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Abstract. The primary objective of this paper is to develop computationally efficient
methods for optimal stopping of an adaptive Phase II dose-finding clinical trial, where the
decision maker may terminate the trial for efficacy or abandon it as a result of futility. We
develop two solution methods and compare them in terms of computational time and
several performance metrics such as the probability of correct stopping decision. One
proposed method is an application of the one-step look-ahead policy to this problem. The
second proposal builds a diffusion approximation to the state variable in the continuous
regime and approximates the trial’s stopping time by optimal stopping of a diffusion
process. The secondary objective of the paper is to compare these methods on different
dose-response curves, particularly when the true dose-response curve has no significant
advantage over a placebo. Our results, which include a real clinical trial case study, show
that look-ahead policies perform poorly in terms of the probability of correct decision in
this setting, whereas our diffusion approximation method provides robust solutions.
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1. Introduction

The cost of inventing, developing, and introducing a
new drug to market has surpassed $2.6 billion (Tufts
Center for the Study of Drug Development 2014). The
biggest drivers of this high cost are clinical trials, the
cost of which depends on several factors such as
the number of participants, locations of research facili-
ties, and complexity of the trial protocol (Roy 2012). In
fact, the total cost can reach $300-$600 million for
large clinical trials (Griffin et al. 2010). The main goal
of dose-finding clinical trials is to identify a “target
dose,” whichis used in later stages with more patients
to confirm its effects and is considered a critical step in
the drug development process (Bornkamp et al. 2007).
This is because a poor selection of the target dose may
cause the Food and Drug Administration (FDA) to
disapprove Phase III, the next phase, which is the
most costly phase in drug development, as a result of
insignificant positive evidence (futility; see Snapinn
etal. (2006)) or exposure to unnecessary risk (adverse
effects). In fact, during 2000-2012, failure to select
optimal drug doses was a leading factor for the delay
or denial of drug submissions in the first submission
round by the FDA (Sacks et al. 2014). In particular,
several studies have shown that more than 50% of Phase
III clinical trials fail to establish the efficacious benefits of
the treatment (see, e.g., Grignolo and Pretorius (2016)).
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This high attrition rate is of particular concern be-
cause it demonstrates that more than half of the trials
that clear Phase II by indicating a positive evidence
of efficacy fail to produce similar outcomes in Phase
III. Grignolo and Pretorius (2016) suggested that in-
adequate Phase II studies and suboptimal dose se-
lection policies are among the major factors con-
tributing to this high failure rate. Considering the
high attrition rate and costs of Phase IlI clinical trials
motivates a new approach that is able to detect fu-
tility in earlier stages (Phase II) and provide a reliable
assurance for efficacious results. Early futility de-
tection in Phase II reduces the cost and risk of ex-
posure to futile treatments, whereas an assurance for
efficacious results may prevent the high attrition
rate in Phase III. Therefore, formulating an optimal
stopping problem capable of making optimal stop-
ping decisions for efficacy or futility while adapting to
different treatments and patient assignment proce-
dures has the potential to impact the drug develop-
ment process in practice. Compared with classic static
designs of clinical trials, adaptive designs generally
can reduce the cost of conducting a clinical trial be-
cause of their ability to modify the design while
the trial is still in progress. This enables an adap-
tive clinical trial to abandon an ineffective treatment
early in the process (Berry et al. 2002), and thus the
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optimal stopping of adaptive clinical trials is natu-
rally motivated.

We formulate the optimal stopping of an adaptive
dose-finding Phase II trial as a finite-horizon sto-
chastic dynamic program (DP), where at each inter-
mediate decision epoch, the decision maker (DM)
may abandon the trial as a result of futility, continue
the trial to collect more evidence about the dose-
response curve, or terminate the trial for efficacy
and move to the confirmatory phase. The dose-finding
trial is assumed to investigate the efficacy of multiple
doses (>2) with normally distributed patient re-
sponses with an unknown mean and a known ob-
servation variance. Considering that the main goal of a
Phase II trial is to identify a target dose for which the
efficacy should be tested versus a standard treatment
or placebo in a large patient population in Phase 11, a
key feature in our formulation is the incorporation of
an approximation of the probability of success at the
end of a confirmatory phase (Phase III) when deciding
to terminate the trial. Before further discussion on this
key feature, note that we decouple the dose allocation
procedure (i.e., select the assignment dose for the next
patient when the decision is to continue the trial) from
the stopping problem and fix it to some given policy.
This choice will potentially result in easier imple-
mentation in practice because most clinical trials are
still administered with a balanced randomized allo-
cation policy (similar to the setting studied in Chick
et al. (2017) and our case study, Hall et al. (2011)). In
fact, we include a randomized allocation policy in
addition to other adaptive benchmarks in our sen-
sitivity analyses to demonstrate the performance of
the proposed stopping rules with respect to different
dose allocation policies.

In order to approximate the probability of success
in Phase III, it is natural for the DM to consider
the power of the hypothesis test Hy : df* <0 versus
Hy :df* > 0, where df* denotes the expected response
improvement over a placebo or standard treatment
(assuming higher responses are favorable) (Miiller
et al. 2006). By approximating the probability of suc-
cess in the next phase, and considering the cost of
sampling patients and monetary benefits of identifying
a significant improvement over the placebo, a utility
function is constructed capable of incorporating costs
and benefits as well as the quality of the stopping
decisions, thus fulfilling our motivation. Moreover,
adaptive designs of clinical trials may address some
ethical issues. An adaptive approach considering early
abandonment is ethically motivated because it may
prevent the DM from assigning patients to ineffective
or toxic doses in early stages. Also, one can argue that
considering a term for approximating the probability
of success and ensuring a level of certainty for treat-
ments that clear Phase II to be tested for a larger

population in Phase III is also ethically motivated.
However, ethical debates on the design of clinical trials
are not settled; see, for example, Berry et al. (2004) and
Bothwell and Kesselheim (2017) for an extensive lit-
erature that spans a couple of decades.

Two main challenges are involved in the definition
of df* in a Bayesian setting: (i) the target dose is a
random variable at the beginning of each decision
epoch given the history of the states, actions, and
observations; and (ii) the expected response of any
dose (including the target dose) is also a random
variable at the beginning of each decision period given
the said history. These conditions introduce difficulties
in evaluating the distribution of df*. Addressing such
challenges requires a proper dose-response model
and a stochastic DP setup, which are discussed in
Sections 3 and 4, respectively. The resulting stochastic
DP formulation, however, suffers heavily from the
curse of dimensionality because the state space is
multidimensional and unbounded.

For this problem, Brockwell and Kadane (2003)
proposed an approximation procedure, which was
partially applied to the optimal stopping of a fully
Bayesian dose-finding trial (Berry et al. 2002). The
approximation is based on discretizing the state space
over a grid, using forward simulation until the last
decision epoch to create sample paths, and utilizing
backward induction to estimate the value function in
each cell of the grid at each time period. This method
is computationally extremely time consuming, and
Berry et al. (2002) stated that applying this method at
each decision epoch in a fully adaptive design is
“impractical.” Moreover, Grieve and Krams (2005)
noted computational difficulties of this method as the
main reason for considering posterior estimates in-
stead of forward simulation and backward induction
as a basis for the stopping rule in the Acute Stroke
Therapy by Inhibition of Neutrophils (ASTIN) trial.
Therefore, the main goals of this study are (i) de-
veloping computationally efficient algorithms for the
optimal stopping problem of a dose-finding trial
and (ii) testing the performance of the proposed
policies with available benchmarks via simulation in
settings where the correct stopping decision is aban-
donment or termination.

We propose two solution methods for this problem.
The first one adapts the one-step look-ahead frame-
work, in which the DM assumes that the next decision
epoch is the last one. This approach is computa-
tionally much less demanding than the benchmark
method because it only requires one-step forward
simulations. However, the induced stopping time by
this method may happen earlier than the optimal
stopping time (Proposition 1). In the second proposed
method, we consider a two-armed bandit version of
the problem with one unknown arm (the target dose)
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and one known arm (placebo), where the posterior of
df* (i.e., the advantage of the target dose over placebo)
is normally distributed as a result of our normality
assumption on patients” responses. Therefore, in a
continuous sampling regime, a scaled mean of df*
follows an It6 process, which enables us to formulate a
continuous-time Bellman equation for the continuous-
time optimal stopping counterpart. By using Itd’s lemma,
we show that the optimal value function to the continuous-
time Bellman equation satisfies a partial differential
diffusion-advection equation with boundary condi-
tions (Proposition 2). In addition, the solution to the
partial differential equation depends only on the
utility function (objective function of the DM), which
can be found up front, and identifies a continuation
region over the mean response (vertical axis) and time
(horizontal axis), which is easy to understand and
implement. We show how the two-armed bandit
results can be used to make effective decisions in the
setting of multiple doses and adopt the method for the
original stopping problem where the patients arrive
in discrete decision epochs. This method is also com-
putationally appealing because it bypasses forward
simulations, which are computationally time consum-
ing to find the decision regions.

