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Abstract—Place recognition is an important component for
simultaneously localization and mapping in a variety of robotics
applications. Recently, several approaches using landmark in-
formation to represent a place showed promising performance
to address long-term environment changes. However, previous
approaches do not explicitly consider changes of the landmarks,
i,e., old landmarks may disappear and new ones often appear
over time. In addition, representations used in these approaches
to represent landmarks are limited, based upon visual or spatial
cues only. In this paper, we introduce a novel worst-case graph
matching approach that integrates spatial relationships of land-
marks with their appearances for long-term place recognition.
Our method designs a graph representation to encode distance
and angular spatial relationships as well as visual appearances
of landmarks in order to represent a place. Then, we formulate
place recognition as a graph matching problem under the worst-
case scenario. Our approach matches places by computing the
similarities of distance and angular spatial relationships of the
landmarks that have the least similar appearances (i.e., worst-
case). If the worst appearance similarity of landmarks is small,
two places are identified to be not the same, even though their
graph representations have high spatial relationship similarities.
We evaluate our approach over two public benchmark datasets
for long-term place recognition, including St. Lucia and CMU-
VL. The experimental results have validated that our approach
obtains the state-of-the-art place recognition performance, with
a changing number of landmarks.

I. INTRODUCTION

Place recognition (also known as loop closure detection) is
a fundamental component in visual simultaneous localization
and mapping (SLAM) [1]-[3], which has been a very active
research area over the past decades [4]-[6]. The purpose of
place recognition is to determine whether the current visiting
place has been visited before by a robot. The matched places
can be employed to reduce ambiguity and accumulated errors
[7]-[9] during SLAM to significantly improve the accuracy
of mapping and localization, which has be widely used in a
variety of robotics applications [10]-[12].

More recently, motivated by long-term autonomy applica-
tions [13]-[15], long-term place recognition has become a
rapidly growing research area to perform visual SLAM over
long periods of time. The goal of long-term place recognition
is to identify previously visited places during long-term robot
operations at different times of the day, months, and seasons.
For instance, when an autonomous vehicle visits a same place
over different seasons, the same place can look significantly
different caused by the variations of illumination (e.g., noon
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Fig. 1: Illustration of the proposed worst-case graph match-
ing approach for long-term place recognition with newly ap-
pearing landmarks. Given an image with detected landmarks,
our approach constructs a graph representation that encodes
visual appearances, distance relationships, and angular rela-
tionships of the landmarks in order to represent the place.
Then, our approach formulates place recognition as a graph
matching problem under the worst-case scenario. It matches
places by computing the similarities of distance and angular
spatial relationships of the landmarks with the least similar
appearances (i.e., worst-case).

versus midnight), weather (rain versus snow), and vegetation
(with leaves versus without leaves).

Due to the importance of long-term place recognition, it
has been intensively investigated [16]-[18]. Conventionally,
many approaches use visual appearances of the environment
to represent and match places, e.g., based on key-point fea-
tures [19], region-based features [20], [21] or representative
features [22]-[24]. Recently, several approaches are proposed
to use landmark-based representations for place recognition,
which show performance improvements and are more robust
to long-term variations [25], [26]. However, the challenge of
integrating both spatial relationships and appearance cues of
landmarks, and the challenge caused by newly appearing or
disappearing landmarks have not been well addressed yet.

In this paper, we propose a novel worst-case graph match-
ing approach for place recognition in long-term autonomy, as
demonstrated in Figure 1. Given a template or query image
with detected landmarks, we generate a graph representation
that simultaneously encodes the visual appearances, distance
relationships, and angular relationships of the landmarks. The
distance relationship is calculated as the distance between a
pair of landmarks, and the angular relationship is represented



by the angles in a triangle constructed using three landmarks,
which is robust to landmark scale changes. Given graph
representations of places built from the query and template
images, we formulate place recognition as a worst-case graph
matching problem, with the goal of addressing appearing and
disappearing landmarks. During long-term robot operations,
landmarks within the environment can be added or removed,
which means there always exists landmarks only existing in
either the query or template image. For example, a building
is newly constructed and a stop sign is newly removed. Our
approach matches two places by computing the similarities
of distance and angular spatial relationships of the landmarks
that exhibit the least similar appearances (i.e., the worst-case
scenario). If the worst appearance similarity of the landmarks
is small, these two places are determined not as a match, even
though the graph representations of the two places have high
spatial relationship similarities.

