
Representing String Computations as Graphs for Classifying
Malware

Justin Del Vecchio
jmdv@buffalo.edu

University at Buffalo

Buffalo, New York

Steven Y. Ko
stevko@buffalo.edu

University at Buffalo

Buffalo, New York

Lukasz Ziarek
lziarek@buffalo.edu

University at Buffalo

Buffalo, New York

ABSTRACT

Android applications rely heavily on strings for sensitive operations

like reflection, access to system resources, URL connections, data-

base access, among others. Thus, insight into application behavior

can be gained through not only an analysis of what strings an ap-

plication creates but also the structure of the computation used to

create theses strings, and in what manner are these strings used. In

this paper we introduce a static analysis of Android applications to

discover strings, how they are created, and their usage. The output

of our static analysis contains all of this information in the form of

a graph which we call a string computation. We leverage the results

to classify individual application behavior with respect to malicious

or benign intent. Unlike previous work that has focused only on

extraction of string values, our approach leverages the structure

of the computation used to generate string values as features to

perform classification of Android applications. That is, we use none

of the static analysis computed string values, rather using only

the graph structures of created strings to do classification of an

arbitrary Android application as malware or benign. Our results

show that leveraging string computation structures as features can

yield precision and recall rates as high as 97% on modern malware.

We also provide baseline results against other malware detection

tools and techniques to classify the same corpus of applications.

CCS CONCEPTS

•Theory of computation→ Program analysis; •Human cen-

tered computing → Mobile computing; • Security and privacy

→ Malware and its mitigation.

KEYWORDS

Android, String Structure, Static Analysis

ACM Reference Format:

Justin Del Vecchio, Steven Y. Ko, and Lukasz Ziarek. 2020. Representing

String Computations as Graphs for Classifying Malware. In IEEE/ACM

7th International Conference on Mobile Software Engineering and Systems

(MOBILESoft ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3387905.3388595

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MOBILESoft ’20, October 5–6, 2020, Seoul, South Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05. . . $15.00
https://doi.org/10.1145/3387905.3388595

1 INTRODUCTION

Android is one of the most popular platforms for mobile computing

and Android’s official app store, Google Play, contains more than 2.9

million unique applications (apps) as of December 2018. However,

this popularity has also resulted in a dramatic increase in malicious

apps targeting Android devices. As of 2019, security experts [1] have

identified over 31 million unique, malicious mobile apps. To combat

this increase in malware the security community has developed

many static analysis tools for identifying malicious Android apps.

By identifying malware statically, these tools can offer enhanced

security for end users who download and use Android apps. Many

different types of analyses have proven to be useful such as data and

control flow analysis [11, 22, 46], call graph analysis [38], sensitive

API analysis [23, 57], extraction of string constants [34, 52], as well

as analyzing strings to extract API usage and permissions [53].

String analysis, which focuses on identification of string values

within a program, is a common technique used in the detection of

malware. For example, being able to identify static string values

provides insight into which SQL queries are performed by an appli-

cation and can be used to identify SQL injection attacks [26, 31, 54].

What all these approaches share is a desire to understand the con-

tent of strings; what their values are and what can be understood

from these values. Our string analysis is focused on the structure of

the strings - how strings are constructed, manipulated, and where

in the program they are created as well as used. Our observation is

that malicious code on Android uses complex string operations to

hide the intent of the computation and evade detection by anti-virus

software. In this paper we focus on malicious behavior defined by

string operations. We show that analysis of string structures can

be useful to distinguish between malicious and benign apps. This

occurs because Android apps heavily rely on strings in order to

perform potentially sensitive or malicious tasks, such as reading

contact information and device IDs, accessing storage, calling hid-

den APIs, leveraging reflection to hide which code is being called,

and using remote servers.

Our string analysis system has three components: (1) a static

analysis that extracts strings, computations that use them, and

computations that construct them, (2) a feature space generator

for extracted string computations, and (3) a k-fold cross validation

training and test methodology utilizing multiple machine learning

algorithms. Our static analysis examines apps and extracts all string

computational structures - storing them as graphs. The feature

space generator creates a feature set that records the frequencies

of critical structural elements as well as sequences of the structural

elements for the computation structures, stores associated graphs

in a graph database, and provides analyses over the graphs using

graph queries. The classifier component uses gradient boosting

120

2020 IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

with a k-fold cross validation test and evaluation methodology.

Our analysis clearly shows that use of gradient boosting with the

computational structures treated as features is an effective, generic

mechanism to differentiate malware from benign apps.

Contributions. The contributions of this work include:

• An interprocedural static analysis for extracting strings,

where they are used, and the structure of the computation

that generates them, for Android.

• A generic approach to classify app behavior as malware or

benign based on strings and their associated computations.

The classification results demonstrate how computational

structures can be used as features to label an app as benign

or malicious with high precision and recall. Importantly, it

is done (1) without developing an expert system dependent

on manually generated feature sets, and (2) with no reliance

on the string literal values themselves. We devise mecha-

nisms for automatically extracting best-possible features for

classification from the results of our static analysis.

• Analysis results from modern malware. Often, malware anal-

ysis relies on data sets that collected years in the past, leaving

it difficult to say how results compare with what is currently

seen in the world today. Results are reported against malware

and benign Android apps in use during 2018 and 2019.

2 MOTIVATION

String constants are of interest to developers of malware detection

tools. For example, VirusTotal’s [48] analyzed malware reports

include a section titled ”Interesting Strings” and the online malware

detection service HybridAnalysis [6] provides a search capability

specifically tailored for strings. Both examples provide only the

literal values found in apps statically. Our string computations

provide the critical backstory for these literals - how they were

created and where they are used. They can serve as a compliment

to the string literals provided by both services. Additionally, there

are many string values that cannot be analyzed statically but are

critically important in order to understand the behavior of malware.

We consider the following two real-world examples discovered

in the course of our research to illustrate how uses of strings in com-

putation and the structure of the computation to generate strings

can be leveraged to identify malicious behavior. These examples

are from a set of malware apps first identified in 2018 by VirusTo-

tal. VirsutTotal URLs for each app are included in the References

and provide fine grained detail for each app. In addition, the string

literal values can be searched and found on HybridAnalysis.

2.1 Example 1: Useless String Ops

The app App1SQL [49] was first identified in June 2018 with 32 of

the VirusTotal’s 63 detection engines flagging it as malware. These

engines list it as belonging to various malware families including

Trojan Downloader, Riskware, Spyware and PUA. We reviewed

the string computations generated by our analysis of App1SQL and

identified multiple computations that were suspect. We provide

decompiled code for one such computation in Figure 1 via an ab-

breviated extract of the app’s actual code.

1 public final class a extends SQLiteOpenHelper {

2 public a(Context context, String str,

CursorFactory cf, int i) {

3 super(context, str, null, 2);

4 }

5 } //end class a

6

7 public class b{

8 public static a a(Context context) {

9 ...

10 synchronized (b.class) {

11 try {

12 a = new a(context, f.a(context), null, 2);

13 } catch (Throwable th) {

14 Class cls = b.class;

15 }

16 }

17 return a;

18 } //end class b

19

20

21 public class f{

22 public static String a(Context con) {

23 return new

StringBuffer(b(con)).reverse().toString();

24 }

25

26 private static String b(Context context) {

27 String str = bj.b;

28 if (b.b((Object) str)) {

29 return str;

30 }

31 return "zdlVOdEpGZmV5Sm5ZVzFsWDI1a";

32 }

33 } //end class f

Figure 1: Useless String Operations.

