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ABSTRACT

The potential recovery of post-stroke aphasia is highly variable and
the rehabilitation outcomes are difficult to predict. This interdisci-
plinary collaboration builds on data collected as part of a large set
of behavioral and brain variables in patients with post-stroke apha-
sia, charting the course of recovery associated with therapy across
language domains and examining the basis of neuroplasticity. In
this pilot study, we created and tested a predictive framework based
on a subset of the data collected and developed machine-learning
algorithms that take as input a complex set of brain and behavioral
features to classify and predict the participants’ responsiveness
to therapy. We developed Random Forest models that enabled us
to rank the importance of these features. We then compared the
contributions of different feature sets and discussed their physio-
logical implications. Our preliminary results suggest the potential
of our framework, and, thus, this study takes an important first
step towards predicting individualized rehabilitation outcomes.

CCS CONCEPTS

« Computing methodologies;

KEYWORDS

Stroke, Aphasia, Recovery, Machine Learning

1 INTRODUCTION

Stroke is a leading cause of severe long-term disability. It affects
800,000 people in the United States every year and its incidence
is rising with the aging population. One third of stroke survivors
lose language abilities due to brain damage, commonly defined as
aphasia. Over two million people are living with post-stroke aphasia
in the United States and it is considered one of the most debilitating
chronic conditions [1]. In everyday life, it results in difficulty in
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speaking, comprehending, writing and/or reading, which leads to
reduced social participation [2]. Although most patients improve
with speech and language therapy, the recovery trajectory can be
difficult to predict at the individual level. Multiple factors impact
responsiveness to treatment and the evolution of aphasia over time,
such as stroke severity, degree of initial language impairment and
demographic information [3, 4]. In most cases, the prescription of
therapy is largely based on the behavioral presentation and does not
take into account the neural profile. While people with aphasia are
asking for more information on what to expect from rehabilitation
[5], clinicians have limited resources to provide a personalized
prognosis and adapt rehabilitation to individual needs.

In the last decades, thanks to new techniques in neuroimaging,
researchers have started to investigate how brain structure and
function, along with demographics and baseline aphasia severity,
could help inform rehabilitation and language outcomes in post-
stroke aphasia. Lesion size and lesion location have been some of
the most investigated prognostic neurological factors in this domain
and the majority of studies agree on their essential role in predicting
language scores and recovery over time [3, 4]. Until recently, most
prediction analyses focused on brain-behavior relationships using
simple correlations or regressions between damaged areas of in-
terest and cognitive scores, as well as mass-univariate voxel-based
lesion symptom mapping [6-14]. The major limitation of these
methods comes from the high dimensionality and collinearity of
the neural information due to the vasculature pattern [15, 16] along
with small sample sizes. Machine learning algorithms are therefore
an appropriate data-led approach to overcome these challenges and
assist in prediction of language abilities and recovery [17, 18].

2 RELATED WORK AND CONTRIBUTION

In the last years, studies demonstrated that multivariate data-driven
models could predict language profile of individuals with aphasia
above chance based on neuroimaging and patient-related informa-
tion. In neuroimaging studies, multivariate pattern analysis (MVPA)
aims at analyzing patterns that span multiple brain regions. Saur et
al. [19] showed that a multivariate pattern classification approach
could best predict a composite language score six months post-
stroke by adding language functional magnetic resonance imaging
(fMRI) data to baseline language profile and age. In the meantime,
as standard statistical methods demonstrated that lesion size and le-
sion location were associated with aphasia outcomes and recovery,
Price et al. [20] introduced a data-led system to improve predictions
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with a large database of structural MRI scans and behavioral data
from individuals who suffered a stroke. This group then demon-
strated that lesion information predicted speech production skills
with the best accuracy (i.e., 0.59) when percentage of damage from
35 anatomically parcellated brain regions, overall lesion volume
and time post-stroke were included in a Gaussian Process model
regression. Two studies used a similar brain parcellation, either
anatomical [21] or functional [22], to predict aphasia subtypes by
training multivariate regression or support vector machine models
based on proportion of damage. Furthermore, Halai et al. [22] also
obtained prediction scores above chance for a variety of language
scores. Other studies have used machine learning techniques to
evaluate the role of connectivity data in multimodal prediction
models. In these studies, diffusion-weighted imaging and/or resting
state fMRI data were used to compare the prediction accuracy of
models including lesion information with models including struc-
tural connectivity weights between regions [23], structural and
functional graph theory metrics [24] or binary connectivity disrup-
tion measures [25]. These studies demonstrated that both lesion
and connectivity data could predict language profiles but yielded
inconsistent results on the superiority of a certain type of variable
over another.

