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Abstract 15 

Stochastic Storm Transposition (SST) involves resampling and random geospatial shifting (i.e. 16 

transposition) of observed storm events to generate hypothetical but realistic rainstorms. Though 17 

developed as a probabilistic alternative to probable maximum precipitation (PMP) and sharing 18 

PMP’s storm transposition characteristic, SST can also be used in more typical rainfall frequency 19 

analysis (RFA) and flood frequency analysis (FFA) applications. This paper explains the method, 20 

discusses its origins and linkages to both PMP and RFA/FFA, and reviews the development of 21 

SST research over the past six decades. Discussion topics includes: the relevance of recent 22 

advances in precipitation remote sensing to frequency analysis, numerical weather prediction, and 23 

distributed rainfall-runoff modeling; uncertainty and boundedness in rainfall and floods; the flood 24 

frequency challenges posed by climatic and land use change; and the concept of multi-scale flood 25 

frequency. Recent literature has shown that process-based multiscale FFA, in which the joint 26 

distributions of flood-producing meteorological and hydrological processes are synthesized and 27 

resolved using distributed physics-based rainfall-runoff models, provides a useful framework for 28 

translating nonstationary hydroclimatic conditions into flood frequency estimates. SST pairs well 29 

with the process-based approaches. This pairing is promising because it can leverage advances 30 

from other branches of hydrology and hydrometeorology that appear to be difficult to integrate 31 

into better-known RFA and FFA approaches. The paper closes with several recommendations for 32 

future SST research and applications. 33 

 34 

Keywords: Extreme rainfall; floods; rainfall frequency analysis; flood frequency analysis; rainfall 35 

remote sensing; stochastic hydrology 36 

 37 
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Highlights:  38 

1. SST is a storm-based alternative to statistical rainfall and flood frequency analysis 39 

2. The SST methodology and six decades of related research are reviewed 40 

3. SST is able to leverage developments in related fields 41 

4. SST and rainfall runoff modeling can address nonstationary flood frequency 42 

5. Recommendations for future SST research are provided 43 

  44 
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1. Introduction 45 

The estimation of flood flows emerged in the early twentieth century as a core challenge in 46 

hydrology, spurred by a dam-building boom which in the U.S. ran from roughly 1910 to the 1970s. 47 

Beyond dam spillway design, these estimates are used for the sizing of stormwater and flood 48 

control infrastructure and for floodplain mapping. The objective is usually to determine a flood 49 

quantile, i.e. the peak discharge or volume associated with a particular annual exceedance 50 

probability (AEP); a flood with AEP = 0.01 corresponds to the “100-year flood.” The quantile 51 

estimation process is referred to as flood frequency analysis (FFA); the related practice for rainfall 52 

is referred to as rainfall frequency analysis (RFA). 53 

 54 

There are two widely-known approaches to FFA (National Research Council, 1988). The first, 55 

flood-based statistical FFA, involves fitting a probability distribution to extreme values, typically 56 

annual maxima, of multi-decadal streamflow records.  The desired quantile can then be obtained 57 

from that distribution. The second uses representations of one or more rainstorms as input to a 58 

rainfall-runoff hydrologic model to produce simulated flood peaks or hydrographs. The most 59 

common starting point for model-based approaches is intensity-duration-frequency (IDF) 60 

information, which describes the probability distribution of extreme rainfall depths or rates and is 61 

generated using similar methods to statistical FFA. Idealized or observed spatial or temporal 62 

patterns are often used to disaggregate a rainfall quantile into a more realistic hypothetical storm. 63 

The resulting design storm is then used as input to a rainfall-runoff model which has been 64 

initialized using a prescribed soil moisture condition. This combination of IDF and a rainfall-65 

runoff model with an assumed initial soil moisture is referred to as the “design storm method” (e.g. 66 

Curtis et al., 2013a,b; Packman and Kidd, 1980). 67 
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 68 

Both IDF estimation and flood-based statistical FFA are “station-based,” in that the observations 69 

and resulting predictions are made at individual, fixed locations—rain gages or stream gages 70 

(National Research Council, 1994). While a rain gage measurement may reflect the passage of a 71 

rainstorm and a streamflow measurement may reflect the result of that rainstorm’s interactions 72 

with hillslopes and river networks, neither observation explicitly considers the complex space-73 

time rainfall structure and its interactions with watershed feature such as varying terrain and river 74 

channels. 75 

 76 

IDF estimation and flood-based statistical FFA face certain limitations: 1.) long-term records of 77 

rainfall or flood extremes may not yield accurate AEP estimates for current or future conditions 78 

due to climatic and land use changes; 2.) their station-based nature offers limited insight into the 79 

joint meteorological and hydrologic processes, highly variable in space and time, that cause floods 80 

and that dictate their probability of occurrence; 3.) these station-based methods are formulated 81 

such that it is difficult to integrate recent advances from adjacent branches of hydrology and 82 

meteorology such as precipitation remote sensing, numerical weather prediction, and (in the case 83 

of FFA) distributed hydrologic modeling.  84 

 85 

A separate class of methods has also evolved for high-risk infrastructure such as large dams and 86 

nuclear power facilities: Probable Maximum Precipitation (PMP) and Probable Maximum Flood 87 

(PMF). PMP/PMF methods differ from typical RFA/FFA in two ways: 1.) they do not yield 88 

exceedance probabilities, but rather theoretical or practical upper bounds of rainfall and floods, 89 

and 2.) they are “storm-based,” rather than station-based. The largest conceivable rainstorm for a 90 
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watershed of interest, the PMP, is developed based on theoretical arguments, regional-scale 91 

observations, and assumptions (Hansen, 1987). PMP estimation explicitly uses rainfall 92 

spatiotemporal structure, often in the form of rainfall fields (i.e. rainfall maps at regular time steps). 93 

PMF, by extension, considers this rainfall’s interaction with watershed features by routing it 94 

through a rainfall-runoff model.  95 

 96 

Rainstorm structure, including fine-scale variability and motion, is an important determinant of 97 

flood response (e.g. Arnoud et al., 2002; Meierdiercks et al., 2010; Mejia and Moglen, 2010; Morin 98 

et al., 2006; Norbiato et al., 2007; Ramos et al., 2005; Sivapalan et al., 1987; Smith et al., 2005, 99 

2002; Yang et al., 2013).  Explicit consideration of rainfall structure means that storm-based 100 

methods such as PMP, unlike station-based methods, can incorporate advances in both 101 

meteorological understanding and observations such as radar, satellites, and numerical weather 102 

prediction (National Research Council, 1994; see Abbs, 1999 and Ohara et al., 2011 for PMP 103 

examples). Important limitations of PMP/PMF are: 1.) the use of single values without an 104 

exceedance probability makes them unsuitable for hydrologic risk analyses (Ball et al., 2019; 105 

Swain et al., 2006; USBR and USACE, 2018); and 2.) developing the largest conceivable 106 

rainstorm necessarily involves the analyst’s subjectivity (e.g. Dawdy and Lettenmaier, 1987). 107 

 108 

Both the distinctions between statistical RFA/FFA and PMP/PMF and their limitations raise two 109 

questions: can we leverage spatiotemporal observations of extreme rainstorms probabilistically to 110 

perform storm-based RFA? And can we combine such an approach with rainfall-runoff modeling 111 

for FFA? In this paper, we examine stochastic storm transposition (SST), a technique developed 112 

to answer these questions. We review developments over 60 years that indicate SST can address 113 
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the limitations of both RFA/FFA and PMP/PMF. Incidentally, SST is as old as the Journal of 114 

Hydrology—though the term wasn’t coined until Fontaine and Potter (1989), Alexander (1963) 115 

introduced the concept in Volume 1, Issue 1 of this journal.  116 

 117 

Historical and conceptual links of SST to other FFA methods and to PMP/PMF are discussed in 118 

Section 2. Section 3 describes the SST methodology. In Section 4, we review more than six 119 

decades of peer-reviewed SST research. Some important considerations, limitations, and useful 120 

properties of SST are discussed in Section 5. We conclude in Section 6 with some 121 

recommendations for future directions of SST research and applications.  122 

2. Historical Background 123 

Early researchers noted that rainfall records tended to be more numerous and often longer than 124 

those of flood flows (Miami Conservancy District, 1917). This implied that the estimation of 125 

extreme flood flows, probabilistic or otherwise, could be improved by considering extreme rainfall 126 

observations. Nonetheless, records of extreme rainfall over individual watersheds even today tend 127 

to be limited to at most a handful of notable events, making it difficult to characterize the upper 128 

tail of rainfall and flood hazard using these records alone. As a response, two ways have emerged 129 

to use rainfall and flood observations from a wider region to support FFA.  130 

 131 

The first, “regionalized frequency analysis,” involves leveraging nearby rainfall or streamflow 132 

observations to increase the robustness of statistical parameter or quantile estimates at a specific 133 

location or to produce estimates at ungaged locations. In the streamflow case, this is referred to as 134 

regional flood frequency analysis (RFFA); we use the term regional rainfall frequency analysis 135 

