978-1-7281-3613-4/19/$31.00 ©2019 IEEE
DOI 10.1109/PACT.2019.00025

2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT)

1 Pantea Zardoshti”
Lehigh University
zardoshti @lehigh.edu

2" Tingzhe Zhou"
Facebook
tzzhou@fb.com

Abstract—Byte-addressable, non-volatile, random access mem-
ory (NVM) has the potential to dramatically accelerate the
performance of storage-intensive workloads. For applications
with irregular data access patterns, and applications that rely on
ad-hoc data structures, the most promising model for interacting
with NVM is a transactional model. However, the specifics of the
model matter significantly.

We introduce two models for programming persistent transac-
tions. We show how to build concurrent persistent transactional
memory from traditional software transactional memories. We
then introduce general and model-specific optimizations that can
substantially improve the performance of persistent transactions.
Our evaluation shows a substantial improvement in the both the
latency and scalability of persistent transactions.

Index Terms—Non-volatile Memory, Transactional Memory,
Concurrency, Persistence, Synchronization, Performance

I. INTRODUCTION

Non-volatile byte-addressable memories present an exciting
new opportunity for creators of high-performance systems.
With non-volatile main memory (NVM), a program can avoid
sources of latency associated with writing to traditional storage
medium, and instead achieve persistence through memory
writes to an NVM whose latency is within a constant factor
of the speed of RAM.

Transforming a program to use NVM can be non-trivial.
Consider an application that persists program data via the file
system interface. If the program crashes between file writes, or
fails in a way that corrupts RAM, the integrity of the persisted
data is not compromised. Similarly, if a fault occurs during a
file write, the operating system or hardware (e.g., RAID) is
responsible for ensuring write integrity. In contrast, if program
memory is also the storage medium, then it is the program’s
responsibility to ensure the integrity of the data in the face of
program crashes at arbitrary points in the program’s execution.

Three programming models have emerged to address this
challenge [1]. The simplest is to implement a file system
on the NVM. No changes to the program are needed, but
many of the performance and programmability benefits of
NVM are lost. The second is ad-hoc techniques, through
which the programmer uses custom assembly instructions to
flush data from caches to the NVM, and fences to ensure
ordering between these flushes and other accesses to program
data. The third model exposes a transactional interface to
programmers. With persistent transactional memory (PTM),
programmers mark the regions of code that access NVM, and a
run-time system tracks accesses to NVM within those regions.

* The first two authors contributed equally to this work.

219

3" Yujie Liu
Google
yujie.liu@gmail.com

3 Michael Spear
Lehigh University
spear @lehigh.edu

Throughput (Ktps)

0 10 20 30 40 50
Number of Threads

(a) TPCC-HashTable
500

400

300

p-lock-eager —<—
p-lock-lazy ——
M —e—

200

Throughput (Ktps)

100

— Q'\ - — +
0 10 20 30 40 50
Number of Threads

(b) TPCC-B+Tree

Fig. 1: TPCC benchmark performance. When the program data
is in DRAM, synchronization is achieved using a single coarse
lock or general-purpose STM. When the program data is in
NVM, synchronization is achieved using a coarse lock + undo
(eager), a coarse lock + redo (lazy), or PTM.

The run-time system ensures the atomicity of transactions by
performing the necessary flushing and fencing, along with roll-
forward or roll-back logging.

In many ways, PTM resembles software transactional mem-
ory (STM), an approach to creating high-performance concur-
rent programs [2], [3]. STM simplifies the creation of scalable
programs by raising the level of abstraction for programmers:
instead of thinking about explicit fine-grained locks, program-
mers mark regions of code that require atomicity, and then a
run-time system tracks the memory accesses of those regions
to maximize the number of transactions that can complete
simultaneously without causing data races.

It is possible for special-purpose STM to achieve high
scalability and modest run-time latency [4]. However, general-
purpose STM must support challenging programming idioms
that lead to run-time overheads and scalability bottlenecks [5].

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

IEEE
computer
pSOCIe

ty

Consider Figure 1, which shows the scalability of the TPCC
“new order” benchmark when the underlying data store is
represented as a hash table or a B+ tree. Every access to shared
memory occurs within a language-level transaction. When we
use a global mutex (“lock™) to implement transactions, single-
thread throughput is 2x to 3x that of a general-purpose
STM. General-purpose STM requires 4-8 threads to match
the throughput of the lock-based code, and at its peak it has
only 2x the throughput.

