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Abstract
Stochastic Storm Transposition (SST) involves resampling and random geospatial shifting (i.e.
transposition) of observed storm events to generate hypothetical but realistic rainstorms. Though
developed as a probabilistic alternative to probable maximum precipitation (PMP) and sharing
PMP’s storm transposition characteristic, SST can also be used in more typical rainfall frequency
analysis (RFA) and flood frequency analysis (FFA) applications. This paper explains the method,
discusses its origins and linkages to both PMP and RFA/FFA, and reviews the development of
SST research over the past six decades. Discussion topics includes: the relevance of recent
advances in precipitation remote sensing to frequency analysis, numerical weather prediction, and
distributed rainfall-runoff modeling; uncertainty and boundedness in rainfall and floods; the flood
frequency challenges posed by climatic and land use change; and the concept of multi-scale flood
frequency. Recent literature has shown that process-based multiscale FFA, in which the joint
distributions of flood-producing meteorological and hydrological processes are synthesized and
resolved using distributed physics-based rainfall-runoff models, provides a useful framework for
translating nonstationary hydroclimatic conditions into flood frequency estimates. SST pairs well
with the process-based approaches. This pairing is promising because it can leverage advances
from other branches of hydrology and hydrometeorology that appear to be difficult to integrate
into better-known RFA and FFA approaches. The paper closes with several recommendations for

future SST research and applications.

Keywords: Extreme rainfall; floods; rainfall frequency analysis; flood frequency analysis; rainfall

remote sensing; stochastic hydrology
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Highlights:

1.

2.

SST is a storm-based alternative to statistical rainfall and flood frequency analysis
The SST methodology and six decades of related research are reviewed

SST is able to leverage developments in related fields

SST and rainfall runoff modeling can address nonstationary flood frequency

Recommendations for future SST research are provided
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1. Introduction

The estimation of flood flows emerged in the early twentieth century as a core challenge in
hydrology, spurred by a dam-building boom which in the U.S. ran from roughly 1910 to the 1970s.
Beyond dam spillway design, these estimates are used for the sizing of stormwater and flood
control infrastructure and for floodplain mapping. The objective is usually to determine a flood
quantile, i.e. the peak discharge or volume associated with a particular annual exceedance
probability (4EP); a flood with AEP = 0.01 corresponds to the “100-year flood.” The quantile
estimation process is referred to as flood frequency analysis (FFA); the related practice for rainfall

is referred to as rainfall frequency analysis (RFA).

There are two widely-known approaches to FFA (National Research Council, 1988). The first,
flood-based statistical FFA, involves fitting a probability distribution to extreme values, typically
annual maxima, of multi-decadal streamflow records. The desired quantile can then be obtained
from that distribution. The second uses representations of one or more rainstorms as input to a
rainfall-runoff hydrologic model to produce simulated flood peaks or hydrographs. The most
common starting point for model-based approaches is intensity-duration-frequency (IDF)
information, which describes the probability distribution of extreme rainfall depths or rates and is
generated using similar methods to statistical FFA. Idealized or observed spatial or temporal
patterns are often used to disaggregate a rainfall quantile into a more realistic hypothetical storm.
The resulting design storm is then used as input to a rainfall-runoff model which has been
initialized using a prescribed soil moisture condition. This combination of IDF and a rainfall-
runoff model with an assumed initial soil moisture is referred to as the “design storm method” (e.g.

Curtis et al., 2013a,b; Packman and Kidd, 1980).
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Both IDF estimation and flood-based statistical FFA are “station-based,” in that the observations
and resulting predictions are made at individual, fixed locations—rain gages or stream gages
(National Research Council, 1994). While a rain gage measurement may reflect the passage of a
rainstorm and a streamflow measurement may reflect the result of that rainstorm’s interactions
with hillslopes and river networks, neither observation explicitly considers the complex space-
time rainfall structure and its interactions with watershed feature such as varying terrain and river

channels.

IDF estimation and flood-based statistical FFA face certain limitations: 1.) long-term records of
rainfall or flood extremes may not yield accurate AEP estimates for current or future conditions
due to climatic and land use changes; 2.) their station-based nature offers limited insight into the
joint meteorological and hydrologic processes, highly variable in space and time, that cause floods
and that dictate their probability of occurrence; 3.) these station-based methods are formulated
such that it is difficult to integrate recent advances from adjacent branches of hydrology and
meteorology such as precipitation remote sensing, numerical weather prediction, and (in the case

of FFA) distributed hydrologic modeling.

A separate class of methods has also evolved for high-risk infrastructure such as large dams and
nuclear power facilities: Probable Maximum Precipitation (PMP) and Probable Maximum Flood
(PMF). PMP/PMF methods differ from typical RFA/FFA in two ways: 1.) they do not yield
exceedance probabilities, but rather theoretical or practical upper bounds of rainfall and floods,

and 2.) they are “storm-based,” rather than station-based. The largest conceivable rainstorm for a
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watershed of interest, the PMP, is developed based on theoretical arguments, regional-scale
observations, and assumptions (Hansen, 1987). PMP estimation explicitly uses rainfall
spatiotemporal structure, often in the form of rainfall fields (i.e. rainfall maps at regular time steps).
PMF, by extension, considers this rainfall’s interaction with watershed features by routing it

through a rainfall-runoff model.

Rainstorm structure, including fine-scale variability and motion, is an important determinant of
flood response (e.g. Arnoud et al., 2002; Meierdiercks et al., 2010; Mejia and Moglen, 2010; Morin
et al., 2006; Norbiato et al., 2007; Ramos et al., 2005; Sivapalan et al., 1987; Smith et al., 2005,
2002; Yang et al., 2013). Explicit consideration of rainfall structure means that storm-based
methods such as PMP, unlike station-based methods, can incorporate advances in both
meteorological understanding and observations such as radar, satellites, and numerical weather
prediction (National Research Council, 1994; see Abbs, 1999 and Ohara et al., 2011 for PMP
examples). Important limitations of PMP/PMF are: 1.) the use of single values without an
exceedance probability makes them unsuitable for hydrologic risk analyses (Ball et al., 2019;
Swain et al., 2006; USBR and USACE, 2018); and 2.) developing the largest conceivable

rainstorm necessarily involves the analyst’s subjectivity (e.g. Dawdy and Lettenmaier, 1987).

Both the distinctions between statistical RFA/FFA and PMP/PMF and their limitations raise two
questions: can we leverage spatiotemporal observations of extreme rainstorms probabilistically to
perform storm-based RFA? And can we combine such an approach with rainfall-runoff modeling
for FFA? In this paper, we examine stochastic storm transposition (SST), a technique developed

to answer these questions. We review developments over 60 years that indicate SST can address
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the limitations of both RFA/FFA and PMP/PMF. Incidentally, SST is as old as the Journal of
Hydrology—though the term wasn’t coined until Fontaine and Potter (1989), Alexander (1963)

introduced the concept in Volume 1, Issue 1 of this journal.

Historical and conceptual links of SST to other FFA methods and to PMP/PMF are discussed in
Section 2. Section 3 describes the SST methodology. In Section 4, we review more than six
decades of peer-reviewed SST research. Some important considerations, limitations, and useful
properties of SST are discussed in Section 5. We conclude in Section 6 with some

recommendations for future directions of SST research and applications.

2. Historical Background

Early researchers noted that rainfall records tended to be more numerous and often longer than
those of flood flows (Miami Conservancy District, 1917). This implied that the estimation of
extreme flood flows, probabilistic or otherwise, could be improved by considering extreme rainfall
observations. Nonetheless, records of extreme rainfall over individual watersheds even today tend
to be limited to at most a handful of notable events, making it difficult to characterize the upper
tail of rainfall and flood hazard using these records alone. As a response, two ways have emerged

to use rainfall and flood observations from a wider region to support FFA.