In summary, our formulation is a methodological
exercise in exploring the potential advantages of the
diffusion approximation method in correctly termi-
nating, abandoning, or continuing a clinical trial. We
test the performance of the two proposed methods
along with the benchmark developed by Berry et al.
(2002) via simulation. We also conduct a case study
where data from a real clinical trial (Hall et al. 2011)
are used to investigate the performance of the pro-
posed solutions in a real-world setting. In addition to
the monetary value of a stopping decision, which is
the primary objective function, we report the prob-
ability of correct decision at the stopping time for each
method. We test the results on two settings: one where
there is a significant difference between the average
response of the target dose and placebo (the ultimate
decision is termination) and one where the said dif-
ference is negligible (the ultimate decision is aban-
donment). Our simulation results shed light on the
behavior and performance of each method and reveal
an important insight on the performance of these
methods for implementation in practice. Although
the adaptive optimal stopping problem is motivated
because classic solutions require complex simula-
tions and extensive computational efforts, our results
show that there is a key distinction in performance
with respect to treatments that do not produce sig-
nificant advantageous responses over the placebo. In
fact, we show that the diffusion approximation is
particularly effective in correctly abandoning inef-
fective treatments, whereas the one-step look-ahead

policy and the simulation-based gridding fail to cor-
rectly abandon the trial in our setting. This result is
also emphasized in our case study where the original
trial did not conclude with a clear termination or
abandonment result and suggested further investi-
gation to establish the efficacy of the underlying
treatment. In our retrospective analysis of the trial,
the diffusion approximation method also decided to
continue the trial because positive evidence suggested
efficacy, but they were not significant enough to
justify a termination decision. Because abandoning
the trial as a result of futility of the treatment is an
important factor in reducing the cost and health risks
associated with clinical trials, our results are of im-
portant potential practical value in designing adaptive
Phase 1II clinical trials.

Appendices in the online supplement include
detailed discussions of the dose-response approx-
imation model, proofs, details of the proposed al-
gorithms, additional numerical results, and sensi-
tivity analyses.

2. Related Works

Optimal stopping is an important decision making
problem and is studied in different communities
because of its vast applications. The optimal stopping
of a clinical trial has also received significant attention
because of its importance. For an overview of ad-
vancements in optimal stopping of clinical trials, see a
survey by Hee et al. (2016) from a Bayesian per-
spective and Jennison and Turnbull (1999) from a
frequentist perspective, as well as references therein. In
addition, Jitlal et al. (2012) and Deichmann et al. (2016)
reviewed hundreds of clinical trials considering early
stopping rules as a result of futility, effectiveness, or safety
concerns across different phases. Stallard et al. (2001)
reviewed different stopping rules specifically for Phase
II clinical trials.

Here, we only focus on Bayesian decision-theoretic
methods developed for optimal stopping of dose-
finding trials. One main method used in Bayesian
decision theoretic designs is based on forward sim-
ulation of the trial to the end and using backward
induction to estimate the value function over a grid
to ultimately evaluate the stopping region. Details
of this methodology are presented in Brockwell and
Kadane (2003), and it is adapted in Berry et al. (2002)
for a fully adaptive trial. However, this method is
computationally extremely demanding, and we pro-
pose two more efficient algorithms to solve this
problem. Our simulation results compare the per-
formance of the proposed solutions and the method
developed by Berry et al. (2002) with respect to es-
timated and true utility, stopping time, and the
probability of correctly deciding whether to termi-
nate or abandon the trial.
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Our first proposal is to adapt the one-step look-
ahead approach to the optimal stopping of dose-
finding trials. This approach is used for sequential
sampling in Bayesian settings, and Frazier and Powell
(2008) applied this method for the optimal stopping
of a ranking and selection problem. However, the
optimal stopping of a dose-finding trial is different
from a ranking and selection setup because the
DM has to consider the effects of the termination
decision on the next confirmatory phase of the drug
development process. This is accommodated for by a
hypothesis test in which the significance of the ad-
vantage of the target dose over placebo, calculated
by subtracting the placebo response from that of
the (random) target dose, is tested. Rojas-Cordova
and Bish (2018) analyzed an adaptive sequential al-
location and termination of the trial and investigated
the trade-off between establishing the efficacy early
on and more sampling to increase the accuracy of the
estimation. However, their setup is different in ob-
jective and is focused on Phase III trials with bi-
nary responses.

Our second approach is inspired by a work pre-
sented in Chernoff (1961), where a diffusion ap-
proximation is used to test whether the mean of a
normal distribution is positive. Such a method is used
in the optimal stopping of a Phase III clinical trial
(Chick et al. 2017) and in the optimal stopping of a
clinical trial with correlated treatments (Chick et al.
2018). However, the structure of our problem is dif-
ferent from previous studies because the DM has to
consider the power of a hypothesis test. Moreover, the
heuristic to extend the diffusion results to multiple
doses settings is particularly tailored to our setting.

3. Dose-Response Model

The relationship between the treatment dose of a drug
and itsinduced response (e.g., change in a measurable
medical outcome) is essential in dose-finding stud-
ies and is usually described by a curve or function

Figure 1. Typical Dose-Response Curves

(a)

referred to as a dose-response curve. For example,
Figure 1 presents three typical dose-response curves,
where the sigmoid shape in Figure 1(a) is one of the
most recurring dose-response relationships in theory
and practice (Gadagkar and Call 2015).

There are two main classic approaches to estimate the
dose-response curve. The first approach considers a
functional form up front (parametric), dictating the
shape of the underlying dose-response curve, and seeks
to estimate the parameters by adapting the model to
available observations (e.g., Kotas and Ghate 2018).
Another approach is to use a piecewise linear ap-
proximation (nonparametric) to the curve over a dis-
crete set of available doses (Berry et al. 2002). Here, we
present a first-order Bayesian nonparametric piece-
wise linear approximation to the curve, and we refer
the reader to Online Supplement Section 1 for further
discussion on the choice of the dose-response model,
the pros and cons of the parametric and nonparametric
models with respect to misspecification error, and their
computational and potential practical implications.

Denote the numerical score of a patient’s response
by y and the prescribed dose by z € Z, where Z :=
{Z;:j=1,...,]} is the set of all admissible doses. Let
©=(01,...,0;) denote a J-sized column vector of
unknown parameters, where 0; refers to the mean
response to dose Z; (index j is used in lieu of Z;
throughout this work). In particular, we assume that
atany given dose j, theresponseis givenbyy; = 0; + ¢,
where € ~ N(0,0?) (see, e.g., Berry et al. (2002)), and
o? refers to the uncertainty in observing a patient’s
response. By this construction, the response of pa-
tients at dose j is normally distributed with an un-
known mean 6; and a known variance o?. We can
interpret that such construction approximates the
dose-response curve by fitting a piecewise linear
function connecting consecutive 6;s. We consider a
Bayesian setup where the DM has a multivariate
normal belief about ® and updates her belief by each
patient’s response.

Response

Concentration

Sigmoid

Bell-shaped

Non-monotone
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Although some early Phase II studies investigate
binary or categorical responses to describe the success
or failure of a treatment, finding the most promising
dose usually involves a continuous response (Berry
et al. 2010). In fact, there are cases when categori-
cal responses are produced by considering a priori
cutoff thresholds for underlying continuous re-
sponses (European Network for Health Technology
Assessment 2013). Patients’ responses such as im-
provement in life-years, progression free survival,
blood pressure, temperature, weight, Hamilton de-
pression score, time to event (e.g., time to heal), and
various scoring systems are some examples of con-
tinuous responses (see, e.g., Biswas and Bhattacharya
(2016)). In constructing this dose-response model, we
assume that the error is normally distributed with a
known variance. This is a standard assumption, as the
primary endpoint (response) in the majority of trials
with continuous response is assumed to follow a
normal distribution (Julious 2004). See, for example,
Krams et al. (2003) for implementation of such a
setup in practice. In addition, our case study also
considers a continuous outcome, as it reports the
probability of achieving a five-year quality-adjusted
life-years (QALYs) for standard and treatment arms.
Furthermore, considering a known variance is usu-
ally justified for Phase II because an estimate of the
variance is already available from Phase I results
(Spiegelhalter et al. 2004).