The overheads that are most harmful to general-purpose
STM arise because data is not statically or spatially partitioned
according to whether it is accessed transactionally or not:
The same datum can transition between transactional and non-
transactional modes of access during execution, and adjacent
bytes may be accessed via different modes. In contrast, it is
reasonable to assume that data is statically partitioned at a
coarse granularity for PTM: any variable stored in a page
of NVM memory will always be accessed using a persistent
transaction. As a result, there are optimizations available to
PTM that are not available to general-purpose STM.

In this paper we propose and evaluate PTM optimizations,
and contrast the added costs of PTM (cache flushes and
fences) against the savings these optimizations provide relative
to general-purpose STM. Figure 1 illustrates the cost of
persistence. The p-lock-eager curve extends lock-based critical
sections with undo log-based persistence, and p-lock-lazy uses
redo logs. Undo logging has simpler instrumentation than redo
logging, but more fences, leading to sequential slowdowns
of 10x and 2x, respectively, versus non-persistent critical
sections. The implementations perform the same number of
flushes. The figure also shows the impact of PTM-specific
optimizations: Our most optimized PTM achieves 90% of
the performance of p-lock-lazy, scales to 5x its single-
thread throughput, and outperforms the peak performance of a
general-purpose STM. Note that while our PTM optimizations
could be applied to certain STM workloads, the differences
between STM and PTM programming models mean they can
always be applied to PTM.

In this paper, we study the relationship between PTM and
STM. We introduce a PTM transformation for lock-based,
single version STM, characterize fundamental overheads as-
sociated with different programming models for PTM, and
present optimizations for PTM within these programming
models. In particular:

o We argue that PTM cannot use STM techniques to ensure

progress, and we present a new progress mechanism.

o We demonstrate the importance of the persistence model

on the performance of PTM algorithms.

o We introduce run-time optimizations for PTM, which

raise performance by as much as 60%.

The remainder of this paper is organized as follows. In Sec-
tion II, we introduce two system models for persistent trans-
actions. Both take into account modern hardware trends, but
one is more restrictive, constraining transactions to exclusively
access NVM or DRAM, but not both. Then, in Section III,
we present a general transformation for turning lock-based,

single-version STM algorithms into PTM algorithms. We also
present baseline performance numbers for PTM versus STM.
Section IV presents a set of optimizations, some of which are
only applicable to the more restrictive model, others of which
apply to both models. We also measure the impact of each
optimization, in isolation. Section V measures the impact of
combining optimizations. Finally, Section VI summarizes our
conclusions and discusses future work.

II. PROGRAMMING MODELS FOR PERSISTENCE

The fundamental challenge for PTM is to ensure that
program data is in a recoverable state at all times. That is, if
the system should encounter a failure, then after the failure
is addressed and the system restarted, the program’s data
should be valid. A transactional model ensures this property
by executing atomic transactions that appear to happen all at
once or not at all. However, the implementation of persistent
transactions depends on hardware characteristics, the recovery
model, and how a workload’s transactions interact with the
NVM and DRAM.

A. Hardware Persistence Domains

Marathe et al. [6] describe three hardware persistence do-
mains. The simplest (persistence domain 0, or PDOM-0) only
contains the NVM DIMM modules themselves. PDOM-1 adds
the memory controller. PDOM-2 adds the entire CPU state,
including caches and registers. As the persistence domain
expands, it becomes easier to ensure a recoverable state. For
example, if a power failure occurs in a PDOM-2 system, then
when the machine is powered back, it can resume immediately,
with no loss of state. In PDOM-1, memory buffers are flushed
to DIMMs on power failure. As a result, programmers must
ensure that data reaches the buffers in a correct order, through
the use of clwb instructions that cause a cache line to write
back, and s fence instructions to order the c1wb with respect
to subsequent stores. Finally, in PDOM-0, only the DIMMs are
persistent, leading to additional instructions (e.g., pcommit)
that run after all clwbs, to move data from the memory
controller to the DIMMs.