The first, “regionalized frequency analysis,” involves leveraging nearby rainfall or streamflow
observations to increase the robustness of statistical parameter or quantile estimates at a specific
location or to produce estimates at ungaged locations. In the streamflow case, this is referred to as
regional flood frequency analysis (RFFA); we use the term regional rainfall frequency analysis

(RRFA) for rainfall applications. These contrast with “at-site” FFA or RFA, which only use local
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observations at the site of interest. RFFA and RRFA are still station-based—they use point

observations and produce point predictions.

Fuller (1914) introduced what is believed to be the first formula for estimating flood quantiles:
Qr = Q(1+0.8log;, T) (1)
where Q is the mean annual flood peak, 7T is the return period (the reciprocal of the AEP), and Qr
is the flood peak estimate corresponding to 7. Fuller calculated the empirical coefficient 0.8 using
flood observations from across the non-arid U.S. In other words, the first flood frequency formula
was an RFFA formula. Research has continued ever since (see Requena et al., 2019 and
Stephenson et al., 2016 for recent examples), and both RFFA and RRFA are commonplace in
applications. We point readers to Dawdy et al. (2012) and Svensson and Jones (2010) for further

information on RFFA and RRFA, respectively.

The second approach to using regional information is flood or storm transposition. Rather than use
nearby observations to support statistical parameter or quantile estimation, transposition involves
“moving” storm or flood observations to the watershed of interest and evaluating the result. Fuller
(1914) solved Equation 1 for 7 using available annual maxima flood observations and found that
the largest of these observations yielded estimates of 7"in excess of 1000 years. When preparing a
dam spillway design in a new location, he therefore advocated using 7> 1000 years, since evidence
of such floods was available in observational records. Myers (1969) points out that Fuller was thus

implicitly recommending transposing a property (7) of observed floods to new locations.
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While the transposition of flood events poses theoretical and practical challenges, transposition of
rainstorms is more straightforward (Myers, 1966). Myers (1969) summarized the advantages: “(a)
rainfall is much less dependent on the underlying topography than is peak discharge; its
transposition is therefore more physically realistic and accurate. (b) Precipitation records are in
many instances longer and more comprehensive than discharge records... (c) the isohyets of a
storm may be centered precisely over a basin, or in a number of different positions over a basin, a
flexibility not available in discharge transposition.” These factors contributed to deterministic
storm transposition being proposed as an element of flood estimation (Meyer, 1917; Woodward,
1920) and becoming an integral part in the evolution of PMP/PMF methods (Bernard, 1936;
Showalter and Solot, 1942). By the 1940s, PMP/PMF, rather than the probabilistic methods of
Fuller and his successors, had become the preferred approach for spillway design in the United
States (Myers, 1969) and these methods were also adopted by nascent nuclear power industry

(England, 2011).

Meanwhile, probabilistic approaches continued to be widely used for applications in which less
extreme return periods (e.g. 10" to 10-%) were relevant. Hershfield (1961) and Miller (1964), for
example, provided nationwide rainfall IDF maps for return periods up to 100 years, while the
National Flood Insurance Program, started in 1968, focused on risk management within 100-year
floodplains (Knowles and Kunreuther, 2014). Interest also renewed in probabilistic estimation of
extremely rare storms and floods (National Research Council, 1994, 1988), motivated by unease
at the level of subjectivity in PMP estimation, which could potentially result in costly designs or
retrofitting (Alexander, 1963; Dawdy and Lettenmaier, 1987; YEAC, 1984). Some federal

agencies in the U.S. (England, 2011; Swain et al., 1998) and elsewhere (Ball et al., 2019; Wilson



182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

et al., 2011) now use a combination of deterministic and probabilistic approaches for dam safety

risk analysis and risk-informed decision making (USBR, 2013).

It was one such probabilistic foray into the realm of AEP < 107 that conceived SST (Alexander,
1969, 1963; see Section 4.1). It should be noted that other probabilistic approaches, generally
Monte Carlo in their nature, have also emerged (e.g. Beran, 1973; Charalambous et al., 2013;
Muzik, 1993; Rahman et al., 2002; Schaefer and Barker, 2002; Stephens et al., 2016). Thorough
review of these other approaches is beyond the scope of this study. Many of the considerations and
challenges that we explore in this review, however, are also relevant to those techniques. Examples
include storm spatiotemporal structures and “pairing” them with seasonally-varying probabilistic

watershed initial conditions for flood simulation.

3. SST Methodology

3.1 The Basics

SST includes the following key elements: defining a transposition domain; developing an extreme
storm catalog; randomly transposing storms in a region over a watershed; and estimating rainfall
or flood probabilities. The concept, shown schematically in Fig. 1, can be briefly summarized:
observed storms are transposed at random within a transposition domain of area 4p in such a way
that new unobserved realizations of extreme rainfall over the domain are produced. In doing so,
new realizations of extreme rainfall are created for a watershed of area Ay that resides within this
domain. The space-time structure of rainstorms, including intensities, areas, and movement is
preserved. SST can be understood as a bootstrap method, in which resampling from a catalog of
observed storms is followed by random transposition of the newly-generated sample of storms.

The details are described in Sections 3.2 through 3.5.

10
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Fig. 1: Schematic of SST procedure for a single storm. Specific rainfall isohyets for the observed and
transposed storms are shown for four time periods. Entire rainfall fields, as opposed to isohyets, can be
transposed. All rainfall fields or isohyets are transposed by a north-south distance Ay and east-west
distance Ax, which are randomly selected from distributions of D, and Dy, respectively. In some SST
efforts, D, and D, have been assumed to be uniform; in other cases, they have been estimated based on the

locations of historical storms. Adapted from Wright et al., (2013).

3.2 Defining a Meteorologically Homogeneous Transposition Domain

Storm transposition is only defensible insofar as the storm could have occurred at that location
with some nonzero probability. Chow (1964) defined a “homogeneous region,” also referred to as
a “transposition domain,” as “the area surrounding the given river basin in which storm-producing
factors are substantially comparable; i.e., the general area within which meteorological influences

and topography are sufficiently alike.” The transposition domain shown in Fig. 1 is square and

11
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centered around the watershed, but this need not be the case—see, for example, Fig. 2a, which
shows an example transposition domain for Hurricane Harvey and New Orleans, Louisiana. Gupta
(1972) argued that a transposition domain could “include a very large geographic area in the
eastern half of the United States where (topographic) relief is generally moderate and it may
include relatively small areas in the western United States where extreme topography is
encountered.” The issue of regional homogeneity is not unique to SST: RFFA and RRFA must

also wrestle with it (e.g. Hosking and Wallis, 1993).

For SST to be of value, the transposition domain must be sufficiently large that it includes multiple
observed extreme rainstorms. If the domain is very large relative to the size of the watershed of
interest, however, the probability of transposing one of these rainstorms over the watershed is
small. Alexander (1963) introduced a simple equation that shows this:

Per = Aw/Ap )
where p; is the probability that the centroid of a storm from a transposition domain 4p will be
transposed over a watershed of area 4, (see Fig. 1). Though Equation 2 is an incomplete
description of the true process (since a storm could produce nonzero rainfall over a basin even if
its centroid falls outside the basin boundary) it can be nonetheless instructive. Some implications

of Equation 2 are discussed in Sections 3.4 and 5.2.
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Fig. 2: (a) Transposition domain for a region surrounding New Orleans, Louisiana along the southern
United States Gulf Coast. (b) Peak 72-hour rainfall map for Hurricane Harvey in August 2017, based on
Stage IV gage-corrected radar rainfall data (Lin, 2011). (c) to (e) three possible random transpositions of
Hurricane Harvey rainfall which produce little, no, and extreme rainfall over New Orleans, respectively.
(f) Example 72-hour IDF curve for New Orleans generated using the RainyDay software (Section 4.4);
shaded area portrays the spread of 100 distinct realizations, each consisting of 1000 annual rainfall

maxima.

