is to find a faithful reconstruction of
the labeling function of the second database. To this end, for
each entry in the second database, the matching scheme finds
a unique entry in the first database which for which the two
entries are jointly typical. If such a unique entry exists, then
the two entries are matched. Otherwise, the entry is added
to an ambiguity set. Once this process is performed for all
database entries, the unmatched entries in the ambiguity set
are matched using a random and uniform index assignment
function. This is described in more detail in the following.

1 2
Let (D). Dor)

m n’
be a CLDB and assume that we are given (Dm’n, D,(,,z,)n).
The matching scheme finds ©®("),i’ € [n,] which is the
reconstruction of the value of the labeling function for the i'th
entry in the second database as follows. If there exists a unique
entry Ufl)’m € Z)ﬁ,’ﬂn i € [n,,] such that

Fix m,n, € N, € > 0, and Pyo yo.

(Ufl),m’ UISZ),m) c ﬂZ‘(U“), U(Z)),

then @@ (i) = ®@1(j), otherwise the index i’ is added to the
ambiguity set £’. Define the following set:

= {ili € [n,] — IM(©O®)),

where Im(f) is the image of f. The values @?(7),i’ € L
are then chosen randomly, uniformly and without replacement
from the set L. We call this scheme the typicality matching
scheme. The following theorem is proved in [17].

1 2
Theorem 1. For a family of CLDBs (Din)n ,_fn)n ),m € N

characterized by (nm)netts (@4 nerts (€3 )ners, Puw o), let R
be the rate of growth of the database. The typicality matching
scheme is successful if the following conditions hold:

R < I(UDV; U@,
VI. CONVERSE
In this section, we derive necessary conditions for the exis-

tence of successful matching schemes. The following theorem
states the main result of this section.

Theorem 2. Let (O, 0%).m € N be a family of
pairs of labeling functions chosen randomly and uni-
formly over the set of all labeling functions. For a fam-
ily of CLDBs (Z)ni)n, Dyn)»m € N characterized by
((nm),,,eN,(G)m))meN, (0, )meN,PU<1>,U<2>), let R be the rate of
growth of the database. Then, a necessary condition for the
existence of a successful matching scheme is:

R < I(UW; U@y,

Outline of the proof. Let P, be the probability of the scheme
being unsuccessful. Then, from Fano’s inequality we have:
(1)

m,n,,>

1 1
— + —P,log(n,!)

m m

DO

m,n,y

H(®<2>|z) )<
Ny,

1
< — 4+ P,logn,,
m
where in the last inequality we have used the fact that k! < k.
As a result,

1 1 1
L He?) - H<®<2>|_<m),, DD+ - 1(@5,?,_2,1 D2,
L 1, 60. — o
< — + P logn, + —1(0,”;D,,, . Dy, ).
m Ny ’
On the other hand:
—)
1©2; D,y , D2, ) = 102; D2, )+ [O2; D) |D2), )
@ (1) D
= 102D, |DD, ) =107,09, :D,,,)
S — ) Mm@
= 1D, i Dyn) = Z I(U@“ona)’ U @(2)’31_%.))

i€[ny]

< nyml(Uyp; Uy),

where (a) follows from ®,(3)JJ_Z)£5_),1W and (b) follows from
the fact that entries which are not matching are generated
independently of each other. So far, we have shown:

1 1
—HOP) < — +P, logn,, + mI(Uy; Uy).
n

m m
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On the other hand, we have H(©®®) — n,,logn,, as n,, — .
Hence, as n,, —» oo we must have,

logn,, < P,logn,, + mi(U;; Uy)
1
= (- Pe)(a logn,) < 1(U;;Uy) = R < I(U; Uy),

where in the second inequality we have used the assumption
that P, — 0 as m — oco. This completes the proof.

Remark 2. Theorems 1 and 2 provide tight necessary and
sufficient conditions except for the case when R = I(U;; Uy).

VII. SpeciaL CASES

In this section, we evaluate the necessary and sufficient
conditions for successful matching derived in the previous
sections under the I.I.D. and Markovian database models.

A. LI.D. Database Model

A family of pairs of databases generated based on the I.LI.D
database model is a family of CLDBs (Z_)ZI),,,Efj)n),m €
N characterized by ((1)mers (O ety (OF hmert, Py yo )s
where Pm,Uf”,UEZ)(HkE[M] (L(}l X (L[/%) = Tlkepm PUU),U(Z)((L[; X
(Ll,(cz)), i € [n,], U] X(L(f) € R?, where Py yo is a probability
measure on the two dimensional Euclidean space. Under the
I.I.D. model, we have:

1 1
1U:U%) = lim —1U " 0P = Tim > (U U)
i€[n]

= lim 1(UV; U®) = 1(UV; UP).
n—oo
Consequently, we have the following corollary to Theorem 1.

Corollary 1. For the family of databases generated based
on the I.1.D model as described above, a successful matching
scheme exists if the following inequality is satisfied:

R<I1(UV;UD),
where R is the rate of growth of the family of databases.
B. Markovian Database Model

A second stochastic database model of interest is the Marko-
vian database model. This model can used for a wide range
of databases such as health records and financial transactions
where the past elements of an entry are related to the future
through the present (and possibly a few of the recent past
elements). In the setup described in the previous subsection,
assume that the correlated pair of random processes (UV, U®)
are Markov of order / € N. Then, it is well-known that

(U, U@y = I(U(l) . U(2)1|U(1)’l, U@,

+1° = I+
Consequently, we have the following corollary.
Corollary 2. For the family of databases generated based

on the Markovian model as described above, a successful
matching scheme exists if the following inequality is satisfied:

D. 72 N 2),l
R < I(U: U UM, U,

where R is the rate of growth of the family of databases.

VIII. CoNcLUSION

We have investigated the problem of database alignment
under a stochastic database model where the correlation among
the database entries is governed by arbitrary but known joint
distributions. We have used an extension of the Shannon-
McMillan-Breiman theorem to propose a database matching
scheme. We have leveraged information theoretic tools such
as Fano’s inequality to provide a converse result which char-
acterizes a set of joint distributions on the database entries for
which reliable matching is not possible. We have evaluated
the bounds when the database entries are independent and
identically distributed and under Markovian database models.
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