(RRFA) for rainfall applications. These contrast with “at-site” FFA or RFA, which only use local 136 
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observations at the site of interest. RFFA and RRFA are still station-based—they use point 137 

observations and produce point predictions.  138 

 139 

Fuller (1914) introduced what is believed to be the first formula for estimating flood quantiles: 140 

𝑄! = 𝑄#(1 + 0.8 log"# 𝑇)                                                             (1) 141 

where 𝑄# is the mean annual flood peak, T is the return period (the reciprocal of the AEP), and 𝑄! 142 

is the flood peak estimate corresponding to T. Fuller calculated the empirical coefficient 0.8 using 143 

flood observations from across the non-arid U.S. In other words, the first flood frequency formula 144 

was an RFFA formula. Research has continued ever since (see Requena et al., 2019 and 145 

Stephenson et al., 2016 for recent examples), and both RFFA and RRFA are commonplace in 146 

applications. We point readers to Dawdy et al. (2012) and Svensson and Jones (2010) for further 147 

information on RFFA and RRFA, respectively.  148 

 149 

The second approach to using regional information is flood or storm transposition. Rather than use 150 

nearby observations to support statistical parameter or quantile estimation, transposition involves 151 

“moving” storm or flood observations to the watershed of interest and evaluating the result. Fuller 152 

(1914) solved Equation 1 for T using available annual maxima flood observations and found that 153 

the largest of these observations yielded estimates of T in excess of 1000 years. When preparing a 154 

dam spillway design in a new location, he therefore advocated using T ≥ 1000 years, since evidence 155 

of such floods was available in observational records. Myers (1969) points out that Fuller was thus 156 

implicitly recommending transposing a property (T) of observed floods to new locations. 157 

 158 
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While the transposition of flood events poses theoretical and practical challenges, transposition of 159 

rainstorms is more straightforward (Myers, 1966). Myers (1969) summarized the advantages: “(a) 160 

rainfall is much less dependent on the underlying topography than is peak discharge; its 161 

transposition is therefore more physically realistic and accurate. (b) Precipitation records are in 162 

many instances longer and more comprehensive than discharge records… (c) the isohyets of a 163 

storm may be centered precisely over a basin, or in a number of different positions over a basin, a 164 

flexibility not available in discharge transposition.” These factors contributed to deterministic 165 

storm transposition being proposed as an element of flood estimation (Meyer, 1917; Woodward, 166 

1920) and becoming an integral part in the evolution of PMP/PMF methods (Bernard, 1936; 167 

Showalter and Solot, 1942). By the 1940s, PMP/PMF, rather than the probabilistic methods of 168 

Fuller and his successors, had become the preferred approach for spillway design in the United 169 

States (Myers, 1969) and these methods were also adopted by nascent nuclear power industry 170 

(England, 2011). 171 

 172 

Meanwhile, probabilistic approaches continued to be widely used for applications in which less 173 

extreme return periods (e.g. 10-1 to 10-3) were relevant. Hershfield (1961) and Miller (1964), for 174 

example, provided nationwide rainfall IDF maps for return periods up to 100 years, while the 175 

National Flood Insurance Program, started in 1968, focused on risk management within 100-year 176 

floodplains (Knowles and Kunreuther, 2014). Interest also renewed in probabilistic estimation of 177 

extremely rare storms and floods (National Research Council, 1994, 1988), motivated by unease 178 

at the level of subjectivity in PMP estimation, which could potentially result in costly designs or 179 

retrofitting (Alexander, 1963; Dawdy and Lettenmaier, 1987; YEAC, 1984). Some federal 180 

agencies in the U.S. (England, 2011; Swain et al., 1998) and elsewhere (Ball et al., 2019; Wilson 181 
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et al., 2011) now use a combination of deterministic and probabilistic approaches for dam safety 182 

risk analysis and risk-informed decision making (USBR, 2013). 183 

 184 

It was one such probabilistic foray into the realm of AEP < 10-3 that conceived SST (Alexander, 185 

1969, 1963; see Section 4.1). It should be noted that other probabilistic approaches, generally 186 

Monte Carlo in their nature, have also emerged (e.g. Beran, 1973; Charalambous et al., 2013; 187 

Muzik, 1993; Rahman et al., 2002; Schaefer and Barker, 2002; Stephens et al., 2016). Thorough 188 

review of these other approaches is beyond the scope of this study. Many of the considerations and 189 

challenges that we explore in this review, however, are also relevant to those techniques. Examples 190 

include storm spatiotemporal structures and “pairing” them with seasonally-varying probabilistic 191 

watershed initial conditions for flood simulation. 192 

3. SST Methodology 193 

3.1 The Basics 194 

SST includes the following key elements: defining a transposition domain; developing an extreme 195 

storm catalog; randomly transposing storms in a region over a watershed; and estimating rainfall 196 

or flood probabilities. The concept, shown schematically in Fig. 1, can be briefly summarized: 197 

observed storms are transposed at random within a transposition domain of area AD in such a way 198 

that new unobserved realizations of extreme rainfall over the domain are produced. In doing so, 199 

new realizations of extreme rainfall are created for a watershed of area AW that resides within this 200 

domain. The space-time structure of rainstorms, including intensities, areas, and movement is 201 

preserved.  SST can be understood as a bootstrap method, in which resampling from a catalog of 202 

observed storms is followed by random transposition of the newly-generated sample of storms. 203 

The details are described in Sections 3.2 through 3.5. 204 
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 205 

 206 

Fig. 1: Schematic of SST procedure for a single storm. Specific rainfall isohyets for the observed and 207 

transposed storms are shown for four time periods. Entire rainfall fields, as opposed to isohyets, can be 208 

transposed. All rainfall fields or isohyets are transposed by a north-south distance ∆𝒚 and east-west 209 

distance ∆𝒙, which are randomly selected from distributions of Dy and Dx, respectively. In some SST 210 

efforts, Dy and Dx have been assumed to be uniform; in other cases, they have been estimated based on the 211 

locations of historical storms. Adapted from Wright et al., (2013). 212 

 213 

3.2 Defining a Meteorologically Homogeneous Transposition Domain 214 

Storm transposition is only defensible insofar as the storm could have occurred at that location 215 

with some nonzero probability. Chow (1964) defined a “homogeneous region,” also referred to as 216 

a “transposition domain,” as “the area surrounding the given river basin in which storm-producing 217 

factors are substantially comparable; i.e., the general area within which meteorological influences 218 

and topography are sufficiently alike.” The transposition domain shown in Fig. 1 is square and 219 
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centered around the watershed, but this need not be the case—see, for example, Fig. 2a, which 220 

shows an example transposition domain for Hurricane Harvey and New Orleans, Louisiana. Gupta 221 

(1972) argued that a transposition domain could “include a very large geographic area in the 222 

eastern half of the United States where (topographic) relief is generally moderate and it may 223 

include relatively small areas in the western United States where extreme topography is 224 

encountered.” The issue of regional homogeneity is not unique to SST: RFFA and RRFA must 225 

also wrestle with it (e.g. Hosking and Wallis, 1993). 226 

 227 

For SST to be of value, the transposition domain must be sufficiently large that it includes multiple 228 

observed extreme rainstorms. If the domain is very large relative to the size of the watershed of 229 

interest, however, the probability of transposing one of these rainstorms over the watershed is 230 

small. Alexander (1963) introduced a simple equation that shows this: 231 

𝑝$% = 𝐴& 𝐴'⁄                                                              (2) 232 

where ptr is the probability that the centroid of a storm from a transposition domain AD will be 233 

transposed over a watershed of area Aw (see Fig. 1). Though Equation 2 is an incomplete 234 

description of the true process (since a storm could produce nonzero rainfall over a basin even if 235 

its centroid falls outside the basin boundary) it can be nonetheless instructive. Some implications 236 

of Equation 2 are discussed in Sections 3.4 and 5.2. 237 
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 238 

Fig. 2: (a) Transposition domain for a region surrounding New Orleans, Louisiana along the southern 239 

United States Gulf Coast. (b) Peak 72-hour rainfall map for Hurricane Harvey in August 2017, based on 240 

Stage IV gage-corrected radar rainfall data (Lin, 2011). (c) to (e) three possible random transpositions of 241 

Hurricane Harvey rainfall which produce little, no, and extreme rainfall over New Orleans, respectively. 242 