3.3 Creating a storm catalog from spatial rainfall observations
SST considers multiple storms that have occurred within the transposition domain for the

watershed of interest. This set of storms is henceforth referred to as a storm catalog. Most SST
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studies have used rainfall observations from rain gage networks, often expressed as depth-area-
duration (DAD) curves or tables that depict rainfall depth or rate as a function of averaging area
and duration. By using DAD information along with assumptions of storm geometry, the labor of
drawing or digitizing paper-based rainfall maps and then transposing them can be avoided. A
useful source of both DAD tables and rainfall maps has been USACE (1973), which includes
information on nearly 600 major U.S. storms starting in the 1880s. Though impressive in length
and level of detail, this volume nonetheless has shortcomings—it has relatively fewer storms in
the western U.S., and the evolution of rain gages over that time period means that the record does
not provide a consistent picture of major storm activity even in the eastern part of the country.
Such inconsistencies pose potential problems for SST (Foufoula-Georgiou, 1989; National
Research Council, 1988), since the resampling described in Section 3.4 implicitly assumes that the

storm catalog reflects the “true” extreme rainfall hydroclimate within the transposition domain.

Advances in rainfall remote sensing using ground-based radar and satellites offer alternative data
sources for storm catalog creation. An example of the spatially detailed depiction of regional
rainfall provided by radar remote sensing is shown in Fig. 2b for Hurricane Harvey, which struck
the southeastern Texas coast in August 2017. Sections 4.4 and 5.1 discusses some potential

strengths of these new data sources for SST.

3.4  Storm Resampling and Transposition
The main objective of SST, to estimate rainfall or flood AEPs, is achieved by resampling from the
storm catalog to generate large numbers of realizations of extreme rainstorms over the watershed

of interest. These realizations should synthesize new realistic annual patterns of rainstorms over

14
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the transposition domain and, by extension, over the watershed. To do this, a random number of

storms k is generated by modeling the annual “arrival process” of storms over the domain.

The storm arrival process is usually assumed to follow either a Bernoulli or Poisson distribution
with an arrival rate A = m/n storms per year, where m is the number of storms in the storm
catalog and 7 is the length of the record (in years) from which the catalog was generated. Note the
restrictions 0 < A < 1 and k = {0,1} if a Bernoulli distribution is used, meaning that m < n. This
makes the Bernoulli arrival process suitable only if small values of m are used. As a consequence,
Per (Equation 2) will be relatively low and many realizations of transposed rainfall will thus be
small or zero. This can be seen in Fig. 2¢-d, in which little and no rainfall is produced for New
Orleans, Louisiana for two possible transpositions of Hurricane Harvey. Fig. 2e, meanwhile, shows
a transposition that produces extreme rainfall over New Orleans. This feature makes the Bernoulli
arrival model suitable only for estimation of very low AEPs such as those needed for spillway
design; the magnitude of more common events will be greatly underestimated. This restriction is
lifted if a Poisson distribution is used, though, as discussed in Section 5.2, underestimation of the
magnitude of more common events can nonetheless result if m is not sufficiently large. No SST
study to date has sought to model the temporal sequencing of these k storms, meaning that, to use
the parlance of rainfall-runoff modeling, SST has thus far only been event-based (e.g. Chu and

Steinman, 2009).

The k storms are randomly sampled from the storm catalog and randomly transposed within the

transposition domain. A single transposition is shown schematically in Fig. 1; three possible

transpositions of 72-hour rainfall from Hurricane Harvey are shown in Fig. 2c-2e. All rainfall

15
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fields or isohyets that constitute a storm are transposed by a north-south distance Ay and an east-
west distance Ax which are randomly selected from distributions D, and D,, respectively. These

distributions jointly describe the spatial probability of storm occurrence.

The notion of a homogeneous transposition domain implies that the probabilities of random
placement of transposed storms should be equal throughout the transposition domain, i.e. that D,
and D, are uniform. Relaxation of this stricture allows larger values of Ap and thus m, but could
introduce bias since rainfall properties would not be strictly homogeneous. This issue was
discussed in very general terms by Alexander (1963), who wrote that “the basic problem is to
preserve only the essential statistical features of the area by discarding those which may be
ascribed to sampling errors.” Several more recent schemes have provided ways to either modify
the storm transposition probability or storm magnitude to limit these biases (Nathan et al., 2016;

Wilson and Foufoula-Georgiou, 1990; Wright et al., 2017; Zhou et al., 2019).

Once transposed, the & resulting rainfall amounts over the watershed are computed. The largest of
these can be understood as a “synthetic annual rainfall maxima,” which form the basis of AEP

estimation.

3.5  Estimating Rainfall and Flood Quantiles

Unlike statistical FFA and RFA, it is not necessary to fit distributions to the synthetic annual
maxima in order to obtain AEPs. Rather, AEPs can be estimated directly from the ranked synthetic
annual maxima using plotting position formulae. For example, 1,000 annual maxima generated

through SST would facilitate direct estimation of AEPs as low as 1073, Uncertainty bounds can be

16
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obtained by generating multiple such “sets” of realizations. Fig. 2f, for example, shows an SST-
based IDF curve for New Orleans, in which 100 sets of 1,000 annual maxima each were generated.

The shaded area denotes the spread among these 100 sets.

Obtaining flood quantiles requires the use of a rainfall-runoff model, but flood AEPs are otherwise
computed in the same manner. There need not be a 1:1 correspondence between rainfall and flood
AEP if rainfall spatiotemporal structure is considered or if watershed initial conditions such as soil
moisture are treated as random variables (Franchini et al., 1996; Gupta, 1972; Wright et al., 2017,

Yu et al., 2019).

A brief graphical summary of the step-by-step procedure described in Section 3 is shown in Fig.

3.
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Fig. 3: Schematic of the SST methodology.

4. Review of SST Developments and Applications

4.1  Early Theoretical Development (1963-1972)

SST originated in Australia, where preference for PMP/PMF was not as strongly-rooted as in the
United States (Alexander, 1969). Alexander's (1963) initial study focused mainly on the
probability of transposing a storm event over a watershed given their respective spatial scales and
the size of the transposition domain; e.g. Equation 2. Though some empirical properties of DAD
were mentioned, no results were provided. The paper outlined the basic concept of a homogeneous
region, identified relevant spatial and temporal scales, and described the Bernoulli storm arrival
process. Shape and orientation of storms were neglected. Alexander (1969) followed by discussing

additional aspects including the meteorological rationale used to select a transposition domain in
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the Australian state of Victoria. This second study also showed results of rainfall depth vs. AEP as

low as 10 for an unspecified watershed in Victoria.

Gupta (1972) provided a more detailed treatment, including discussion (though not results) of its
extension to the frequency analysis of flood volumes. He introduced the Poisson arrival model and
suggested that “second-order” storm properties (orientation, shape, within-storm temporal
distribution, etc.) were also important considerations. His procedure included stochastic rotation
of transposed rainfall fields, which were then run through a simple rainfall-runoff model. The
storm catalog consisted of five storms in the Midwestern U.S., and the rainfall-runoff model
considered seasonally-appropriate initial conditions. Though these initial conditions were not
treated as random variables, it was recommended that future studies do so, echoing other
contemporary work on non-SST probabilistic FFA (e.g. Beran, 1973). He proposed that stochastic
simulation of storms could be used to augment the limited size of a storm catalog. Notably, his
thesis also presented “a practical, computer-oriented methodology of transposing storms of a
region and a historical sample to any river basin inside that region,” though the lack of probabilistic
results implies that this methodology stopped somewhat short of a fully-realized SST software—

something that would not emerge until much later.

4.2 Theoretical and Practical Advances (1984-1996)

Interest in SST renewed in the 1980s. This was spurred by a technical study from the Yankee
Atomic Electric Company (YEAC, 1984). That study used a variant of SST to assess the likelihood
that Harriman Dam in Vermont in the Northeastern U.S. would be overtopped, thus threatening a

downstream nuclear facility. It was motivated by disagreement over PMP estimates for the 520
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km? watershed, which ranged from 14 inches to over 22 inches in 24 hours. This study showed
that the DAD-based SST procedure produced more credible extreme rainfall frequency estimates
than conventional RFA, and demonstrated how reservoir initial conditions could be randomized

based on historical records.