The main novelty of this paper focuses on the proposal of
the worst-case graph matching approach that integrates both
landmark appearances and spatial relationships. Specifically,
we design a unified graph representation that simultaneously
encodes landmarks’ appearance cues as well as distance and
angular relationships, which improves the expressiveness of
the representation to encode places. Second, we introduce a
novel formulation of long-term place recognition as a worst-
case graph matching problem, which addresses the challenge
caused by newly appearing and disappearing landmarks, and
is able to compute the matching score directly from the graph
representations of the query and template images, instead of
requiring a separate matching procedure as in most existing
methods using vector-based place representations.

II. RELATED WORK

In this section, we briefly review existing methods on land-
mark representations based on visual and spatial information,
as well as matching paradigms for place recognition.

A. Representations for Place Recognition

For long-term place recognition, it is essential to construct
a robust representation for places with challenges caused by
environment variances during long periods of time [17]. We
divide the existing methods into two major categories, based
on visual feature of holistic environments, or based on visual
or spatial information of semantic landmarks.

For representations of holistic environments, using local
features were shown less effective to represent long-term
place changes [20]. Thus, region-based methods using global
features, such as GIST [21], HOG [20], and CNN [18], are
proposed to encode the holistic environment that is observed
by a robot. Based on the region-based representation, several
approaches integrated multiple types of features to represent
places [22], [27].

The other category of approaches using semantic land-
marks have promising performance for place recognition
with long-term appearance variance. [28] combined multiple
local feature to generate a CNN description. Similarly, other
CNN-based features [18] were used to encode visual features

of landmarks detected from proposal generation [26], Edge
box [29] and bounding box obtained from YOLO v2 [30].
Several representation learning-based methods were imple-
mented to encode cues of visual landmarks into the holistic
environment [31], [32].

The spatial relationship between landmarks can also be
utilized for place recognition. [26] used CNN technique to
generate landmark distribution descriptor to address environ-
ment and view changes. [33] introduced landmark geometry
information obtained from the laser scan to visual SLAM.
[25] stacked landmark features into a horizontal position in
order to construct a feature descriptor to encode the spatial
information of landmarks.

Most existing methods only used visual feature or simple
spatial relationships of the landmarks and did not considered
high order spatial relationships between the landmarks. In
this paper, the proposed approach can explicitly encode
visual feature and various spatial relationships of the land-
marks.

B. Matching Paradigms for Place Recognition

Given the representation of places, a matching procedure
is required to compute the matching score between a query
observation and templates to identify the previously visited
places for place recognition.

Existing matching methods can be broadly classified into
two major categories; one is image-based matching and the
other is sequence-based matching. For image-based matching
methods, generally a similarity score between query and tem-
plate image need to be calculated, and the similarity function
can use the Euclidian or cosine distance [34], [35]. Another
strategy utilized in image matching is based on the nearest
neighbor search, including KD trees [36] and Chow Liu trees
[37]. For sequence-based matching methods, the procedure
of matching places is typically based on a sequence of con-
secutive images, instead of individual images [38]. Given the
obtained vector-based representation of places, consecutive
pairwise matching [39], minimizing cost flow [40], Hidden
Markov Models [41], and Conditional Random Fields [42]
can be used for sequence-based matching.

Our proposed worst-case graph matching method for long-
term place recognition can integrate place representation and
matching as a unified problem, which is different from the
previous vector-based matching methods. And also we can
address the challenge caused by newly appearing landmarks
and spatial deformation through integrating spatial relation-
ships and the worst appearance of landmarks.

III. APPROACH

In this section, we discuss the proposed principled method
for worst-case graph matching that fuses the spatial relation-
ships of landmarks with appearance cues. We also introduce
the solver to address the formulated non-convex optimization
problem for worst-case graph matching.

Notation. We represent matrix and tensor (i.e., 3D matrix)
by bold capital letters, e.g., M= {m;;} € R™ " and T =
{tij} € R*n' %" regpectively. Vectors are represented



by bold lowercase letters. Furthermore, we represent the
vectorized form of the matrix M € R"*™ using m € R™
that is a concatenation of the columns of M into a vector.