3.1. Target Dose

The ultimate goal of a Phase II study is to identify a
target dose. We focus on the efficacy of the target dose
in Phase II of dose-finding clinical trials in order to
define a utility function for the stopping decision, and
thus EDgs, the smallest dose achieving 95% of the
maximal response, is considered as the target dose.
We formally define EDg5 as

EDys := mzin{z € Z:f(z,0) > 095 (zmax, ©)}, (1)

where zn,x denotes the dose with maximal response.
The target dose is different from the assignment dose
given to the patients throughout the trial by a fixed
allocation policy. The responses of patients to these
assignment doses are used to update the mean re-
sponse of different doses. The motivation for EDgs is
that the highest response may correspond to high
dosages (toxic doses), which may induce undesired
adverse side effects.

4. Problem Formulation

In this section, we present a stochastic DP formulation
for the response-adaptive optimal stopping of dose-
finding Phase Il clinical trials. At each decision epoch,
using the information accrued so far, a DM decides

whether to (i) abandon the trial because of significant
evidence of the inefficacy of the treatment, (ii) con-
tinue the trial to collect more information if there is
insignificant evidence of the efficacy of the treatment
with an expectation of improvement, or (iii) terminate
the trial for efficacy and move to a confirmatory study
when efficacy is verified by testing the treatment for a
large population.

The optimal stopping problem is accompanied by
an allocation procedure that upon continuation de-
cision identifies the next dose assignment. In this
work, we assume that the allocation decision is made
according to some predetermined rule. In particular,
we use a one-step look-ahead policy introduced in
Nasrollahzadeh and Khademi (2018) for dose as-
signment. We test the effects of other dose assignment
procedures on the performance of our proposed so-
lutions in Online Supplement Section 4.6. The ob-
jective of the optimal stopping problem is expressed
in terms of monetary values. This objective, which is
known as net present value, is appropriate in stop-
ping problems where sampling costs/rewards are
financial measures (Brealey et al. 2012).

Recall that © represents a vector of unknown ex-
pected responses corresponding to doses in set Z
where the resulting dose-response function is ap-
proximated by connecting consecutive 0;’s. Let n
denote decision epochs, let N be the total number
of (potential) homogeneous patients in the trial, and
let y"*! = 0. + €"*! be the observed response of patient
n + 1 after assignment to dose z", where (y"*1©, z") ~
N(6.1,02). We assume that the response of a patient is
observed before the next decision epoch. Define .#" as
the o-algebra generated by z°,y!,z!,y?,..., 2", "
Note that z° is the assignment dose before observing
any response, z" is given by the fixed allocation policy,
and 7 represents some stopping time at which .#*
describes the accrued information gathered by sam-
pling 7 patients. We use y and # to denote true and
simulated observations, respectively.

4.1. State Space

Decision epochs are set at the times when a patient
becomes available. We assume a possibly correlated
multivariate normal prior on our belief about ©;
that is, ©® ~ N (u?, £%). Observations y form a normal
likelihood distribution resulting in a Bayesian con-
jugate setup where posterior distributions on © are
also multivariate normal. Define u" := E[@|.%#"] and
" := Cov[®|Z#"] as posterior moments of the belief
about ©. At decision epoch n, the DM decides on
abandoning, continuing, or terminating only based
on the current estimate of the dose-response curve,
which is summarized by the posterior distribution
on parameter © given historical information 7"
(ie.,P(®|Z™M)). This posterior canbe completely described
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by the state variable s” = (u”, Z"). Thus, the state space
S is defined as

s"eS={(,T):ueR,zes,}uV,

where SL denotes the set of | X | positive semidefinite
matrices, and V denotes an absorbing state showing
the end of the decision-making process.

4.2. Action Space

At each decision epoch, if enough evidence (in the
form of current estimate of the dose-response) has
emerged to suggest that an effective target dose is
identified, and sampling more patients will not im-
prove the estimate by a significant margin consid-
ering the cost of sampling, the DM may decide to
“terminate” the trial and switch to a confirmatory
phase where the target dose is further tested to
confirm its effectiveness. On the contrary, the DM
might learn that the current estimate of the dose-
response curve shows no signs of effectiveness (e.g., a
flat dose-response curve), and sampling more patients
will only increase trial costs, and thus the DM may
“abandon” the trial. However, if the current estimate
of the dose-response curve suggests that an effective
target dose may be identified, and continuing the
trial with more sampling potentially may lead to a
significant improvement of the estimate and utility,
then the DM may “continue” the trial by allocating a
dose to the next patient, observe the response, and
update the current estimate of the dose-response
curve. Recall that the allocation scheme is assumed
to be given and independent of the optimal stopping
problem. Thus, define a"(s) € {0,1,2} as the decision
variable when in state s, where 0 shows that the de-
cisionis to abandon the trial, 1 shows the continuation
of the trial, and 2 shows that the trial is terminated.
Thus, the action space is described by A(s) := {a"(s) €
{0,1,2}, Vn < N}, where at stopping time n =1, or
n=N,a" €{0,2}. Fors =V, set A(s) := 0.

4.3. Transitions

Terminating or abandoning the trial at decision epoch
n determines the stopping time as 7 =n, and the
system transits to state V, where no more sampling is
allowed and the current estimate of the dose-response
curve remains unchanged. However, if the decision is
to continue the trial, a dose is selected according to an
allocation policy, and its observed response will be
used in order to update the current estimate of the
dose-response curve (i.e., transit to a new state). The
new state s"*! = (u"1, ") is described by

yn+1 — ‘un + 6(Zn,j)Xn+1,

2
Zn+1 =y _ 6_(Zn,j)5/(2n,j)l ( )

where j denotes the allocated dose, 5(X",)) := %,
ejis a J-vector of 0’s and a single 1 at the jth index, and
n+1

X+l .= \?(02—3:!:) follows a standard normal distribution
i

conditioned on .Z".

4.4. Objective Function

We consider maximizing a monetary equivalent of
benefits acquired as a result of early termination or
abandonment of the trial versus costs incurred by
continuing the trial with more sampling. If the de-
cision is to abandon the trial (i.e., 4" = 0), then no
immediate reward or costis incurred. If the decision is
to continue the trial (i.e., 4" = 1), then only a sampling
cost c; > 0 is paid. When the decision is to terminate
the trial (i.e., a" = 2), the immediate reward consists
of the monetary value of the advantage over a placebo,
if such an advantage is significant, minus the setup/
sampling cost in the confirmatory phase. Define
utility function u(a",s",.7") as the expected imme-
diate benefit (reward — cost) incurred when deciding
on action 4" in state s” given information .#" by

0 ifa" =0,
u(a",s", " =4 —c ifa"=1, (3)
—ciny + comE[Lp | F"] if a" =2,

where c{n, is the cost of sampling 7, patients in the
confirmatory phase (¢} > 0), and ¢, > 0 is the payoff
per unit advantage of the target dose over the placebo.
Considering economic health outcomes as primary
or secondary objective is well established in the lit-
erature and practice. For example, refer to Flight et al.
(2019) for a review of clinical trials with economic
health outcomes. A typical outcome in clinical trials
is QALYs gained, which may have a corresponding
monetary value that can be used to estimate the
benefit per unit improvement over the placebo
(see, e.g., Hall et al. (2011)). Let m,, = E[df*|.#"] de-
note the expected advantage over the placebo where
df* = 0+ — 0y, let z* be the (random) target dose, and
let Oy be the known and fixed response of the placebo.
Because z* is random with respect to .#", 0+ denotes
the posterior expected response at dose z*, and thus,
df* identifies the posterior advantage over the pla-
cebo. Furthermore, the indicator function ILg. de-
termines the significance of the advantage over the
placebo by considering the event B" in which the null
hypothesis is rejected when comparing Hy : df* <0
with Hy : df* > 0. In particular,

> Gt (4)

where yx and ¥ denote n,-sample average responses
of the estimated target dose and placebo at decision
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epoch n, respectively; and g, denotes the (1-a)
quantile of normal distribution with a being the
significance level for the hypothesis. Hypothesis tests
do not directly transfer to Bayesian settings. However,
an approximation may be developed to evaluate a
“Bayesian significance” where we wish to evaluate
the predictive probability of obtaining significant
results when testing the null hypothesis versus an
alternative hypothesis; see Spiegelhalter et al. (2004),
chapter 6.5.3. A similar setup is also implemented by
Miiller etal. (2006), and we use it in our setting as well.
Moreover, Lewis et al. (2013) and Liu et al. (2017) are
examples of real clinical trials that implement similar
frequentist setups to determine stopping times in
Bayesian frameworks.