(f) Example 72-hour IDF curve for New Orleans generated using the RainyDay software (Section 4.4); 243 

shaded area portrays the spread of 100 distinct realizations, each consisting of 1000 annual rainfall 244 

maxima. 245 

 246 

3.3 Creating a storm catalog from spatial rainfall observations 247 

SST considers multiple storms that have occurred within the transposition domain for the 248 

watershed of interest. This set of storms is henceforth referred to as a storm catalog. Most SST 249 
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studies have used rainfall observations from rain gage networks, often expressed as depth-area-250 

duration (DAD) curves or tables that depict rainfall depth or rate as a function of averaging area 251 

and duration. By using DAD information along with assumptions of storm geometry, the labor of 252 

drawing or digitizing paper-based rainfall maps and then transposing them can be avoided. A 253 

useful source of both DAD tables and rainfall maps has been USACE (1973), which includes 254 

information on nearly 600 major U.S. storms starting in the 1880s. Though impressive in length 255 

and level of detail, this volume nonetheless has shortcomings—it has relatively fewer storms in 256 

the western U.S., and the evolution of rain gages over that time period means that the record does 257 

not provide a consistent picture of major storm activity even in the eastern part of the country. 258 

Such inconsistencies pose potential problems for SST (Foufoula-Georgiou, 1989; National 259 

Research Council, 1988), since the resampling described in Section 3.4 implicitly assumes that the 260 

storm catalog reflects the “true” extreme rainfall hydroclimate within the transposition domain.  261 

 262 

Advances in rainfall remote sensing using ground-based radar and satellites offer alternative data 263 

sources for storm catalog creation. An example of the spatially detailed depiction of regional 264 

rainfall provided by radar remote sensing is shown in Fig. 2b for Hurricane Harvey, which struck 265 

the southeastern Texas coast in August 2017. Sections 4.4 and 5.1 discusses some potential 266 

strengths of these new data sources for SST. 267 

 268 

3.4 Storm Resampling and Transposition 269 

The main objective of SST, to estimate rainfall or flood AEPs, is achieved by resampling from the 270 

storm catalog to generate large numbers of realizations of extreme rainstorms over the watershed 271 

of interest. These realizations should synthesize new realistic annual patterns of rainstorms over 272 
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the transposition domain and, by extension, over the watershed. To do this, a random number of 273 

storms k is generated by modeling the annual “arrival process” of storms over the domain.  274 

 275 

The storm arrival process is usually assumed to follow either a Bernoulli or Poisson distribution 276 

with an arrival rate 𝜆 = 	𝑚 𝑛⁄  storms per year, where m is the number of storms in the storm 277 

catalog and n is the length of the record (in years) from which the catalog was generated. Note the 278 

restrictions 0 < 𝜆 < 1 and 𝑘 = 	 {0,1} if a Bernoulli distribution is used, meaning that 𝑚 < 𝑛. This 279 

makes the Bernoulli arrival process suitable only if small values of m are used. As a consequence, 280 

𝑝$% (Equation 2) will be relatively low and many realizations of transposed rainfall will thus be 281 

small or zero. This can be seen in Fig. 2c-d, in which little and no rainfall is produced for New 282 

Orleans, Louisiana for two possible transpositions of Hurricane Harvey. Fig. 2e, meanwhile, shows 283 

a transposition that produces extreme rainfall over New Orleans. This feature makes the Bernoulli 284 

arrival model suitable only for estimation of very low AEPs such as those needed for spillway 285 

design; the magnitude of more common events will be greatly underestimated. This restriction is 286 

lifted if a Poisson distribution is used, though, as discussed in Section 5.2, underestimation of the 287 

magnitude of more common events can nonetheless result if m is not sufficiently large. No SST 288 

study to date has sought to model the temporal sequencing of these k storms, meaning that, to use 289 

the parlance of rainfall-runoff modeling, SST has thus far only been event-based (e.g. Chu and 290 

Steinman, 2009). 291 

 292 

The k storms are randomly sampled from the storm catalog and randomly transposed within the 293 

transposition domain. A single transposition is shown schematically in Fig. 1; three possible 294 

transpositions of 72-hour rainfall from Hurricane Harvey are shown in Fig. 2c-2e. All rainfall 295 
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fields or isohyets that constitute a storm are transposed by a north-south distance ∆𝑦 and an east-296 

west distance ∆𝑥 which are randomly selected from distributions Dy and Dx, respectively. These 297 

distributions jointly describe the spatial probability of storm occurrence.  298 

 299 

The notion of a homogeneous transposition domain implies that the probabilities of random 300 

placement of transposed storms should be equal throughout the transposition domain, i.e. that Dy 301 

and Dx are uniform. Relaxation of this stricture allows larger values of AD and thus m, but could 302 

introduce bias since rainfall properties would not be strictly homogeneous. This issue was 303 

discussed in very general terms by Alexander (1963), who wrote that “the basic problem is to 304 

preserve only the essential statistical features of the area by discarding those which may be 305 

ascribed to sampling errors.” Several more recent schemes have provided ways to either modify 306 

the storm transposition probability or storm magnitude to limit these biases (Nathan et al., 2016; 307 

Wilson and Foufoula-Georgiou, 1990; Wright et al., 2017; Zhou et al., 2019). 308 

 309 

Once transposed, the k resulting rainfall amounts over the watershed are computed. The largest of 310 

these can be understood as a “synthetic annual rainfall maxima,” which form the basis of AEP 311 

estimation. 312 

 313 

3.5 Estimating Rainfall and Flood Quantiles 314 

Unlike statistical FFA and RFA, it is not necessary to fit distributions to the synthetic annual 315 

maxima in order to obtain AEPs. Rather, AEPs can be estimated directly from the ranked synthetic 316 

annual maxima using plotting position formulae. For example, 1,000 annual maxima generated 317 

through SST would facilitate direct estimation of AEPs as low as 10-3.  Uncertainty bounds can be 318 
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obtained by generating multiple such “sets” of realizations. Fig. 2f, for example, shows an SST-319 

based IDF curve for New Orleans, in which 100 sets of 1,000 annual maxima each were generated. 320 

The shaded area denotes the spread among these 100 sets.  321 

 322 

Obtaining flood quantiles requires the use of a rainfall-runoff model, but flood AEPs are otherwise 323 

computed in the same manner. There need not be a 1:1 correspondence between rainfall and flood 324 

AEP if rainfall spatiotemporal structure is considered or if watershed initial conditions such as soil 325 

moisture are treated as random variables (Franchini et al., 1996; Gupta, 1972; Wright et al., 2017; 326 

Yu et al., 2019). 327 

 328 

A brief graphical summary of the step-by-step procedure described in Section 3 is shown in Fig. 329 

3. 330 
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 331 

Fig. 3: Schematic of the SST methodology. 332 

4. Review of SST Developments and Applications 333 

4.1 Early Theoretical Development (1963-1972) 334 

SST originated in Australia, where preference for PMP/PMF was not as strongly-rooted as in the 335 

United States (Alexander, 1969). Alexander's (1963) initial study focused mainly on the 336 

probability of transposing a storm event over a watershed given their respective spatial scales and 337 

the size of the transposition domain; e.g. Equation 2. Though some empirical properties of DAD 338 

were mentioned, no results were provided. The paper outlined the basic concept of a homogeneous 339 

region, identified relevant spatial and temporal scales, and described the Bernoulli storm arrival 340 

process. Shape and orientation of storms were neglected. Alexander (1969) followed by discussing 341 

additional aspects including the meteorological rationale used to select a transposition domain in 342 



 19 

the Australian state of Victoria. This second study also showed results of rainfall depth vs. AEP as 343 

low as 10-4 for an unspecified watershed in Victoria. 344 

 345 

Gupta (1972) provided a more detailed treatment, including discussion (though not results) of its 346 

extension to the frequency analysis of flood volumes. He introduced the Poisson arrival model and 347 

suggested that “second-order” storm properties (orientation, shape, within-storm temporal 348 

distribution, etc.) were also important considerations. His procedure included stochastic rotation 349 

of transposed rainfall fields, which were then run through a simple rainfall-runoff model. The 350 

storm catalog consisted of five storms in the Midwestern U.S., and the rainfall-runoff model 351 

considered seasonally-appropriate initial conditions. Though these initial conditions were not 352 

treated as random variables, it was recommended that future studies do so, echoing other 353 

contemporary work on non-SST probabilistic FFA (e.g. Beran, 1973). He proposed that stochastic 354 

simulation of storms could be used to augment the limited size of a storm catalog. Notably, his 355 

thesis also presented “a practical, computer-oriented methodology of transposing storms of a 356 

region and a historical sample to any river basin inside that region,” though the lack of probabilistic 357 

results implies that this methodology stopped somewhat short of a fully-realized SST software—358 

something that would not emerge until much later. 359 

 360 

4.2 Theoretical and Practical Advances (1984-1996) 361 

Interest in SST renewed in the 1980s. This was spurred by a technical study from the Yankee 362 