Current and upcoming Intel systems provide PDOM-1. In
PDOM-1, a failure that occurs in the middle of a transaction
requires care to recover correctly: When the system recovers,
the program counters at the time of the failure are unknown, so
persistent transactions must either (a) use undo logs to record
all overwritten values, so that they can roll back a transaction
that is interrupted, or (b) use redo logs to record all to-be-
updated values, so that they can roll forward a transaction after
it is guaranteed to complete. The contents of either log must
be stored in persistent memory, and updates require specific
ordering with respect to accesses to program data.

B. Cost of Recovery

Typically, a persistent region is achieved by mapping a
named, contiguous range of physical addresses from NVM
into a program’s virtual address space via mmap [7]. When a
program restarts and reloads the region, its virtual-to-physical

220

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

TPCC-B+Tree
5.15%

TATP
2.67%

benchmark
overhead

TATP (1Kops/tx)
51%

TABLE I: Overhead of self-referential pointers

mappings may change. To minimize the time needed to recover
a data structure, a program may use position-independent
pointers (PIPs). These can either consist of two machine words
(to represent a file ID and offset) [8] or a single machine word
that represents an offset relative to the location of the pointer
(e.g., for a pointer at 0xAAQO to refer to a word at OxAAFO,
it would store the value 0xF0). With PIPs, the pointers in
a file are valid as soon as the file is mapped into the virtual
address space. Otherwise, the pointers are invalid until they are
adjusted by application-specific recovery code that traverses
the entire persistent region.

Table I shows the increase in latency that PIPs introduce
in a non-persistent program. The experiment was conducted
by using our transactional instrumentation (discussed in Sec-
tion III) to dynamically treat each pointer in the benchmark
as a self-referential pointer. Considering these costs, we focus
on non-position-independent pointers in this paper.

C. Accesses to Volatile Memory

A persistent memory region Rp is mapped into the virtual
address space as a contiguous range, via mmap, and deallo-
cated all at once via munmap. After being mapped, a persistent
allocator manages Rp by creating and reclaiming contiguous
ranges of memory within Rp. The persistent allocator cannot
return reclaimed sub-ranges of Rp to the operating system. In
contrast, allocators for traditional (volatile) memory can return
individual pages of virtual memory to the operating system
when they are no longer allocated.

In most TM systems, it must be assumed that while one
thread 77 is transactionally accessing some location L, another
thread 7% could commit a conflicting transaction that renders
L unreachable, after which 75 frees L. For general-purpose
STM, L is in DRAM and could be returned to the operating
system. Thus until 77’s transaction aborts, it could segfault if
it accessed L. This is one manifestation of the “privatization”
problem in STM: L has become logically private to 75, but
uses of L by T, can race with speculative accesses by 7;’s
doomed transaction [9]. The most common solution is to
require transactions to block during their commit operation,
until every concurrent transaction reaches a safe point. The
blocking operation is commonly known as “quiescence” [10],
and impedes scalability.

Yoo et al. observed that quiescence is necessary in the
general case, but can be avoided on a workload-by-workload
basis [5]. Zhou et al. later showed that quiescence overheads
can be disabled at even finer granularity [11]. In the case of
PTM, a stronger outcome is possible: if a PTM transaction
only accesses NVM, it does not require quiescence [12].

D. Access Granularity

When transactions are used for concurrency, there is no need
to instrument every access to DRAM; only accesses that could

221

be concurrent with a transactional access to the same location
need to be instrumented. As a result, general-purpose STM
must assume a worst case, where on a single cache line, one
byte may be private to a thread, while an adjacent byte is
shared among many threads and accessed via transactions [5].
In contrast, persistence is not a dynamic property. Our focus
on PDOM-1 means that every store to the NVM must be
instrumented, so that c1lwb and sfence instructions can be
performed correctly. Thus it is natural to require that every
store be part of a transaction. We can also require that every
load from a persistent region is part of a transaction (micro-
transactions make the overhead of such a design minimal [4]).
When the allocator uses padding and alignment to keep its
metadata (e.g., boundary tags) on separate cache lines from
program data, PTM algorithms for PDOM-1 can track memory
at arbitrarily coarse granularities, saving overhead relative to
the fine-grained tracking needed for general-purpose STM.