The expectation E[IL|.#"] can be estimated with
an arbitrary accuracy by Monte Carlo as follows:
create a sample from © and calculate the target dose,
z*, for the said sample by Equation (1); create n,
samples from N (0,x,0%) and N0y, 0%); calculate ¥«
and ip and identify whether the event B" occurs; and
continue this process for enough samples and take a
sample average to estimate E[I.|.7"]. The utility
function defined here is tailored to Phase II clinical
trials and is designed to capture theimportant trade-
offs in this decision-making process. For example,
if the trial stops early because of futility, the treat-
ment has no merit, which is reflected in its reward
of 0. The cost of sampling patients up to that point
is captured by the cost associated with the previous
continuation decisions. If positive evidence for the
advantage over the placebo emerges, the DM has to
make sure that the evidence is significant and then
consider the cost of setting up a confirmatory phase
in addition to the cost of sampling patients up to
that point.

Given that a decision to abandon or terminate the
trial has been made at stopping time n = 1, the op-
timal expected utility is given by

G(s") = max u(a*,s*, 7"
(s%) max, ( )

= max{0, —c{n, + comE[Lpoy| Z7]}.  (5)

Therefore, forevery n < 1, the decisionhastobea” =1,
and a sampling cost ¢; is paid as the expected im-
mediate utility (i.e., u(@" = 1,s",.#") = —c1). Let I(s°)
denote the expected utility at stopping time 7, given
historical information .#* under policy @ when the
initial prior on the belief about © is s* = (u, Z0);
that is,
2},

Vrell, (6)

I(s°) = E”{—Cﬂ + n(gea{éz} u(n(a®),s", F7)

where I1 is the set of all nonanticipative admissible
policies, and the DM selects a policy m € I1 such that
V(%) = sup, 7 Ix(s"). Therefore, the optimal value
function is the solution to the following optimal-
ity equations:

V(s") = EF sup {=c1(t = n) + E[V(s")|.7"]},

>n+1
V(s") = G(s"), Vs € S. (7)
The state space defined on © is unbounded, and thus
standard stochastic DP techniques are computation-
ally intractable. We describe and implement the so-
lution developed by Berry et al. (2002) and propose
two different alternative techniques to solve the op-
timal stopping problem.

5. Approximate Solutions

In this section, we explain three approximate methods.
Berry et al. (2002) used a simulation-based gridding
algorithm discussed in Section 5.1 to evaluate stop-
ping times. This approach is computationally ex-
tremely expensive inimplementation and gives rise to
“static terminators” where for a few sample dose-
response curves, a large number of trials are simu-
lated forward in time to compute their average ex-
pected utility over a discretized grid by backward
induction. These approximations are used statically to
evaluate stopping times for “similar” dose-response
curves. Section 5.2 proposes a one-step look-ahead policy
to find stopping times, and Section 5.3 proposes a dif-
fusion approximation method, which are computa-
tionally more efficient.

5.1. Simulation-Based Gridding Approximation
Brockwell and Kadane (2003) and Miiller et al. (2007)
proposed an approximation method for the problem
defined in Section 4 where the state space is dis-
cretized by a grid over which a sufficient number of
experiments are run to estimate the final-stage value
function. The key idea is that in each cell of this
grid—say, cell j—the value of termination and aban-
donment can be evaluated easily. The value of con-
tinuation is the sample average of all the cells that are
visited in the next decision epoch by the experiments
currently visiting cell j. We present the details of the
approach for completeness and to clarify the differ-
ences between the assumptions used in this approach
with those in our setup.

To construct the grid, Berry et al. (2002) assumed a
normal prior on the advantage over placebo (i.e., df* ~
N (mg,v3)). Let (my,v,) denote the posterior mean
and standard deviation of the advantage over placebo
at EDgs at time n; that is, m, = E[df*|#"] and 12 =
Var[df*|.#"]. Construct a bivariate grid over possible
values of m and v, carefully considering their upper
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and lower bounds as follows. Given the allocation
scheme and thus the allocation dose z", simulate trials
i=1,...,M by generating observations f/l(.nH:N) and
update the current estimate of @ by calculating yE"+1:N)
and ZE"H:N). In order to estimate m, and v2, after the
current © is evaluated, simulate samples from O,
identify the target dose for each sample, and calculate
the posterior mean and standard deviation of df*
through sample mean and variance estimation. Re-
cord the trajectory of each trial (i.e., the sequence of
(my, vy)) over the bivariate grid for (m, v). For example,
Figure 2(a) shows 30 trial trajectories of m, on a
simplified univariate grid (only m, versus n) for
N =10. It is likely that some of the grid cells remain
empty; that is, no simulated trials resulted in m and v
values corresponding to that cell, which affects the
approximation quality. To fix that, consider a par-
ticular (m,, v,) corresponding to those cells as priors
and simulate a number of trials starting from those
cells. Thus, the entire grid is populated.

Remark 1. We assume a correlated multivariate normal
prior on ©; that is, ® ~ N (uo, Lo). However, z*=EDys is
random with respect to .#", and thus, 6+ is not nor-
mally distributed with respect to .7". In the simulation-
based gridding algorithm, the actual unknown distri-
bution of 0+ is approximated by a normal distribution
in the literature. However, we do not make such an
assumption in our proposed solutions.

To evaluate the optimal decision in each cell, start
from the last decision epoch N, when the continuation
decision is not possible, and the value function can be
computed by Equation (5). Denote by A the subset of
indices i € {1,..., M} whose trajectories terminate in

Figure 2. Gridding Approximation
(@)

9

Patients

An example of trajectories of simulated exper-

iments on a grid over (m,n)

the jth cell (which corresponds to an (m, v) pair) in the
grid (my, vy, n). For the last decision epoch N, this is
demonstrated by darker trajectories that end up in a
specific cell in Figure 2(a). The termination utility
function in the jth cell is evaluated by taking a sample
average of the value functions corresponding to trial
simulations whose trajectories terminated in that grid
cell; that is,

N 1 "
UJN(”N =2)~ @ ZA;] u]N(aN =2,8), (8)
1€. ;i

where l:I]N (aN = 2)is the approximated utility function
at decision epoch N in the grid cell j when the decision
is to terminate the trial, | - | denotes set cardinality, and
the utility function uN(aV,3V) is known for aV € {0, 2}
and &Y = (m,v}) for all i € AY, where m} and v}
correspond to the jth cell values for m and v, re-
spectively. Therefore, the expected utility of termi-

nation at the last decision epoch N is given by
u]N(aN =2, §{\T) = —cinp + sz]NE[]]_{BN}lyN]
Vie AY,

where BN := {%>qa}, with 202 + (v]N )? denot-
ing the posterior predictive variance of ix — jy. Thus,
the approximated value function in each cell of the
grid at decision epoch N is

XA/]T*/N = maX{O, l:I]N (@ = 2)}, 9)
where if V"N = 0, the optimal decision is to abandon
the trial in the jth grid cell (i.e., a;’N = (). Otherwise,
the optimal decision is to terminate the trial, a;’N =2.

(b)

Optimal decisions on a grid over (m, v) at deci-

sion epoch n
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Working backward, the utility function in the jth cell
for n < N when the decision is to continue the trial is
given by

i@ =1)~ Z Vit (10)

zGA"

where j(i) denotes a cell that trajectory i visits at de-
cision epoch n + 1. Therefore, the approximated value
function in each cell of the grid at decision epoch n <
N is

v = max{o, @ =1), @ = 2)}. (11)
Enumerating the entire grid backward until decision
epoch n identifies the optimal decision and value
function for each cell. Figure 2(b) shows a hypo-
thetical example of optimal decisions on the grid
(m,v) at a particular decision epoch n. Algorithm 1 in
Online Supplement Section 3 describes the method in
more detail. Berry et al. (2002) applied this approach
under a set of “typical dose-response curves” where
the approximate value function for each grid cell was
computed by taking the average of expected utilities
under the same set of dose-response curves. There-
fore, when a true observation from a dose-response
curve investigated in the trial becomes available at
decision epoch n, an (m,, v,)-tuple is evaluated, and
depending on which grid cell it falls into, the optimal
decision is identified. This approach may be prob-
lematic particularly when the unknown dose-response
curve does not closely resemble those in the typical set.
Furthermore, when the shape of the dose-response
curve is unknown and a response-adaptive dynamic
allocation scheme is trying to learn it, the resulting
response-adaptive optimal stopping problem becomes
computationally demanding. In Sections 5.2 and 5.3,
we propose alternative methods that are significantly
more efficient and can be used in a fully sequen-
tial setting.

5.2. A One-Step Look-Ahead Policy

Frazier and Powell (2008) proposed a kind of one-step
look-ahead policy (knowledge gradient) to optimal
stopping of ranking and selection problems by as-
suming that the experiment has to terminate at the
next decision epoch. We adapt such a framework into
the optimal stopping of a dose-finding trial with
unique challenges. In particular, we consider three
actions at each decision epoch—abandonment, con-
tinuation, and termination—whereas in most stan-
dard ranking and selection problems, only continua-
tion and termination decisions are available. Furthermore,
our utility function consists of E[ILg:| .#"], which is
emanated from evaluating the significance of the

advantage over the placebo via a hypothesis test,
when the decision is to terminate the trial.

