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Integrating Energy Management of Autonomous
Smart Grids in Electricity Market Operation
Hossein Haghighat , Member, IEEE, Hossein Karimianfard , and Bo Zeng , Member, IEEE

Abstract—This study presents a market operation model inte-
grated with energy management programs of independent smart
grids using bilevel optimization. In this framework, autonomous
smart grid entities, in the lower levels, operate their own networks
and send decisions to the upper level market operator that clears
the day ahead market based on unit commitment and second
order conic AC power flow models. A single-leader multi-follower
game is thus developed, in which every smart grid derives optimal
schedules of its own renewable energy resources, storage devices,
and responsive demands that are interconnected through a dis-
tribution grid using mixed integer linear programming. Given
the mixed integer nature of the upper and lower level decisions,
we develop and customize an exact reformulation-decomposition
method to compute this bilevel optimization program. Through
numerical experiments performed on three test systems, we
demonstrate that the proposed modeling paradigm can accurately
represent the physics of the transmission and distribution grids
and achieves reasonable results with significant computational
efficacy.

Index Terms—Smart grid, unit commitment, power market,
mixed integer bilevel optimization, second-order cone program-
ming, storage device, shiftable demand.

I. INTRODUCTION

A. Background and Motivations

W ITH the improved control and communication capa-
bilities of today’s power system infrastructures and

diverse demand side technologies, it becomes feasible to
replace the current power system with a more flexible one.
From this and given the presence of intelligent technologies
of distribution clients, more elaborate models of both mar-
ket and smart grids in market operation are critical to reflect
the actual network physics and attain accurate pictures of the
system. Nevertheless, linear dispatch models still remain the
mainstream formulation to solve the day-ahead and real-time
markets because they are fast enough under such circum-
stances. A common alternative for the linear dispatch model
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is the AC optimal power flow (OPF) variant which accounts
for alternating current’s mathematical complexities but is non-
convex and needs much more time to solve using existing
methods.

Another challenge for accuracy improvement is the inte-
gration of load management programs and active distribution
networks in the market clearing programs, with sufficient
physical details, to reflect the impact and dependency of mar-
ket outcomes on emerging demand-side technologies. Current
practice is to use optimization routines with aggregated models
of demand response programs, storage devices, and distributed
generation at the transmission level. The physical distribution
grid and the actual dynamics of its components (e.g., stor-
age devices) are largely neglected. Such simplifications might
be acceptable in the case of extremely large systems to reach
fairly good solutions, but might produce infeasible results with
other problems. Indeed, the decision-making procedure of each
autonomous smart grid is a complex optimization problem
with continuous and discrete decisions. It basically remains
unknown how to analytically determine the operating policy
of independent smart grids with demand side technologies
when they are integrated in power market operation and can
interact with it. Hence, an effective energy management tool,
considering those critical factors and interactions, is definitely
needed, to support producing optimal schedules and operat-
ing plan of an active distribution grid in modern electricity
markets.

B. Literature Review

When the objectives of market participants are conflict-
ing and the decision making process is sequential, bilevel
optimization (i.e., the Stackelberg game) is naturally used to
study the interactions among agents. In the context of elec-
tricity markets, bilevel optimization (and its variants) is the
standard framework to capture the interaction between the
ISO and market players. Here, the market operator goal is to
maintain the supply-demand balance whereas the objective of
smart grids or demand response aggregators, acting as profit-
seeking mediators between the market and responsive con-
sumers, is a combination of their cost of electricity and gained
utility.

To address the operational challenges of active distribu-
tion networks in modern electricity markets, many advanced
decision support models and sophisticated computing methods
have been developed and studied. Some relevant applications
and works are reviewed next. In [1], a bilevel model for a
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strategic aggregator (in the upper level) is proposed to deter-
mine the optimal schedules of load curtailment and flexible
loads (i.e., demand response portfolio) in a wholesale elec-
tricity market. A Stackelberg model is developed in [2] to
investigate the interaction between the independent system
operator (ISO) and the aggregated effect of users equipped
with demand-side technologies. In [3], authors present a
bilevel formulation for describing the aggregator decision and
management of its clients with energy market participation
and show how retail prices for the customers and strategy
for the wholesale market participation are determined. The
work of [4] establishes a Stackelberg game between providers
and end-users, where providers act as profit-seeking lead-
ers and end-users behave as welfare-maximizing followers.
Reference [5] proposed a two-stage bilevel model for energy
pricing and dispatch of a smart grid retailer acting as an
intermediary agent between a wholesale energy market and
end consumers. Demand response of consumers, with respect
to the retail price, is characterized by a Stackelberg game.
The work in [6] introduces a stochastic bilevel formulation in
which the ISO, in the upper level, minimizes the total operat-
ing cost, and demand response aggregators, in the lower level,
maximize profit. A dynamic market mechanism is developed
in [7] which introduces a state-space structure to the static
market and incorporates shiftable demands, generation com-
panies, and the ISO. A gradient play is then used to derive the
dynamic evolution of the actions to reach the optimum solution
of the real-time market. In [8] a single leader multiple follower
Stackelberg model is formulated wherein the grid operator, as
the leader, sets the tariff to ensure the balance of supply and
demand, and the groups of consumers (i.e., followers) schedule
their controllable loads to minimize their costs. References [9],
[10], [11], [12], [13] adopt a unit commitment perspective to
assess the impact of demand response on market outcomes.
Specifically, [9] considers the load shifting behavior of price-
sensitive consumers, and in [10] the influences of such bids
on congestion and locational marginal prices in the day-ahead
market are explored. Reference [11] presents a self-scheduling
unit commitment model for aggregators that participate in
the day-ahead energy market and seek to maximize their
profits. The work in [12] incorporates demand response in
co-optimized day-ahead energy and spinning reserve mar-
kets. Reference [13] designed a three-level market structure
consisting of the ISO, utility, and distribution customers for
market-based microgrid scheduling using mixed-integer lin-
ear programming. Authors in [14] derived optimal portfolio of
demand response contracts for an aggregator which maximizes
its operating surplus and satisfies the consumers’ aspirations.
Sadeghi-Mobarakeh et al. [15] developed an optimal demand
biding model under uncertainty for a price-taker distribution
utility using two-stage robust stochastic programming.