E. Multiple Persistent Regions

Applications should be able to work with multiple persistent
regions at the same time. However, past work has established
that some constraints may be enforced, such as forbidding
pointers from NVM-backed regions to DRAM, or between
NVM regions [7]. For the purposes of this paper, the distinc-
tion is not significant: as long as every attempt to mmap a
named persistent region is done in a manner that persistently
tracks (a) the name of the region (e.g., file name), (b) the
virtual address assigned to the first byte of the mapped region,
and (c) the size of the mapped region, then management of
cross-region pointers can be handled by the code that runs
upon recovery after a failure.

F. Models Considered in this Paper

From the above, we focus on two programming models in
this paper. In both models, the underlying hardware is assumed
to provide PDOM-1, and the programmer is expected to
provide recovery code, so that persistent regions do not require
position independent pointers. Note that during recovery, it
will be necessary to both (a) apply a redo/undo log to clean
up from incomplete transactions, and (b) remap pointers within
the persistent region. Upon this base, the general persistence
model (GP) assumes that any single transaction may access
both NVM and DRAM, and that programs may access mem-
ory (reads and writes of DRAM, reads of NVM) from outside
of transactions. The ideal persistence model (IP) assumes that
a transaction may only access one type of memory (NVM or
DRAM), and that every access to NVM is performed from
within a transaction.

ITII. TRANSFORMING STM INTO PTM

We now present a strategy for transforming general-purpose
STM algorithms into PTM algorithms. We focus on a set of
lock-based, single-version STM algorithms [13], [14], [15],
[16], [17], [18], [19], that are compatible with the C++
TM Technical Specification [20]. These algorithms involve

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

five functions that interact with program addresses and STM
metadata:

e Begin: Start a transaction by snapshotting the thread’s
architectural state and possibly reading/updating global
metadata.

e Write (a, wv): Speculatively write value v to address
a. Write may save the old value at address a to an
“undo” log and directly modify the value at a, or it might
store v in a private buffer, to “redo” at commit time. It
may also cause a transaction to validate (i.e., make sure
no concurrent transaction made changes to a location the
current transaction has already accessed).

e Read (a): Attempt to read the value at a. Like Write,
Read may cause a validation. It may also need to check
if a is in the redo log managed by Write.

e« Commit: Finalize the transaction’s writes only if the
reads all remain valid.

e Abort: Roll back any writes, clear all thread-local
metadata, and restore the checkpoint from Begin to re-
try the transaction.

An instrumenting compiler [21], [22], [23], [24] inserts calls to
Begin and Commit at the boundaries of transactions. Within
the body of a transaction, every load and store is replaced
with a call to Read or Write. A variety of optimizations
have been proposed over the years to reduce the latency of
this instrumentation.

To detect conflicts, STM algorithms map program addresses
to some form of concurrency-control metadata. The metadata
may be explicit readers/writer locks [19], or ownership records
(orecs) [13] that superimpose a lock bit on a version number,
so that optimistic readers can avoid acquiring read locks,
instead validating the consistency of reads by tracking changes
in the versions of the orecs protecting locations they read. In
some cases, program values [17], [18] or bit vectors [16] are
used instead of orecs.

The general read strategy for STM is similar regardless
of the metadata: a transaction checks global metadata, reads
a location, and possibly checks the metadata again. If the
metadata is unchanged and compatible with previous reads,
the new value can be returned (and the read set updated to
include the new address). Otherwise, the transaction aborts.
To write, a transaction either places an address/value pair into
a write set (lazy), or locks the location, logs the old value in
an undo log, and updates the value directly (eager). With lazy
writes, it is necessary for reads to check the log, or else they
may fail to see values previously written by the same thread in
the same transaction. To commit, a lazy transaction acquires
locks for all its writes, validates its reads, replays its redo
log to update program memory, and releases locks. An eager
transaction merely validates and releases locks. Conversely,
to abort, a lazy transaction only needs to reset its local lists,
whereas an eager transaction must use its undo logs to restore
the values of locations it wrote, then release locks.