A. Problem Formulation

Given an input image, we extract landmarks to generate a
graph representation, which encodes the spatial relationships
of the landmarks to represent a place. Assume n landmarks
are detected from the input image. Then, the positions of the
landmarks in the image space are represented by the node set
P ={p1,pP2, - ,Pn}, Where p; = [z, y] denotes the central
position of the i-th landmark in the image at coordinate
[z,y]. Given the position information, we construct the
spatial relationships of landmarks, which are divided into
two categories, including distance spatial relationship and
angular spatial relationship. The distance spatial relationships
are represented by a distance set £ = {e; ;}, where e, ;
denotes the distance of an edge constructed by nodes p;
and p;. The angular spatial relationships are denoted by a
angular set 7 = {t; j 1}, where ¢; j , = [0;,0;,01],%, 7,k =
1,2,...,n,i # j # k represents the three angles of a
triangle constructed by nodes p;, p; and pj. The angular
relationship is robust to scale change, since angles of a
triangle is invariant to scale change. Given the node set,
distance set, and angular set, we can represent an input image
as a graph G = (P, T,&).

For place recognition, given one query image and one
template image, from which two graph representations G =
(P, T,€) and G' = (P',T',E") can be generated. The
affinity between these two graphs can be computed by the
sum up of the affinity of the distance sets (£, £’) and angular
sets (7, T).

The distance affinity d;;/ j;» between two distances e; ;
and e; ;o is generally calculated by d;;s j;» = exp(—|e; ; —
eir j/|). The angular affinity a;; ;;/ ki between angles of two
triangles ¢; ; ;. and ¢;/ j/ ;s can be calculated by a;; ;7 ki =
exp(— >, , | cos(by) — cos(6y)|), where u € {4, j,k} and
v € {¢, 7', k'}. By taking advantages of nonlinear projection
function exp, the calculated affinities can be normalized
to [0,1]. Then, we generate the distance affinity matrix
D = {div i} € ]R”"IX,”"/ and angular affinity  tensor
A = {air jjr ki } € R X X" given two graph rep-
resentations G and G’ generated from one query image and
one template image.

Given the affinity matrix D and A, generally, we can for-
mulate a graph matching for place recognition as following:
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Fig. 2: Nllustration of incorrect matches caused by the newly
appearing landmark p/ and deformation. Left Figure: The
correct match should be (p; <> p),), (p2 <+ p}) and (p3 <
p.), even when the triangles ¢23 and t/,. do not look the
same because of landmark deformation. Right Figure: When
a newly appearing landmark exists, represented by node pJ,
the distance and angular affinities of subgraph constructed by
{P1, P2, P3} and {p/,, p}, p.} can be smaller than the spatial
affinity between subgraphs constructed by {p1, p2, p3} and
{p., p., p,}, which results in an incorrect match (p3 < p’,)
and (p1 <> p), denoted by red lines.

We can rewrite Eq. (1) into a matrix form as following:
arg m‘%x MA W Ry W R3 W+ )\QWTDW

st. Wl <1k, W Ly <1yyr (3)

where w € R™ is the vectorized form of correspondence
matrix W = {w;;} € {0,1}"*", with w;z = 1 denoting
the i-th node in P and the #’-th node in P’ are matched,
® 1is a tensor product, ®;,! = 1,2,3 means multiplication
between w and the [-th order matricization of A [43] and
1 is an all-ones vector. In Eq. (3), the first term denotes
the accumulation of the angular similarities given the corre-
spondence matrix W, which is controlled by hyperparamter
A1. Similarly, the second term represents the accumulation
of distance similarities, which is controlled by As. The
constraint is used to enforce the one-to-one correspondence
for W, e.g. one landmark within G can at most have one
corresponding landmark in G'.

B. Worst-case Graph Matching

Due to long-term environmental changes, the spatial rela-
tionship of landmarks often has deformation caused by view
changes (the field of view of a robot has deviation when it
observes the same place) which will hurt the matching accu-
racy for long-term place recognition. Besides the challenge
caused by spatial deformation, some landmarks will newly
appear or disappear in the query and template images, like
a building is occluded by trees in summer but can be seen
in winter when trees have no leaves. The newly appearing
landmarks will introduce useless spatial relationships which
can be harmful to the matching accuracy, especially when
there exists spatial deformation, as illustrated in Figure. 2.