The aforementioned works model smart grid as a controlled
or price-taker entity, operated and managed by the ISO within
the wholesale market as an aggregated load or power source.
Such assumptions are largely impractical recalling that distri-
bution side technologies, like storage devices, are essentially
privately-owned and clients have little incentive to let the ISO
manage or operate them (due to life cycle reduction).

In some recent works, the distribution network model and
the decision making independence of the smart grids are con-
sidered. The energy management issue and power exchange
among a group of active distribution networks and transmis-
sion system are addressed in [16], [17], [18]. They proposed
the use of a system of systems modeling paradigm which is a
hierarchical decentralized architecture to find the optimal oper-
ating point amongst independent systems. Specifically, [16]
presents such a framework and develops an iterative algorithm
to coordinate a distribution company and multiple microgrids
for finding the optimal operating point of these independent
systems. The work in [17] extends the scope of [16] by con-
sidering a transmission system and multiple active distribution
networks as a system of systems and determines unit commit-
ment and generation dispatch decisions for the ISO and active
distribution networks. The iterative solution algorithm used for
solving the problem is not guaranteed to converge for the non-
convex mixed integer linear programs (MILPs) studied in these
works. Reference [18] considers a similar decentralized struc-
ture composed of a leader multi-microgrid system and multiple
microgrids followers, and formulates the energy management
problem via bilevel optimization. Individual microgrids solve
multiple-stage robust optimization to minimize the operating
cost in the worst scenario while at the level of multi-microgrid
system (i.e., upper level), energy management is carried out
by minimizing the daily operating cost. The wholesale energy
market and its interaction with the multi-microgrid system are
ignored in this work.

C. Research Objectives and Paper Organization

This survey reveals that compared to the abundant literature
on smart grid operation and optimization studies, there is lim-
ited research on models that consider the autonomy of smart
grids and the distributed feature of demand side components in
the market operation. Indeed, distribution system is a key com-
ponent that interconnects various renewable resources, storage
devices, and responsive loads in the area to serve the power
requirements of a cluster of consumers. Hence, an analytical
method that considers all those critical factors and interac-
tions should be employed to determine the actual operating
policy of smart grids. While the aforementioned approaches
focus on control and operation aspects from either supply side
or demand side, we develop a market based framework to
study the operation and interaction of an electricity market
and multiple active distribution networks that serve a group
of customers. In the proposed setting, smart grids anticipate
market price and can influence market quantities accordingly.
That is, they play games with the market and this interaction is
modeled via bilevel optimization. In our framework, the mar-
ket operator (i.e., ISO) at the top level, clears the day-ahead
market and a number of independent smart grids, in the lower
level, act sequentially to determine their optimal schedules.
Here, every smart grid is a self-organizing system that oper-
ates and manages its own network to utilize a diverse range
of interconnected renewable resources, storage devices, and
responsive loads in the area. This modeling approach enables
us to capture the actual and discrete features of demand side
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technologies like storage devices, and to model the operational
limits of the distribution system and responsive demands. On
the market side, we assume that the ISO collects offers from
the production units and clears the day ahead market using
a unit commitment problem. We use a second order conic
AC power flow program for the ISO problem to account for
the voltage and reactive power constraints of the transmission
system.

The most difficulty that naturally arises from modeling
physical characteristics of smart grid components into this type
of bilevel optimization is the discrete feature of the decisions
at the lower level problems. Note that this is in addition to the
generators’ binary commitment decisions in the upper level
which gives rise to bilevel optimization with mixed integer
structures in both levels. This presents a significant compu-
tational challenge for which the most of available solution
techniques primarily rely on heuristics, approximations, or
modeling simplifications that lack computational efficiency
and might lead to sub-optimality. Notice that the conventional
reformulations that use strong duality or KKT conditions to
replace the lower level problem are not applicable to this type
of bilevel optimization. Different from the existing methods,
we extend and customize an exact solution technique, i.e.,
the reformulation-and-decomposition scheme [19], to solve
this challenging bilevel optimization. This method implements
the column-and-constraint generation algorithm [20], and has
demonstrated a strong solution capacity on a few bilevel mixed
integer linear programs [21], [22], [23]. Overall, the proposed
platform allows us to analyze the integration of smart grids in
modern electricity market and to gain a deeper understanding
of the impacts of distribution side technologies (e.g., storage
devices, shiftable demands, etc.) on market operation, which
could not be obtained by the conventional aggregated smart
grid models.

In view of the above discussion and to demonstrate notable
advantages over the existent methods in the literature, this
paper makes the following contributions:
(a) From a formulation perspective, we present a bilevel

mixed integer conic model for the day ahead market clear-
ing integrated with the energy management problem of
autonomous smart grids. This is a multi-period optimization
model accounting for renewable generation, storage devices,
and responsive demands interconnected through the distri-
bution gird and can exchange power with the wholesale
market.
(b) From an algorithmic viewpoint and to the best of our

knowledge, we develop and customize the first exact decom-
position method for computing a bilevel optimization program
with mixed integer conic upper level and multiple mixed inte-
ger linear lower level problems. The presented method will
provide a novel tool to analytically study the operation man-
agement and optimization of autonomous smart grids that are
integrated in the electricity market and are connected to the
main transmission grid.

The rest of the paper is organized as follows: it begins
with problem statement in Section II, where we describe the
notation, the market structure, and modeling assumptions. The
overall bilevel optimization is also presented in this section.