The YEAC (1984) report featured prominantly in a comprehensive report on rare flood quantile
estimation published by the National Research Council (1988), which went so far as to propose its
own SST approach. Fontaine and Potter (1989) compared the YEAC (1984) and National Research
Council (1988) approaches for AEPs approaching 10 using a catalog of four major storms in the
Midwestern U.S. The authors argued that “there is a need to develop a more formal theoretical
framework,” but also that requirements of strict homogeneity should be relaxed to maximize the
potential size of the transposition domain. They also argued that uncertainty estimation including
errors in rainfall observations should be considered, and echoed Gupta's (1972) recommendation

that stochastic simulation of storm events could be useful for enlarging the storm catalog.

This latter recommendation was picked up in Foufoula-Georgiou (1989), who introduced a
stochastic model to simulate elliptical storms using DAD and geometric information from USACE
(1973). This model could produce arbitrary numbers of storms, including ones with higher rainfall
magnitudes, larger spatial extents, etc. The random variables used in the storm model were
maximum rainfall depth at the storm center, orientation of the ellipsis’ major axis, the ratio of
major to minor axes, and two parameters describing the decay of rainfall depth with distance from
the storm center. This formulation thus precluded non-elliptical or multi-cell storms, and did not

incorporate temporal rainfall structure or motion. The author evaluated several aspects related to

20



389

390

391

392

393

394

395

396

397

398

399

the probability of catchment rainfall by transposing elliptical representations of 18 observed storms

from the midwestern U.S. over idealized watershed shapes and geometries.

This stochastic rainfall model was fully implemented in Wilson and Foufoula-Georgiou (1990)
and was parameterized using a larger set of 65 storms. They also linked this model to a
nonhomogeneous point process that jointly modeled storm occurrence location (Fig. 4) and peak
rainfall depth, easing the need for a homogeneous transposition domain. They estimated rainfall
AEPs lower than 1072 over hypothetical circular 100 mi? catchments, showing that the
combination of the stochastic storm and point process models could qualitatively reproduce the
spatial patterns exhibited by existing PMP studies in the region. They also assessed sensitivity of

the method to storm eccentricity and to incomplete storm catalogs.
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Fig. 4: Transposition domain and locations of the centers of 65 storms from USACE (1973) used to
parameterize the point-process arrival and stochastic storm models in Franchini et al. (1996) and Wilson
and Foufoula-Georgiou (1990), from which this figure is adapted. Note the heterogeneity in observed

storm occurrence across the domain, which is accounted for in the arrival process.

Franchini et al. (1996) applied the method of Wilson and Foufoula-Georgiou (1990) to estimate
the frequency of peak flows using a lumped rainfall-runoff model. To incorporate rainfall temporal
structure, they probabilistically disaggregated 24-hour storm totals to finer time scales using
dimensionless temporal distributions. They examined the sensitivity of FFA to initial soil moisture,

though a lack of observations precluded its representation as a random variable. Even for very
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extreme events, this sensitivity was high: the AEP associated with the 400 m3/s (1800 m?/s) flood
peak ranged from 10! (10-) for saturated conditions to roughly 10~ (<10°) for dry conditions.
They also showed importance of rainfall temporal distribution in determining flood peaks, thus
highlighting that flood magnitude and thus flood frequency strongly depend on characteristics

beyond simply rainfall depth.

4.3.  Recent SST Efforts for Rare Storms and Floods

Nathan et al. (1999) and Agho et al. (2000) investigated the potential of SST in southeastern
Australia. The authors documented challenges addressing homogeneity while transposing storms
in the region. This line of work continued to evolve in Nathan et al. (2016) , who used SST and
another stochastic method to estimate the AEP of existing PMP values for two watersheds in
southeastern Australia. Their AEP estimates ranged from 10~ and 10, depending on the method
and watershed. They used a 114-year gridded rain gage dataset to generate elliptical storm events.
A key contribution was the elaboration of “dimensionless SST,” in which storm rainfall R;
transposed from location i to location j is rendered dimensionless by dividing by an “index

quantile” (I;') and then “rescaled” by Ijq to obtain a transposed rainfall value ﬁj:

11

Dimensionless SST provides a straightforward means for relaxing the strictures of transposition
domain selection, since transposed rainfall is rescaled according to a measure of the local extreme
rainfall climatology. This allowed them to use a very large transposition domain that covered much
of southeastern Australia. Dimensionless SST may render nonuniform transposition probabilities
unnecessary, at least in practice, since it implicitly accounts for spatial variability in storm

frequency as well as intensity.
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The ratio Ijq /1! will be sensitive to errors in quantile estimates. The authors used at-site estimates

of the 50-year rainfall quantile to compute this ratio; such a high quantile may be prone to
substantial sampling error. This can also be said for earlier efforts (Agho et al., 2000; Nathan et
al., 1999), which used areal PMP estimates to rescale R;. Nathan et al. (2016) state that
dimensionless SST deserves further research. This could include evaluation of less uncertain index
quantiles such as the 2-year or 5-year rainfall (Wright and Holman, 2019). It should be noted that
rescaling by an index quantile is common practice in RFFA and RRFA, specifically in the ‘index

flood” approach (e.g. Stedinger et al., 1993).

England et al. (2014) examined FFA in the 12,000 km? Arkansas River watershed upstream of
Pueblo, Colorado in the western U.S. by combining SST-based rainfall events with a distributed
physics-based rainfall-runoff model. SST-based results are presented alongside flood-based
statistical FFA, estimates of several historical floods, and paleoflood data (Fig. 5). This
“integration of collaborative work in hydrometeorology, flood hydrology, and paleoflood
hydrology” is noteworthy for several reasons: 1.) it was the first to generate SST-based FFA
estimates for a relatively large watershed in mountainous terrain; 2.) it was among the first to
combine SST with a physics-based distributed hydrologic model (Wright et al., 2014 appeared in
the same year), 3.) it highlighted that transposition domain selection and watershed interaction in
complex terrain can have a major influence on results (this contrasts with Wright et al., 2013b;
2017, who reported only modest sensitivities in less topographically-complex regions); and 4.) its

usage of multiple sources of probabilistic flood estimates provided an interesting demonstration
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uncertainty estimation through (to use a legal term) “preponderance of evidence,” which can

“increase the credibility and resulting confidence in the results” (Swain et al., 1998).

I I I I I I I I I

(a) Arkansas River at Pueblo, Colorado
o USGS Annual Flood Peak Data (Stream Gage 07099500) el
10.000 —— Fitted flood frequency curve (Log-Pearson 3 using Expected Moments Algorithm) 7 ]

---- Confidence limits (Log-Pearson 3 using Expected Moments Algorithm)

m—a TREX rainfall-runoff model - unrestricted case (see caption)
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Fig. 5: Flood frequency curves for the Arkansas River at Pueblo, Colorado based on statistical flood-based
FFA (black lines), SST (red and blue lines and squares), and observed flood peaks (open black circles).
Error bars indicate the estimated magnitudes of four historical floods. Estimates of the paleoflood
nonexceedance bound is shown in grey. “Restricted” SST-based results refer to those generated when
storm transposition was limited to areas where orographically-enhanced heavy rainfall is prevalent in
relation to th watershed; “unrestricted” refers to results generated when storm transposition could occur

anywhere in the domain. Figure is adapted from England et al. (2014), which contains further details.
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4.4  Rainfall Remote Sensing, Multi-scale FFA, and RainyDay