Atomic Electric Company (YEAC, 1984). That study used a variant of SST to assess the likelihood 363 

that Harriman Dam in Vermont in the Northeastern U.S. would be overtopped, thus threatening a 364 

downstream nuclear facility. It was motivated by disagreement over PMP estimates for the 520 365 
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km2 watershed, which ranged from 14 inches to over 22 inches in 24 hours. This study showed 366 

that the DAD-based SST procedure produced more credible extreme rainfall frequency estimates 367 

than conventional RFA, and demonstrated how reservoir initial conditions could be randomized 368 

based on historical records.  369 

 370 

The YEAC (1984) report featured prominantly in a comprehensive report on rare flood quantile 371 

estimation published by the National Research Council (1988), which went so far as to propose its 372 

own SST approach. Fontaine and Potter (1989) compared the YEAC (1984) and National Research 373 

Council (1988) approaches for AEPs approaching 10-6 using a catalog of four major storms in the 374 

Midwestern U.S. The authors argued that “there is a need to develop a more formal theoretical 375 

framework,” but also that requirements of strict homogeneity should be relaxed to maximize the 376 

potential size of the transposition domain. They also argued that uncertainty estimation including 377 

errors in rainfall observations should be considered, and echoed Gupta's (1972) recommendation 378 

that stochastic simulation of storm events could be useful for enlarging the storm catalog. 379 

 380 

This latter recommendation was picked up in Foufoula-Georgiou (1989), who introduced a 381 

stochastic model to simulate elliptical storms using DAD and geometric information from USACE 382 

(1973). This model could produce arbitrary numbers of storms, including ones with higher rainfall 383 

magnitudes, larger spatial extents, etc. The random variables used in the storm model were 384 

maximum rainfall depth at the storm center, orientation of the ellipsis’ major axis, the ratio of 385 

major to minor axes, and two parameters describing the decay of rainfall depth with distance from 386 

the storm center. This formulation thus precluded non-elliptical or multi-cell storms, and did not 387 

incorporate temporal rainfall structure or motion. The author evaluated several aspects related to 388 



 21 

the probability of catchment rainfall by transposing elliptical representations of 18 observed storms 389 

from the midwestern U.S. over idealized watershed shapes and geometries. 390 

 391 

This stochastic rainfall model was fully implemented in Wilson and Foufoula-Georgiou (1990) 392 

and was parameterized using a larger set of 65 storms. They also linked this model to a 393 

nonhomogeneous point process that jointly modeled storm occurrence location (Fig. 4) and peak 394 

rainfall depth, easing the need for a homogeneous transposition domain. They estimated rainfall 395 

AEPs lower than 10-12 over hypothetical circular 100 mi2 catchments, showing that the 396 

combination of the stochastic storm and point process models could qualitatively reproduce the 397 

spatial patterns exhibited by existing PMP studies in the region. They also assessed sensitivity of 398 

the method to storm eccentricity and to incomplete storm catalogs.  399 
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 400 

Fig. 4: Transposition domain and locations of the centers of 65 storms from USACE (1973) used to 401 

parameterize the point-process arrival and stochastic storm models in Franchini et al. (1996) and Wilson 402 

and Foufoula-Georgiou (1990), from which this figure is adapted. Note the heterogeneity in observed 403 

storm occurrence across the domain, which is accounted for in the arrival process. 404 

 405 

Franchini et al. (1996) applied the method of Wilson and Foufoula-Georgiou (1990) to estimate 406 

the frequency of peak flows using a lumped rainfall-runoff model. To incorporate rainfall temporal 407 

structure, they probabilistically disaggregated 24-hour storm totals to finer time scales using 408 

dimensionless temporal distributions. They examined the sensitivity of FFA to initial soil moisture, 409 

though a lack of observations precluded its representation as a random variable. Even for very 410 
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extreme events, this sensitivity was high: the AEP associated with the 400 m3/s (1800 m3/s) flood 411 

peak ranged from 10-1 (10-3) for saturated conditions to roughly 10-3 (<10-5) for dry conditions. 412 

They also showed importance of rainfall temporal distribution in determining flood peaks, thus 413 

highlighting that flood magnitude and thus flood frequency strongly depend on characteristics 414 

beyond simply rainfall depth. 415 

 416 

4.3. Recent SST Efforts for Rare Storms and Floods 417 

Nathan et al. (1999) and Agho et al. (2000) investigated the potential of  SST in southeastern 418 

Australia. The authors documented challenges addressing homogeneity while transposing storms 419 

in the region. This line of work continued to evolve in Nathan et al. (2016) , who used SST and 420 

another stochastic method to estimate the AEP of existing PMP values for two watersheds in 421 

southeastern Australia. Their AEP estimates ranged from 10-5 and 10-6, depending on the method 422 

and watershed. They used a 114-year gridded rain gage dataset to generate elliptical storm events. 423 

A key contribution was the elaboration of “dimensionless SST,” in which storm rainfall 𝑅( 424 

transposed from location i to location j is rendered dimensionless by dividing by an “index 425 

quantile” (𝐼(
)) and then “rescaled” by 𝐼*

) to obtain a transposed rainfall value 𝑅@*: 426 

𝑅@* =
+!
"

+#
" 𝑅(.                                                             (3) 427 

Dimensionless SST provides a straightforward means for relaxing the strictures of transposition 428 

domain selection, since transposed rainfall is rescaled according to a measure of the local extreme 429 

rainfall climatology. This allowed them to use a very large transposition domain that covered much 430 

of southeastern Australia. Dimensionless SST may render nonuniform transposition probabilities 431 

unnecessary, at least in practice, since it implicitly accounts for spatial variability in storm 432 

frequency as well as intensity. 433 
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 434 

The ratio 𝐼*
) 𝐼(

)A  will be sensitive to errors in quantile estimates. The authors used at-site estimates 435 

of the 50-year rainfall quantile to compute this ratio; such a high quantile may be prone to 436 

substantial sampling error. This can also be said for earlier efforts (Agho et al., 2000; Nathan et 437 

al., 1999), which used areal PMP estimates to rescale Ri. Nathan et al. (2016) state that 438 

dimensionless SST deserves further research. This could include evaluation of less uncertain index 439 

quantiles such as the 2-year or 5-year rainfall (Wright and Holman, 2019). It should be noted that 440 

rescaling by an index quantile is common practice in RFFA and RRFA, specifically in the ‘index 441 

flood” approach (e.g. Stedinger et al., 1993). 442 

 443 

England et al. (2014) examined FFA in the 12,000 km2 Arkansas River watershed upstream of 444 

Pueblo, Colorado in the western U.S. by combining SST-based rainfall events with a distributed 445 

physics-based rainfall-runoff model. SST-based results are presented alongside flood-based 446 

statistical FFA, estimates of several historical floods, and paleoflood data (Fig. 5). This 447 

“integration of collaborative work in hydrometeorology, flood hydrology, and paleoflood 448 

hydrology” is noteworthy for several reasons: 1.) it was the first to generate SST-based FFA 449 

estimates for a relatively large watershed in mountainous terrain; 2.) it was among the first to 450 

combine SST with a physics-based distributed hydrologic model (Wright et al., 2014 appeared in 451 

the same year), 3.) it highlighted that transposition domain selection and watershed interaction in 452 

complex terrain can have a major influence on results (this contrasts with Wright et al., 2013b; 453 

2017, who reported only modest sensitivities in less topographically-complex regions); and 4.) its 454 

usage of multiple sources of probabilistic flood estimates provided an interesting demonstration 455 
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uncertainty estimation through (to use a legal term) “preponderance of evidence,” which can 456 

“increase the credibility and resulting confidence in the results” (Swain et al., 1998).  457 

 458 

Fig. 5: Flood frequency curves for the Arkansas River at Pueblo, Colorado based on statistical flood-based 459 

FFA (black lines), SST (red and blue lines and squares), and observed flood peaks (open black circles). 460 

Error bars indicate the estimated magnitudes of four historical floods. Estimates of the paleoflood 461 

nonexceedance bound is shown in grey. “Restricted” SST-based results refer to those generated when 462 

storm transposition was limited to areas where orographically-enhanced heavy rainfall is prevalent in 463 

relation to th watershed; “unrestricted” refers to results generated when storm transposition could occur 464 

anywhere in the domain. Figure is adapted from England et al. (2014),  which contains further details. 465 