In Section III, the solution algorithm is outlined. Experimental
results are presented and discussed in Section IV and the
concluding remarks are provided in Section IV.

II. PROBLEM STATEMENT

In this section we present the bilevel optimization pro-
gram for clearing the day ahead electricity market considering
optimal operation of independent smart grids using mixed
integer conic and linear programming. The notation and
assumptions are introduced first.

A. Notational Conventions

The following notation is used in the modeling. For a
typical transmission network, Δ is the set of network nodes
(indexed by i , j ) and Δ(i) is the set of nodes directly
connected to node i . The set of transmission branches is Ω
indexed by ij . Series conductance, series susceptance, and
shunt susceptance in the π−model of branch ij are denoted
by gij , bij , b

sh
ij , respectively. Subscript t ∈ T denotes time

period. The nodal active/reactive demands are d
p
i /d

q
i and the

power imported to the smart grid are pdi /q
d
i . The complex

voltage at transmission node i is Vi = ei + jfi . The minimum
and maximum node voltages are Vmin

i and Vmax
i , and the

rated branch current is Imax
ij . The offer cost of generation

is cgi , and the active and reactive power output variables are
indicated with pi and qi . The generator’s no-load cost, start-up
cost, and shut-down cost are indicated with C nl

i , C u
i , and C d

i .
The real power curtailment variable and its unit cost are ri
and cci , respectively. Parameter σi is a constant related to the
power factor of the real power curtailed at node i . The active
and reactive power flows of branch ij are pij and qij , and their
corresponding upper limits are pmax

ij and qmax
ij . The squared

branch current is I sqij . The lower and upper bounds of active
and reactive power generation are given by pmin

i , pmax
i , qmin

i ,
and qmax

i , respectively. Binary variables vi , ui , si are used for
modeling commitment, start-up, and shut-down of generators.

For every distribution grid connected to transmission node
i via its main substation transformer, we denote by Φi the set
of grid nodes and by Φi (n) the set of nodes connected to node
n . The main substation node of the distribution gird is denoted
by 0 and hence, Φi (0) represents the set of nodes connected to
the substation. The set of network branches is Ni . Distribution
nodes are indexed by n,m, l . The fixed part of the real and
reactive demand at node n are represented with p0n and q0n . The
shiftable part of demand is denoted by d fn and its upper bound
by d̄ fn . The power factor of the load is γdn . Resistance and reac-
tance of branch nm are given by rnm and xnm , respectively.
The squared voltage magnitude of node n is shown by Un

and its upper and lower limits by Umax
n and Umin

n , respec-
tively. The feeder’s active and reactive power flows are pnm
and qnm and the corresponding limits are pmax

nm and qmax
nm . The

real power output of a renewable (distributed) energy resource
is grn and its power factor is γrn . The energy level of the stor-
age device (battery) is ebn and its upper and lower bounds are
ebmax
n and ebmin

n . The charging and discharging power levels
of the storage are bcn and bdn , and the upper bounds are bcmax

n
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and bdmax
n . We assume that the storage device efficiency in the

charging or discharging mode is ηbn . The binary variable zn
indicates the charging/discharging operating mode of the stor-
age. The allowable number of changes in the operation state
of the storage at node n is N b

n . The total energy consumed by
the flexible demand over the scheduling period is E f

n with αn

and βn being the start and the end operating time intervals.
For notational simplicity, we assume that generation and con-
sumption exist at every distribution node and one smart grid
is connected to each transmission node i .

B. Structure and Modeling Assumptions

Let us suppose a day ahead energy market run by the
ISO for energy trade. Following the current practice in most
power markets in the U.S., which perform unit commitment,
we assume that production units submit complex offers to
the ISO which embody their actual operational cost and con-
straints [2], [6], [9], [13]. In this work, the operational cost
data includes variable (running) cost, start-up cost, shut-down
cost, and no-load cost. The operational constraint include the
up and down ramping rates, the minimum up-time and down-
time, and the minimum and maximum generation. The ISO
then decides on the starting-up and shutting-down of the units
once offers are collected.

In the proposed setting, smart grids are part of and con-
nected to the main transmission grid and their real and reactive
power exchanges are treated as dependent variables whose
precise values are computed by the lower-level (smart grids’)
problems in an interactive fashion with the ISO problem.
Observe that smart grids will accordingly influence market out-
comes by adjusting their operating plan and dispatch decisions.
Indeed, they play games with the market and their interac-
tions are modeled by means of bilevel optimization. This is
the standard reasoning behind a Stackelberg leader-follower
game formulation.

We model each smart grid as a self-organizing indepen-
dent entity run by an operator (or aggregator). It collects
information from renewable generation resources, storage
devices, and consumers connected to the distribution system
nodes. It then performs an optimal power flow problem
and computes the self-consumption and dispatch decisions
of its network components [16], [18]. Renewable generation
resources are considered non-dispatchable with their output
power profiles being known and given. The consumers at the
distribution nodes have either fixed (non-shiftable) or shiftable
demands. In this context, shiftable demand refers to a distribu-
tion user that can shift consumption to cheaper time slots but
its cumulative consumption across the time horizon, denoted
as E

f
n , is fixed and given. This parameter specifies the daily

target power consumption of the consumer. The beginning and
the end of the operating time intervals are also specified for
shiftable demands. Therefore, every shiftable demand d

f
nt is

modeled as a nonnegative time-dependent variable in the smart
grid problem [15], [24]. In this paper, we do not consider bids
from consumers connected to the transmission system.

In Fig. 1 the structure of the proposed bilevel model is
depicted. In the following subsections, we model each market

Fig. 1. Framework of proposed bilevel model.

entity involving generators, smart grid and its components,
and the ISO. We consider a deterministic situation in this
study, and the extension to a stochastic model to describe ran-
dom demand fluctuations and renewable generation is left for
future research and more advanced algorithm development.
The corresponding problem constraints and the overall bilevel
optimization are described next.