The SST studies reviewed thus far sought to estimate rare rainfall and flood probabilities, mainly
for dam safety. Dams can be understood as “point-scale” features, since the concern is generally a
single distribution of rainfall or flood discharge upstream of the facility. Levee systems,
transportation networks, and stormwater systems, on the other hand, are “multi-scale”—flood
distributions may be needed at many locations along the drainage network. Many applications in

such contexts are focused on more common events, e.g. AEP > 1073,

Wright et al. (2013b) introduced an SST methodology for estimating rainfall IDF curves using a
high-resolution 10-year radar rainfall dataset. Results were shown for watersheds from 2.5 to 240
km? and for durations from 1 to 12 hours in Charlotte, North Carolina, with IDF curves “tailored”
to the specific watershed size, shape, and orientation. These IDF curves reflected the effects of
storm structure and motion, and the authors showed that the temporal and spatial rainfall averages
represented by these IDFs masked considerable variability in the spatiotemporal properties of the
transposed rainstorms used to derive them. They argued that rainfall remote sensing is the key to
assessing this variability, since few rain gage networks are dense enough to sample fine-scale
rainfall structure. SST’s storm-based nature also allowed the authors to examine how storm
hydroclimate influenced IDF estimates— finding that for short durations and small areas, tropical
cyclones are insignificant contributors to extreme rainfall distributions in Charlotte, while their

importance grows with duration and watershed size.

Wright et al. (2014) extended this analysis to multiscale FFA for an urbanized 110 km? watershed

using a detailed physically-based distributed hydrologic model. When combined with high-

26



490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

resolution rainfall scenarios, the interactions of second-order rainfall properties with land cover,
river channels, and the urban storm drain network could be translated into FFA. This circumvents
the design storm assumption of 1:1 equivalency of rainfall and runoff return period, eliminates the
need to carefully link design storm duration to watershed characteristics such as the time of
concentration, and captures the intra-event AEP variability that can occur across the river network.
They also argued that the combination of SST with physically-based models opens opportunities

for modeling future flood frequencies in nonstationary land use or climate conditions.

Wright et al. (2017) detailed RainyDay, an open-source Python-based SST software (see Wright,
2019 for source code). RainyDay is based on the methodology of Wright et al. (2013b; 2014).
Subsequent software updates include the dimensionless SST of Nathan et al. (2016) and an
alternative “rescaling” approach outlined in Wright and Holman (2019). Wright et al. (2017)
demonstrated RFA and FFA results using ground-based radar rainfall and several satellite-based
datasets. The distributed Hillslope-Link Model (HLM; Krajewski et al., 2017; Mantilla and Gupta,
2005) was used in conjunction with RainyDay in Turkey River, a 4000 km? watershed in the
Midwestern U.S. that has exhibited flood nonstationarity in recent decades. RainyDay FFA
estimates were more consistent with recent peak discharge observations than RFFA results
published by the US Geological Survey (Fig. 6). Wright et al. (2017) was also the first SST study
to treat antecedent watershed conditions, specifically soil moisture and channel flow, as random
variables. (It should be noted that other non-SST probabilistic FFA studies had previously
considered this issue—see, for example, Charalambous et al., 2013; Muzik, 1993; Rahman et al.,

2002; Schaefer and Barker, 2002).
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Fig. 6: Flood frequency curves for Turkey River at Garber, lowa generated by SST using RainyDay
combined with the HLM distributed rainfall-runoff model and Stage IV radar rainfall and by the U.S.
Geological Survey (USGS; see Eash et al., 2013) using Bulletin 17B RFFA methodology IACWD, 1982).
The watershed and transposition domain are shown in the inset map. Red shaded area shows the spread
of 10 distinct realizations of 500 years each using SST. Blue shaded area shows the 90% confidence

interval on the Bulletin 17B estimates. Adapted from Wright et al. (2017).

Zhou et al. (2019) present an investigation of rainfall heterogeneity and its consequences for RFA
in the region surrounding Baltimore, Maryland in the U.S. Mid-Atlantic. The rainfall hydroclimate
there is influenced by the Chesapeake Bay to the southeast, the topographic gradient leading to the
Appalachian mountain ranges to the northwest, and localized urban rainfall modification (Smith
et al., 2012). They used the RainyDay software to examine the impact of this heterogeneity on the
extreme storm hydroclimatology and hydrometeorology and on IDF estimates. To account for
regional heterogeneities in extreme rainfall, rainfall R; transposed from location i to location j was

“rescaled” according to the ratio:
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Ry =R, 4)

where R; is the mean rainfall of all storms in the storm catalog from location i. A stochastic
generalization of Zhou et al.'s (2019) approach was introduced in Wright and Holman (2019), who

compared it against the index quantile ratio method (Equation 3) from Nathan et al. (2016).

Zhu et al. (2018) examined the importance of rainfall spatiotemporal structure in flood frequency
using the combination of RainyDay and HLM from Wright et al. (2017). They also examined how
this importance is modulated by soil moisture. A set of 10,000 high-resolution rainfall scenarios
were used to simulate flood frequency at 5,000 subwatersheds of the 4,000 km? Turkey River
watershed, as were three additional sets generated by “downsampling” to coarser spatial and
temporal resolutions. Complex relationships were found between rainfall structure, watershed
scale, and initial soil moisture. Their results suggest that rainfall structure is an important control
on real-world flood frequency, and that FFA efforts that simplify this structure may underestimate
flood risk, especially for smaller-scale watersheds. This confirms that high-resolution rainfall

remote sensing datasets are valuable when combined with SST and distributed hydrologic models.

Yu et al. (2019) introduced a more thorough approach to SST-based FFA for the same watershed
evaluated in Wright et al. (2017) and Zhu et al. (2018). A “library” of seasonally-varying soil
moisture and seasonal snowpack conditions was created via a long-term continuous hydrologic
simulation. Initial conditions were then sampled from this library, paired with RainyDay-based
transposed storms from the same season, and run through a simple lumped conceptual rainfall-
runoff model (though their framework is generalizable to more complex models). Seasonally

realistic joint distributions of rainfall, soil moisture, and snowpack were thus preserved and
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translated into FFA results. They refer to this approach as “process-based FFA,” which is discussed
further in Section 5.6. They showed that seasonal shifts in soil moisture, snowpack, and extreme
rainfall explain the recent upward trend in large-scale floods and downward trend in more common

floods in Turkey River.

Using the same combination of RainyDay SST, radar rainfall, and HLM as Wright et al. (2017),
Perez et al. (2019) conducted a “synthetic analysis” of commonly-used statistical at-site and
regional FFA methods. 10,000 simulated annual maximum flood peaks at 5,000 locations within
Turkey River formed a synthetic population of flood peaks. This combination of tools allowed for
explicit simulation of the interactions between rainfall spatiotemporal variability with watershed
and river channel morphology. Subsets of this population were then created, representing samples
of various sizes (e.g. 10 years, 30 years, etc.) and, in the case of RFFA methods, various numbers
of sites. The robustness of several commonly-used FFA/RFFA methods were then compared as a
function of sample size and number of sites. This contrasts with previous efforts to assess statistical
RFFA methods, which have relied on simplistic assumptions regarding the regional variability of
flood peaks. Perez et al. (2019) found that the difficulty of estimating distributional shape or skew,
a major challenge in RFFA, can be partially explained by the river network structure and the
orientation of the watershed relative to prevailing storm directions. The approach shows how SST
can facilitate the use of recent advances in other branches of hydrology and other fields (e.g.
distributed models, rainfall remote sensing) to better understand and potentially improve or replace

existing FFA methods.
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5. Discussion

5.1  Rainfall Data and SST

Sparse rain gage networks can fail to adequately sample fine-scale rainfall variability such as
localized precipitation events and the locations of peak storm intensity (e.g. Curtis, 2007;
Foufoula-Georgiou, 1989). This lack of detail may limit rain gages’ direct applicability to multi-
scale FFA. The recent SST studies reviewed in Section 4.4 show the merit of coupling SST with
weather radar data, due to the latter’s depiction of rainfall variability at high spatial and temporal
resolution. On the other hand, a lack of long-term records radar records and the need for careful
bias correction places limits on radar’s broad usefulness. To estimate rainfall and flood AEPs 107!
to 1073, it appears that at least one decade of radar rainfall data is needed; estimation of rarer AEPs
may require longer records. Other remote sensing-based RFA attempts exist using station-based
methods (see Faridzad et al., 2018, McGraw et al., 2019, and references therein); those methods

appear to be more sensitive to the relative shortness of remote sensing records than SST.