Given these challenges, we introduce appearance cues into
spatial relationships to improve the expressiveness and also
propose a principled worst-case graph matching approach
which can maximize distance and angular spatial similarities
of landmarks that have least similar appearance (i.e., the
worst-case scenario), in order to address the challenges



introduced by newly appearing landmarks and spatial de-
formation. For example, in the left figure in Figure 2, due to
the challenges (the triangle constructed by nodes p’,, p., p}).
introduced by the newly appearing landmark p/ and spatial
deformation, the matching result will be incorrect. In this
situation, the worst case can be represented by the worst
similarity between a pair of landmark appearances given
correspondences, e.g. the appearance similarity between the
corresponding nodes p; and p/, which is a small value.
By multiplying this worst appearance similarity, the final
similarity score calculated between subgraph {pi,p2,ps}
and {p;,p.,p,} will be weakened. In other word, our
proposed worst-case graph matching method maximizes the
overall similarity under the worst case.

Formally, for each node p; in graph G, the appearance
of its associated landmark is described as a feature vector
f € R? where d is the length of the feature vector.
The feature can describe the shape, texture or color of
the landmark. Thus, the appearance set can be denoted as
F={f)", ()7, -, (f,)"}"*4. Thus, the appearance
affinity matrix Z = {z;;} € R"*" can be computed through
ziiv = ||f; — f}]|2. And place recognition can be formulated
as the following worst-case graph matching problem:

/ ’ ’
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where min function offers the worst case during matching.

To solve this formulated optimization problem for worst-
case graph matching, we implement an iterative optimization
algorithm as presented in Algorithm 1. The complexity of our
algorithm is O(n*). Details of the algorithm are provided in
the supplementary material'.

After solving the optimization problem utilizing Algorithm
1, we are able to obtain the optimal correspondence matrix
W ={w};} € R™*" | which describes the correspondences
of the landmarks in the query and template images.

C. Place Recognition

Given the correspondence matrix W*, we can directly
compute the matching score between the query and template
image as following
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Algorithm 1: The algorithm to solve the formulated
non-convex optimization problem in Eq. (4).
. A E ]Rn:l/xnn/xnn,, D e ]Rnn/xnn/ and
Z e Rnn ,
Output : W* =€ {0,1}"*"

Input

1: Initialize the vectorized matrix w € {0, 1}”"l;
2. Compute stochastic matrix K = {k;; ;;/ rx’ } and
L= {lii,,jj,}:
Kiir jjr kk = Qiir g4 kk min{z;, Zjj’ s 2k }/ max(A);
lii/,jj/ = dii’,jj min{zii/, ij/}/ maX(D);
while not converge do
Compute the jump vector j = exp(w”/ max(w"));
Normalize j using the bistochastic normalization;
Update
Wl =y (K@ w" Q3w +w" L) + (1 —7)j;
9: end
10: Recover w to W;
11: Use greedy search to discretize W [44];
12: return W

However, the number of nodes of input graph representation
is always different and the matching score calculated in
Eq. (5) is proportional to the number of nodes. In order to
generalize our proposed method to the input graphs with
different nodes, we calculate the final matching score as
following:
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where m = min{n,n’}. Due to the existence of newly

appearing/disappearing landmarks, n and n’ can be differ-
ent. The number of matched landmarks between query and
template image is dominated by the smallest number of
landmarks in either query or template image. Given the
optimal solution W*, there are m?> angular similarities and
m? distance similarities accumulated to the final score. Since
the spatial similarity a;; ;- xx and d;; ;;- are between [0, 1],
the final matching score calculated in Eq. (6) is divided
by its upper bound of each term to normalize the score
always between [0, 1]. Then, if two places are matched is
determined by comparing the normalized matching score
with a manually set threshold. By applying Eq. (6) to
obtain the normalized similarity score, our worst-case graph
matching approach can compute a matching score directly
from graph representations of the query and template images.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We utilize two large-scale benchmarks to evaluate our
proposed method for long-term place recognition, including
CMU-VL dataset and St. Lucia dataset. And the evaluation
metric is the precision-recall curve that demonstrates the



TABLE I: Description of the two public benchmark datasets
for long-term place recognition.