 466 
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4.4 Rainfall Remote Sensing, Multi-scale FFA, and RainyDay 467 

The SST studies reviewed thus far sought to estimate rare rainfall and flood probabilities, mainly 468 

for dam safety. Dams can be understood as “point-scale” features, since the concern is generally a 469 

single distribution of rainfall or flood discharge upstream of the facility. Levee systems, 470 

transportation networks, and stormwater systems, on the other hand, are “multi-scale”—flood 471 

distributions may be needed at many locations along the drainage network. Many applications in 472 

such contexts are focused on more common events, e.g. AEP > 10-3. 473 

 474 

Wright et al. (2013b) introduced an SST methodology for estimating rainfall IDF curves using a 475 

high-resolution 10-year radar rainfall dataset. Results were shown for watersheds from 2.5 to 240 476 

km2 and for durations from 1 to 12 hours in Charlotte, North Carolina, with IDF curves “tailored” 477 

to the specific watershed size, shape, and orientation. These IDF curves reflected the effects of 478 

storm structure and motion, and the authors showed that the temporal and spatial rainfall averages 479 

represented by these IDFs masked considerable variability in the spatiotemporal properties of the 480 

transposed rainstorms used to derive them. They argued that rainfall remote sensing is the key to 481 

assessing this variability, since few rain gage networks are dense enough to sample fine-scale 482 

rainfall structure. SST’s storm-based nature also allowed the authors to examine how storm 483 

hydroclimate influenced IDF estimates— finding that for short durations and small areas, tropical 484 

cyclones are insignificant contributors to extreme rainfall distributions in Charlotte, while their 485 

importance grows with duration and watershed size. 486 

 487 

Wright et al. (2014) extended this analysis to multiscale FFA for an urbanized 110 km2 watershed 488 

using a detailed physically-based distributed hydrologic model. When combined with high-489 
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resolution rainfall scenarios, the interactions of second-order rainfall properties with land cover, 490 

river channels, and the urban storm drain network could be translated into FFA. This circumvents 491 

the design storm assumption of 1:1 equivalency of rainfall and runoff return period, eliminates the 492 

need to carefully link design storm duration to watershed characteristics such as the time of 493 

concentration, and captures the intra-event AEP variability that can occur across the river network. 494 

They also argued that the combination of SST with physically-based models opens opportunities 495 

for modeling future flood frequencies in nonstationary land use or climate conditions. 496 

 497 

Wright et al. (2017) detailed RainyDay, an open-source Python-based SST software (see Wright, 498 

2019 for source code). RainyDay is based on the methodology of  Wright et al. (2013b; 2014). 499 

Subsequent software updates include the dimensionless SST of Nathan et al. (2016) and an 500 

alternative “rescaling” approach outlined in Wright and Holman (2019). Wright et al. (2017) 501 

demonstrated RFA and FFA results using ground-based radar rainfall and several satellite-based 502 

datasets. The distributed Hillslope-Link Model (HLM; Krajewski et al., 2017; Mantilla and Gupta, 503 

2005) was used in conjunction with RainyDay in Turkey River, a 4000 km2 watershed in the 504 

Midwestern U.S. that has exhibited flood nonstationarity in recent decades. RainyDay FFA 505 

estimates were more consistent with recent peak discharge observations than RFFA results 506 

published by the US Geological Survey (Fig. 6). Wright et al. (2017) was also the first SST study 507 

to treat antecedent watershed conditions, specifically soil moisture and channel flow, as random 508 

variables. (It should be noted that other non-SST probabilistic FFA studies had previously 509 

considered this issue—see, for example, Charalambous et al., 2013; Muzik, 1993; Rahman et al., 510 

2002; Schaefer and Barker, 2002). 511 
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 512 

Fig. 6: Flood frequency curves for Turkey River at Garber, Iowa generated by SST using RainyDay 513 

combined with the HLM distributed rainfall-runoff model and Stage IV radar rainfall and by the U.S. 514 

Geological Survey (USGS; see Eash et al., 2013) using Bulletin 17B RFFA methodology (IACWD, 1982). 515 

The watershed and transposition domain are shown in the inset map. Red shaded area shows the spread 516 

of 10 distinct realizations of 500 years each using SST. Blue shaded area shows the 90% confidence 517 

interval on the Bulletin 17B estimates. Adapted from Wright et al. (2017). 518 

 519 

Zhou et al. (2019) present an investigation of rainfall heterogeneity and its consequences for RFA 520 

in the region surrounding Baltimore, Maryland in the U.S. Mid-Atlantic. The rainfall hydroclimate 521 

there is influenced by the Chesapeake Bay to the southeast, the topographic gradient leading to the 522 

Appalachian mountain ranges to the northwest, and localized urban rainfall modification (Smith 523 

et al., 2012). They used the RainyDay software to examine the impact of this heterogeneity on the 524 

extreme storm hydroclimatology and hydrometeorology and on IDF estimates. To account for 525 

regional heterogeneities in extreme rainfall, rainfall 𝑅( transposed from location i to location j was 526 

“rescaled” according to the ratio: 527 
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𝑅@* =
,-!
,-#
𝑅(                                                             (4) 528 

where 𝑅#(  is the mean rainfall of all storms in the storm catalog from location i. A stochastic 529 

generalization of Zhou et al.'s (2019) approach was introduced in Wright and Holman (2019), who 530 

compared it against the index quantile ratio method (Equation 3) from Nathan et al. (2016). 531 

 532 

Zhu et al. (2018) examined the importance of rainfall spatiotemporal structure in flood frequency  533 

using the combination of RainyDay and HLM from Wright et al. (2017). They also examined how 534 

this importance is modulated by soil moisture. A set of 10,000 high-resolution rainfall scenarios 535 

were used to simulate flood frequency at 5,000 subwatersheds of the 4,000 km2 Turkey River 536 

watershed, as were three additional sets generated by “downsampling” to coarser spatial and 537 

temporal resolutions. Complex relationships were found between rainfall structure, watershed 538 

scale, and initial soil moisture. Their results suggest that rainfall structure is an important control 539 

on real-world flood frequency, and that FFA efforts that simplify this structure may underestimate 540 

flood risk, especially for smaller-scale watersheds. This confirms that high-resolution rainfall 541 

remote sensing datasets are valuable when combined with SST and distributed hydrologic models. 542 

 543 

Yu et al. (2019) introduced a more thorough approach to SST-based FFA for the same watershed 544 

evaluated in Wright et al. (2017) and Zhu et al. (2018). A “library” of seasonally-varying soil 545 

moisture and seasonal snowpack conditions was created via a long-term continuous hydrologic 546 

simulation. Initial conditions were then sampled from this library, paired with RainyDay-based 547 

transposed storms from the same season, and run through a simple lumped conceptual rainfall-548 

runoff model (though their framework is generalizable to more complex models). Seasonally 549 

realistic joint distributions of rainfall, soil moisture, and snowpack were thus preserved and 550 
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translated into FFA results. They refer to this approach as “process-based FFA,” which is discussed 551 

further in Section 5.6. They showed that seasonal shifts in soil moisture, snowpack, and extreme 552 

rainfall explain the recent upward trend in large-scale floods and downward trend in more common 553 

floods in Turkey River. 554 

 555 

Using the same combination of RainyDay SST, radar rainfall, and HLM as Wright et al. (2017), 556 

Perez et al. (2019) conducted a “synthetic analysis” of commonly-used statistical at-site and 557 

regional FFA methods. 10,000 simulated annual maximum flood peaks at 5,000 locations within 558 

Turkey River formed a synthetic population of flood peaks. This combination of tools allowed for 559 

explicit simulation of the interactions between rainfall spatiotemporal variability with watershed 560 

and river channel morphology. Subsets of this population were then created, representing samples 561 

of various sizes (e.g. 10 years, 30 years, etc.) and, in the case of RFFA methods, various numbers 562 

of sites. The robustness of several commonly-used FFA/RFFA methods were then compared as a 563 

function of sample size and number of sites. This contrasts with previous efforts to assess statistical 564 

RFFA methods, which have relied on simplistic assumptions regarding the regional variability of 565 

flood peaks. Perez et al. (2019) found that the difficulty of estimating distributional shape or skew, 566 

a major challenge in RFFA, can be partially explained by the river network structure and the 567 

orientation of the watershed relative to prevailing storm directions. The approach shows how SST 568 

can facilitate the use of recent advances in other branches of hydrology and other fields (e.g. 569 

distributed models, rainfall remote sensing) to better understand and potentially improve or replace 570 

existing FFA methods. 571 
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5. Discussion 572 