Line 1 shows that App1SQL extends the SQLiteOpenHelper class

and one of its constructors that accepts a string as its second ar-

gument. Line 12 shows where this class, a, is initialized for use in

the class b. The string passed in as the second argument comes

from passing the Context object to the method a of class f. Here,

method a calls method b, shown on line 26, which does nothing

with the Context object itself (a red herring) and either returns

a string returned from another method or the hard coded string

value, ”zdlVOdEpGZmV5Sm5ZVzFsWDI1a”. This string value is

then turned into a StringBuffer, its sequence reversed, and it is

next turned back into a String. All of these operations are per-

formed to simply obtain the name of the SQLite database this appli-

cation will use. This is a complex set of string operations purpose-

fully enacted to confuse what the name of the installed database is.

Our string analysis was able to capture the structure of these string

operations for this example and is explained further in Section 3.

2.2 Example 2: Dynamic Code Loading

The app App2Dex [50] was first identified in June 2018 with 36 of

the VirusTotal’s 63 detection engines flagging it as malware. These

engines list it as belonging to various malware families including

121

1 public class c{

2 private boolean a(Context context, File file) {

3 ...

4 DexClassLoader dexClassLoader = this.b;

5 this.c = dexClassLoader.loadClass(

6 b.a("2ab7d44a89503834ffc598", bj.b));

7 Class cls = this.c;

8 this.e = cls.getMethod(

9 b.a("aeaa0994519899d5a82e2d", bj.b), new

Class[0]);

10 ...

11 }

12 }

13

14 public class b{

15 public static String a(String str, String str2) {

16 try {

17 if (str2.trim().length() < 2) {

18 str2 = b;

19 }

20 return new String(a(a(str), str2));

21 } catch (Exception e) {

22 c.a().a(e);

23 return "208";

24 }

25 }

26

27 private static byte[] a(String str) {

28 byte[] bytes = str.getBytes();

29 int length = bytes.length;

30 byte[] bArr = new byte[(length / 2)];

31 for (int i = 0; i < length; i += 2) {

32 bArr[i / 2] =

33 (byte) Integer.parseInt(new String(bytes,

i, 2), 16);

34 }

35 return bArr;

36 }

37 }

Figure 2: DexClassLoader Example.

Trojan Downloader, Riskware, Spyware and SMS payment thief.

We reviewed the string computations our analysis generated for

App2Dex and quickly identified multiple computations that were

suspect. We provide decompiled code for one such computation in

Figure 2 via an abbreviated extract of the app’s actual code.

Figure 2 shows how the app uses the class DexClassLoader -

a class included in the Android API that can be used to execute

code not installed as part of an application [7]. The class b has a

method named a that at line 5 uses a DexClassLoader object to

dynamically load code. The computational path it uses to derive the

name of the class it wishes to instantiate is incredibly convoluted to

follow manually but easily connected by our string computations.

It supplies the string argument to loadClass of DexClassLoader by

calling b.a with the value ”2ab7d44a89503834ffc598” (abbreviated

from its much longer original value). The method b.a uses multiple

nested calls at line 20 that eventually lead to a call to method a

at line 27. Here, the initial string passed in as the first argument

to b.a is transformed into a byte[], which is then decrypted (this

method is not shown) and passed as an argument to the String

constructor, which itself is then passed back as the string value

to instantiate as a class. This is a perfect example of an extremely

complex string construction that goes to extreme lengths to hide

the name of the class it is dynamically instantiating. Our algorithm

generated a string computation that was able to track the string

that is the first argument to the method called within loadClass at

line 5 to its translation into a byte[] at line 28.

These two examples demonstrate that a manual examination of

a string’s computation provides valuable insight into the behavior

of an app. We will show that the structure of this computation

can be leveraged to distinguish malware from benign applications.

We focus the rest of the paper on creating classifiers to automate

this manual process. These classifiers will use the computational

structures as features and avoid entirely the use of string values,

or literals, for classification. Our system implementation sought to

answer the following set of research questions:

• Research Question 1: How do ML models generated from

our string computations classify malware and benign apps

when compared with state of the art malware detection tools

or against classification using string literals only?

• Research Question 2: How well do combined approaches

work when we add our string computations as another fea-

ture for state of the art malware detection tools or combine

them with the string literals?

• Research Question 3: How does obfuscation impact our clas-

sification results, as well as the results for the state of the art

or string literals?

• Research Question 4: What features from the string compu-

tation feature space are most important in the classification

of malware and benign apps?

3 ANALYZING STRINGS

We implement our string analysis as a flexible system capable of

quickly processing and analyzing apps. Figure 3 shows the major

components of our system and their integration. The following

subsections provide detail on each of these components.

3.1 Structural Analysis of Strings

Input to our system is a set of Android apps to be analyzed. Finding

all strings within an app statically can be viewed as a specialized

form of constant propagation [52, 55]. This is the starting point of

our analysis and provides us with a set of statically computable

string constants. Obviously, not all strings can be generated stati-

cally as they may depend on dynamically computed values, user

input, and other I/O operations. We leverage interprocedural con-

trol and dataflow analyses augmented with the ability to reason

about common string manipulations (e.g. concatenation, substrings,

conversions of literals to strings) and some common libraries (e.g.

string builder) to identify all computations used to create a string.

We maintain a complete listing of all the String, StringBuilder,

and StringBuffer APIs and record when a string operation is per-

formed and how this operation is linked to preceding and trailing

string operations. We do not analyze the internals of the string

manipulation libraries themselves. Abstractly, this provides a graph

122

Figure 3: String Analysis System.

that contains control and data dependencies (computation struc-

ture) for generating a string, or set of strings in the case of con-

trol flow operations like branches. We call the set of strings a

string computation graph could generate at runtime a string fam-

ily. Figure 4 provides a pictorial representation of how the in-

traprocedural analysis works using a code snippet taken from

com.symantec.mobilesecurity .

The intraprocedural analysis uses as input decompiled code pro-

vided by Soot, a Java instrumentation framework [51]. The atomic

units of the decompiled code are called Units in Soot’s vocabulary.

Each method contains a set of Units that embody bytecode opera-

tions of the method. We use the backward flow analysis framework

provided by Soot to iterate through the method’s Units—starting at

a unit that uses a string or is an output of our constant propagation

and then visiting all units in the method in the reverse order of the

method’s control flow. While doing so, our string analysis identifies

those Units where string objects are used, and performs dependency

analysis to identify other Units which the current Unit is control or

data dependent upon. Effectively, we compute a backward slice orig-

inating from the usage of the string (Line 7 for the string extracted

from builder1 and Line 6 for the string extracted from builder2).

The backward slice captures all statements necessary to compute

the string transitively, so for the use in Line 7 the backward slice

would contain Lines 2, 1, and 5. For use in Line 6 the backward slice

would contain Lines 4, 3, and 5. We filter the backward slice for

each string to only contain string operations (we would filter out

Line 5) but maintain their relative positions in the slice, effectively

creating a graph. Each graph represents a set of strings that share

a common computation structure that the program can compute at

runtime.