The potential of satellites and numerical weather prediction (NWP) models for SST have received
little and no attention, respectively, but these data sources are currently showing improvements in
terms of resolution, accuracy, and record length. The latest satellite datasets, for example, offer
relatively long records (2+ decades) at higher resolution and improved accuracy relative to
previous generations. Convection-permitting regional climate models (RCMs) are now able to be
run for decadal periods at higher spatial and temporal resolutions (e.g. Prein et al., 2015). Recent
multi-decadal atmospheric reanalysis datasets have resolutions sufficient for some RFA and FFA
applications (e.g. Toride et al., 2018). RCMs and reanalyses have the potential to perform better

than radar or satellites in complex terrain (e.g. Wright, 2018). Both satellite datasets and NWP
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provide the potential for SST in regions such as developing countries where both rain gage

networks and weather radar are lacking.

Though most SST studies have listed data quality as critical, its influence on SST has only partially
been evaluated (Foufoula-Georgiou, 1989; Wilson and Foufoula-Georgiou, 1990; Wright et al.,
2013b). While rainfall measurement using any instrument is nontrivial (National Research
Council, 1994), radar, satellite, and NWP-based estimates are typified by large errors. Presently,
all the sources of rainfall measurements mentioned above are heavily reliant on rain gages to
identify and eliminate biases. Thus, the rain gage networks that were critical for early SST work
are as essential now. The current decline in rain gage networks worldwide (e.g. Stokstad, 1999)

thus poses a threat to the future of SST and RFA/FFA more generally.

Wright et al. (2017) pointed out that SST and other regional methods are able to “improve” more
quickly than at-site frequency analysis as new extreme events are observed, since these
observations need not have occurred over the watershed of interest. This logic extends backwards
as well; notwithstanding challenges data homogeneity, the prospect of combining recent rainfall
records with older isohyetal maps and DAD observations holds the allure of providing very long
rainfall records for SST. England et al. (2014) shows an example of this. This prospect is perhaps
not far off, at least in the U.S., since USACE (1973) and other records of old storm information

have been or are currently being digitized.
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5.2 AEP Uncertainty and “Boundedness” in SST

Suppose the SST resampling and transposition described in Section 3.4 is repeated to create
100,000 annual maxima. When converting these to AEP estimates (Section 3.5), the analyst can
rank these maxima to obtain probabilities as low as 107, or subdivide these into 100 samples and
thus obtain 100 estimates for each AEP down to 103, Studies focusing on very rare floods (Sections
4.1-4.3) have done the former, while the recent studies in Section 4.4 do the latter. Clearly, the
former does not give the “true” population of all possible rainstorms and floods, while the latter
does not represent the full “real-world” uncertainty about these quantities. The side-by-side
comparison of multiple FFA methods by England et al. (2014) showed one practical pathway to

better grapple with such uncertainty.

SST using observed rainstorms will have an upper bound associated with the largest rainstorm in
the storm catalog, transposed to maximize the rainfall over the watershed of interest (Wright et al.,
2013b; 2017). This upper bound is the result of sampling error, i.e. incomplete knowledge of the

true population of extreme rainstorms.

Upper bounds in SST should not be confused with upper boundedness in real rainfall and flood
processes, which has been a topic of lively debate in the hydrologic community for nearly a century
(see Smith and Baeck, 2015 and references therein). An interesting question, however, is whether
SST can bring new insights to that debate. Linkages between generation and sampling from storm
catalogs and the asymptotic behavior of extrema that is the focus of extreme value statistics (e.g.

Davison and Huser, 2015) may be worth exploring.
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Quite separate from the question of upper bounds is the existence of a lower bound or bias, which
is an artifact of the SST procedure: there is a nonzero probability that a transposed storm will cause
no rainfall at all over the watershed of interest (e.g. Fig. 2c). This is especially true if, via Equation
2, A,,/Ap is small. Under a Bernoulli arrival model, this would translate to a synthetic rainfall
maxima of zero; under a Poisson model, zero rainfall remains a potential outcome. Nonzero but
still small synthetic annual maxima are relatively likely in both models and are clearly unrealistic.
This issue is unimportant when the objective is the estimation of very rare events. For the studies
reviewed in Section 3.4, however, this is a major problem, since more common AEPs are an
objective. This can be remedied by using a large storm catalog, which increases the Poisson arrival
rate. Wright et al. (2017) recommended a catalog with at least m = 10n storms, while the current
version of the RainyDay software defaults to m = 20n. Bias associated with this effect can be

seen in Fig. 7 in SST-based results for AEP > 0.5, which used m = 14.3n.

3501 24-hour IDF curve mean and 90% confidence
interval from NOAA Atlas 14 for Madison, WI —
300+ SST-based 24-hour
= IDF Curve for Yahara watershed
upstream of Lake Monona, WI
4 p
250 SST-based single-grid cell
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Fig. 7: 24-hour IDF curves for the Madison, Wisconsin, USA area based on NOAA Atlas 14 (Bonnin et

al., 2006) and the RainyDay SST software. RainyDay transposition domain is shown in inset map. The
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RainyDay-based IDF curve (blue) is for the size, shape, and orientation of the 728 km* Yahara River
watershed upstream of Lake Monona, Wisconsin. Deviations between the single-grid cell RainyDay-based
IDF curve and Atlas 14 (black points and confidence intervals) are related to extreme storms that occurred
near Madison in August 2018 and are not reflected in the older Atlas 14 estimates. Shaded areas for
RainyDay-based estimates portray the spread of 100 distinct realizations, each consisting of 1000 annual

rainfall maxima.

5.3 Spatial Considerations of Rainfall and Flood Extremes

Beyond very small catchment areas, the spatial dimensions of storm events become increasingly
important in flooding (e.g. Marston, 1924). Taken alone, rain gage-based IDF curves are therefore
unsuitable for FFA (aside from in small catchments) since the statistics of point rainfall can differ
dramatically from those of watershed-scale rainfall. To compensate for this, analysts can employ
area reduction factors (ARFs) to estimate areal rainfalls from point-scale IDF information. Wright
et al. (2013a) showed that typical ARF methods are conceptually flawed in ways that are not easily
remedied. Estimation of spatial IDF curves is often challenging because of the required density of
long-term contemporaneous rain gage observations. SST’s storm-based nature provides an
alternative method for estimating rainfall IDFs for spatial scales beyond a single rain gage (Fig. 7)
and obviate the usage of ARFs. These scales can be relatively small, down to a single rainfall
remote sensing grid cell, e.g. <1 km? for ground-based weather radar to 100+ km? for satellite or
reanalysis datasets. Despite SST’s ability to produce IDF estimates, such estimates need not be an
intermediate step in SST-based FFA. Rather, transposed rainfall fields should be used directly as
inputs to rainfall-runoff modeling, preserving observed space-time structure and enabling multi-

scale FFA.
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While SST holds distinct advantages for RFA and FFA at spatial scales beyond small watersheds,
there is likely an upper limit to the areas over which it can be applied. Gupta (1972) pointed out
that “large basins can have pronounced differences in meteorological and topographic influences”
which may make the transposition of storms unrealistic. He suggested that this might constrain

SST to watersheds smaller than “1,000 square miles” (2,600 km?).