5.1 Rainfall Data and SST 573 

Sparse rain gage networks can fail to adequately sample fine-scale rainfall variability such as 574 

localized precipitation events and the locations of peak storm intensity (e.g. Curtis, 2007; 575 

Foufoula-Georgiou, 1989). This lack of detail may limit rain gages’ direct applicability to multi-576 

scale FFA. The recent SST studies reviewed in Section 4.4 show the merit of coupling SST with 577 

weather radar data, due to the latter’s depiction of rainfall variability at high spatial and temporal 578 

resolution. On the other hand, a lack of long-term records radar records and the need for careful 579 

bias correction places limits on radar’s broad usefulness. To estimate rainfall and flood AEPs 10-1 580 

to 10-3, it appears that at least one decade of radar rainfall data is needed; estimation of rarer AEPs 581 

may require longer records. Other remote sensing-based RFA attempts exist using station-based 582 

methods (see Faridzad et al., 2018, McGraw et al., 2019, and references therein); those methods 583 

appear to be more sensitive to the relative shortness of remote sensing records than SST.  584 

 585 

The potential of satellites and numerical weather prediction (NWP) models for SST have received 586 

little and no attention, respectively, but these data sources are currently showing improvements in 587 

terms of resolution, accuracy, and record length. The latest satellite datasets, for example, offer 588 

relatively long records (2+ decades) at higher resolution and improved accuracy relative to 589 

previous generations. Convection-permitting regional climate models (RCMs) are now able to be 590 

run for decadal periods at higher spatial and temporal resolutions (e.g. Prein et al., 2015). Recent 591 

multi-decadal atmospheric reanalysis datasets have resolutions sufficient for some RFA and FFA 592 

applications (e.g. Toride et al., 2018). RCMs and reanalyses have the potential to perform better 593 

than radar or satellites in complex terrain (e.g. Wright, 2018). Both satellite datasets and NWP 594 
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provide the potential for SST in regions such as developing countries where both rain gage 595 

networks and weather radar are lacking.  596 

 597 

Though most SST studies have listed data quality as critical, its influence on SST has only partially 598 

been evaluated (Foufoula-Georgiou, 1989; Wilson and Foufoula-Georgiou, 1990; Wright et al., 599 

2013b). While rainfall measurement using any instrument is nontrivial (National Research 600 

Council, 1994), radar, satellite, and NWP-based estimates are typified by large errors. Presently, 601 

all the sources of rainfall measurements mentioned above are heavily reliant on rain gages to 602 

identify and eliminate biases. Thus, the rain gage networks that were critical for early SST work 603 

are as essential now. The current decline in rain gage networks worldwide (e.g. Stokstad, 1999) 604 

thus poses a threat to the future of SST and RFA/FFA more generally.  605 

 606 

Wright et al. (2017) pointed out that SST and other regional methods are able to “improve” more 607 

quickly than at-site frequency analysis as new extreme events are observed, since these 608 

observations need not have occurred over the watershed of interest. This logic extends backwards 609 

as well; notwithstanding challenges data homogeneity, the prospect of combining recent rainfall 610 

records with older isohyetal maps and DAD observations holds the allure of providing very long 611 

rainfall records for SST. England et al. (2014) shows an example of this. This prospect is perhaps 612 

not far off, at least in the U.S., since USACE (1973) and other records of old storm information 613 

have been or are currently being digitized. 614 

 615 
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5.2 AEP Uncertainty and “Boundedness” in SST 616 

Suppose the SST resampling and transposition described in Section 3.4 is repeated to create 617 

100,000 annual maxima. When converting these to AEP estimates (Section 3.5), the analyst can 618 

rank these maxima to obtain probabilities as low as 10-5, or subdivide these into 100 samples and 619 

thus obtain 100 estimates for each AEP down to 10-3. Studies focusing on very rare floods (Sections 620 

4.1-4.3) have done the former, while the recent studies in Section 4.4 do the latter. Clearly, the 621 

former does not give the “true” population of all possible rainstorms and floods, while the latter 622 

does not represent the full “real-world” uncertainty about these quantities. The side-by-side 623 

comparison of multiple FFA methods by England et al. (2014) showed one practical pathway to 624 

better grapple with such uncertainty. 625 

 626 

SST using observed rainstorms will have an upper bound associated with the largest rainstorm in 627 

the storm catalog, transposed to maximize the rainfall over the watershed of interest (Wright et al., 628 

2013b; 2017). This upper bound is the result of sampling error, i.e. incomplete knowledge of the 629 

true population of extreme rainstorms.  630 

 631 

Upper bounds in SST should not be confused with upper boundedness in real rainfall and flood 632 

processes, which has been a topic of lively debate in the hydrologic community for nearly a century 633 

(see Smith and Baeck, 2015 and references therein). An interesting question, however, is whether 634 

SST can bring new insights to that debate. Linkages between generation and sampling from storm 635 

catalogs and the asymptotic behavior of extrema that is the focus of extreme value statistics (e.g. 636 

Davison and Huser, 2015) may be worth exploring.   637 

 638 
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Quite separate from the question of upper bounds is the existence of a lower bound or bias, which 639 

is an artifact of the SST procedure: there is a nonzero probability that a transposed storm will cause 640 

no rainfall at all over the watershed of interest (e.g. Fig. 2c). This is especially true if, via Equation 641 

2, 𝐴& 𝐴'⁄  is small. Under a Bernoulli arrival model, this would translate to a synthetic rainfall 642 

maxima of zero; under a Poisson model, zero rainfall remains a potential outcome. Nonzero but 643 

still small synthetic annual maxima are relatively likely in both models and are clearly unrealistic. 644 

This issue is unimportant when the objective is the estimation of very rare events. For the studies 645 

reviewed in Section 3.4, however, this is a major problem, since more common AEPs are an 646 

objective. This can be remedied by using a large storm catalog, which increases the Poisson arrival 647 

rate. Wright et al. (2017) recommended a catalog with at least 𝑚 = 10𝑛 storms, while the current 648 

version of the RainyDay software defaults to 𝑚 = 20𝑛. Bias associated with this effect can be 649 

seen in Fig. 7 in SST-based results for AEP ≥ 0.5, which used 𝑚 = 14.3𝑛. 650 

 651 

 652 

Fig. 7: 24-hour IDF curves for the Madison, Wisconsin, USA area based on NOAA Atlas 14 (Bonnin et 653 

al., 2006) and the RainyDay SST software. RainyDay transposition domain is shown in inset map. The 654 
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RainyDay-based IDF curve (blue) is for the size, shape, and orientation of the 728 km2 Yahara River 655 

watershed upstream of Lake Monona, Wisconsin. Deviations between the single-grid cell RainyDay-based 656 

IDF curve and Atlas 14 (black points and confidence intervals) are related to extreme storms that occurred 657 

near Madison in August 2018 and are not reflected in the older Atlas 14 estimates. Shaded areas for 658 

RainyDay-based estimates portray the spread of 100 distinct realizations, each consisting of 1000 annual 659 

rainfall maxima. 660 

 661 

5.3 Spatial Considerations of Rainfall and Flood Extremes 662 

Beyond very small catchment areas, the spatial dimensions of storm events become increasingly 663 

important in flooding (e.g. Marston, 1924). Taken alone, rain gage-based IDF curves are therefore 664 

unsuitable for FFA (aside from in small catchments) since the statistics of point rainfall can differ 665 

dramatically from those of watershed-scale rainfall. To compensate for this, analysts can employ 666 

area reduction factors (ARFs) to estimate areal rainfalls from point-scale IDF information. Wright 667 

et al. (2013a) showed that typical ARF methods are conceptually flawed in ways that are not easily 668 

remedied. Estimation of spatial IDF curves is often challenging because of the required density of 669 

long-term contemporaneous rain gage observations. SST’s storm-based nature provides an 670 

alternative method for estimating rainfall IDFs for spatial scales beyond a single rain gage (Fig. 7) 671 

and obviate the usage of ARFs. These scales can be relatively small, down to a single rainfall 672 

remote sensing grid cell, e.g. <1 km2 for ground-based weather radar to 100+ km2 for satellite or 673 

reanalysis datasets. Despite SST’s ability to produce IDF estimates, such estimates need not be an 674 

intermediate step in SST-based FFA. Rather, transposed rainfall fields should be used directly as 675 

inputs to rainfall-runoff modeling, preserving observed space-time structure and enabling multi-676 

scale FFA. 677 

 678 
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While SST holds distinct advantages for RFA and FFA at spatial scales beyond small watersheds, 679 

there is likely an upper limit to the areas over which it can be applied. Gupta (1972) pointed out 680 

that “large basins can have pronounced differences in meteorological and topographic influences” 681 

which may make the transposition of storms unrealistic. He suggested that this might constrain 682 