1 StringBuilder builder1 = new StringBuilder();

2 builder1.append("expiry_date");

3 StringBuilder builder2 = new StringBuilder();

4 builder2.append("active_date");

5 ContentValues content = new ContentValues();

6 content.put(builder2.toString(), "val2");

7 content.put(builder1.toString(), "val1");

Figure 4: Intraprocedural Constant Propagation.

Figure 5: String Computation Graph Structure.

3.2 Representing and Reasoning About Strings

as Graphs

Figure 5 pictorially shows the resultant string computations we

extract and the graphs we use to represent them. Note, some of the

graph content generated by our algorithm is reordered and con-

densed for read-ability in this figure. This graph is from App1SQL

described in Section 2 with accompanying code. We read the graph

from left to right. At upper left is a gray rectangular box that repre-

sents a root node for a string computation, listing the name of the

method where the string is created or used. Here, we have detected

that a string is created in the method a a(Context con) that re-

turns an object of type a. The sequence of blue and yellow nodes

connected to the StringComputation represents the Soot units used

to build this portion of the string within the method. All of the code

used by the method to construct the string is captured as a node

in our graph structure. Blue nodes are normal Soot units, yellow

nodes reflect interprocedural pointers to another StringComputa-

tion, and greens are conditionals. We see the first Soot unit added

creates a String with some content that is interprocedurally ob-

tained. Our graph structure contains an edge that connects the

Soot unit with another StringComputation, in this case the string

created in String a(Context con). As we trace down this graph

we see its first Soot unit is an interprocedurally connected one. We

also see that there are additional Soot nodes beneath this String-

Computation. We see a series of nodes that take a String, turn it

into a StringBuffer, call reverse() on the buffer, and then turn

back into a String. We last look at the two StringComputation at

far right. They both represent content that is returned from String

b(Context con). In the upper case it is a hard coded String value

and in lower case it is a value harvested from a class variable from

bj. The lower StringComputation represents the fact that an if

statement occurred on which str is control dependent on prior to

123

the return – the subgraph rooted at an if node contains operations

on the string representing the then clause and the else clause, if

present. In this particular example we omit the sub-graph rooted at

the if node for readability of the figure.

Each intraprocedural string computation is persisted in the RDF

graph database as an individual graph. If an intraprocedural compu-

tation is part of an interprocedural graph, it will have a pointer to

the other intraprocedural computations whose aggregate forms the

interprocedural graph. Our current implementation does lead to

multiple string computations with identical structure stored within

the graph database. In the future we may merge these identical

graphs into a single graph and employ a pointer strategy were we

use vertexes that point to the string computation’s root node to

indicate where in the code base (i.e. method and line number) the

merged string computation is used.

Our persistence step, shown in Figure 3 as the storage of string

computation graphs, provides us a composite graph database across

all apps examined. The graph database is populated with thousands

of graphs like the one presented in Figure 5.This allows us to quickly

develop graph queries that analyze and extract new feature sets,

decoupling string meta-analysis from the static analysis performed

within Soot.

We use an advanced graph query engine called SPARQL to

pull critical information back from our string analysis outputs.

SPARQL is a W3C standard for querying required and optional

graph patterns along with their conjunctions and disjunctions [20].

We leverage SPARQL’s advanced capabilities to perform graph pat-

tern matching to find patterns of interest. Figure 6 shows a graph

query that pulls out portions of the graph presented in Figure 5.

This query returns all string computations that have interprocedu-

ral points and that are itself a root node (or starting point). SPARQL

is somewhat analogous to SQL with a SELECT and WHERE clause.

The example provided here condenses some of the variable and

relationship names for readability. The SELECT clause pulls out all

string computations and then counts the number of interprocedural

points that are one hop out from the current string computation

graph. Lines 4 and 5 instruct SPARQL to find nodes that are of type

StringComputation and that point to a Soot unit node. Line 6 is a

critical step. It finds the next Soot unit connected to the first one.

Here, using SPARQL’s advanced property paths, we can recursively

search and find all nodes that are connected to the first Soot unit

node with the edge name next, all enabled by the + syntax. Line 7

finds the root node of the interprocedurally connected sting com-

putation. Line 8 is critical as it excludes any pointers to the root

string computation - avoiding reporting on string computations

that are interprocedurally connected but are not a root node.

3.3 Feature Set Development

Our goal is to run ML algorithms on the extracted string computa-

tions and develop a model that will classify an app as malware or

benign. We have a single SPARQL query that pulls out each string

computation from the graph database. This query is configured

to avoid pulling out intraprocedural string computations that are

part of larger interprocedural string computations. This reduces

the feature space as well as avoids double counting intraprocedural

string computations that are a part of larger interprocedural string

1 SELECT ?stringComp (COUNT(?stringComp2))

2 WHERE

3 {

4 ?stringComp <has_part> ?sootUnit .

5 ?stringComp <type_of> StringComp .

6 ?sootUnit <next>+ ?sootUnit2 .

7 ?sootUnit2 <has_interprocedural_part> ?stringComp2

.

8 FILTER NOT EXISTS(?stringComp ^<has_part>

?stringComp3)

9 }

Figure 6: SPARQL Example.

computation structures. We then apply graph pattern matching

to identify the structural string computations that are identical

within an app as well as across the entire corpus of apps. Note, we

also experimented with feature extraction that collected simpler

representations of the string computations by counting the API

calls within the computations themselves. This approach was faster

to calculate than the string computations but had lower accuracy

when compared with string computations using ML trained models.

We then construct a matrix where each header represents a

string computation and the matrix rows represent the apps. This

is shown in Figure 3. The cells record how many times that row’s

app exhibits that string computation. We leverage the matrix as

the primary datastructure for storing features as well as their static

counts per app that will be utilized by our classifier and principle

component analysis (PCA).

The size of the string computations themselves in terms of the

number of vertexes can range from one vertex, in the case of some

string literals, to hundreds of vertexes, representing complex string

families. We sampled 2,000 malware apps from our data set, de-

scribed later in Section 4, and identified the average app contained

1,821 string computation graphs and the average size of graphs in

terms of number of vertexes is 7.7. Figure 7 provides the frequency

of computation sizes across the 2,000 examined apps whose vertex

counts per string computation are between 20 and 100. We see

that smaller size string computations dominate but there are still

thousands of string computations whose size is greater than 50

vertexes - demonstrating the complexity of the string computations

and their resultant string families.

Figure 7: Frequency of String Computation Sizes.

124

Table 1: Overview of Data Sets Used for Classification

Type Year # Apps

benign 2019 16,281

2018 14,257

malware 2019 7,717

2018 6,256

3.4 Classification

The last step is to perform classification where apps are labeled as ei-

ther malware or benign. We use three classification algorithms with

multiple configurations to determine which works best. These are

gradient boosting, SVM, and k-nearest neighbors (K-NN), discussed

in more detail in Section 5.

4 DATA

In this section we introduce the data sets used in the evaluation

of our string computation analysis. Results for these data sets are

provided in Section 5. Table 1 shows the number of apps analyzed by

year for the malware and benign categories. We choose a set of apps

that reflected recent malware, between January 2018 and December

2019. We obtained apps from two locations. First is Androzoo [4], a

collection of Android Applications collected from several sources,

including the official Google Play appmarket.This site now contains

over 10 million Android apps freely available to researchers for

download. We also used VirusTotal [48], a virus detection service

developed by Google and that contains millions of apps - both

malware and benign.