Another way to investigate the prediction power of lesion data
is by training models on raw images to overcome preprocessing
challenges. In particular, Roohani et al. [26] trained a convolutional
neural network on 2D stitched images in order to classify the degree
of language abilities recovered (bad versus good outcomes) and
obtained an accuracy of 0.79. In addition to language profiles and
aphasia subtypes, studies also presented effective models to predict
change in language performance over time between initial and
follow-up assessments [19, 27]. However, none of these studies
included information about evidence-based rehabilitation services
received by the patients between the different time points of data
collection. Yet, being able to predict how a patient will respond
to treatment is essential in a rehabilitation setting. This project
aims to develop machine-learning algorithms that take as input a
complex set of brain and behavioral markers in order to classify and
predict the responsiveness to treatment. Thus, this project takes an
important first step towards predicting individualized rehabilitation
outcomes.

As part of a collaborative work between three universities in-
volved in the Center for Neurobiology of Langauge Recovery, a
large set of behavioral and neuroimaging data from individuals
with aphasia who received evidence-based language treatment over
a three-month period were collected. In this pilot, we, at Boston
University, developed novel machine learning algorithms (Fig 1) to
classify and predict responders versus nonresponders to aphasia
treatment using multiple factors.

Besides correctly classifying and predicting the responsiveness
to treatment, we are also interested in identifying factors that are
important in the prediction. Feature ranking methods are used to
identify relevant features in the prediction, giving insight into the
data. Feature extraction methods, on the other hand, are used to cre-
ate new sets of features wherein the new features are combinations
of the original [28]. Principal Component Analysis is a common
example of a feature extraction method. Using such methods un-
dermines interpretability, and hence was not utilized in this pilot
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Figure 1: Framework of Multivariate Predictors

study. Instead, our investigation of machine learning algorithms to
classify response to aphasia treatment resulted in our selection of
the Random Forest model, which provides interpretability.

3 METHODS
3.1 Data Collection

Participants. 80 individuals were recruited from three research
sites (Boston University - BU, Johns Hopkins University - JHU, and
Northwestern University - NU) between 2015 and 2018, to be part
of a large-scale NIDCD study within the Center for the Neuro-
biology of Language Recovery . Inclusion criteria were a single
left-hemisphere ischemic stroke, diagnosis of chronic aphasia (i.e.,
at least six months post stroke-onset), native language English, at
least a high school education, normal or corrected-to-normal vision
and hearing, and no history of neurological disorder other than a
stroke. Patients with a history of multiple infarcts or of drug or alco-
hol abuse were excluded from this study. Exclusion also applied for
patients with contraindication for MRI and motor speech disorders
such as apraxia or dysarthria. Among the 80 participants, data from
65 aphasic patients were used in this study. Four were excluded due
to poor structural imaging data quality and eleven were patients
who did not receive treatments. Study-specific questionnaires and
medical records were used to obtain demographic and neurolog-
ical history information. Participants provided informed consent
according to the Declaration of Helsinki, and received additional
information if needed to understand the study’s protocol before
consenting. The study was approved by the Institutional Review
Boards of all three research sites.

Behavioral data and Treatment protocol. In each site, a com-
prehensive battery of language tests were administered to all par-
ticipants on entry and at specified test points during and following
treatment. The tests included assessments of various components
of language, including naming, spelling, sentence comprehension
and sentence production, and the Western Aphasia Battery-Revised
(WAB) [29], as the recognized primary outcome measure for apha-
sia rehabilitation [30]. The Aphasia Quotient (AQ) was collected
from this standardized assessment as a measure of aphasia severity.
After neuroimaging and behavioral data were collected, 65 patients

!http://cnlr.northwestern.edu/
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received two-hour sessions of language therapy twice a week for
12 weeks. The remaining patients served as controls but are not
included in this analysis. Therapy targeted different language com-
ponents within each site: word-retrieval at BU, sentence process-
ing at NU and spelling at JHU. For details about each therapy see
[31], [32] and [33], respectively. Performance was monitored every
week with a list of probes specific to each language domain trained.
Treatment-related gains were determined by calculating the per-
cent change in accuracy (i.e., average post-treatment accuracy score
minus average pre-treatment accuracy score in percentages) [34].
Individuals with aphasia were classified as having a favorable re-
sponse to treatment (i.e, responders) or a less satisfactory response
to treatment (i.e., nonresponders) based on a cut-off at 25% for per-
cent change in accuracy.