[ Dataset | St. Lucia [45] [ CMU-VL [46] |
Scenario | Different times of a day | Different months of a year
Statisti 10 ~ 22,000 frames 5 ~ 13,000 frames

AUSHC 1640 x 480 at 15 FPS | 1024 x 768 at 15 FPS
L. Illumination, shadow, Vegetation, weather,
Description d R . . ; o
ynamic variations view, dynamic variations

trade-off impact between precision and recall with variant
matching threshold. Precision means the fraction of retrieved
locations that are relevant and recall means the fraction of
retrieved locations to all relevant locations. The performance
with high recall and high precision is represented by a curve
with a large area under it.

In the experiment, following recently landmark-based
method [31], [32] ,only static and stable landmarks are used
to construct our proposed graph representation of a place,
e.g., houses, traffic signs, antenna, etc. For the appearance
feature of each landmark, we use histogram of oriented gra-
dient (HOG) feature to describe the appearance of landmarks.

We compare our proposed worst-case graph matching
method with four long-term place recognition methods,
which includes three appearance-based methods: Color that
uses color feature of downsampled images [47], HOG that
uses histogram of oriented gradient feature of downsampled
images to describe the shape of landmarks [20] and Brief-
Gist that uses brief-gist feature of downsampled images
[48], and one landmark-based method: HALI that learns the
projection from semantic landmarks to vector-based features
for long-term place recognition [32].
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Fig. 3: Experimental results on the St. Lucia dataset. Fig-
ure 3(a) demonstrates the quantitative results based on the
precision-recall curve. Figure 3(b) presents qualitative results
of matched places between the query and template images,
which are recorded at 3:00 PM (left) and 8:00 AM (right),
respectively. The figures are best viewed in color.

B. Results on the St. Lucia Dataset

The St Lucia dataset [45] is gathered in a 9.5km circuit in
Australia at different times of several days. The visual data
are collected through a calibrated stereo camera mounted on
a car and each video instance has 20-25 minutes. The ground

TABLE II: The experimental results over the St. Lucia and
CMU-VL datasets. The value in [0, 1] describes the area ratio
under the precision and recall curve. A larger value indicates
a better performance.

[ Approach [[ St Lucia Dataset [ CMU-VL Dataset |
Color [47] 0.3186 0.3947
Hog [20] 05517 0.5396
Gist-Brief [48] 0.5206 0.5530
HALI [32] 0.5569 0.5430
[Ours [ 06249 | 0.6274 ]

truth information is offered by a GPS for experimental
evaluation of place recognition. There are various scenarios
included in the dataset, which contains different challenges
for long-term place recognition, including the variation of
illumination at various times over a day, perspective change
caused by road bumps, highly dynamic objects in the street.
The detail of the dataset is shown in Table I.

The quantitative results obtained from our method and the
other baselines are demonstrated in Figure3 (a) based on
the precision-recall curve. From the results, we can observe
that our proposed method outperforms the visual appearance-
based and landmark-based methods. To further evaluate the
precision-recall curves, we calculate the ratio between the
area under each curve and the whole precision-recall area
space. Thus, the range of the area ratio is between [0, 1]
and a higher value represents better performance. The results
are listed in Table II, which demonstrate that our score is
0.6249, and our method outperforms the other methods. The
improvement obtained from our method is caused by our
representation of spatial information that is robust to spatial
deformation and also by our worst-case graph matching
which is robust to objects only appeared in one image.

The qualitative results obtained from our method are
demonstrated in Figure 3(b), which include three pairs of
matched places between query and template images in St.
Lucia dataset. Based on the results, we can see that the
illumination of the same place changes a lot and the num-
ber of detected landmarks are different between query and
template images. Thus, we can observe that our methods
can well address the long-term variations and identify the
correct matches based on the visual and spatial information
of landmarks.

C. Results on the CMU-VL Dataset

The CMU Visual Localization (CMU-VL) dataset [46] is
recorded on an 8.8km route in urban areas over different
months of a whole year. The visual images are collected by
two cameras oriented to left and right separately. The ground
truth for place recognition evaluation is gathered through a
GPS. The challenges in this dataset are on environmental
conditions, like the variations of vegetation (green and fall
leaves), weather (snow, cloudy and sunny), which make the
dataset very challenging.