C. Bilevel Market Clearing Model Integrated With Optimal
Smart Grid Operation

As indicated earlier, the ISO receives complex offers from
production units which include operational cost data and oper-
ational constraints. It then performs a multiperiod optimization
to clear the day ahead energy market. This is the upper level
problem whose solution yields the starting-up, shutting-down,
and dispatch decisions of the conventional production units.
The demands of the smart grids connected to the transmission
system are treated as dependent variables to be determined by
the lower level problems in an iterative way.

Using a second order conic AC power flow model, the upper
level market clearing problem is thus written as:

min
∑

t∈T

∑

i∈Δ

cgi pit + cci rit + vitC
nl
i + uitC

u
i + sitC

d
i (1a)

s.t. pit +
∑

j∈Δ(i)

pjit −
∑

j∈Δ(i)

pijt = dp
it + pdit − rit

∀i ∈ Δ, t ∈ T (1b)

qit +
∑

j∈Δ(i)

qjit −
∑

j∈Δ(i)

qijt = dq
it + qdit − σirit

∀i ∈ Δ, t ∈ T (1c)

vitp
min
i ≤ pit ≤ vitp

max
i , vit ∈ {0, 1} ∀i ∈ Δ, t ∈ T (1d)

vitq
min
i ≤ qit ≤ vitq

max
i ∀i ∈ Δ, t ∈ T (1e)

pijt = gij
(
Ciit − Cijt

)
+ bijSijt ∀ij ∈ Ω, t ∈ T (1f)

qijt =
(
−bij − bshij /2

)
Ciit + bijCijt + gijSijt

∀ij ∈ Ω, t ∈ T (1g)

I sqijt = F
l1
ij Ciit + F

l2
ij Cjjt − F

l3
ij Sijt − F

l4
ij Cijt
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∀ij ∈ Ω, t ∈ T (1h)

I sqijt ≤ (
Imax
ij

)2 ∀ij ∈ Ω, t ∈ T (1i)

pit+1 − pit ≤ Ru
i ∀i ∈ Δ, t ∈ T (1j)

pit − pit+1 ≤ Rd
i ∀i ∈ Δ, t ∈ T (1k)

t∑

k=t−UTi+1

uik ≤ vit ∀i ∈ Δ, t ∈ {UTi , . . . ,T} (1l)

t∑

k=t−DTi+1

sik ≤ 1− vit ∀i ∈ Δ, t ∈ {DTi , . . . ,T} (1m)

vit − vit−1 = uit − sit , uit , sit ∈ {0, 1}
∀i ∈ Δ, t ∈ T (1n)

0 ≤ rit ≤ rmax
i ∀i ∈ Δ, t ∈ T (1o)

(
Vmin
i

)2
≤ Ciit ≤ (

Vmax
i

)2 ∀i ∈ Δ, t ∈ T (1p)

Ciit = 1 i = ref . ∀t ∈ T (1q)

Cijt = Cjit , Sij = −Sji , Cijt ≥ 0 ∀ij ∈ Ω, t ∈ T (1r)

C 2
ijt + S2

ijt ≤ CiitCjjt ∀ij ∈ Ω, t ∈ T (1s)
(
pdit , q

d
it

)
∈ argmin{MILP-OPF [(3a) − (3o)]} ∀i , t (1t)

where variables Cij = eiej + fi fj and Sij = ei fj − ej fi are
used to formulate the conic AC power flow model [25]. The
fixed parameters F l1

ij ,F
l2
ij ,F

l3
ij , and F l4

ij in (1h) are related to
the branch admittance defined below:

F l1
ij = g2ij +

(
bij + bshij /2

)2
, F l2

ij = g2ij + b2ij (2a)

F l3
ij = 2g2ij + 2b2ij + bij b

sh
ij , F l4

ij = gij b
sh
ij . (2b)

The upper level problem (1a)-(1j) is a unit commitment
(UC) model based on second order conic AC power flow
equations. Specifically, (1b)-(1c) are nodal power balance
equations. Constraints (1d)-(1e) enforce the allowable range of
power production. Equations (1f)-(1h) define active and reac-
tive branch flows and branch current, respectively. The branch
ampacity is stated by (1i). The ramp-up and ramp-down rate
limits are enforced by (1j)-(1k). The minimum up and down
times of the generators are stated by (1l)-(1m). Equation (1n)
states the logical relationships between binary commitment
variables. The maximum load curtailment at each transmis-
sion node is given by (1o). Constraints (1p)-(1q) indicate the
voltage range of each transmission node as well as the refer-
ence bus magnitude. Constraints (1r)-(1s) define the governing
equations for the AC power flow variables in second order
cone format. Finally, constraint (1t) states that pdit and qdit
in power balance equations (1b)-(1c) are calculated by the
lower level problem associated with the smart grid connected
to transmission node i .

Let us suppose a number of independent smart grids that
are connected to the transmission system through substation
transformers and exchange power with the main network.
The operator of each smart grid anticipates market price (at
the connection node) and computes optimal operating deci-
sions by minimizing its real and reactive power consumption
using a mixed integer linear program. The operational and
technical constraints of the distribution network and various
demand-side technologies (storage, responsive demand, etc)
are modeled in the smart grid problem. So, every smart grid

at transmission node i solves the following optimal power flow
program, written for all i ∈ Δ:

min
∑

t∈T

(
pdit + qdit

)
(3a)

∑

m∈Φi (n)

pnmt −
∑

l∈Φi(n)

plnt = grnt + bdnt − bcnt − d f
nt − p0nt

∀n ∈ Φi , t ∈ T (3b)
∑

m∈Φi (n)

qnmt −
∑

l∈Φi(n)

qlnt = γrng
r
nt − γdnd

f
nt − q0nt

∀n ∈ Φi , t ∈ T (3c)