Benign Apps We downloaded apps from Androzoo that met

two criteria. First, the dex size of the application needed to be at

least 1MB in size. It is important to note that the dex size of an app

is only a small portion of the total app size as it does not include

metadata, media, and other files packaged inside an app. We wanted

to include apps with more complexity and avoid smaller, trivial

apps that were devoid of many features and tend to result in over

specialized classification models. This was done to create a balanced

representation for our baseline analysis where we compare classifi-

cation using string computations against other techniques. Second,

the app had to originate from Google Play as it employs the best

security examination of apps posted to its site. For example, Google

play removed 700,000 apps in 2017 it self-identified as malware [40].

Selecting apps only from Google plays gives us the best chance to

have a mostly benign data set as there is always the possibility of

unidentified malware still present within. As an additional mech-

anism to establish ground truth, we ran our benign set through

VirusTotal and removed any apps that were flagged as suspicious.

Malware Apps We downloaded apps from both Androzoo and

VirusTotal that met two criteria. First, the dex size of the application

needed to be at least 1MB in size. We did this to avoid smaller

malware apps that simply lacked many features to classify upon

or are trivially identifiable. Second, we limited the apps to only

malware that was initially identified on the Google Play platform

itself. This allowed us to test our approach on malware purposefully

developed to be similar to offerings on Google Play in an attempt

to trick users into downloading the apps.

Obfuscated AppsWe next take a subset of apps for both mal-

ware and benign and run them through three obfuscation tools.

We choose as as our obfuscation tools: (1) the Automatic And-

roid Malware Obfuscator (AAMO) [43] which has been used to

demonstrate how virus detection tools perform against obfusca-

tion, (2) DroidChameleon[44] also used to demonstrate the perfor-

mance of virus detection tools in the presence of obfuscation, and

(3) Obfuscapk[19] which is a recent, open source obfuscator with

multiple advanced obfuscation configurations. We configured the

obfuscators to use obfuscation techniques that Hammad et al. [32]

identified as challenging for virus detection methods.

Figure 8: PCA First Two Components.

4.1 Characterization of the Datasets

We next applied PCA to the data sets using the feature set described

in Section 3. Our feature matrix composed of string computations

is high-dimensional data, where a sample of 4000 apps, 2000 benign

and 2000 malware, would identify over 5000 features. We used

PCA to reduce the attribute space into a smaller number of factors

and then visualize the relationship between the features as well

as understand the main variance in the data. We applied the PCA

function into the train and test sets for analysis and then fit logistic

regression to the train set. We then predicted the training set result,

visualized through a scatter plot shown in Figure 8. It identifies that:

(1) benign apps and malware apps tend to be located in different

areas of the component space, and (2) benign apps and malware

apps tend to cluster in these different areas, and (3) there is some

overlap between the cluster outliers. PCA shows us that there is

high likelihood that the sting computations will lend themselves

well as feature for classification. This data is a good visualization

of the intuition behind why our approach works at distinguishing

malware from benign apps. We present concrete results in the

following section.

125

5 RESULTS

We address each of our research questions in this section. Overall,

our results show that string computations are an effective mecha-

nism for classification of malware and benign apps. Importantly, the

computations themselves only include structure information about

how the strings are created - not the literal string values which

proves detrimental when apps are obfuscated using encryption

techniques. We begin with a discussion of our statistical analy-

sis approach followed by an examination of each of the research

questions in turn.

5.1 Setup

We perform evaluations on our string computations using gradi-

ent boosting[25], SVM and K-NN. Note, we report results only on

gradient boosting (GB). All described experiments were run us-

ing all three classifiers. We found that SVM and K-NN had lower

F-measure universally than GB and therefore omit their results

as they provide no additional insight over what GB provides. GB

itself uses an ensemble of regression trees (or decision trees) and

is able to learn higher order interactions between features. This

ability to learn the interaction between features is likely the reason

why it outperforms both SVM and K-NN. This characteristic is also

evident in Kaggle, Google’s online community for data scientists

and machine learners. GB dominates winners circles for Kaggle

competitions that involve structured datasets [5].

We optimize the hyperparameters GB uses as follows. Trees

are grown starting with a tree depth of zero and grow greedily

[16]. We run GB with tree depths of 10, 15, 20, and 25 using 100

and 200 rounds of training. We report results in terms of the best

combination of tree depth and rounds. We utilize 10-fold cross

validation, repeated 4 times, and report on the average of these four

runs.

We assess accuracy of the classification using the standard F-

measure metric described as:

𝐹 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Here, precision represents TP / (TP+FP) and recall represent TP /

(TP+FN). TP is the number of malicious samples correctly classified,

FP is the number of benign samples identified as malicious, and FN

is the number of malware samples identified as benign. TN is the

number of benign samples correctly classified.

5.2 RQ1: Comparison to State of the Art

Our first research question establishes a baseline against which to

judge malware classification using string computations as features.

We first compare against RevealDroid which generates a small,

simple set of features that are selectable by users [27]. Its specified

goal is to provide a feature set that is family agnostic as well as

obfuscation resilient. RevealDroid is used in numerous studies as

a baseline for malware classification, especially in the presence of

obfuscation [37, 47]. We downloaded and installed RevealDroid,

ensuring that it output the maximum set of features. Its typical

F-measure ranges between 93% to 97% - this value dependent on

the corpus of apps under evaluation and may range higher of lower

in specific use cases [27].

We next compare against the compliment of our string com-

putations; the string literals themselves. Our string computations

capture the structure of code execution used to construct strings

while literals are just the static values of the string themselves

that are computable during a static analysis - such as a message

that is written to a log, content of a SQL query, etc. Researchers

[34, 52] have utilized string literals to do classification with very

good results - reaching F-measures of 97%. Similarly most modern

anitvirus software leverages string literals. Our string literals are

those string values defined within the app dex file.

We randomly choose as input 8,000 apps from our dataset, 4,000

malware and 4,000 benign. We report on how our string computa-

tions, RevealDroid, and string literals perform in terms of precision,

recall, and F-measure in Table 2.

Table 2: Baseline Comparison

Tool Precision Recall F-measure

String Computations 97.30 97.33 97.31

RevealDroid 91.42 96.96 94.11

String Literals 94.30 96.12 95.20

RQ1 Answer:The results demonstrate that string computations

by themselves perform competitively against classification using

RevealDroid or string literals. Our approach is roughly 3% better

than RevealDroid and 2% better than string literals. This shows

string computations can be an effective feature upon which to

classify malware and benign apps. The result also demonstrates

that the behavior of strings - how strings are created and used - is

different between malware and benign applications.

5.3 RQ2: Comparison of Combined Approaches

We next examine how the approaches work when combined. That

is, when string computations are added as another feature for both

the RevealDroid ML analysis as well the string literals analysis.

Figure 9 shows how to generate a new ML model by combining

feature sets. To the left is the feature set for string computations

and to the right is the feature set for RevealDroid. As both report

results in terms of a matrix where each row is an app and each

column a feature, we simply join on the app IDs to create a single

matrix. This approach is especially applicable to RevealDroid as it

readily accepts the incorporation of new features. For example, an

analysis was performed by its creators where results from Flow-

Droid [10] were included as another feature upon which to perform

classification [28]. The combined analysis for string literals now

includes the literal value along with the string computation that

generated the literal value.