To quantify the value gained in continuing the trial,
define VKS,(s) as a function that measures the dif-
ference between terminating or abandoning the trial
at time n and continuing the trial, incurring the cost of
sampling, and terminating or abandoning the trial at

time n + 1; that is,

angl(s”) = ]E{_C1 + ang}i&g} M(u”"'l, Sn+1,fn+1)|f”}

_ nogn 12
ag{aoé}u(a 88, F"), (12)

where the knowledge gradient policy ¢, hereafter
referred to as the KG policy, decides to continue the
trial (1 e., a™’(s") = 1), when VK, (s") > 0. In the case
that VKS 1(s”) < 0, the optimal decision is 1dent1f1ed by

(s") € arg maxge(o) u(a",s", #"). Note that a™ “(s)
is a function returmng the opt1ma1 decision selected
when in state s" under the KG policy €. In order to
evaluate VXS (s"), one needs to estimate both the
current expected utility function u(a",s", .#") and the
one-step utility function u(a"*!,s"*!, 7 "“) by taking a
sample average (Monte Carlo). Algorithm 2 in Online
Supplement Section 3 presents the details of this
procedure. This approach replaces multistep forward
simulations of the trial from decision epoch n to N by
one-step forward simulations, which significantly
reduces the complexity and computational time of
the algorithm.

The following result bounds the optimal decision
from below, and it shows that the KG policy may stop
sooner than the optimal policy; that is, whenever the
KG policy decides to continue the trial, the optimal
decision is also the continuation of the trial. This
proposition motivates a sensitivity analysis with re-
spect to the history of the trial. We later show that
stopping sooner than the optimal policy may result
in a low probability of correct decision in certain
situations. This is also showcased in our case study
where both the simulation-based gridding and the
KG policy result in unacceptable probabilities of
correct decision.

Proposition 1. The optimal stopping time t is bounded
below by the KG stopping time t%C; that is, ¢ < .

5.3. Diffusion Approximation

Although the complexity and computational time of
the knowledge gradient method is significantly better
than the simulation-based gridding method, both
require forward simulations to approximate the op-
timal solution to the value functions in (7). Instead, we
propose a method that assumes a prior belief about
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the actual benefit of the target dose over the placebo
and approximates its increments over time by a
continuous-time Wiener process, which enables us
to construct the optimal stopping boundaries up
front. This framework is inspired by Chernoff (1961),
where a diffusion approximation is used to sequen-
tially test whether the drift of a Wiener process is
positive. Our approach also approximates the stop-
ping time of sequential normal means (i.e., the ad-
vantage over placebo) by solving a continuous-time
Bellman equation. To that end, we first consider a
setting where there is a single unknown dose versus a
known placebo. Then, we design a heuristic that uses
the said boundaries for decision making in multiple
doses settings.

5.3.1. A Single Dose with Unknown Mean Response
vs. aPlacebo. Fornow, assume that the trial involves a
placebo with known mean response and a single dose
with unknown mean response. Without loss of gen-
erality, assume that yo ~ N(0,0%) and y« ~ NV(6,0?),
where 0 is unknown and a prior 6 ~ N (my,v3) is
given. Sett, = %. Forasingle dose, the advantage over

placebo is glven by dff =0 —-0=0; see Section 4.
Therefore, at each time period, a sample from the
dose with unknown mean response is observed, and
the posterior of 6 and, therefore, df”, becomes df|

~N (mn,g), where

t, =ty +mn,
t "
mn=—0m0+M. (13)
tn £y

In this setting, df* naturally follows a normal distri-
bution. Recall that in the utility calculation there is an
expectation to calculate, which by this construction
has a closed form. In particular,

V(2o +%)
= 1 — CD(Qa(mn/ tn))/

E[l{gnﬂgn] = > l]a|yn

where Qu (1, t,) = o — \/Z’;/;

rior predictive variance of = — Jjo, and <D( ) denotes a
normal cumulative distribution function.
Redeﬁne the state variable § = (m,, t,), and using
= (mo, ty), let 1(8°) denote the expected utility at
stopplng time 7 under policy © € IT when the prior is
parameterized by (my, tp); that is,

1.(3°)

202 + ‘7 is the poste-

= E™|-c17 + max{0, —cin,
+ o (1 = O(Qu (1, tT)))}|§0], (14)

where the DM selects a policy 7 € ITsuch that V*(3°) =
supnenl (8°). Define xo = mpty and x, = xo + XL, ¥4,
where m,, = *" . Using these definitions, the state var-
iable can be rewritten as §" = (x,,t,). Let G(x, t;)
denote the expected utility at the stopping time
given by

G(xT,tT)zmax{O clnp+cz (1 (I)(Q (’:T,tT)))}.

(15)

Because the utility functions are uniformly bounded
for any state and action, and the action space is fi-
nite, there exits a Markovian and deterministic op-
timal policy. The optimal policy to V*(my, to) =
SUP,cpg fn(mo, to) is the solution to the following Bell-
man equation:

B(xn/ tn) = maX{G(xn/ tn)/ —C1 + E[B(xn+1/ tn+1)|xn/ tn]}r
B(xzr, tz) = G(xe, tr), (16)

where t,11 = t, + 1, and x,41 = x, + {1

Optimality equation (16) has a continuous state
space, and thus it is computationally intractable to
solve. Therefore, in order to approximate the solution
to (16), suppose that patients’ responses are observed
continuously rather than at discrete decision epochs t,,.
This assumption is necessary for a rigorous devel-
opment of the method and is not required for im-
plementation in practice. In fact, we use stopping
boundaries developed in a continuous regime for the
stopping decisions of trials where patients arrive in
discrete time epochs. One can think of the continuous
equivalent of the cumulative sum x,, = xo + X, J, as a
Brownian motion with unknown drift 0 and variance
o? per unit time, which satisfies the following sto-
chastic differential equation:

dxt = 6dt+ath, (17)

where x; is an extension of x,, to continuous real values
for real-valued t, and W; is a standard Brownian
motion. Extend the definition of filtration .#" to be the
natural c-algebra generated by the process {x;}ey, 1]
(i.e., fﬁf[to’t”]). Therefore, the continuous-time ap-
proximation of the Bellman equation in (16) is
given by

Ct(Xf, t) = max{G(xf, t) —ClAt + E[B(xtmt,t + At)ly t]}
ct(xT/ T) - G(xT/ T)- (18)

The following proposition shows that B(x;, f) is the
solution to a free boundary problem with a partial
differential diffusion-advection equation and two bound-
ary conditions.
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Proposition 2. The term B.(x;, t) is the solution to the
following partial differential equation in the continuation set
G = {(xt,t) : —c1 AL+ E[Bet (Xprar, t +AHFL] > Glxy, )}
cht(xt, t) 8Bct(xt, t) ﬁ
ot dx t
1 3cht(xt, t) 2
+ Eiaxz o, (19)

where Be(xy,t) = G(xy, t) outside of the set €. The free
boundary 9 is given by

0=—c1 +

Bct(xt, t) = G(Xt, t)
cht(xt, t) _ 8G(xt, t)
ox  ox

on J€,

n 0%. (20)

Boundaries to the continuation set 4" can be found
without any trial simulation, which significantly re-
duces the complexity and computational effort re-
quired to obtain optimal stopping times. The solution
algorithm to the free boundary problem is described
in Online Supplement Section 3. We use trinomial tree
discretization method to solve the partial differential
problem of Proposition 2. Figure 3 demonstrates an
example of the solution to the free boundary problem.
The approximated optimal decision is identified by
determining the region of the state variable after each
new observation.

5.3.2. Multiple Doses with Unknown Mean Responses. In
the previous subsection, we construct the continua-
tion boundaries where there is only a single dose with
an unknown mean response. However, the original
problem consists of multiple doses for which the
mean response is unknown. Therefore, the target dose
z* = EDgs5 is random, and each continuation decision
may yield a different target dose with respect to the
sample path. This results in an unknown distribution
for df* when multiple doses are considered. In fact, if

Figure 3. An Example of Boundaries of the Continuation Set

\TermmatiOn

X Continuation
t //_/
Abandonment
t

there was only a single dose with an unknown mean
response, the allocation dose for continuation deci-
sions and the target dose were similar, and the pos-
terior advantage over the placebo, df*, was distrib-
uted according to a normal distribution. However, in
the multiple doses setting, the allocation dose for
continuation decisions may estimate a different target
dose, which results in df* not to enjoy conjugacy with
respect to the patient’s response. In the literature, a
variety of heuristic approaches have been proposed to
extend the results of a single alternative case to
multiple alternative settings. See, for example, Chick
and Frazier (2012) and Chick et al. (2018). However,
those approaches depend on the assumption that the
reward is equivalent to the maximum expected re-
ward of simulating the arm with the highest mean,
whereas in our formulation, the arm with the highest
mean does not necessarily yield the maximum ex-
pected utility. Thus, they are not applicable in our
setting. Therefore, we propose the following heuristic
to extend the single dose setting to the multiple
doses case.