The quantitative results are shown in Figure 4(a). We can
observe that our method outperforms the other state-of-the
art methods under the precision-recall evaluation metric. We



Precision

o Hog

o Brief-Gist

0.2 H=e=Color
HALI

—e-Ours

0 0.2 0.4 0.6 0.8 1
Recall

(b) Matched places

(a) Precision-recall curves

Fig. 4: Experimental results over the CMU-VL dataset. Fig-
ure 4(a) demonstrates the quantitative results on precision-
recall curves. Figure 4(b) presents qualitative results of place
matches between the query and template images, which are
recorded in December (left) and October (right), respectively.
The figures are best viewed in color.

obtained the largest area ratio of 0.6274 listed in Table II. The
qualitative results are presented in Figure 4(b), which contain
three pairs of matched places recorded in October and
December separately. The environment condition changes
a lot from query image to template image caused by the
variation of vegetation, weather and dynamic objects. And
also, some landmarks are disappeared due to the occlusion
of trees and some new landmarks are added. Our method
can still well address these challenges by correctly find the
matches of landmarks between query and template images.
Because of the correct matches of landmarks, the spatial
relationship of landmarks can be well preserved so that we
can obtain a high similarity.

D. Discussion

Without losing generality, the importance of different
spatial relationships and the main hyperparameters of our
proposed approach will be studied on both of the datasets.

1) The Importance of Different Spatial Relationships:
The performance on St. Lucia dataset obtained from partial
and complete of our approach that uses different spatial
relationships are demonstrated in Figure 5(a). We can see that
the angular relationship is more important than the distance
relationship. If we only use distance relationship, based on
the area under the precision-recall curve, we obtain the score
of 0.5054 and the score obtained from only utilizing angular
relationships is 0.6152. The combination of distance and
angular relationships can achieve a score of 0.6249 which
is slightly higher than the score obtained from using angular
relationships.

On dataset CMU-VL, we similarly evaluate the importance
of each spatial relationship and the results are presented in
Figure 5(b). We can also see that the angular relationship
is more important than the distance relationship for long-
term place recognition. Using distance relationships obtains
a score of 0.5765 and using angular relationships gets a score
of 0.5928. Combining them obtains a score of 0.6274. We

can conclude that the angular relationship is more important
than the distance relationship. Since angles of a triangle are
invariant to scale change, and angular representation is more
robust to spatial deformation.

2) Hyperparameter Analysis: The cross-validation results
on both datasets obtained from our method are shown in
Figure 5(c). We analyze the performance variation of our
method with different hyperparameter \; and As.

Similar to the quantitative analysis, we use the ratio
between the area under the precision-recall curve and whole
area space as the single value evaluation metric. Since the
final matching score is influenced by the ratio between \;
and \o, we evaluate their ratio in range [107%,108]. Based
on the results shown in Figure 5(c), the peak of the curve
on St. Lucia dataset is when i—i = 10, which can obtain
the best performance. And also the best performance can be
obtained on CMU-VL dataset is when i—; = 1. In addition,
we can observe that the performance is better when i—; is
larger and the performance is worse when the ratio is smaller.
This phenomenon demonstrates that the angular relationship
is more important than the distance relationship, which is
consistent with our analysis in Figure 5(a) and (b).
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Fig. 5: Analysis of the proposed approach over both datasets.
Figures 5(a) and (b) compare methods using different spatial
relationships over the St. Lucia and CMU-VL datasets, re-
spectively. Figure 5(c) presents the results of hyperparameter
analysis, which shows performance changes of our approach
given different hyperparameter ratios using both datasets.

V. CONCLUSION

We propose the novel worst-case graph matching approach
that integrates spatial relationships of landmarks with appear-
ance cues to perform long-term place recognition. Our ap-
proach employs graph representations to encode appearances
and spatial relationships of landmarks in order to represent
places. Then, our approach formulates place recognition as
a worst-case graph matching problem, which maximizes the
spatial similarity of the landmarks with the worst appearance
similarity in order to address challenges caused by appear-
ing and disappearing landmarks. In addition, the matching
score of two places is directly computed by our approach
without requiring further matching procedures. Experimental
results on two public benchmark datasets have shown that
our approach obtains promising long-term place recognition
performance, with a changing number of landmarks.
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