MRI data acquisition. Image data was gathered from four differ-
ent 3 Tesla scanning systems. A Siemens TIM Trio with 32-channel
head coil and a Siemens Prisma with a 64-channel head/neck coil
were used at Northwestern University; a Philips Intera with a 32-
channel head coil was used at Johns Hopkins University; and a
Siemens TIM Trio was used at the Athinoula A. Martinos Center at
Massachusetts General Hospital/Boston University. Imaging param-
eters were verified by the neuroimaging team to be homogeneous
across the three universities. T1-weighted 3D sagittal volumes were
obtained in a high resolution with an MPRAGE sequence (parame-
ters: TI/TE/TR = 900/2.91/2300 ms, FOV=256x256 mm, voxel resolu-
tion = 1x1x1mm3, 176 sagittal slices, phase encoding direction =
A/P).

Lesion mapping and lesion size (LS). Lesions were traced man-
ually slice-by-slice by trained research assistants on T1-weighted
images using MRIcron 2. The three orthogonal views were visual-
ized simultaneously during the tracing procedure to improve accu-
rate identification of the damage. Spatial normalization of the T1-
weighted images and lesion maps were performed with AFNI [35]
and the volume of each map was calculated with in-house MATLAB
scripts.

Percent spared in gray matter regions (SP). To determine the
integrity of cortical regions, we first delineated spared tissue in
each region of interest (ROI) of the Harvard-Oxford cortical struc-
tural atlas [36] by subtracting lesion maps from cortical ROIs. We
then calculated the remaining ROIs volume and converted it into a
percentage of spared tissue for each region of the atlas. Only left
hemisphere regions were included and we used the MarsBaR tool
in SPM [37] to process the images.

Proportion of damage in white matter regions (PD). A third
type of lesion information was extracted from the overlap between
lesion maps and a probabilistic atlas of white matter pathways
obtained from 47 healthy controls [38] using the Tractotron tool
from the BCBToolkit [39]. We obtained a proportion of damage
score for each white matter tract in each patient.

Zhttp://www.mccauslandcenter.sc.edu/mricro/mricron/
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3.2 Model Construction

The problem at hand is a binary classification problem where the
input is a complex set of brain and behavioral markers and the
output labels are responder and nonresponder. Our dataset has a
high dimensionality (d = 130 features) but a limited number of data
points (n = 65 samples). Two criteria were considered in choosing a
classifier: performance and interpretability. The performance was
assessed by the generalization error of the model. On the other
hand, interpretability was assessed by the model capability to pro-
duce a measure of feature ranking. In the next sections we discuss
the measures and methods used to achieve these two goals. We
used the scikit-learn 0.22.1 [40] library for our model exploration.

Algorithm selection. In this study, we considered three algo-
rithms as candidates: a random forest (RF), a support-vector ma-
chine with RBF kernel (SVM-RBF), and a gradient boosting machine
(GBM). Our choice was informed by the findings of Wainer [41],
who compared these three classifiers empirically against 14 other
classification algorithms and found them to yield the best perfor-
mance. We applied these three algorithms on the whole dataset
(d = 130) and reported in Table 1 the average model performance
using 5-fold cross-validation with the optimized hyperparameters
settings. According to this preliminary result, no model is signifi-
cantly better than the others. This observation is consistent with
previous work [41]. In terms of interpretability, SVM-RBF is limited
as features are transformed to higher dimensionality. As for RF and
GBM, our experiment showed that RF has sharper details in the fea-
ture ranking than GBM. For these aforementioned considerations,
we selected the random forest algorithm to further investigate the
data.