Recall that for each dose Z;, there is a prior on the
expected response 0;. The diffusion approximation
boundaries only depend on the prior and the shape of
the utility function. Therefore, for each dose j, we
construct the continuation boundaries up front. The
idea is that, at each decision epoch, we estimate mZ =

% of the target dose z* and make decisions by con-
sidering the optimal region corresponding to dose z*
to check whether m, falls into termination, aban-
donment, or continuation regions. To thatend, ateach
decision epoch, we create a sample from the posterior
on ©, and for each sample, we use Equation (1) to find
the target dose. Then, we take a sample average to
estimate the target dose, and because the said sample
average may not be in Z, we round it to the closest
dose. Given the estimate of target dose z*, we simply
have m), = E{60|.7"}. The decision is found by re-
ferring to the optimal decision region correspond-
ing to dose z* and checking whether m; belongs to
an abandonment, continuation, or termination zone
at t,. Assuming a continuation decision at time 7, a
patient is assigned to a dose according to the allo-
cation scheme. Its response y"*! is observed and is
used to update the estimate of the dose-response
curve (i.e.,, ©). Then, this process continues until
the stopping time or all patients are tested.

6. Numerical Results

In this section, we present implementation results
of the simulation-based gridding algorithm, one-step
look-ahead policy, and diffusion approximation for a
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variety of settings. Because the performance of these
solution methods may differ depending on the adap-
tive dose allocation scheme, we assume that the dose
allocation algorithm is given by that in Nasrollahzadeh
and Khademi (2018) for all of the solution algorithms.
We include a sensitivity analysis in Online Supple-
ment Section 4.6 with different allocation policies to
investigate the robustness of our approach. To that
end, we implement a typical balanced randomiza-
tion allocation policy that assigns patients to each
dose with equal probabilities and is described as the
design norm in many areas of medical research. An
example of such an allocation policy is in our case
study where the trial had a balanced randomiza-
tion patient assignment. We also implement an adap-
tive randomization policy rooted in Thompson sam-
pling presented in Berry et al. (2010), chapter 4. To
assess the quality of solution methods with respect
to termination, abandonment, and continuation de-
cisions, two different types of dose-response curves
are tested:

i. A sigmoid curve with a significant advantage
over the placebo, one of the most recurring dose re-
sponses in practice (e.g., Gadagkar and Call 2015).
This curve is used to test the performance of differ-
ent stopping rules with respect to continuation and
termination decisions. For this curve, the opti-
mal decision at stopping is to terminate the trial
for efficacy.

ii. A flat dose-response curve, which is used to
assess the quality of different algorithms when the
correct decision at stopping is to abandon the trial for
futility. For further analysis on the shape of the un-
derlying dose-response curve, see Online Supple-
ment Section 4.5, where we discuss the performance
of the proposed methods with respect to a bimodal
nonmonotonic dose-response curve.

Recall that the problem is modeled as a Bayesian
Markov decision process, and naturally, the policies
are optimal when assessed according to a fully Bayesian
setup (i.e., problem instances). In other words, true
dose-response curves must be generated randomly
from the same prior, and the performance must
be measured with respect to the expectation under
the particular prior. However, because of compu-
tational difficulties in generating results for the
simulation-based gridding approach, we assess the
performance of these approximation methods with
respect to two dose-response curves (a frequentist
setting). Assessing different algorithms with respect
to a specific configuration is not unprecedented
particularly in clinical trials; see, for example, Berry
et al. (2002) and Krams et al. (2003). A sigmoid and a
flat curve are considered to highlight the performance
of these algorithms when facing favorable and un-
favorable cases.

6.1. Simulation Initialization

A typical number of doses under investigation in
Phase II of clinical trials is between 4 and 12 (e.g.,
Berry et al. 2002). We consider 11 doses including a
placebo. The first dose is considered to be a placebo,
and its known and fixed mean response marks the
baseline score for any particular treatment. At each
decision epoch, if the decision is to continue the trial, a
dose must be allocated to the next patient. We use a
one-step look-ahead policy to optimally select a dose
that minimizes the one-step posterior variance of the
target dose EDys. Thereafter, the patient’s response is
generated from the true distribution and is used to
update the posterior estimate of the dose-response
curve. Aligned with the literature, we assume that
the stopping algorithm is applied only after observing
the responses of a certain number of patients (e.g., 20)
have already been through the trial. The total num-
ber of patients volunteered for the trial is assumed to
be 400. We assume that the observation variance is
known and is fixed at 10 units. A sensitivity analysis
is conducted on this assumption in Online Supplement
Section 4.4, where we increase the observation variance
to test the performance of the proposed policies when
observations are less informative. The significance level
is considered to be 1% across all experiments.

We assume that the sampling cost ¢; = 1,000, sam-
pling cost in confirmatory phase ¢; = 1,000, and re-
ward per unit advantage over the placebo ¢, = 1,000,000.
This is to replicate the original settings of the study
by Berry et al. (2002). It is also a reasonable initiali-
zation for our case study where c; and c; are in the
same range. We also conduct a sensitivity analysis in
Online Supplement Section 4.7, where we investigate
the sensitivity of the proposed solutions to the ratio
of cost/benefit for different configurations of cy,cj,
and c;. The prior (19, L) is set according to g = (0, .. .,0),
and X is initiated by a Gaussian covariance function
where Cov(6;, 6;) = Bexp{—y(i - j)*}, where B is usu-
ally estimated by Var(6;). The Gaussian structure of
the covariance function allows for less correlation
when doses are farther apart. To keep the symmetry
of the covariance matrix,  is chosen to be equal to
Var(0;) + Var(0;) _

> =

100, and y, the lengthscale factor,

issetto 0.01 for both sigmoid and flat curves. This is to
ensure that initial values of the expected responses
carry little prior information about the shape of the
dose-response curve. A thinning factor of 5 is used in
generating random variables where every fifth ran-
dom variable created is used to avoid serial correla-
tion in the sequence of random numbers. In reporting
the results, 30 simulations with different sequences of
random numbers are considered. The simulation is
coded in the R programming language and is run on
an Intel corei7 3.7 GHz processor with 16 GB of RAM.
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In case of the simulation-based gridding algorithm,
recall that the advantage over the placebo (i.e., df), in
the literature, is assumed to be normally distributed
according to N (m,v?). The prior values for ny and v
are set equal to 0 and 10 to ensure that the prior carries
little information about the belief on df*. In con-
structing the grid over m and v, we consider the range
of m to be 20 units (i.e., [0,20]) and the range of v to be
10 units (i.e., [0, 10]). The grid is divided into 40 and 20
intervals in the m and v axes, respectively. Initially, to
populate the grid, M = 1,000 experiments are run, and
their (m,v) trajectories are recorded over the grid.
Afterward, from each empty cell in the grid, M’ = 10
more simulations are initiated, and their trajectories
arerecorded. Toimplement the algorithm in an online
fashion, we parallelize forward simulations to speed
up the computation. For more details, we refer readers
to Online Supplement Section 3.

For the diffusion approximation method, the prior
values for my and vy are chosen to replicate those of
the simulation-based gridding algorithm. We also
assume a similar range for m as in the gridding al-
gorithm (i.e., m € [0,20]). The discretization in diffu-
sion approximation is different from the grid con-
struction in the simulation-based gridding algorithm.
Here, the grid is constructed over values of x and t.
Since 20 patients have already been through the trial, t
is considered to be in [20 + tg,400 + £], where t; = ‘5—2
The details to calculate both axis intervals are given in
Online Supplement Section 3. We later do a sensitivity
analysis on the grid size of (m,v) and (m, t) for both
simulation-based gridding and diffusion approxi-
mation policies to investigate whether finer grids
improve the performance significantly: see Online
Supplement Section 4.8.

Because the simulation of the trial for all three
methods is the same, we report the computational time
required to find the stopping decision for each method.

At each decision epoch, the gridding algorithm runs a

forward simulation and uses backward induction
which takes 1 hour on average. In this method the
computational time in early stages when there are
many patients to consider is considerably longer than
the later stages when fewer patients are left. At each
time period, the one-step look-ahead policy takes
about 30 seconds to find the decision. The diffusion
approximation creates the stopping regions up front
and for a given dose allocation and its response,
finding the stopping decision is instantaneous. These
results confirm that the proposed methods are much
less demanding than the standard method.