SST to watersheds smaller than “1,000 square miles” (2,600 km2).  683 

 684 

Recent SST studies, particularly England et al. (2014), underline that this limit might be larger 685 

than Gupta speculated. Nonetheless, SST is almost certainly not applicable for continental-scale 686 

river basins such as the Mississippi or Amazon without modification. Floods in continental river 687 

basins are generally not the result of individual storms but rather of spatially and temporally 688 

clustered events occurring over periods of weeks to months and covering spatial scales as high as 689 

106 km2. These storms may occur in climatologically distinct regions, rendering the notion of a 690 

single transposition domain unworkable. One could in principal create a storm catalog comprised 691 

of the most rainy multi-week periods and conduct SST using these. The number of available 692 

“events” would be small—if month-long storm periods were used to create a storm catalog, for 693 

example, the number of “events” would be at most 12 times the length of the rainfall record in 694 

years. Few of these storm catalog entries would be particularly important from a flood-generation 695 

standpoint. Second, transposition of a month-long rainy period may not yield sufficient realizations 696 

of rainfall spatiotemporal variability, since the individual storm elements within this period are 697 

fixed in their relative locations and timing. The “reshuffling” of individual storm elements in space 698 

and time to create new realizations may be possible but poses conceptual and practical challenges. 699 

 700 
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5.4 Other Event-Based and Continuous Rainfall Generators 701 

An alternative to SST for generating large numbers of hypothetical rainfall events is to develop a 702 

point- or basin-scale IDF curve, randomly sample quantiles from this curve, and combine these 703 

quantiles with spatial or temporal rainfall patterns from observed storms. Examples of this include 704 

Charalambous et al. (2013) and Schaefer and Barker (2002). This requires a collection of observed 705 

storm events, as well as the ability to estimate either areal-averaged IDFs or ARFs (not necessarily 706 

easy to do; see Section 5.3). The approach implicitly assumes that the annual rainfall maxima 707 

provided by IDF curves lead to annual flood maxima. This may be adequate for estimating rare 708 

flood quantiles; it is problematic for more common events (Yu et al., 2019). As far as we are aware, 709 

existing examples of the approach have assumed that rainfall quantiles and spatiotemporal 710 

structures can be considered to be independent. 711 

 712 

Stochastic rainfall generators (SRGs) are another way to generate hypothetical realizations of 713 

rainfall. They attempt to simulate rainfall variability, so that one could generate potentially many 714 

thousands of years of rainfall (Sharma and Mehrotra, 2010). While SST involves transposing 715 

observed storms, SRGs rely on rainfall observations for “training” and validation. The stochastic 716 

storm model of Foufoula-Georgiou (1989) and Wilson and Foufoula-Georgiou (1990) is one 717 

example, but most generate continuous sequences, rather than individual storms. Continuous SRGs 718 

have been used for FFA (e.g. Blazkova and Beven, 2002; Cameron et al., 1999; Peleg et al., 2017). 719 

While most SRGs have been either point-based or provide areal-averaged rainfall, more detailed 720 

models provide high detail in both space and time (e.g. Paschalis et al., 2013; Peleg and Morin, 721 

2014). Spatially-explicit SRGs are preferable for FFA, since fine-scale variability is an important 722 
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determinant of flood response (Paschalis et al., 2014; Zhu et al., 2018). Like SST, these SRGs also 723 

facilitate multi-scale FFA (e.g. Peleg et al., 2017) and process-based FFA. 724 

 725 

The key test for both SST and SRGs is whether they can faithfully represent the extreme tail of 726 

rainfall magnitude and associated spatiotemporal variability. This test is arguably easier passed in 727 

the SST paradigm, which relies directly on observed rainfall properties. SRGs must depict these 728 

processes using space-time statistics and have historically struggled to reproduce extremes (Furrer 729 

and Katz, 2008; Willems et al., 2012). To date, no detailed comparison of SST and an SRG for 730 

RFA or FFA has been conducted. Furthermore, no effort since Wilson and Foufoula-Georgiou, 731 

(1990) has sought to merge progress in SRGs with SST.  732 

 733 

5.5 Process-Based FFA and Flood Nonstationarity  734 

 To our knowledge, the term “process-based FFA” was first introduced in Sivapalan and Samuel, 735 

(2009), but the general approach has been previously referred to as “derived FFA” (e.g. Eagleson, 736 

1972; Franchini et al., 2005; Haberlandt et al., 2008) and “physically-based FFA” (e.g. Díaz-737 

Granados et al., 1984; Muzik, 1993; Shen et al., 1990). Briefly introduced in Section 4.4, process-738 

based FFA merits further discussion. Essentially, it aims to “construct” distributions of flood 739 

outcomes by recreating the joint distributions of the relevant flood-producing processes: rainfall, 740 

watershed states such as soil moisture and snowpack, surface and subsurface flow, and river 741 

channel routing. A key aspect of these joint distributions is seasonality. In the Midwestern U.S., 742 

for example, snowpack usually persists only into March, while soil moisture peaks in March-April 743 

and peak rainfall rates occur in June-August (Yu et al., 2019). This means that floods usually occur 744 



 39 

sometime in March-August, but the specific combinations of processes that cause them can vary 745 

dramatically over this timeframe.  746 

 747 

Nonstationarity, particularly climatic change, manifests as changes in seasonality of one or more 748 

processes. This implies that process-based approaches may be necessary for translating 749 

nonstationarity in the hydrologic cycle into nonstationarity in flood frequency. The results of 750 

Wright et al. (2017) and Yu et al., (2019) show the potential of SST combined with process-based 751 

approaches in one watershed exhibiting hydrologic nonstationarity. Here, we demonstrate the 752 

opportunity to examine the relative roles of rainfall and antecedent soil in determining flood peak 753 

variability (Fig. 8) using RainyDay with Stage IV gage-corrected radar rainfall and the WRF-754 

Hydro distributed hydrologic model (Gochis et al., 2018).  755 

 756 

 757 

Fig. 8: Relationships between accumulated event rainfall over watershed and simulated peak discharge 758 

generated using RainyDay-based SST, Stage IV rainfall, and the WRF-Hydro rainfall runoff model for 759 

the Turkey River at Garber, Iowa. Results are based on 20 distinct realizations, each consisting of 500 760 
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simulated annual flood peaks. Color indicates the randomized antecedent basin-averaged volumetric 761 

water content of the 2 m soil column, used to initialize simulations. The watershed and transposition 762 

domain are shown in Fig. 6. 763 

 764 

In contrast with process-based FFA, flood-based statistical methods “do not explicitly consider the 765 

physical processes that produce floods” (Wright et al., 2014). Rather, the sample of flood 766 

observations used in those methods represent outcomes of combinations of these processes. 767 

Whether this sample space adequately describes the population of possible floods that could result 768 

from different combinations is unknowable. Furthermore, how these combinations change with 769 

spatial scale and with climate or land use change is not clear from streamflow records alone. Thus, 770 

it is not obvious how to generate estimates of future flood quantiles, even using nonstationary 771 

statistical models (Sivapalan and Samuel, 2009; Stedinger and Griffis, 2011).  772 

 773 

The rainfall-runoff models used in design storm methods can explicitly represent important 774 

process interactions to a degree. Design storms require strong assumptions regarding the joint 775 

distributions of these processes, however, including: 1.) an annual maximum flood peak result 776 

from rainfall annual maxima, even though a smaller rainstorm plus wetter initial conditions could 777 

produce an annual maximum; 2.) a single antecedent soil moisture value is sufficient to understand 778 

flood outcomes, even though real-world soil moisture is variable; and 3.) a rainfall IDF quantile 779 

translates directly to the same flood quantile (i.e. a 100-year storm produces a 100-year flood). 780 

The consequences of these assumptions are not well understood (Adams and Howard, 1986; Curtis 781 

et al., 2013a,b; Packman and Kidd, 1980; Wright et al., 2014, 2013a, 2013b). 782 

 783 
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Hydrologic practice has been well-served by both statistically-based and design storm-based FFA, 784 

due to their strengths and also to healthy doses of conservatism in engineering design practices. 785 

Both are starting to “show their age,” however. Published IDF estimates have been shown to be 786 

out-of-date, often severely underestimating the frequency of extreme rainfalls in the U.S. (Chin 787 

and Ross, 2018; Wright et al., 2019) and elsewhere (e.g. Madsen et al., 2014, 2009). Though the 788 

issue of flood nonstationarity is less clear (e.g. Sharma et al., 2018), recent work has argued that 789 

future progress on RFFA will require more careful consideration of watershed geomorphology 790 