Table 1: Comparing Performance of ML Algorithms

Algorithm | Prediction Accuracy | Standard Deviation
RF 0.738 + 0.09
SVM-RBF 0.723 +0.10
GBM 0.723 +0.08

Random Forest. The idea of ensemble methods is to use the results
of multiple predictive models, called estimators or weak learners,
to compute the final output. Random Forest is one of the most
widely-used supervised learning algorithms that uses ensemble
methods for prediction. In its original version, the prediction is
computed through a voting mechanism, in which each estimator
votes for the most popular class (for classification) or the average of
all estimators is used (for regression) [42]. Previous work [41, 43]
found, using the same benchmarked dataset, that Random Forest is
most likely the best classification algorithm. Random Forest offers
many advantages. First, it is easy to train due to parallelization in
constructing trees and computing predictions. Second, it provides
a built-in feature ranking measurement, called feature importance.

Moreover, RF is capable of handling high dimensional and noisy
data. Furthermore, the node-splitting mechanism, as implemented
in the scikit-learn library, provides feature ranking once the trees
are built. We used entropy as the selection criterion for split points
that maximize the information gain in the tree nodes. The feature
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Table 2: Descriptions for Feature Sets

Feature Sets | Descriptions Dimension
Age 1

Dm Education level 1
Time post-stroke onset (in months) 1
Lesion size from T1-weighted MRI 1

Struc Percent spared (sp) per grey matter ROI 57
Proportion of damage (pd) in white matter regions 68

Behav Behavioral score using WAB-AQ, indicator of the aphasia severity 1

Table 3: Hyperparameters for the Models with Largest
Feature Sets

Model M2 M4 M5
n_estimators 1,000 700 300
max_depth 20 110 60
min_samples_split 2 2 2
min_samples_leaf 2 4 2
max_features None* (126) None (129) None (130)

* Numbers in parentheses were computed without a limit on the number of features

ranking ability satisfies one of our goals for this pilot study, which
is to identify the most important features that are related to aphasia
rehabilitation.

Model evaluation and selection. For the purpose of evaluating
the Random Forest models we constructed, prediction accuracy
was used to estimate model performance. To accommodate our
small sample size and avoid bias in the estimated mean values of
accuracy, we adopted a stratified k-fold cross-validation method,
where we chose k to be 5. In each of the 5 rounds, the model
under evaluation is trained over 80% of the data and tested on the
remaining 20%. The overall model performance is the average of the
5-fold performance, each evaluated by the prediction accuracy on
their respective test set. Using this evaluation method, we proceeded
to tune and optimize the hyperparameter so as to enhance the RF
model performance. However, searching for the optimal values of
hyperparameters, also known as model selection, is a nontrivial
process. We adopted a strategy that first randomly searches in a
large range for potentials and then runs a grid search for the optimal.
In both the randomized and the grid search, we applied stratified
5-fold cross-validation as mentioned in the model evaluation. The
hyperparameters we optimized are:

e the number of trees in the random forest (n_estimators),

e the maximum depth of the random forest tree (max_depth),

e the minimum number of samples required to split an internal
node (min_samples_split),

e the minimum number of samples required to be at a leaf
node (min_samples_leaf),

o the number of features to consider when looking for the best
split (max_features).
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4 EXPERIMENTS AND RESULTS

We separated the 130 features according to their source into three
feature sets: demographics (Dm), brain structure (Struc), and behav-
ior (Behav). Table 2 gives a brief description of these feature sets.
We applied five different combinations of these feature sets, yield-
ing five different RF models, M1-M5. The results of the respective
searches for the best hyperparameters of each of the models M2,
M4, and M5 (i.e., the models with more than 100 features) are given
in Table 3. The results of training and testing these five models with
5-fold cross-validation are summarized in Table 4.

We first tested each feature set separately. Our first model, M1,
was trained and tested with the demographics feature set. M1
achieved an average accuracy of 0.60 (f1 score = 0.73). Among
the three features in this set, our model suggests that age weighs
the most (slightly over 40%) in predicting responsiveness to treat-
ment, and time post stroke-onset (slightly below 40%) follows it
closely. The patient’s education level is the least important (about
20%).