As before, we randomly choose as input 8,000 apps, 4,000 mal-

ware and 4,000 benign, from the pool of apps. We report on our com-

bined approach for three different combinations. The first combines

all the features RevealDroid outputs with the string computations.

The second combines a select set of features from RevealDroid not

derived from the source code with the string computations. To clar-

ify, this case uses features RevealDroid extracts from the manifest

file, the included native libraries, etc. with the string computations.

The third combines the string literals with the string computations.

126

Figure 9: Combined String Computation and Reveal Droid

Matrix.

We report results for all three types of combinations in terms of

precision, recall, and F-measure in Table 3.

Table 3: Combined Approach

Combination Precision Recall F-meas

All Reveal and Computations 96.93 96.82 96.87

Select Reveal and Computations 97.62 97.63 97.62

Literals and Computations 95.68 97.08 96.37

RQ2 Answer: Combing all of RevealDroid’s features with the

string computations is better at classification than RevealDroid

alone. This is expected as RevealDroid focuses on extraction of

a generic set of attributes for high fidelity malware classification

across multiple families. String computations are great example of a

generic attribute as, regardless of the family of malware, all must use

strings to access sensitive operations. However, this combination

was not better than using string computations alone. The next com-

bination uses a specific subset of RevealDroid features, everything

but the counts of Android API calls, and does show an improvement

over string computations alone. In fact, this combination is our best

F-measure for malware classification. This is likely due to the fact

that the string computations are a more precise feature than counts

of Android API calls as the computations embed semantics of how

and why strings are used and created. Our last combination shows

that string literals combined with string computations classifies

better than string literals alone. This is likely due to the fact that

apps create many string computations internally where the literal

value is only known at runtime. Combining the literal values with

the string computations should increase overall F-measure and it

does.

5.4 RQ3: Obfuscations Impact on Results

This experiment answers the question of how our approach, as

well as RevealDroid and string literals, performs with respect to

obfuscated apps. We utilize three tools to perform obfuscation:

(1) DroidChameleon [44], an obfuscation tool with various trivial

and non-trivial techniques to obfuscate malware applications, (2)

AAMO [43] which also allows for an equivalent set of trivial and

non-trivial techniques for obfuscation of malware, and (3) Obfus-

capk [8], a modular python based obfuscation tool with advanced

obfuscators specifically intended to defeat Android malware detec-

tion techniques. All tools are freely available and easily scriptable.

DroidChameleoon and AAMO were used previously to obfuscate

apps and test the resilience of malware detection tools using dif-

ferent combinations of trivial and non-trivial obfuscations [13, 32].

Obfuscapk was released in late 2019 on Github and has a growing

community of users.

We base our experiment off of the study conducted by Hammad

et al. [32], which provides statistics on obfuscation settings that

are most effective at reducing the accuracy of malware detection

across a host of industry standard, malware detection tools. Based

on the recommendations and results presented in [32], we apply

the following obfuscations separately using all three obfuscation

tools with the last obfuscator only available on Obfuscapk:

• Control Flow Manipulation (CFM) - Changes the method’s

control by adding conditions and iterative constructs as well

as introducing new methods.

• Member Reordering (MR) - Changes the order of instance

variables or methods in a classes.dex file to defeat malware

detection tools that look for sequences of members in a class.

• Reflection (REF) - Perform transformations that convert di-

rect method invocations into reflective calls using the Java

reflection API.

• String Encryption (ENC)- This encrypts string literal values

found in dex files. Obfuscapk will also encrypt supporting

app files such as assets or included, native libraries.

• Advanced Reflection (AREF)- This obfuscator uses reflection

to invoke dangerous APIs of the Android Framework. It is

a novel reflection approach used only by Obfuscapk that

focuses on hiding Android API calls which many malware

detection tools use to cluster malware. It is a technique used

by no other open source obfuscation tools and demonstrates

how obfuscators themselves continually evolve.

Note that many of the apps we attempted to obfuscate with

the tools simply failed to obfuscate. This is due to the fact that

obfuscation tools, especially freely available ones, are notorious for

having failures when applying different types of obfuscation [28].

On average, roughly 30% of the apps we used for the evaluations of

RQ1 and RQ2 could not successfully be obfuscated by either Droid-

Chameleon or AAMO for each of the obfuscation types applied.

Obfuscapk had a much higher success rate at obfuscation versus

DroidChameleon and AAMO, failing on less than 5%.

We first obfuscated the apps using the CFM, MR, REF, ENC,

and AREF obfuscators separately for each obfuscation tool - AREF

only applicable to Obfuscapk. We then ran each obfuscated app

through our string computation algorithm, RevealDroid, as well as

extracted out the string literals using the linux strings command.

We then choose as input to the GB classifier 4,000 random apps,

2,000 malware and 2,000 benign, and report on results in Table 4 in

terms of F-measure only for brevity.

RQ3 Answer:We see that some obfuscators do have an effect

on the outputs of the different analysis tools. First is the ENC

obfuscator which has a tremendous, detrimental impact on string

127

Table 4: GB for Obfuscated Apps

Tool CFM MR REF ENC AREF

DroidChameleon

String Computation 96.58 96.12 95.38 96.33

RevealDroid 94.11 94.45 93.63 94.08

Literals 94.88 95.09 95.22 0

AAMO

String Computation 96.28 96.85 96.10 96.72

RevealDroid 94.30 94.55 93.85 94.17

Literals 95.11 94.02 95.20 0

Obfuscapk

String Computation 96.0 96.66 96.98 96.37 96.75

RevealDroid 94.8 94.84 94.62 90.3 90.62

Literals 94.62 94.1 94.80 0 94.22

literal analysis. When we attempt to run the GB classifier on the

ENC string literals for any obfuscation tool, it fails to complete as

it simply can find no features that are common across two or more

apps to even begin the analysis. This is because a unique key is

used for each app to encrypt its string literals and therefore there

is no commonality in features across the apps. It demonstrates how

simple string literal encryption can defeat malware classifiers that

focus on the occurrence of tokens (or signatures) to classify apps.

The ENC obfuscator has no impact on our string computations as

we disregard string literals completely or on RevealDroid for AAMO

and DroidChameleon as it does not use string literals extracted from

dex files as a feature. However, the literal encryption for Obfuscapk

does impact RevealDroid. This is because Obfuscapk also encrypts

string literals in files outside the dex file. As RevealDroid relies on

some of these strings as features, its performance degrades when

they are encrypted uniquely across each app.

Another obfuscator that impacts results is Obfuscapk’s AREF.

Its ability to obfuscate specific Android API calls - those made to

sensitive or dangerous libraries - impacts classification using Re-

vealDroid features. F-measure for RevealDroid drops to 90% when

AREF is used. This is because RevealDroid focuses on API calls to

specific Android libraries and AREF purposefully obfuscates por-

tions of this feature set. It reduces the total number of identifiable

API calls and thus alters the dependency of the feature to app type

as demonstrated by the drop in F-measure. Obfuscapks developers

designed this obfuscator for this specific case. However, its applica-

tion is skillful as Obfuscapk’s developers only obfuscate a small set

of targeted API calls as reflecting on the entire Android API would

makes apps unacceptably slow. Also note that AREF has little impact

on string computations. As the API calls are themselves turned into

strings they become another feature for our string computations to

classify upon.