(Ayalew and Krajewski, 2017) and hydrometeorology (Smith et al., 2018). Consistent with the 791 

conclusions of the National Research Council (1994), storm-based approaches such as SST, 792 

together with process-based FFA, are better positioned than conventional station-based approaches 793 

to leverage advances in distributed modeling and in rainfall remote sensing and numerical 794 

simulation. 795 

 796 

5.6 Multiscale FFA 797 

The concept of multi-scale FFA was briefly introduced in Section 4.4. There are applications in 798 

which flood quantiles across an entire drainage network are needed, rather than for an individual 799 

river reach or gage location. Such applications include mapping of floodplains and the design of 800 

levee and stormwater systems. In addition, it can be useful to be able to model flood scenarios that 801 

resolve the spatial distribution of impacts within an individual flood event. Applications that can 802 

benefit from this capability include probabilistic risk assessment, “stress-testing” of actively 803 

managed hydrologic infrastructure such as reservoirs, or evaluation of transportation network 804 

response to flood impacts on bridges or roadways.  805 

 806 



 42 

In such applications, depiction of a wide range of storm events with realistic spatiotemporal 807 

distribution of rainfall across the watershed, and the ability to resolve the resulting flood response 808 

using distributed rainfall-runoff modeling, is essential (e.g. Pilgrim, 1986). SST and some other 809 

methods (see Section 5.4) are able to do these things, provided that adequate input rainfall data are 810 

available, a well-performing rainfall runoff model is used, and suitable approaches are employed 811 

to account for variability in initial conditions. Thus, the concepts of multiscale FFA and process-812 

based FFA are linked—the former requires the latter, while the latter requires the former if scale-813 

dependent interactions in flood generating mechanisms are to be properly considered. 814 

 815 

We demonstrate several examples of process-based SST, generated using RainyDay together with 816 

Stage IV rainfall and WRF-Hydro, including the distribution of specific flood quantiles across the 817 

river network (Fig. 9a,b). Also shown are two random storm transpositions with very different 818 

rainfall patterns (Fig. 9c,d) and spatial patterns of resulting flood peak discharges (Fig. 9e,f), 819 

despite having both produced 100-year peak discharges at the watershed outlet at Garber, Iowa.  820 

 821 

5.7 Rainfall-Runoff Models for FFA 822 

Both design storm methods and the process-based and multiscale FFA described in Sections 5.5 823 

and 5.6 rely on rainfall-runoff hydrologic models. A common criticism is that parameter and 824 

structural uncertainty in such models is unacceptably large. While these can indeed be problematic, 825 

we provide several counterarguments. First, the confidence intervals provided in flood-based 826 

statistical FFA methods understate the true uncertainty inherent in such methods by ignoring the 827 

potentially major role of rating curve errors (Potter and Walker, 1985). When these errors are 828 

considered, uncertainty has been shown to balloon dramatically (Steinbakk et al., 2016). Second, 829 
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there have been numerous demonstrations that rainfall-runoff FFA methods can perform as well 830 

or better than statistical methods in cases of basin storage “discontinuities” (Rogger et al., 2012), 831 

reservoirs (Ayalew et al., 2013), and land use or climatic change (Cunha et al., 2011). Third, at 832 

least some “blame” for poor model performance lies on the precipitation and other meteorological 833 

inputs. The role of rainfall-runoff model error has not yet been studied in SST-based FFA, and 834 

would presumably yield wider uncertainty bounds than those shown in existing studies. The non-835 

SST FFA work of Blazkova and Beven (2009, 2002) and Cameron et al. (1999) provide a possible 836 

roadmap for considering model errors. 837 
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 838 

Fig. 9: Multiscale FFA results over the Turkey River watershed in northeastern Iowa using RainyDay-839 

based SST, Stage IV rainfall, and the WRF-Hydro rainfall runoff model. Results are based on 20 distinct 840 

realizations, each consisting of 500 simulated annual flood peaks. (a) and (b) show the median of the 10-841 

year and 100-year flood peak magnitude, respectively, based on the 20 realizations. (c) and (d) show 842 

rainfall maps for two random transpositions which produced 100-year peak discharges at the watershed 843 
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outlets, but featured very different rainfall spatial distributions. (e) and (f) show the resulting peak 844 

discharges produced by the transposed rainstorms shown in (c) and (d). The watershed and transposition 845 

domain are shown in Fig. 6. 846 

6. Summary and Recommendations 847 

In this review, we summarize the origins of Stochastic Storm Transposition (SST) in the context 848 

of three better-known forms of rainfall and flood hazard estimation: regionalized rainfall and flood 849 

frequency analysis, design storms, and PMP/PMF. We briefly explain the methodology, review 850 

existing research, discuss some of SST’s properties, strengths, and limitations, and contrast it with 851 

other methods.  852 

 853 

In the six decades since Alexander’s 1963 description of SST in Issue 1 of the Journal of 854 

Hydrology, the problem of estimating the likelihood and magnitude of floods has not been solved. 855 

Indeed, climate change, economic growth, and urbanization mean that risks have and will likely 856 

continue to grow (Kundzewicz et al., 2014). At the same time, recent experiences have identified 857 

weaknesses in longstanding methods for RFA, FFA, and PMP/PMF; climatic and land cover 858 

changes are particularly challenging.  859 

 860 

As a “storm-based” approach built explicitly around the spatiotemporal variability of rainfall, SST 861 

holds promise to address these issues. Critically, it is able to leverage advances from other branches 862 

of hydrology and from related fields such as meteorology—including distributed hydrologic 863 

modeling and remote sensing and numerical simulation of extreme rainfall. Example RFA and 864 

FFA applications for watersheds in Louisiana, Iowa, Wisconsin, Maryland, Colorado, and 865 
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southeastern Australia have demonstrated the practical utility of SST for floodplain management 866 

and dam safety. 867 

 868 

While six decades of research into the concept suggests that SST is a viable complement to existing 869 

approaches, important questions remain. We conclude with five areas for future work: 870 

1. A chief criticism of SST is the subjectivity involved in defining the transposition domain. 871 

Definition of transposition domains based on climatological characteristics combined with 872 

modest rescaling of storms represent a reasonable compromise between the desire for large 873 

domains and the need for approximate homogeneity. Previous SST work has begun to address 874 

this (Nathan et al., 2016; Wilson and Foufoula-Georgiou, 1990; Wright et al., 2019; Zhou et 875 

al., 2019), but more is needed. Methods from related fields such as regionalized L-moments 876 

(Hosking and Wallis, 1997) should be considered. 877 

2. Errors from rainfall measurements, extreme storm sampling, and rainfall-runoff modeling 878 

should be examined to understand the propagation of such errors through to SST-based FFA 879 

estimates. These errors should be compared side-by-side with those resulting from flood-based 880 

statistical FFA to better understand the relative strengths and limits of each method. The 881 

Bayesian approach used in Steinbakk et al. (2016) both highlights the importance of error 882 

propagation in FFA and provides a roadmap for studying it. 883 

3. England et al. (2014) showed that SST can be used alongside other methods to develop a 884 

“preponderance of evidence” approach to FFA, while Perez et al. (2019) showed that SST-885 

based FFA can help to evaluate other methodologies. More explicit “merging” of SST with 886 

other RFA/FFA approaches and rainfall estimation techniques is likely to prove valuable. An 887 

example of the former could be the usage of SST to help estimate the skewness of rainfall and 888 
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flood distributions, a major challenge in conventional FFA. Examples of the latter could 889 

include integration of SST and modern high-resolution stochastic rainfall generators and 890 

explicit coupling of SST with numerical weather prediction models that can explicitly simulate 891 

rainfall in complex terrain. 892 

4. Process-based and multi-scale FFA concepts can connect flood processes to flood 893 

distributions, including in nonstationary conditions. Though previous studies have begun to 894 

explore these connections, rigorous interpretation of results in terms of hydrologic processes 895 

such as runoff generation mechanisms and channel routing has been lacking. A key question 896 

is whether a return to the simplified storm and watershed representations of early SST work 897 

could prove illuminating, in this effort, or if real-world process complexities would limit the 898 

value of such idealizations. 899 

5. Finally, while SST research has been generally confined to the United States and Australia, the 900 

need for rainfall and flood frequency estimation is widespread. While global precipitation 901 

estimates using satellites and atmospheric reanalyses are improving to the point that they may 902 

be useful in RFA and FFA applications, validation of these results in ungaged regions remains 903 

a challenge. Nonetheless, numerous regions around the globe spanning diverse hydroclimatic 904 

and socioeconomic conditions have at least some high-quality rainfall and flood observations. 905 

Partnerships with researchers and end users in those regions would help to explore the potential 906 

for SST to “go global.”  907 
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