Recent SST studies, particularly England et al. (2014), underline that this limit might be larger
than Gupta speculated. Nonetheless, SST is almost certainly not applicable for continental-scale
river basins such as the Mississippi or Amazon without modification. Floods in continental river
basins are generally not the result of individual storms but rather of spatially and temporally
clustered events occurring over periods of weeks to months and covering spatial scales as high as
10° km?. These storms may occur in climatologically distinct regions, rendering the notion of a
single transposition domain unworkable. One could in principal create a storm catalog comprised
of the most rainy multi-week periods and conduct SST using these. The number of available
“events” would be small—if month-long storm periods were used to create a storm catalog, for
example, the number of “events” would be at most 12 times the length of the rainfall record in
years. Few of these storm catalog entries would be particularly important from a flood-generation
standpoint. Second, transposition of a month-long rainy period may not yield sufficient realizations
of rainfall spatiotemporal variability, since the individual storm elements within this period are
fixed in their relative locations and timing. The “reshuffling” of individual storm elements in space

and time to create new realizations may be possible but poses conceptual and practical challenges.
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5.4  Other Event-Based and Continuous Rainfall Generators

An alternative to SST for generating large numbers of hypothetical rainfall events is to develop a
point- or basin-scale IDF curve, randomly sample quantiles from this curve, and combine these
quantiles with spatial or temporal rainfall patterns from observed storms. Examples of this include
Charalambous et al. (2013) and Schaefer and Barker (2002). This requires a collection of observed
storm events, as well as the ability to estimate either areal-averaged IDFs or ARFs (not necessarily
easy to do; see Section 5.3). The approach implicitly assumes that the annual rainfall maxima
provided by IDF curves lead to annual flood maxima. This may be adequate for estimating rare
flood quantiles; it is problematic for more common events (Yu et al., 2019). As far as we are aware,
existing examples of the approach have assumed that rainfall quantiles and spatiotemporal

structures can be considered to be independent.

Stochastic rainfall generators (SRGs) are another way to generate hypothetical realizations of
rainfall. They attempt to simulate rainfall variability, so that one could generate potentially many
thousands of years of rainfall (Sharma and Mehrotra, 2010). While SST involves transposing
observed storms, SRGs rely on rainfall observations for “training” and validation. The stochastic
storm model of Foufoula-Georgiou (1989) and Wilson and Foufoula-Georgiou (1990) is one
example, but most generate continuous sequences, rather than individual storms. Continuous SRGs
have been used for FFA (e.g. Blazkova and Beven, 2002; Cameron et al., 1999; Peleg et al., 2017).
While most SRGs have been either point-based or provide areal-averaged rainfall, more detailed
models provide high detail in both space and time (e.g. Paschalis et al., 2013; Peleg and Morin,

2014). Spatially-explicit SRGs are preferable for FFA, since fine-scale variability is an important
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determinant of flood response (Paschalis et al., 2014; Zhu et al., 2018). Like SST, these SRGs also

facilitate multi-scale FFA (e.g. Peleg et al., 2017) and process-based FFA.

The key test for both SST and SRGs is whether they can faithfully represent the extreme tail of
rainfall magnitude and associated spatiotemporal variability. This test is arguably easier passed in
the SST paradigm, which relies directly on observed rainfall properties. SRGs must depict these
processes using space-time statistics and have historically struggled to reproduce extremes (Furrer
and Katz, 2008; Willems et al., 2012). To date, no detailed comparison of SST and an SRG for
RFA or FFA has been conducted. Furthermore, no effort since Wilson and Foufoula-Georgiou,

(1990) has sought to merge progress in SRGs with SST.

5.5  Process-Based FFA and Flood Nonstationarity

To our knowledge, the term “process-based FFA” was first introduced in Sivapalan and Samuel,
(2009), but the general approach has been previously referred to as “derived FFA” (e.g. Eagleson,
1972; Franchini et al., 2005; Haberlandt et al., 2008) and “physically-based FFA” (e.g. Diaz-
Granados et al., 1984; Muzik, 1993; Shen et al., 1990). Briefly introduced in Section 4.4, process-
based FFA merits further discussion. Essentially, it aims to “construct” distributions of flood
outcomes by recreating the joint distributions of the relevant flood-producing processes: rainfall,
watershed states such as soil moisture and snowpack, surface and subsurface flow, and river
channel routing. A key aspect of these joint distributions is seasonality. In the Midwestern U.S.,
for example, snowpack usually persists only into March, while soil moisture peaks in March-April

and peak rainfall rates occur in June-August (Yu et al., 2019). This means that floods usually occur
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sometime in March-August, but the specific combinations of processes that cause them can vary

dramatically over this timeframe.

Nonstationarity, particularly climatic change, manifests as changes in seasonality of one or more
processes. This implies that process-based approaches may be necessary for translating
nonstationarity in the hydrologic cycle into nonstationarity in flood frequency. The results of
Wright et al. (2017) and Yu et al., (2019) show the potential of SST combined with process-based
approaches in one watershed exhibiting hydrologic nonstationarity. Here, we demonstrate the
opportunity to examine the relative roles of rainfall and antecedent soil in determining flood peak
variability (Fig. 8) using RainyDay with Stage IV gage-corrected radar rainfall and the WRF-

Hydro distributed hydrologic model (Gochis et al., 2018).
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Fig. 8: Relationships between accumulated event rainfall over watershed and simulated peak discharge
generated using RainyDay-based SST, Stage IV rainfall, and the WRF-Hydro rainfall runoff model for

the Turkey River at Garber, lowa. Results are based on 20 distinct realizations, each consisting of 500
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simulated annual flood peaks. Color indicates the randomized antecedent basin-averaged volumetric
water content of the 2 m soil column, used to initialize simulations. The watershed and transposition

domain are shown in Fig. 6.

In contrast with process-based FFA, flood-based statistical methods “do not explicitly consider the
physical processes that produce floods” (Wright et al., 2014). Rather, the sample of flood
observations used in those methods represent outcomes of combinations of these processes.
Whether this sample space adequately describes the population of possible floods that could result
from different combinations is unknowable. Furthermore, how these combinations change with
spatial scale and with climate or land use change is not clear from streamflow records alone. Thus,
it is not obvious how to generate estimates of future flood quantiles, even using nonstationary

statistical models (Sivapalan and Samuel, 2009; Stedinger and Griffis, 2011).

The rainfall-runoff models used in design storm methods can explicitly represent important
process interactions to a degree. Design storms require strong assumptions regarding the joint
distributions of these processes, however, including: 1.) an annual maximum flood peak result
from rainfall annual maxima, even though a smaller rainstorm plus wetter initial conditions could
produce an annual maximum; 2.) a single antecedent soil moisture value is sufficient to understand
flood outcomes, even though real-world soil moisture is variable; and 3.) a rainfall IDF quantile
translates directly to the same flood quantile (i.e. a 100-year storm produces a 100-year flood).
The consequences of these assumptions are not well understood (Adams and Howard, 1986; Curtis

et al., 2013a,b; Packman and Kidd, 1980; Wright et al., 2014, 2013a, 2013Db).
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Hydrologic practice has been well-served by both statistically-based and design storm-based FFA,
due to their strengths and also to healthy doses of conservatism in engineering design practices.
Both are starting to “show their age,” however. Published IDF estimates have been shown to be
out-of-date, often severely underestimating the frequency of extreme rainfalls in the U.S. (Chin
and Ross, 2018; Wright et al., 2019) and elsewhere (e.g. Madsen et al., 2014, 2009). Though the
issue of flood nonstationarity is less clear (e.g. Sharma et al., 2018), recent work has argued that
future progress on RFFA will require more careful consideration of watershed geomorphology
(Ayalew and Krajewski, 2017) and hydrometeorology (Smith et al., 2018). Consistent with the
conclusions of the National Research Council (1994), storm-based approaches such as SST,
together with process-based FFA, are better positioned than conventional station-based approaches
to leverage advances in distributed modeling and in rainfall remote sensing and numerical

simulation.