Note, we acknowledge that it would be possible to design an

obfuscation technique to fool our analysis. Indeed, Obfuscapk de-

velopers recognized that some malware detection tools focus on

a select set of Android API calls as a signature and developed a

specific obfuscator to impact it. A similar analysis of our string com-

putations might lead an obfuscator designed to develop a specific

obfuscator to impact it as well.

1 PackageManager pm = Context.getPackageManager()

2 String packageName = pm.getPackageName()

3 PackageInfo pi =

pm.getPackageInfo(packageName, ...)

Figure 10: PackageManager Example.

Our second critical take away is that some obfuscators have little

to no impact on analysis results. This is the case with respect to the

traditional obfuscation techniques used by all three - CFM, MR, and

REF. Table 4 highlights that there is little difference between the GB

analysis using the original and obfuscated apps across the board

for string computations and RevealDroid. Why is this the case?

Consider the definitions of the obfuscation settings applied and

how they might interfere with our analysis of string computations.

CFM impacts the app’s method control flow as well as introduces

new methods. The obfuscators do introduce new methods but only

as proxies to existing methods and with minimal method control

manipulation based on our manual inspection of the obfuscated

code.That is, we opened apps in their original and obfuscated forms

and compared where the control flows were introduced to gauge

how they would impact generation of our string computations.

MR works with the dex code and moves around chunks to re-

order sequences of members in a class. This has little effect on our

string computations as we reconstruct how strings are created -

not the layout of the dex code itself. It also has minimal impact on

RevealDroid as the features it harvests are not sequences of code.

For string literals this has absolutely no effect as this obfuscation

does not split the literal values.

The REF used by AAMO applies to only statically defined meth-

ods. Our computations contain mostly Java string API calls which

are not statically defined. Therefore, the original structure of the

string computations is again mostly preserved. The latest version

of DroidChameleon provided to us by its authors has weak REF

capabilities that simply adds a redirect for each method defined

within the apps code base. Traditional REF has little effect on Re-

vealDroid as many of the features it extracts are in the Android API

namespace and AAMO does not reflect on these. REF had no effect

on string literals as it does not split the strings.

5.5 RQ4: Analysis of Variable Importance to

Results

This question answers which variables are most important to the

GB model for differentiation of malware from benign apps. GB

provides a mechanism that explains which features impacted the

created models most, ranking them from most to least important.

In our case it shows which string computations are most influential

to our the model. We use python’s gboost variable importance

function to return the most important features for GB models for

our string computations run on the unobfuscated apps. Figure 10

provides a snippet of the string computation that is most important

in classification of malware and benign apps.

RQ 4 Answer:The importance factors indeed shed light on why

strings are important to malware. Consider Figure 10 that shows

how a string computation is used to interact with PackageManager.

A very common behavior for malware when first installed is to

128

perform a listing of installed packages and then send the list to

the command and control server [2]. An example of malware that

uses the PackageManager string computation to perform a listing of

installed packages is the Anubis banking malware that reappeared

in July of 2019 [41]. Also note that there is no associated string

literal for the string computation. Other examples of features of

importance include the use of strings to communicate between

Android Activities using the Android putExtra()API call as well as

the construction of highly expressive strings using StringBuilder

that are then thrown as messages by Java errors.

6 RELATEDWORK

Application of string analysis for mobile apps has a rich research

background as there is a clear value in enhanced string creation

understanding for determining app intent or for use in verification

techniques. The first holistic examination of string analysis in Java

applications was performed by [17] with Java string analysis (JSA).

This work focuses on the values that may occur as a result of a string

expression, for example statically determining the value of string

that represents a SQL insert statement. Violist [36] [35] extended

the work of JSA and is an excellent example of an algorithm devel-

oped to represent string creation ops for both intraprocedural and

interprocedurally created strings. It focuses on the introduction of

configuration options that allow users to unroll loop structures how

they desire to find values of strings at specific points of program

execution.

Our work differs in that we focus on the structure of the graph

used to generate the string value as opposed to the string value

itself and the consumer of the developed string (i.e. URL connec-

tion, reflection call, etc.). Our analysis algorithm develops a graph

representation for each string created by an app and persists this

graph representation for later analytics. The graph representations

can be stored in a singular graph based data store where the outputs

of multiple apps are meant to co-located. Analytics routines may

easily be developed that pull back the graph representations for

all strings supplied to URL connections or calls to Reflection to

understand critical differences in the complexities of string creation

in benign versus malware apps. This capability can identify similar

or like approaches to string creation but also can identify new or

novel approaches to the creation of strings that can potentially

identify new malware that are different from known malware. This

capability was identified as a critical need in malware analysis

by [12].

Research exists [33] on extensions to DBDroidScanner that focus

heavily on the analysis of string operations for strings used in at-

tacks on databases in benign Android apps. The approach performs

a rigorous analysis of how string operations related to URI and

SQL calls are constructed. It discusses the structure of string calls

Symbolic Finite Transducers to symbolically execute the strings

creation. Our work focuses on holistic analysis of the graph pat-

terns themselves used to construct strings and the differences that

occur in these patterns between malware and benign apps. In ad-

dition [34] provides an extensive examination of a string literals

where the literals themselves as treated as grams of one, two, and

three - similar to our analysis but solely focused on literals.

Machine learning techniques are also very popular among re-

searchers for detecting malicious Android apps. However, most of

these solutions train the classifier only on malware samples and

can therefore be very effective to detect other samples of the same

family. For example, DREBIN [9] extracts features from a malicious

app’s manifest and disassembled code to train their classifier, where

as MAST [15] leverages permissions and Android constructs as

features to train their classifier. Xu [56] provides an embedding

approach to represent and compare call graphs across platforms

to identify the same, cross compiled malware using a combination

of graph matching and machine learning. Shen et al. [45] analyze

the structure and behavioral features along with Complex-Flows

to classify benign and malware apps. We believe these coarse fea-

tures are a great mechanisms to filter many apps prior to lever-

aging techniques like our own, which require more analysis of

the app internals. There are many other systems, such as Crow-

droid [14], and DroidAPIMiner [3], that leverage machine learning

techniques to analyze statistical features for detecting malware.

Similarly, researchers developed static and dynamic analyses tech-

niques to detect known malware features. Apposcopy [24] creates

app signatures by leveraging control-flow and data-flow analysis.

RiskRanker [29] performs several risk analyses to rank Android

apps as high-, medium-, or low-risk. Sebastian et al. [42] analyze

dynamic code loading in Android apps to detect malicious behav-

ior. [21], [18] and [30] are all signature-based malware detection

techniques and are designed to detect similar malware apps. [30] is

of particular interest as it aims to represent know malware signa-

tures as strings instead of hashes. Moonsamy et al. [39] provided a

thorough investigation and classification of 123 apps using static

and dynamic techniques over the apps’ Java source code. To the best

of our knowledge we are the first to consider leveraging the struc-

ture of computation, and specifically the structure of computation

of strings, as a feature for classification. We believe our approach is

orthogonal to others proposed and our feature set can be combined

with other proposed features to further improve classification.