6.2. Results

Figures 4 and 5 show the state of the dose-response
estimation after assigning 20 patients. In particular,
Figure 4, (a) and (b), shows the posterior estimates to
the dose-response curve where each point on the
piecewise linear dotted line is the sample average of
30 posterior estimates of u in ® ~ N'(u, X) after ob-
serving 20 patients. Furthermore, Figure 5, (a) and (b),
shows the maximum posterior variance where each
point denotes the sample average of 30 posterior
estimates of maximum Y, j=1,...,], for each pa-
tient number.

Tables 1 and 2 show the estimated utility at stop-
ping time, the true utility at stopping, the average
stopping time, and the probability of correct decision
(PCD) for the three stopping rules with respect to
sigmoid and flat dose-response curves, respectively. In
reporting the true utility at stopping, we assume that
the true underlying dose-response curve is known and
thus its EDgs and the true benefit over the placebo.
Therefore, the probability of success at the end of the
confirmatory phase by the term E[1(5:)|.#"] reduces to
the probability 1 — ®(q, — %). What differentiates
the policies is the cost of patient sampling, which
depends on stopping times corresponding to each
policy. In case of detecting a significant advantage

Figure 4. Posterior Estimates to the Dose-Response Curve After 20 Patients
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Figure 5. Maximum Posterior Variance
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over the placebo, the correct decision is to termi-
nate the trial. If the true dose-response curve is flat,
abandoning the trial is considered the correct deci-
sion. We also include a discussion on the probability
of correctly identifying the target dose as a perfor-
mance measure in Online Supplement Section 4.1.
Notice that all three algorithms correctly terminate the
sequential sampling process when the dose-response
curve is sigmoid with a significant advantage over the
placebo. The KG policy stops sooner, but the estimated
utility at the stopping time is higher for the simulation-
based gridding algorithm in spite of observing more
patients. This is because upon stopping it has a slightly
higher estimation of the advantage over the placebo
and the ratio of the benefit per unit advantage over the
placebo is much higher than the sampling cost. Recall
that in our setting, this ratio is %, and thus
detecting even marginal improvements in the estimate
of the advantage over the placebo will overwhelm the
sampling cost. The simulation-based gridding algo-
rithm is uniquely effective in detecting these marginal
improvements given high-quality prior knowledge
because it simulates a large number of trials to the end
of the horizon and can trade off sampling patients for
beneficial marginal improvements in the estimate of
the target dose mean response. The KG policy per-
forms weaker in this regard because the decision is
made with respect to the advantage over the placebo
one step into the future and thus may fail to identify
similar trade-off opportunities several steps in the
future. The diffusion approximation method achieves
lower estimated utility and stops later. In particular,

Table 1. Sigmoid Dose-Response Curve
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Figure 6(a) demonstrates a few simulated state var-
iable paths crossing into the termination region from
the continuation region. The average stopping time
and expected utilities reported in both Tables 1 and 2
are the average over 30 sample paths. The reported
probability of correct decision only considers the
stopping decisions and is independent of the target
dose selection in case of detecting a significance.
When sampling from a flat dose-response curve,
the gridding algorithm and the KG policy incorrectly
terminate the trial most of the times. In the case of the
KG policy, as soon as the next step expected utility is
estimated to be less than the current one, the policy
stops sampling. If the policy overestimates the expected
response of the target dose, the current estimated utility
may become positive and thus the incorrect decision
to terminate the trial instead of abandoning. Table 2
shows that the diffusion approximation algorithm
correctly abandons 96% of times when the dose-
response curve is flat, although the average aban-
donment time comes significantly further in the trial.
Also, notice the difference between estimated and
true utilities of the simulation-based gridding and KG
policy. Both methods incorrectly estimate a monetary
benefit, whereas the underlying dose-response curve
will only result in sampling costs. Figure 6(b) shows a
few simulated state variable paths of the diffusion
approximation method crossing into the abandon-
ment region. Furthermore, the estimated utility at
the stopping time for the diffusion approximation
algorithm, although lower than the simulation-based
gridding algorithm and the KG policy, is closer to the

Estimated utility True utility Stopping time PCD
Simulation-based gridding 11,076,870 9,420,000 80 1
KG 10,791,346 9,462,000 38 1
Diffusion approximation 10,632,415 9,394,000 106 1

Note. Stopping times are reported in terms of number of patients going through the trial before a

stopping decision is made.
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Table 2. Flat Dose-Response Curve

Estimated utility True utility Stopping time PCD
Simulation-based gridding 1,926,790 —64,000 34 0.10
KG 1,840,765 -58,000 28 0.10
Diffusion approximation -3,910 -307,000 277 0.96

Note. Stopping times are reported in terms of number of patients going through the trial before a

stopping decision is made.

true expected utility for the flat dose-response curve.
Therefore, one might conclude that the gridding and
KG algorithms do not produce reliable estimates when
the true dose-response curve is flat. Results show that in
this setting, the standard method may produce signifi-
cantly poor solutions, which may have severe conse-
quences in terms of costs of the next phase and the health of
future patients; see Rojas-Cordova and Hosseinichimeh
(2018) for a discussion on consequences of mis-
specification errors in adaptive clinical trials.

One approach to address such a shortcoming of the
gridding and KG policies is to start considering
stopping decisions only if enough evidence is gathered
regarding the dose-response curve. This evidence may be
interpreted as the accuracy of the dose-response esti-
mation (i.e., the diagonal of the covariance matrix X in
state variable s"). Next, we address such an extension.

6.3. The Effect of History .7"

Motivated by our results, we propose applying the
stopping rule only after a certain number of patients’
responses have already been observed. As more pa-
tients” responses are added to the history, the accu-
racy of the estimation about ® increases. This is be-
cause sampling dose j results in lowering %;;, which in
turn is a measure of uncertainty about the dose-response
estimation at dose j. Therefore, considering a bound on
mayx; Var[0;|.7"] ensures a minimum level of accuracy

Figure 6. State Variable Paths
(a)

about the dose-response curve estimation. This mod-
ification does not contribute to the complexity of the
stopping rule because Var[0,|.7"] =L is already avail-
able to the DM as a part of the state space. We pro-
pose the following heuristic: at each decision epoch
for any solution method, if the decision is to continue,
continue; if the decision is to stop, check whether
max; Var[0;[.7"] < V is satisfied; if it is satisfied, fol-
low the decision; otherwise, continue.

One can tune V to change the amount of evidence
gathered before the stopping decisions are applied.
We consider V =4 units in presenting the results.
Figure 7 shows the state of dose-response estimation
in terms of posterior estimate to the dose-response
curve when max; Var[0;.7"] < 4 for the first time.
Figure 8 shows the maximum posterior variance from
the start of the trial until max; Var[0;.7"] < 4 for the
first time. In case of the sigmoid dose-response curve,
max; Var[0; . Z"] < 4whenn > 280, and sup, . Ix(s°) =
10,011, 765, which is achieved at patient 286. For a
flat dose-response curve, max; Var[0;[.#"] < 4 when
n > 243, and sup, ;1x(s") = =312 is achieved at pa-
tient 296. Similar to Section 6, Tables 3 and 4 show the
performance measures for the three stopping rules
with respect to the sigmoid and flat dose-response
curve, respectively. See Online Supplement Sec-
tion 4.2 for state variable paths of the diffusion ap-
proximation.
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Figure 7. Posterior Estimates to the Dose-Response Curve When max; Var[0;.7"] < 4
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6.4. Sensitivity Analyses

To assess the robustness of the proposed solutions
with respect to model/simulation parameters, dose-
response model specifications, and different alloca-
tion procedures, we conduct further sensitivity an-
alyses on the variance of observations, shape of
the underlying dose-response curve, dose allocation
procedure, monetary parameters, and discretization
parameters. In particular, in Online Supplement Sec-
tion 4.4, the variance of observations is increased by a
factor of 10 to add uncertainty to the information
present in each observation. Our results demonstrate
that the proposed policies are robust with respect
to the variance of observation in that their relative
performance in terms of the estimated utility, stop-
ping time, and probability of correct decision persist
for the sigmoid dose-response curve. However, as
expected, the number of patients required to satisfy
the condition of Section 6.3 increases, which improves
the performance of the simulation-based gridding
and KG policies because the cost of sampling more
patients may cancel out any incorrect identification of
the advantage over the placebo. In Online Supple-
ment Section 4.5, the performance of the proposed

5 6 7
Concentration

Flat curve

solutions is investigated for a bimodal curve as a
representative of a more general dose-response re-
lationship. The results suggest that the proposed
policies are robust with respect to the shape of the
underlying dose-response curve. Online Supple-
ment Section 4.6 compares the performance of the
proposed policies with respect to the underlying
dose allocation procedure. Balanced randomization
and another adaptive randomization (developed by
Berry et al. (2010)) are also investigated, which show
similar results to Section 6.2. Note that in Section 6.1,
we assume that ¢; = ¢} = $1,000 and ¢, = $1,000,000.
Such a cost/benefit ratio may not hold up for every
trial, and thus Online Supplement Section 4.7 in-
creases the & — by factors of 2 and 5 and decreases c; by
factors of 10 and 100. The effects of all these combi-
nations are reported on the performance of KG and the
diffusion approximation. The results show that dif-
fusion approximation outperforms KG in every case.
Finally, the descretization parameters for simulation-
based gridding and diffusion approximation methods
are changed to generate finer grids. However, our
results show that the improvement in both cases
is marginal.