Umt = Unt − 2(rnmtpnmt + xnmtqnmt )

∀n ∈ Φi , m ∈ Φi (n),nm ∈ Ni , t ∈ T (3d)

Umin
n ≤ Unt ≤ Umax

n ∀n ∈ Φi , t ∈ T (3e)

| pnmt |≤ pmax
nm , | qnmt |≤ qmax

nm ∀nm ∈ Ni , t ∈ T (3f)

pdit =
∑

m∈Φi (0)

p0mt , qdit =
∑

m∈Φi (0)

q0mt ∀t ∈ T (3g)

ebnt = ebnt−1 + bcnt × ηbn − bdnt × 1/ηbn ∀n ∈ Φi , t ∈ T

(3h)

ebmin
n ≤ ebnt ≤ ebmax

n ∀n ∈ Φi , t ∈ T (3i)

0 ≤ bcnt ≤ zntb
cmax
n ∀n ∈ Φi , t ∈ T (3j)

0 ≤ bdnt ≤ (1− znt )b
dmax
n ∀n ∈ Φi , t ∈ T (3k)

∑

t∈T

∣∣znt − znt−1

∣∣ ≤ N b
n ∀n ∈ Φi , t ∈ T (3l)

0 ≤ d f
nt ≤ d̄ f

n ∀n ∈ Φi , t ∈ T (3m)
βn∑

t=αn

d f
nt = E f

n ∀n ∈ Φi , t ∈ T (3n)

znt ∈ {0, 1} ∀n ∈ Φi , t ∈ T (3o)

The lower level problem (3) minimizes the net consumption of
real and reactive power in objective function (3a). Nodal power
balance equations are given in (3b)-(3c). Constraints (3d)-
(3e) define the governing equations for voltage and branch
flow of the distribution network as well as the allowable
voltage range, respectively. The maximum branch flow is
enforced by (3f). The power balance at the substation of the
distribution network is given by (3g). The energy balance
of the storage device is stated by (3h) considering its effi-
ciency, ηbn . Constraints (3i)-(3k) set lower and upper bounds
on the energy level and charging and discharging power of the
storage. Note that binary variable znt is introduced in (3j)-
(3k) to avoid charging and discharging simultaneously. The
number of changes in the operation state of the storage is lim-
ited through constraint (3l). The upper and lower bounds of
shiftable demand is enforced in (3m). Constraint (3n) states
that the total energy consumed by the shiftable demand, over
the time horizon, is known and fixed. Finally, (3o) intro-
duces the binary variable znt . As previously indicated, we
consider fixed and shiftable nodal demands. For shiftable
demands, d fnt indicates a non-negative time-dependent vari-
able whose accumulate value over the time horizon has a
designated constant value, as stated by (3n). Note that this
is a temporally-coupled constraint which couples the power
consumption across the time horizon and makes the problem
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hard to solve because it cannot be independently solved for
each time slot.

In the above formulation, the duration of each time slot
is set to 1 hour and it is further assumed that the storage
devices operate in unity power factor mode with negligible
reactive power generation. The set of decision variables of
each lower level smart grid’s problem is defined as Y i

L =

{zn , pdi , qdi , d fn , ebn , bcn , bdn ,Un , pnm , qnm}.
Remark 1: The nonlinear constraint (3l) can be readily lin-

earized by introducing binary variable znt . This way, (3l) can
be equivalently replaced by znt − znt−1 ≤ znt , znt−1− znt ≤
znt , and

∑
t∈T znt ≤ N b

n .
Remark 2: With substation’s active and reactive flows being

equal to pdit =
Ciit−U0t

2rs
− xs

rs
qdit and qdit =

Ciit−U0t
2xs

− rs
xs
pdit ,

the objective function (3a) can be expressed as: Ad
i (Ciit −

U0t ), where U0t is the substation voltage, Ciit denotes the
transmission node voltage, and Ad

i is a constant parameter

defined as Ad
i =

(xs+rs)−2(x2
s +r2s )

xsrs
. In these equations, rs +

jxs is the series impedance of the substation transformer. The
objective function (3a) and hence, each smart grid’s lower level
problem depend on the upper level variable Ciit .

It is seen that the lower level problem (3) is essentially a
mixed integer linear program. The operator of each smart grid
solves this model to compute the optimal self-consumption
quantities and the dispatch decisions of its resources and
demands. Given this and as indicated earlier, the conven-
tional reformulation methods that employ KKT conditions or
strong duality to replace the lower level problem with the
equivalent counterpart are not applicable here. In the follow-
ing, we develop and customize the exact reformulation and
decomposition method to compute this problem iteratively.

III. SOLUTION METHODOLOGY

The optimization model (1)-(3) is composed of a single
upper level program in mixed integer second order cone pro-
gramming (MISOCP) format and multiple MILP lower level
problems. To compute this bilevel program, we use and extend
the reformulation-decomposition algorithm developed in [19],
which partitions the original model into a master problem and
multiple subproblems.

To make the exposition in this section more accessible,
we first provide a compact matrix-based representation of the
bilevel program (1)-(3), as written below:

min ax + by (4a)

s .t . By + Cri = d (4b)

Ax +Dy ≥ l , x ∈ {0, 1} (4c)

‖Hy‖ ≤ hy (4d)

where ri ∈ argmin
{
ei (ri + yi ): (4e)

s .t . Giwi + Ei ri +Oiyi = fi (4f)

Fiwi +Ki ri ≤ ki (4g)

ri ≥ 0, wi ∈ {0, 1}} ∀i ∈ Δ (4h)

where x and y denote the upper level binary and con-
tinuous variables, and ri and wi indicate the lower level
continuous and binary variables associated with the smart

grid at transmission node i . The coefficient matrices and/or
vectors (A, a,B , b,Ei , ei , l ,D , d ,Fi , fi ,Gi ,H , h,Ki , ki ,Oi )
with proper dimensions are related to these variables. In
constraint (4d), we let symbol ‖.‖ denote the l2−norm for
vectors (matrices). Equation (4e) represents the objective func-
tion and (4f)-(4h) are the primal constraints of the lower
level problem associated with each smart grid at transmission
node i .