7 CONCLUSION

In this paper we present a string analysis technique that provides

a set of computational structures for how a string is constructed

and where it is used inside an app. These string graphs can provide

us with significant insight into an Android app’s behavior. We use

traditional ML classification techniques to show that string graphs

are excellent features for classification of an app as either malicious

or benign. For future work we will focus on applying the techniques

discussed in this paper to identify emerging malware families by

analyzing string graphs and the evolution of string families as

string graphs change as malware families evolve. An examination

of string graphs that are present in only benign apps, but suspicious

in structure, could identify indicators for new, previously unseen

types of malware. In addition we will perform a more exhaustive

review of how obfuscation tools alter call graphs.

ACKNOWLEDGMENTS

This work is supported in part by National Science Foundation

grants: CRI:1823230 and SHF:1749539.

129

REFERENCES
[1] [n.d.]. Mobile Threat Report 2019 - McAfee. https://www.mcafee.com/

enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf.

[2] 2019. Mobile Malware Analysis : Tricks used in Anubis. https://eybisi.

run/Mobile-Malware-Analysis-Tricks-used-in-Anubis/. (2019).

[3] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. DroidAPIMiner:

Mining API-Level Features for Robust Malware Detection in Android.

In Security and Privacy in Communication Networks - 9th International

ICST Conference, SecureComm 2013, Sydney, NSW, Australia, September

25-28, 2013, Revised Selected Papers. 86–103.

[4] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon.

2016. AndroZoo. (2016), 468–471. https://doi.org/10.1145/2901739.

2903508

[5] Yassine Alouini. 2019. Why is XGBoost among most used machine

learning method on Kaggle? . https://www.quora.com/Why-is-

XGBoost-among-most-used-machine-learning-method-on-Kaggle.

(2019).

[6] Hybrid Analysis. 2018. https://www.hybrid-analysis.com.

[7] Android. 2019. https://developer.android.com/reference/dalvik/

system/DexClassLoader.

[8] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio

Merlo. 2020. Obfuscapk: An open-source black-box obfuscation tool

for Android apps. SoftwareX 11 (2020), 100403. https://doi.org/10.

1016/j.softx.2020.100403

[9] Daniel Arp, Michael Spreitzenbarth, Hugo Gascon, and Konrad Rieck.

2014. Drebin: Effective and explainable detection of android malware

in your pocket.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

Mcdaniel. 2014. FlowDroid : Precise Context , Flow , Field , Object-

sensitive and Lifecycle-aware Taint Analysis for Android Apps. PLDI

’14 Proceedings of the 35th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (2014), 259–269. https:

//doi.org/10.1145/2594291.2594299

[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Yves Klein, Jacques a nd Le Traon, Damien Octeau, and

Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field,

Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps.

In Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Edinburgh, United Kingdom)

(PLDI ’14). ACM, New York, NY, USA.

[12] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas

Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining

apps for abnormal usage of sensitive data. In Proceedings - International

Conference on Software Engineering. https://doi.org/10.1109/ICSE.2015.

61

[13] Shikha Badhani and Sunil K. Muttoo. 2019. Analyzing An-

droid Code Graphs against Code Obfuscation and App Hid-

ing Techniques. Journal of Applied Security Research 14, 4

(2019), 489–510. https://doi.org/10.1080/19361610.2019.1667165

arXiv:https://doi.org/10.1080/19361610.2019.1667165

[14] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crow-

droid: behavior-based malware detection system for Android. In Pro-

ceedings of the 1st ACMworkshop on Security and privacy in smartphones

and mobile devices (Chicago, Illinois, USA) (SPSM ’11). ACM, New York,

NY, USA.

[15] Saurabh Chakradeo, Bradley Reaves, Patrick Traynor, and William

Enck. 2013. MAST: Triage for Market-scale Mobile Malware Analysis.

In Proceedings of the Sixth ACM Conference on Security and Privacy in

Wireless and Mobile Networks (Budapest, Hungary) (WiSec ’13). ACM,

New York, NY, USA, 13–24. https://doi.org/10.1145/2462096.2462100

[16] Tianqi Chen. [n.d.].

[17] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.

2003. Precise Analysis of String Expressions. int id (2003), 1–18.

https://doi.org/10.1007/3-540-44898-5 1

[18] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and

Randal E. Bryant. 2005. Semantics-Aware Malware Detection. In

Proceedings of the 2005 IEEE Symposium on Security and Privacy (SP

’05). IEEE Computer Society, Washington, DC, USA, 32–46. https:

//doi.org/10.1109/SP.2005.20

[19] Georgiu Claudiu. 2019. Obfuscapk . https://github.com/

ClaudiuGeorgiu/Obfuscapk. (2019).

[20] World Wide Web Consortium. 2019. https://www.w3.org/TR/rdf-

sparql-query/.

[21] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On

Lightweight Mobile Phone Application Certification. In Proceedings of

the 16th ACM Conference on Computer and Communications Security

(Chicago, Illinois, USA) (CCS ’09). ACM, New York, NY, USA, 235–245.

https://doi.org/10.1145/1653662.1653691

[22] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart

Pernsteiner, Frañziska Roesner, Karl Koscher, Paulo Barros Barros,

Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu. 2014.

Collaborative Verification of Information Flow for a High-Assurance

App Store. In Proceedings of the 2014 ACM SIGSAC Conference on Com-

puter and Communications Security (Scottsdale, Arizona, USA) (CCS

’14). ACM, New York, NY, USA.

[23] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David

Wagner. 2011. Android Permissions Demystified. In Proceedings of

the 18th ACM Conference on Computer and Communications Security

(Chicago, Illinois, USA) (CCS ’11). ACM, New York, NY, USA.

[24] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy:

Semantics-based Detection of Android Malware Through Static Analy-

sis. In Proceedings of the 22Nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering (Hong Kong, China) (FSE 2014).

ACM, New York, NY, USA, 576–587. https://doi.org/10.1145/2635868.

2635869

[25] Jerome Friedman. 2002. Stochastic Gradient Boosting. Computational

Statistics Data Analysis 38 (02 2002), 367–378. https://doi.org/10.1016/

S0167-9473(01)00065-2

[26] Xiang Fu, Xin Lu, Boris Peltsverger, Shijun Chen, Kai Qian, and Lixin

Tao. 2007. A static analysis framework for detecting SQL injection

vulnerabilities. Proceedings - International Computer Software and

Applications Conference 1, Compsac (2007), 87–94. https://doi.org/10.

1109/COMPSAC.2007.43

[27] Joshua Garcia, Mahmoud Hammad, and SamMalek. 2018. Lightweight,

Obfuscation-Resilient Detection and Family Identification of Android

Malware. ACM Transactions on Software Engineering and Methodology

26, 3 (2018), 1–29. https://doi.org/10.1145/3162625

[28] Joshua Garcia, Mahmoud Hammad, Bahman Pedrood, Ali Bagheri-

Khaligh, and Sam Malek. [n.d.]. Obfuscation-Resilient, Efficient, and

Accurate Detection and Family Identification of Android Malware. Tech-

nical Report. http://cs.gmu.edu/703-993-1530

[29] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian

Jiang. 2012. RiskRanker: Scalable and Accurate Zero-day Android

Malware Detection. In Proceedings of the 10th International Conference

on Mobile Systems, Applications, and Services (Low Wood Bay, Lake

District, UK) (MobiSys ’12). ACM, New York, NY, USA, 281–294. https:

//doi.org/10.1145/2307636.2307663

[30] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-Cker Chiueh. 2009.