Model 2 is trained and tested with the brain structure feature set,
corresponding to lesion information only. M2 achieved an average
accuracy of 0.70 (f1 score = 0.78). Among the three subsets in this
feature set, which encompasses 126 neuroimaging variables, M2 sug-
gests that the percentage of spared tissue in the posterior division of
cingulate gyrus, in the left lateral ventricle, and in the precuneus cor-
tex were the three most important predictors of treatment-related
change (Fig 2(a)).

Our third model (M3) was trained and tested on the baseline
aphasia severity score (WAB-AQ) as a predictor of responsiveness to
treatment and provided an accuracy of 0.71 (f1 score = 0.79). Among
the three single feature set models M1-M3, the brain structure
feature set alone made the prediction whose accuracy was close
enough to the prediction made by the baseline behavior score, with
a higher standard deviation though.

In our next set of experiments, we concatenated feature sets to
investigate the predictive performance of a more comprehensive
data set, as well as the role of lesion and non-lesion information in
the prediction. Model M4, which included demographics and brain
structure features as inputs, yielded an accuracy of 0.69 (f1 score =
0.77). A closer look at Fig 2(b) shows that demographic information,
time post stroke-onset and age, ranked within the top ten over a
total of 129 features. The top three ranked features remained the
same as in the M2 (Fig 2(a)).
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Table 4: Random Forest Classifiers for Responders and Nonresponders

# Feature Set Accuracy F1score Sensitivity Selectivity
M1 | Dm 0.602 0.730 0.56 0.63
M2 | Struc 0.701 0.784 0.65 0.72
M3 | Behav 0.707 0.785 0.58 0.74
M4 | Dm, Struc 0.686 0.774 0.61 0.71
M5 | Dm, Struc, Behav 0.737 0.800 0.69 0.77

Finally, when all feature sets were combined, the mean accuracy
was 0.74 (f1 score = 0.80). Not surprisingly, WAB-AQ was the top
predictor of behavioral treatment outcome. Further, spared tissue
in the left lateral ventricle, posterior division of cingulate gyrus, left
insular cortex, left precuneus cortex, and left Heschl’s gyrus were
the top structural factors that predicted language improvement. In
this last model, age was then the 8t most important feature.

5 DISCUSSION AND FUTURE WORK

Our study proposed a preliminary method to predict treatment-
related language recovery after stroke and demonstrated competi-
tive accuracy (0.74) while indicating the most relevant predictors.

Feature importance. In this study, we replicated previous findings
and confirmed the importance of age and baseline aphasia severity
(WAB-AQ) in predicting language recovery. Previous work showed
that older patients tend to benefit less from therapy than younger
individuals, however, this may be confounded with a higher preva-
lence of fluent aphasia in older individuals [3, 4].

After training a model M2 on neuroimaging data only, the top
features that classified responders and nonresponders correctly
include the degree of spared tissue in the posterior division of the
cingulate gyrus and in the precuneus cortex (Fig. 2a). These two
associative regions are involved in a large range of cognitive tasks
and have been identified as a pivotal node of the default-mode net-
work [44], one of the most robust functional network of the brain,
associated with self-processing, planning, and reflexive thoughts
[45]. Furthermore, a study using functional MRI found that the
precuneus was functionally connected to regions involved in lan-
guage processing such as the left triangular part of inferior frontal
gyrus (Broca’s area), superior and middle temporal gyri, Heschl’s
gyrus, and the insula [46]. Other studies found that precuneus and
posterior cingulate cortices are related to cognitive control [47]
and attentional shifting [48]. Therefore, integrity of this region
as part of a domain-general network may be important in bene-
fiting the resources provided in language rehabilitation. In fact,
self-regulation as well as good attentional and memory skills are
important determinants of language therapy success. Two previous
studies, including one from our group, found that pre-treatment
non-linguistic cognitive deficits were predictive of poorer therapy
outcomes [49, 50]. Furthermore, domain-general regions, such as
the cingulate gyrus and precuneus cortex, are not typically dam-
aged after a stroke, and the intactness of these regions may aid in
the overall responsiveness to language treatment.

When adding demographics to the neuroimaging-only model M4,
the top three remained the same, followed by time post stroke-onset
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and age (Fig. 2b). Ultimately, when all the variables in the same
model (demographics, baseline aphasia severity, and lesion infor-
mation) were included, the prediction accuracy reached the best
performance. The severity of language impairments before treat-
ment was the most important factor to predict treatment outcomes
in this final model M5 (Fig. 2c). Furthermore, the top three brain
structure features remain among the top five in this final model. In
addition, other top features include the proportion of spared tissue
in left cortical regions known to be involved in language processing,
such as the insula [51], left Heschl’s gyrus [52], and the posterior
division of the supramarginal gyrus [53].