To provide a decomposable structure for algorithm devel-
opment, we follow [19] to reformulate bilevel program (4)
by duplicating the lower level variables and constraints in the
upper level problem and adding one additional constraint (5e),
as written below:

min ax + by (5a)

s .t . [(4b) − (4d)] (5b)

Giw
′
i + Eir

′
i +Oiyi = fi , Fiw

′
i +Kir

′
i ≤ ki (5c)

r ′i ≥ 0, w ′
i ∈ {0, 1} (5d)

ei(r
′
i + yi) ≤ min

{
ei(ri + yi): (5e)

s .t . Giwi + Eiri +Oiyi = fi , Fiwi +Kiri ≤ ki

(5f)

ri ≥ 0, wi ∈ {0, 1}} ∀i ∈ Δ (5g)

where the duplicated lower level variables in the upper level
are denoted by r ′i and w ′

i . Note that (5c)-(5d) are defined for
each smart grid. Because of (5e), we conclude that problem (5)
is equivalent to the original bilevel optimization (1)-(3).
Although more complicated than (1)-(3), the reformulated
problem (5) provides a convenient representation to derive
non-trivial bounds to problem (1)-(3). Let W be the collec-
tion of all possible realization of wi and w̃i be a particular
realization of wi . Next, by enumerating wi and introducing its
continuous variables r̂ w̃i

i , we can rewrite (5e)-(5g) as:

ei
(
r ′i + yi

) ≤ min
{
ei

(
r̂ w̃i
i + yi

)
: (6a)

s .t . Gi r̂
w̃i
i + Ei w̃i +Oiyi = fi (6b)

Fi w̃i +Ki r̂
w̃i
i ≤ ki (6c)

r̂ w̃i
i ≥ 0

}
w̃i ∈ W, i ∈ Δ (6d)

Observe that once w̃i is given, the right-hand side of (6a)-(6d)
is a linear program. Moreover, instead of having a complete
enumeration, (6a)-(6d) developed based on a subset W̃ ⊆ W
results in a relaxation of (5), or equivalently the original bilevel
optimization (1)-(3). These features enable us to develop the
decomposition algorithm using column-and-constraint gener-
ation method [20], as described next.

A. Subproblems

For a given upper level decision (x∗, y∗), we formulate and
compute the following subproblem SP1i for each smart grid
connected to transmission node i ∈ Δ:

SP1i: Ψi (x
∗, y∗i ) = min ei (ri + y∗i ) (7a)

s .t . Giwi + Ei ri +Oiy
∗
i = fi : λi

(7b)
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Fig. 2. Flowchart of the proposed reformulation-decomposition method.

Fiwi +Ki ri ≤ ki : μi (7c)

ri ≥ 0, wi ∈ W (7d)

Although problem SP1i is an MILP, for a fixed wi , the
remaining problem is a linear program. The dual variables of
constraints (7b) and (7c) are indicated by λi and μi . Clearly,
SP1i provides an optimal solution of lower level model (3)
for dispatch plan (x∗, y∗i ). However, it might have multiple
solutions. The second subproblem, i.e., SP2, derives one that
is in favor of the upper level model, as written below:

SP2: Ψ(x∗, y∗) = min ax + by (8a)

s.t. [(7b) − (7d)] (8b)

ei (ri + yi ) ≤ Ψi (x
∗, y∗i ) ∀i ∈ Δ

(8c)

It is seen that SP2 is an easily computable MILP problem.

B. Master Problem

With formulations (5)-(6), the master problem is then con-
structed by: 1) duplicating the lower level variables (denoted
by w ′

i and r ′i ) and constraints in the upper level problem; and
2) replacing the lower level problem (in iteration j ) of a fixed
realization w̃ j

i ∈ W̃ ⊆ W by its KKT conditions (continuous
primal variables are indicated by r̂

j
i , and dual variables by

λji and μji ). The compact form of the master problem is pro-
vided within the algorithm description (see (9a)-(9f) below
and also [19]). Next, we provide steps of our customized
column-and-constraint generation decomposition algorithm to
solve the overall bilevel optimization. Let LB and UB be the
lower and upper bounds, τ be the iteration index, and ε be the
optimality tolerance.

This algorithm dynamically provides stronger upper bounds
(from subproblems) and lower bounds (from the master
problem) and, in each iteration, adds new variables and con-
straints to the master problem until the difference between

Algorithm 1 Algorithm for Solving MIP Bilevel Problem
(1)− (3)

1. Step 1. Set LB = 0, UB = ∞, and τ = 0.
2. Step 2. Solve the following master problem:

MP: Γ = min ax + by (9a)

s .t .
[
(4b)− (4d)

]
,
[
(5c)− (5d) ∀i ∈ Δ

]
(9b)

Gi w̃
j
i + Ei r̂

j
i +Oiyi = fi 1 ≤ j ≤ τ, ∀i ∈ Δ (9c)

ei (r
′
i + yi ) ≤ ei (r̂

j
i + yi ) 1 ≤ j ≤ τ, ∀i ∈ Δ (9d)

0 ≤ μ
j
i ⊥ Fi w̃

j
i +Ki r̂i

j − ki ≤ 0 1 ≤ j ≤ τ,

∀i ∈ Δ (9e)

0 ≤ r̂i
j ⊥ ei + Eiλ

j
i +Kiμ

j
i ≥ 0 1 ≤ j ≤ τ,

∀i ∈ Δ (9f)

Report optimal solution (x∗, y∗) and update LB = Γ.
3. Step 3. Given y∗i , solve SP1i for i ∈ Δ and report

Ψi (x
∗, y∗i ).