Figure 8. Maximum Posterior Variance Until max; Var[6;[.#"] < 4
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Table 3. Sigmoid Dose-Response Curve

Estimated utility True utility Stopping time PCD
Simulation-based gridding 10,001,441 9,211,000 289 1
KG 9,957,969 9,218,000 282 1
Diffusion approximation 9,916,273 9,220,000 280 1

Note. Stopping times are reported in terms of number of patients going through the trial before a

stopping decision is made.

6.5. Case Study: Application to Clinical Data

In order to show the performance of our policies with
respect to real data from clinical trials, we simulate
the proposed policies for a treatment studied in Hall
et al. (2011) on the effects of genomic test-directed
chemotherapy for early-stage lymph node-positive
breast cancer. This treatment was studied for its
potential on saving people from unnecessary che-
motherapy and reducing costs. The trial investigated
two treatment methods: standard care, which means
chemotherapy for all patients, and genomic test-
directed chemotherapy. For participants in the stan-
dard care arm, the probability of a five-year disease-
free survival is 0.79 with a standard error of 0.028. The
genomic test-directed chemotherapy achieved a 0.88
probability of a five-year disease-free survival on av-
erage with a standard error of 0.038. A total of 300
patients were recruited for the preliminary trial and
were allocated to each arm according to a balanced
randomization policy. Compared with the standard
care, the genomic test-directed chemotherapy had an
incremental cost of €860 ($1,125). Hall et al. (2011)
estimated that, on average, the genomic test-directed
chemotherapy had 0.16 years in QALYs gained with
an incremental cost-effective ratio of €5,529 per year
per patient. A conservative estimate of the market
value per QALY is presented in Online Supplement
Section 4.3. The significance level is assumed to be 5%.
Table 5 summarizes the trials specifications and pa-
rameters for this simulation. Other parameters not
mentioned in Table 5 are initialized according to
Section 6.1.

Table 6 shows the estimated utility, the true utility,
the stopping time, and the PCD for the gridding al-
gorithm, the KG policy, and the diffusion approxi-
mation method considering the underlying dose-
response curve of Hall et al. (2011). Aligned with

Table 4. Flat Dose-Response Curve

the actual trial, we use a randomized allocation rule
for assigning patients to treatments upon the con-
tinuation decision. The results are consistent with our
numerical experiments and demonstrate further that
the proposed diffusion approximation performance is
more reliable. In fact, the standard method produces
inaccurate estimates for the utility and terminates the
trial for efficacy. However, Hall et al. (2011, p.57)
concluded that “there is substantial uncertainty re-
garding the cost-effectiveness of Oncotype DX—directed
chemotherapy” at the end of the trial and stated
further research has to be done to collect more infor-
mation about the cost effectiveness of the treatment. In
particular, we consider the correct decision to be
abandonment or continuation at the end of the trial in
our simulations. Specifically, our results show that the
majority of state variable paths in the diffusion ap-
proximation remain in the continuation region at the
end of the trial with 300 patients. Notice that the results
in Table 6 agree with the previous results of Tables 2
and 3 where the simulation-based gridding algorithm
performs best with respect to the estimated utility,
whereas KG achieves the highest true utility. How-
ever, both methods are susceptible to incorrectly
detect a significant response, and their probability
of correct decision is much lower than the diffusion
approximation method. Also note that in Tables 2
and 3, simulation-based gridding and KG produce the
lowest probabilities of correct decision and overes-
timate the utility significantly.

7. Conclusions

In this work, we studied the optimal stopping problem
of an adaptive dose-finding clinical trial capable of
terminating the trial for efficacy or abandoning it as a
result of futility. We implemented a simulation-based
gridding solution method and compared it with two

Estimated utility True utility Stopping time PCD
Simulation-based gridding -11,199 -314,000 284 0.69
KG -12,889 —274,000 244 0.64
Diffusion approximation -12,571 -334,000 304 0.96

Note. Stopping times are reported in terms of number of patients going through the trial before a

stopping decision is made.
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Table 5. Hall et al. (2011) Trial Simulation Parameters

Parameters

Value

DOSQ—I‘eSpOl’ISE curve

Standard arm with 0.79 probability of 5-year increase in
QALYs

Treatment arm with 0.88 probability of 5-year increase

Observation variance

in QALYs
Standard arm: 0.12

Treatment arm: 0.22

—_
=0

$1,125

C2 $1,000,000

proposed methods in terms of solution quality and
computational effort. Our first proposed method as-
sumes that the next decision epoch is the last one (KG)
and produces stopping decisions accordingly. Our sec-
ond proposal considers a two-dose continuous version of
the sampling and stopping problem and creates an It6
process for the state transition by which solving the
continuous Bellman equation coincides with solving a
partial differential advection-diffusion equation. We
proposed a heuristic approach to extend the algo-
rithm to multiple doses setting.

Our results show that if in the true dose-response
curve the target dose has a significant advantage over
the placebo, all three methods make aright decisionin
terminating the trial for efficacy; the KG policy stops
sooner, followed by the simulation-based gridding,
although the diffusion approximation requires more
sampling epochs. Therefore, the estimate of the util-
ity for the standard approach and the policy KG are
higher than that of the diffusion approximation.
However, if in the true dose-response curve the target
dose does not have a significant advantage over the
placebo, the gridding and KG methods perform ex-
tremely poorly in terms of the probability of correct
decision and estimating the utility. In particular,
these two methods decide on termination 90% of the
time on average, although the correct decision is
abandonment; that is, the error probability is 0.9 for
these methods, which may have significant adverse
consequences and is unacceptable for regulatory
approvals. In fact, these two methods stop too early
and significantly overestimate the benefits upon ter-
mination. By stark contrast, the diffusion approxi-
mation method produced abandonment decisions in

Table 6. Application to Clinical Trial

96% of the times in this setting, resulting in only 4%
error, which shows that the diffusion method stops the
trial much later, when it has enough evidence for
making decisions.

Our results suggest that applying the standard
method in a fully adaptive setting from early on,
where a DM can stop or terminate the trial at each
decision epoch, may have severe consequences when
the correct decision is to abandon. Motivated by
such observations, we proposed a modified stop-
ping rule, where the stopping decision is activated
only if the maximum posterior variance about the
mean response O falls below a threshold. In fact,
max; Var[0;|.7] is a metric that measures the uncer-
tainty about the whole dose-response curve and is
available to DMs at each decision epoch because itis a
part of the state variable in the stopping problem. Our
results show that using a constrained method signifi-
cantly improves the performance of the simulation-
based gridding algorithm and the KG policy.

Therefore, for recommendation purposes, the dif-
fusion approximation method proved to be more
robust with respect to different shapes of the un-
derlying dose-response curve. In fact, based on the
Food and Drug Administration (2018) estimates, only
33% of treatments clear Phase II of clinical trials,
which shows that in the majority of trials, the un-
derlying dose-response curve does not include a dose
with a significant advantage over placebo. Therefore,
our results suggest that the diffusion approximation
method is potentially more accurate with respect
to different scenarios. However, if strong evidence
is available that a significant advantage over pla-
cebo exists, our results suggest that the KG policy

Estimated utility True utility Stopping time PCD
Simulation-based gridding 64,406 -120,600 62 0.2
KG 47,269 -92,475 53 0.2
Diffusion approximation —290,634 -370,350 300 0.90

Note. Results are reported in terms of number of patients going through the trial before a stopping

decision is made.
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potentially stops sooner with respect to different
dose-response curves and dose assignment proce-
dures, and it is computationally less demanding
than the standard gridding method. We also note
that a potential extension of our methodology is to
consider seamless Phase II/1II trials where the prob-
ability of success at the end of Phase III can be inte-
grated naturally in the utility function of the stop-
ping problem.
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