Automatic Generation of String Signatures for Malware Detection. In

Proceedings of the 12th International Symposium on Recent Advances in

Intrusion Detection (Saint-Malo, France) (RAID ’09). Springer-Verlag,

Berlin, Heidelberg, 101–120. https://doi.org/10.1007/978-3-642-04342-

0 6

130

[31] William G J Halfond and Alessandro Orso. 2005. Amnesia. Proceedings

of the 20th IEEE/ACM international Conference on Automated software

engineering - ASE ’05 5 (2005), 174. https://doi.org/10.1145/1101908.

1101935 arXiv:1203.3324

[32] Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A large-

scale empirical study on the effects of code obfuscations on Android

apps and anti-malware products. (2018), 421–431. https://doi.org/10.

1145/3180155.3180228

[33] Behnaz Hassanshahi and Roland H.C. Yap. 2017. Android Database

Attacks Revisited. In Proceedings of the 2017 ACM on Asia Conference

on Computer and Communications Security - ASIA CCS ’17. https:

//doi.org/10.1145/3052973.3052994

[34] Richard Killam, Paul Cook, and Natalia Stakhanova. 2014. Android

Malware Classification through Analysis of String Literals. (2014).

[35] Ding Li, Yingjun Lyu, Jiaping Gui, and William G. J. Halfond. 2016.

Automated energy optimization of HTTP requests for mobile appli-

cations. In Proceedings of the 38th International Conference on Soft-

ware Engineering - ICSE ’16. https://doi.org/10.1145/2884781.2884867

arXiv:arXiv:1508.06655v1

[36] Ding Li, Yingjun Lyu, Mian Wan, and William G J Halfond. [n.d.].

String Analysis for Java and Android Applications. ([n. d.]).

[37] Zhiqiang Li, Jun Sun, Qiben Yan,Witawas Srisa-an, and Yutaka Tsutano.

2019. Obfusifier: Obfuscation-Resistant Android Malware Detection

System. In Security and Privacy in Communication Networks, Songqing

Chen, Kim-Kwang Raymond Choo, Xinwen Fu, Wenjing Lou, and Aziz

Mohaisen (Eds.). Springer International Publishing, Cham, 214–234.

[38] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012.

CHEX: statically vetting Android apps for component hijacking vul-

nerabilities. In Proceedings of the 2012 ACM conference on Computer

and communications security (CCS ’12).

[39] Veelasha Moonsamy, Moutaz Alazab, and Lynn Batten. 2012. Towards

an understanding of the impact of advertising on data leaks. Int. J.

Secur. Netw. 7, 3 (March 2012).

[40] Steven Nichols. 2017. How Google Fights Android Malware. https://

www.zdnet.com/article/how-google-fights-android-malware/. (2017).

[41] Charlie Osborne. 2019. Anubis Android banking malware returns

. https://www.zdnet.com/article/anubis-android-banking-malware-

returns-with-a-bang/. (2019).

[42] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher

Kruegel, and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe

and Malicious Dynamic Code Loading in Android Applications. In

Proceedings of the ISOC Network and Distributed System Security Sym-

posium (NDSS). San Diego, CA.

[43] Mila Dalla Preda and Federico Maggi. 2017. Testing android malware

detectors against code obfuscation: a systematization of knowledge

and unified methodology. Journal of Computer Virology and Hacking

Techniques 13, 3 (2017), 209–232. https://doi.org/10.1007/s11416-016-

0282-2

[44] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. DroidChameleon:

Evaluating Android Anti-Malware against Transformation Attacks.

In Proceedings of the 8th ACM SIGSAC Symposium on Information,

Computer and Communications Security (Hangzhou, China) (ASIA

CCS ’13). Association for Computing Machinery, New York, NY, USA,

329–334. https://doi.org/10.1145/2484313.2484355

[45] Feng Shen, Justin Del Vecchio, AzizMohaisen, Steven Y. Ko, and Lukasz

Ziarek. [n.d.]. Android Malware Detection using Complex-Flows. In

Proceedings of The 37th IEEE International Conference on Distributed

Computing Systems (ICDCS ’17).

[46] Feng Shen, Namita Vishnubhotla, Chirag Todarka, Mohit Arora, Babu

Dhandapani, Eric John Lehner, Steven Y. Ko, and Lukasz Ziarek. 2014.

Information Flows As a Permission Mechanism. In Proceedings of the

29th ACM/IEEE International Conference on Automated Software Engi-

neering (Vasteras, Sweden) (ASE ’14). ACM, New York, NY, USA.

[47] Guillermo Suarez-Tangil, Santanu Dash, Mansour Ahmadi, Johannes

Kinder, Giorgio Giacinto, and Lorenzo Cavallaro. 2017. DroidSieve: Fast

and Accurate Classification of Obfuscated Android Malware. https:

//doi.org/10.1145/3029806.3029825

[48] Virus Total. 2018. https://www.virustotal.com.

[49] Virus Total. 2019. https://www.virustotal.com/#/file/

9361abaff9fabc7fbf875802d0bc4f8a.

[50] Virus Total. 2019. https://www.virustotal.com/#/file/

09f59201d2d0e41169b9bd0c332b6275.

[51] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. 1999. Soot - a Java bytecode optimiza-

tion framework. In Proceedings of the 1999 conference of the Centre

for Advanced Studies on Collaborative research (Mississauga, Ontario,

Canada) (CASCON ’99). IBM Press.

[52] Justin Del Vecchio, Feng Shen, Kenny M. Yee, Boyu Wang, Steven Y.

Ko, and Lukasz Ziarek. 2015. String Analysis of Android Applications

(N). In Proceedings of the 2015 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE) (ASE ’15). IEEE Computer

Society, Washington, DC, USA, 680–685. https://doi.org/10.1109/ASE.

2015.20

[53] Wei Wang, Zhenzhen Gao, Meichen Zhao, Yidong Li, Jiqiang Liu, and

Xiangliang Zhang. 2018. DroidEnsemble: Detecting Android Malicious

Applications with Ensemble of String and Structural Static Features.

IEEE Access 6 (2018), 31798–31807. https://doi.org/10.1109/ACCESS.

2018.2835654

[54] Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis

of web applications for injection vulnerabilities. ACM SIGPLAN Notices

42, 6 (2007), 32. https://doi.org/10.1145/1273442.1250739

[55] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant Propagation

with Conditional Branches. ACM Trans. Program. Lang. Syst. 13, 2

(April 1991), 181–210. https://doi.org/10.1145/103135.103136

[56] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.

2017. Neural Network-based Graph Embedding for Cross-Platform

Binary Code Similarity Detection. Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security - CCS ’17 (2017).

https://doi.org/10.1145/3133956.3134018

[57] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng

Ning, X. SeanWang, and Binyu Zang. 2013. Vetting Undesirable Behav-

iors in Android Apps with Permission Use Analysis. In Proceedings of

the 2013 ACM SIGSAC Conference on Computer & Communications

Security (Berlin, Germany) (CCS ’13). ACM, New York, NY, USA.

131