4. Step 4. Solve SP2 for given (x∗, y∗i ) and Ψi (x
∗, y∗i ).

Report optimal (z̃ τ )∗ and Ψ(x∗, y∗). Update UB =
min{Ψ(x∗, y∗),UB}.

5. Step 5. If UB−LB ≤ ε, stop with a solution associated
with UB . Otherwise, τ = τ + 1 and go back to step 2.

bounds is not larger than optimality tolerance ε. The math-
ematical proof of finite convergence of this algorithm to the
optimal value can be found in [19], [20]. Fig. 2 illustrates the
proposed iterative algorithm.

It is worthwhile to emphasize that master problem MP
is a complementary program that can be converted into a
regular mixed integer second order cone program by lineariz-
ing (9e)-(9f) using big-M method and binary variables. So,
existing commercial MISOCP solvers can be used to compute
all subproblems and master problem. Although MP could be
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Fig. 3. Example system: a transmission network and two smart grids.

cumbersome as its dimension increases each iteration, the crit-
ical advantage of this algorithm is that it produces optimal
solutions within a very small number of iterations and algo-
rithmic operations. In our experiments, in most cases, the algo-
rithm provides optimal solutions after 3 iterations and needed
a maximum of 4 iterations in the most demanding case study.

IV. EXPERIMENTAL RESULTS

In this section, numerical results of three test systems
including an example network, IEEE 30-bus system, and IEEE
57-bus system are presented and discussed. The example
system together with various case studies are used to illustrate
the main features of the proposed formulation and comput-
ing methodology. The time horizon consists of 24 hours and
the duration of each time slot is set to one hour. They are
presented next.

A. Example System

This is a six-bus transmission network with four generators
and two smart grids, labeled SG1 and SG2. smart grids are
connected respectively to node 2 and node 4, as shown in
Fig. 3. Each smart grid has one photovoltaic (PV) generation
and one storage device connected to the same node of the
distribution network. The following scenarios, in a 24-hour
time horizon, are considered:
(I ) It is assumed that shiftable demand at each node is

equal to 10% of the fixed nodal demand. That is, if the fixed
nodal demand is p0nt , then we set 0 ≤ d fnt ≤ 0.1p0nt . Also, the
number of charging/discharging time of the storage devices is
limited.
(II ) The location/node of the PV generation–storage is

changed and the reset conditions are as in case I.

Fig. 4. Results of case I and case III: state of energy (SOE) of storage
devices, mean value of nodal LMPs, and voltage profile of the transmission
system.

(III ) The charging/discharging time of the storage is
assumed unlimited. That is, a big N b

n is applied to con-
straint (3l). The rest conditions are similar to case I.
(IV ) Similar to case I with the exception that the shiftable

demand at each node is increased to 15%.
(V ) Similar to case IV with the exception that 50% of

the distribution nodes have shiftable demand and the rest
nodal demands are fixed. The nodes with shiftable demand
are chosen randomly.
(VI ) The topology of the distribution network is changed.

In smart grid 1, the switches on lines 2, 3, and 5 are opened
and switches 6, 7, and 8 are closed. Also, in smart grid 2,
the switches on lines 4, 5, and 8 are opened and switches
10, 11, and 12 are closed.
(VII ) The distribution networks are not modeled and the

load-generation conditions are similar to case III. This case
basically represents an aggregated smart grid model.

The optimization results of these case studies are summa-
rized in Table I. The impact of PV generation–storage location
on the optimal operation of the smart grids and transmission
network is analyzed in cases I and II. Notice that the losses of
these networks and the unit commitment cost reduce in case I.
The effect of limiting the number of charging/discharging time
on the energy level of the storage devices in case I and case III
is shown in Fig. 4. In addition, the average LMP over the
24-hour period and the mean voltage profile of the transmis-
sion nodes are plotted in this figure. It is worthwhile pointing
out that N b

n is set to 5 in case I while it is equal to a large
number in case III so as to relax/remove constraint (3l). It
is seen from Fig. 4 that the stored energy level is reduced in
case I in both smart grids and curves become flatter indicating
reduction in the number of charging/discharging times. These
results clearly show that the inclusion of actual characteristics
and limitation of storage device are critical for deriving the
true optimal schedules of the smart grids.

To explore the effect of shiftable demand on the distribu-
tion and transmission systems, the losses of these networks and
the unit commitment cost are depicted in Fig. 5 for case I and
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TABLE I
OPTIMAL TRANSMISSION AND SMART GRID DECISIONS IN A 24-HOUR PERIOD: EXAMPLE SYSTEM

Fig. 5. Results of case I and case IV: losses and production cost of units.

case IV. Note that network losses and commitment cost reduce
in most hours by increasing the demand responsiveness (being
shiftable) by 5% in case IV. Fig. 6 exhibits the real and reac-
tive power imported to smart grid 2 and the mean nodal LMP
of the transmission network for case IV and V. As previously
indicated, in case V only 50% of the distribution nodes have
shiftable demands, and as a result, the power import to the
smart grid increases in most hours which raises the LMP of
the transmission network, on average. This experiment clearly
illustrates how the location of the responsive demand in an
active distribution network can have noticeable effects on the
market outcomes. Indeed, such impacts can be captured pro-
vided that distribution network and its operational constraints
are modeled in the problem. In cases VI, we assumed that
the operator of each smart grid can change the grid configu-
ration, as is common practice in the distribution network for
mitigating violations or reducing losses. Here, the impacts of
such acts on the market outcomes are observed. For example,
the mean LMP in case VI, comparing with case I, increases

Fig. 6. Results of case IV and case V: real and reactive power imports of
SG2 and mean nodal LMP of the transmission system.

by 7%. In case VII, the distribution network is not modeled
and an aggregated load-generation model is thus considered.
From Table I, it is seen that in this case study, transmission
losses increase and the peak demand of the smart grids is
reduced. Consequently, the commitment cost of generation
unrealistically decreases, compared to case III and V in which
distribution networks are modeled. For better illustration, the
mean nodal LMP and losses of the transmission system in
cases III and VII are depicted in Fig. 7. Observe the sharp
increase/change in the mean LMP and losses in some hours
in case III, which are largely eliminated in case VII due to
oversimplification.