Model sensitivity and selectivity. Our results show that all of
the 5 models have a higher selectivity than sensitivity. Recall that:

True Positive

Sensitivity = ,
Y True Positive + False Negative

True Negative

Selectivity = .
Y= True Negative + False Positive

The fact that the models favor selectivity indicates that our classi-
fiers have a higher probability to identify patients who are likely
to be non-responders to language therapy.

Considering the limited number of data points (65) in this pilot
study, our results may change in the future with additional data.
In addition, our ongoing analyses will examine white matter tract
integrity and resting-state fMRI connectivity between regions as
additional predictors of treatment outcome.
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Figure 2: (a) Ranking of the brain structure features (M2).
The longer the bar the more important the feature is. Sp is short for percentage spared, pd is for proportion of damage in
white matter regions.
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Figure 2: (b) Ranking of the features in M4: Brain structure (blue) and demographics features (red).

Structure features use the same color scheme as in (a).



A Machine Learning Approach for Predicting Post-stroke Aphasia Recovery: A Pilot Study PETRA ’20, June 30-July 3, 2020, Corfu, Greece

ddle temporal gyrus anterior division sp
superier_temporal_gyrus_anterior_division_sp
inferior | temporal _gyrus temporooccipital part_ - sp
ﬁ'onto insular_tract5 left pd

left_ ‘accumbens.  Sp

frontal commissural pd
fronto_marginal_tract left_pd
arcuate_posterior_segment_left_pd

dngulum_left_posterior_pd
uncinate left pd
mll:l-:llc— I:c-mpura.l g\,rrus pustermr leI;IDI". _sp

_.|at= anterior_segment_left_pd

parahippor |"':|I yrus_anterior division_sp
fmntal ort:-lt,al cortex sp

frontal 'L|:u—'-'|:u' I:u"u tudinal_|ef
C r_divisio

superior_ temp-ural gyrus poslerlor dn.rlsmn sp
lesior e s
t=n .ccral ||:I _sp

1 y
intracalcarine_cortex_sp
left_cerebra _u\hlte_matter sp
left_amygdala_sp
superior_parietal Dlee sp
parietal_operculum_cortex_sp
arcuate Iong segment left_pd
fromto_striatal_left pu:l
inferior_frontal_gyrus_pars :IS._I"I aris

dangulum
supramarginal_gyrus_anterior_ d
superior_franfal
frontal_arbito polar Ic—l‘t :Jd
r'andsup- u | tract Ieft pd

ont
COrpus_ call-a_\um pd
anterior_commissure_pd
anterior_thalamic_projections_|eft_pd
superior_ Iur'.dgltudlnal TFasciculus i left pd
planum_temporale_sp
left_putamen_sp
pons_left_pd
lateral_occipital_cortex_superior_i division_ _sp
left pallidum_ _sp
superior_lendgitudinal fasciculus iii_left pd
fromtal _aslant_| tract left pu:l
central Hpercular cortex _sp
supracalcarine_cortex_sp
inferior_fronto_occipital_f fascicuius left pd
dngulum_left_pd
middle_temporal_gyrus_temporooccipital_part_sp
planumelare sp
superior_londgitudinal_fasciculus_il left pd
“face u_tract_left_pd
handinf u_tract_left_pd
inferior_longitudinal_left_pd
left_caudate_ _sp
left_thalamus_sp
months_post_stroke_dm
precentral_gyrus sp
optic_radiations_left_pd
postcentral_gyrus_sp
frontal_inferior_longitudinal_left_pd
angular_gyrus_sp
age_dm
supramarginal_gyrus_posterior_division_sp
heschls_gyrus_sp
precunsous_cortex sp
insular_cortex_sp
dngulate gyrus posterior_division sp
T left_lateral ventrical_sp
wab_aq_bd

Figure 2: (c) Ranking of the features in M5: Brain structure (blue), demographics (red) and behavior features (purple).
Color scheme is the same as in (a) and (b).
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