5.6 Multiscale FFA

The concept of multi-scale FFA was briefly introduced in Section 4.4. There are applications in
which flood quantiles across an entire drainage network are needed, rather than for an individual
river reach or gage location. Such applications include mapping of floodplains and the design of
levee and stormwater systems. In addition, it can be useful to be able to model flood scenarios that
resolve the spatial distribution of impacts within an individual flood event. Applications that can
benefit from this capability include probabilistic risk assessment, “stress-testing” of actively
managed hydrologic infrastructure such as reservoirs, or evaluation of transportation network

response to flood impacts on bridges or roadways.
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In such applications, depiction of a wide range of storm events with realistic spatiotemporal
distribution of rainfall across the watershed, and the ability to resolve the resulting flood response
using distributed rainfall-runoff modeling, is essential (e.g. Pilgrim, 1986). SST and some other
methods (see Section 5.4) are able to do these things, provided that adequate input rainfall data are
available, a well-performing rainfall runoff model is used, and suitable approaches are employed
to account for variability in initial conditions. Thus, the concepts of multiscale FFA and process-
based FFA are linked—the former requires the latter, while the latter requires the former if scale-

dependent interactions in flood generating mechanisms are to be properly considered.

We demonstrate several examples of process-based SST, generated using RainyDay together with
Stage IV rainfall and WRF-Hydro, including the distribution of specific flood quantiles across the
river network (Fig. 9a,b). Also shown are two random storm transpositions with very different
rainfall patterns (Fig. 9c,d) and spatial patterns of resulting flood peak discharges (Fig. 9e,f),

despite having both produced 100-year peak discharges at the watershed outlet at Garber, lowa.

5.7 Rainfall-Runoff Models for FFA

Both design storm methods and the process-based and multiscale FFA described in Sections 5.5
and 5.6 rely on rainfall-runoff hydrologic models. A common criticism is that parameter and
structural uncertainty in such models is unacceptably large. While these can indeed be problematic,
we provide several counterarguments. First, the confidence intervals provided in flood-based
statistical FFA methods understate the true uncertainty inherent in such methods by ignoring the
potentially major role of rating curve errors (Potter and Walker, 1985). When these errors are

considered, uncertainty has been shown to balloon dramatically (Steinbakk et al., 2016). Second,
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there have been numerous demonstrations that rainfall-runoff FFA methods can perform as well
or better than statistical methods in cases of basin storage “discontinuities” (Rogger et al., 2012),
reservoirs (Ayalew et al., 2013), and land use or climatic change (Cunha et al., 2011). Third, at
least some “blame” for poor model performance lies on the precipitation and other meteorological
inputs. The role of rainfall-runoff model error has not yet been studied in SST-based FFA, and
would presumably yield wider uncertainty bounds than those shown in existing studies. The non-
SST FFA work of Blazkova and Beven (2009, 2002) and Cameron et al. (1999) provide a possible

roadmap for considering model errors.

43



838
839
840
841
842
843

Peak Discharge
[m®/s/km?]
<1.0
1.1-2.0
21-3.0
3.1-50
>51

0 50 100 150 200 250
Storm Total Rainfall [mm]

300

P
s 3
N

Peak Discharge }.\? 2 .
[m3 s km?] \ -c_‘_'.é-"%'y",é( LN, ¥
<10 ‘U
11-20
21-3.0
31-50

>51

Fig. 9: Multiscale FFA results over the Turkey River watershed in northeastern Iowa using RainyDay-
based SST, Stage IV rainfall, and the WRF-Hydro rainfall runoff model. Results are based on 20 distinct
realizations, each consisting of 500 simulated annual flood peaks. (a) and (b) show the median of the 10-
year and 100-year flood peak magnitude, respectively, based on the 20 realizations. (¢) and (d) show

rainfall maps for two random transpositions which produced 100-year peak discharges at the watershed
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outlets, but featured very different rainfall spatial distributions. (e¢) and (f) show the resulting peak
discharges produced by the transposed rainstorms shown in (c) and (d). The watershed and transposition

domain are shown in Fig. 6.

6. Summary and Recommendations

In this review, we summarize the origins of Stochastic Storm Transposition (SST) in the context
of three better-known forms of rainfall and flood hazard estimation: regionalized rainfall and flood
frequency analysis, design storms, and PMP/PMF. We briefly explain the methodology, review
existing research, discuss some of SST’s properties, strengths, and limitations, and contrast it with

other methods.

In the six decades since Alexander’s 1963 description of SST in Issue 1 of the Journal of
Hydrology, the problem of estimating the likelihood and magnitude of floods has not been solved.
Indeed, climate change, economic growth, and urbanization mean that risks have and will likely
continue to grow (Kundzewicz et al., 2014). At the same time, recent experiences have identified
weaknesses in longstanding methods for RFA, FFA, and PMP/PMF; climatic and land cover

changes are particularly challenging.

As a “storm-based” approach built explicitly around the spatiotemporal variability of rainfall, SST
holds promise to address these issues. Critically, it is able to leverage advances from other branches
of hydrology and from related fields such as meteorology—including distributed hydrologic
modeling and remote sensing and numerical simulation of extreme rainfall. Example RFA and

FFA applications for watersheds in Louisiana, lowa, Wisconsin, Maryland, Colorado, and
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southeastern Australia have demonstrated the practical utility of SST for floodplain management

and dam safety.

While six decades of research into the concept suggests that SST is a viable complement to existing

approaches, important questions remain. We conclude with five areas for future work:

1.

A chief criticism of SST is the subjectivity involved in defining the transposition domain.
Definition of transposition domains based on climatological characteristics combined with
modest rescaling of storms represent a reasonable compromise between the desire for large
domains and the need for approximate homogeneity. Previous SST work has begun to address
this (Nathan et al., 2016; Wilson and Foufoula-Georgiou, 1990; Wright et al., 2019; Zhou et
al., 2019), but more is needed. Methods from related fields such as regionalized L-moments
(Hosking and Wallis, 1997) should be considered.

Errors from rainfall measurements, extreme storm sampling, and rainfall-runoff modeling
should be examined to understand the propagation of such errors through to SST-based FFA
estimates. These errors should be compared side-by-side with those resulting from flood-based
statistical FFA to better understand the relative strengths and limits of each method. The
Bayesian approach used in Steinbakk et al. (2016) both highlights the importance of error
propagation in FFA and provides a roadmap for studying it.

England et al. (2014) showed that SST can be used alongside other methods to develop a
“preponderance of evidence” approach to FFA, while Perez et al. (2019) showed that SST-
based FFA can help to evaluate other methodologies. More explicit “merging” of SST with
other RFA/FFA approaches and rainfall estimation techniques is likely to prove valuable. An

example of the former could be the usage of SST to help estimate the skewness of rainfall and
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flood distributions, a major challenge in conventional FFA. Examples of the latter could
include integration of SST and modern high-resolution stochastic rainfall generators and
explicit coupling of SST with numerical weather prediction models that can explicitly simulate
rainfall in complex terrain.

4. Process-based and multi-scale FFA concepts can connect flood processes to flood
distributions, including in nonstationary conditions. Though previous studies have begun to
explore these connections, rigorous interpretation of results in terms of hydrologic processes
such as runoff generation mechanisms and channel routing has been lacking. A key question
is whether a return to the simplified storm and watershed representations of early SST work
could prove illuminating, in this effort, or if real-world process complexities would limit the
value of such idealizations.

5. Finally, while SST research has been generally confined to the United States and Australia, the
need for rainfall and flood frequency estimation is widespread. While global precipitation
estimates using satellites and atmospheric reanalyses are improving to the point that they may
be useful in RFA and FFA applications, validation of these results in ungaged regions remains
a challenge. Nonetheless, numerous regions around the globe spanning diverse hydroclimatic
and socioeconomic conditions have at least some high-quality rainfall and flood observations.
Partnerships with researchers and end users in those regions would help to explore the potential

for SST to “go global.”
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