The results presented in this case study clearly indicate
that for market outcomes to be reasonable, the formulation
approach is critical, specially for larger networks, as will
be discussed later in this section. Finally, Fig. 8 shows the
hourly commitment status of the generators (labeled Gi for
i = 1, . . . , 4) and charging/discharging mode of the storage
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Fig. 7. Mean LMP and losses of transmission system in case III and case VII.

Fig. 8. Hourly on/off status of the production units and charging/discharging
operating mode of the storage devices. White squares indicate on or charging
status and black ones denote off or discharging status.

devices (labeled SGi for i = 1, 2) in the cases studied in this
section. It simply exhibits how changes in load-generation con-
ditions or modeling details of the lower level problems (i.e.,
smart grids) lead to differing commitment schedules in the
upper level problem.

B. IEEE 30-Bus System

The transmission system is the modified IEEE 30-bus
system. Four smart grids are considered including the 4-node
system, 18-node system, the 22-node system, and the 33-
node system. They are connected to transmission nodes
20, 18, 30, and 15, respectively. The data of the transmis-
sion and distribution networks were adopted from matpower
database [26] with some modifications. These smart grids have
two, three, four, and five PV-storage systems. Assuming a
24-hour period, the following cases were studied:
(I ) Assuming 10% of nodal demands are shiftable. A lim-

ited number of charging/discharging time (i.e., a small N b
n ) is

applied to all storage devices in the smart grids.
(II ) The original topology is changed and the PV-storage

location is preserved as in case I. Compared with the orig-
inal network topology, in smart grid 1, switches on lines
2 and 3 are opened. In smart grid 2, switches on lines

TABLE II
OPTIMAL OPERATING DECISIONS OF TRANSMISSION SYSTEM AND

SMART GRIDS IN A 24-HOUR PERIOD: IEEE 30-BUS SYSTEM

8, 12, 13, and 17 are opened. In smart grid 3, switches on
lines 3, 8, 11, and 15 are opened. In smart grid 4, switches on
lines 7, 9, 14, 32, and 37 are opened. The original topology
of these networks are given in the matpower’s database.
(III ) The locations of the PV-storage are changed and the

reset conditions are identical with case I.
The optimization results are presented in Table II. Observe

the variations in market outcomes and smart grid schedules due
to changes in the PV-storage location or in the configuration
of the distribution system. For instance, the objectives of
smart grids are higher in case I and case III with respect to
case II. Also, topology changes in case II reduce the distribu-
tion system losses and the objective function of the upper level
problem (i.e., the social cost in the ISO problem). Thus, the
simplified aggregated models of smart grids at the transmis-
sion level will underestimate the market operation costs and
lead to inaccurate outcomes, as seen from the indices of the
transmission system in Table II.

C. IEEE 57-Bus System

The proposed methodology was applied to the IEEE 57-
bus system. This system composed of seven generators and
eighty lines. We assume that four smart grids are connected
to this system. The distribution systems include the 13-bus
system at node 3, 18-bus system at node 9, 22-bus system at
node 52, and 33-bus system at node 42. The required data of
the transmission and distribution systems were adopted from
matpower [26] with some modifications.
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TABLE III
OPTIMAL OPERATING DECISIONS OF TRANSMISSION SYSTEM AND

SMART GRIDS IN A 24-HOUR PERIOD: IEEE 57-BUS SYSTEM

Optimization results for three cases are presented in
Table III. These cases are similar to those in the previous
30-bus system. In case I it is assumed that 10% of nodal
demands are shiftable with the number of charging/discharging
times of the storage devices being limited. In case II, the PV-
storage locations are changed and the rest conditions are the
same as in case I. In case III, the topology of the distribu-
tion networks with respect to cases I are modified and the
remaining conditions are similar to those in case I.

From Table III, it is seen that variations in the optimal deci-
sions and schedules of the smart grids are reflected in the
market outcomes. For instance, transmission losses and social
cost reach to their lowest values when the PV-storage locations
in the distribution networks are as in case II. This highlights
the fact that actual market outcomes depend on the reaction
and operating decisions of the smart distribution networks and
the level of physical details considered in the modeling of these
systems, as demonstrated in the cases studied in this sections.

V. CONCLUSION

In this paper we develop a modeling framework for inte-
grating optimal energy management problem of autonomous
smart grids in the day-ahead market operation. We formulate a
bilevel optimization program to capture the interaction of the
ISO and multiple independent smart grids. The upper level
problem formulates the day-ahead market clearing procedure
using a second order conic AC power flow model. The lower

level problems represent energy consumption management of
autonomous smart grids in which the mixed integer nature of
the decisions pertaining to the storage devices and shiftable
demands are considered.

Given such mixed integer structure in both upper and lower
level problems, for which no analytical solution methodology
exists, we develop and customize an exact reformulation-
decomposition method to compute the problem iteratively
using a master problem and multiple subproblems.

On the illustration of the proposed scheme on three test
systems, we observed that the aggregated modeling approach
of smart grids which neglects or uses a simplified model of dis-
tribution system and actual characteristics of storage devices,
will result in unrealistic or underestimation of market out-
comes. The proposed method improves solution accuracy by
capturing physical transmission and distribution systems, the
discrete nature of decision making procedure at the lower level
problems, and the interaction between the power market and
smart grids.

Possible directions for future research include incorporation
of more features of demand side technologies such as response
time or ramp time of responsive demands, electric vehicles,
etc., and evaluation of their impacts on market operation and
outcomes.
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