By definition, STM algorithms prevent deadlock. However,
some algorithms are prone to livelock and starvation. A
“distressed” transaction is one that repeatedly fails to commit,

due to conflicts with other transactions. There are a number
of sources of distress [25]. A thread may try to use an out-
of-band “contention manager” to resolve conflicts [26]. In the
worst case, a thread may resort to irrevocability [10], [27], a
mechanism in which a transaction runs in isolation, without
any instrumentation, in order to guarantee that it can complete.
Since an irrevocable transaction can never abort, irrevocability
is also used to allow transactions to turn off speculation, e.g.,
in order to perform I/O.

A. Ensuring Recoverability for Incomplete Transactions

Listing 1 presents the generic behavior of lazy and eager
STM algorithms, and extends them to make them correct when
operating on persistent regions. The comment algorithm
specific indicates that the next lines of code would vary
depending on the STM algorithm, but are immaterial to the
persistent transformation. These algorithms treat all memory as
persistent, issuing c1lwb and sfence instructions even when
interacting with DRAM. To do so is inefficient, but correct,
and simplifies the discussion in the remainder of this section.

In the GP model, the entirety of the effort in making a lazy
transaction recoverable occurs in the Commit function. Prior
to line 6, the state of memory is as if the transaction never
happened. At line 6, the transaction has acquired all of its
locks and ensured the validity of its reads. Additionally its
redo log is stored in persistent memory. In traditional STM,
the transaction would write back its redo log (line 10) and
then clean up. In PTM, the transaction must first ensure that
its entire redo log has reached a persistent level of the memory
hierarchy. Line 6 performs up to W clwb instructions, where
W is the number of entries in the redo log, to flush the entries
to the persistent storage. It then sets the transaction’s state to
active (line 8). Prior to line 8, if the system crashed, then
on recovery, the redo log would be discarded, and it would
be as if the transaction never ran. After line 8, if the program
crashed, the recovery procedure would see that s was active
for this thread, and hence its redo log would need write-back.

On line 10, the redo log is replayed to memory. Note
that this is an idempotent operation. If it were interrupted
by a crash, then on recovery, it could be re-done (though
potentially with re-mapped addresses, depending on the new
base virtual address of the persistent region). Since write-
back is idempotent, it does not matter if recovery leads to
it executing more than once, but every write-back must reach
persistent memory (via up to W clwb instructions on line 10).
Once line 12 is reached, it is known that the write-back was
successful, and need not be done again. After that, the thread
can release its locks and clean up (line 14).

The eager algorithm is more complex. The main issue is
that an undo (also idempotent) will be triggered by any system
failure between the first write by a transaction and the point
where it is known to have succeeded. We approximate this
space by marking the transaction active on line 23, prior
to its first read or write. As with the lazy algorithm, there
are no changes to the read code. However, before writing,
a transaction must log the old value to the undo log, and

222

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

Listing 1: Transforming STM to PTM

Thread-local Variables (Located in NVM):

rl : redo log for lazy algorithms, initially empty
ul : undo log for eager algorithms, initially empty
s : status of current transaction: {active, inactive}
function Begin.Lazy () function Write.Lazy (addr,val) function Read.Eager (addr)
// algorithm specific: // Save addr/val to redo log: // Fast path if owned
1 L StartTransaction () 20 L rl.insert (addr, val) 32 if ThisTxOwns (addr) then
3 | return xaddr
function Commit.Lazy () function Abort.Lazy () . .
2 if 7l.empty then // algorithm specific: // algorithm XPEleiC"
// algorithm specific: 21 L ResetMetadata () M val «ConsistentRead (addr)
// abort on error, else return val:
3 ResetMetadata () A
4 L return function Begin.Eager () 35 if err then Abort.Lazy ()
)) // algorithm specific: 36 return val
7 algovrlthm specific:) 2 StartTransaction () . .
5 AcquireLocksAndValidate (rl) // changes for NVM: function Write.Eager (addr, val)
ges for : she
// changes for NVM: 23 clwb (s < active) // Get permission to update addr
6 clwb (rl) " sfence 37 GetOwnershipOf (addr)
7 sfence = // changes for NVM
8 clwb (s < active) function Commit .Eager () 38 clwb (ul.insert (addr, xaddr))
9 sfence 25 if ul.empty then 3 sfence
10 clwb (rl.writeBack ()) // algorithm specific: // update memory
1 sfence 2% L ResetMetadata () 40 clwb (xaddr < val)
12 clwb (s < inactive) 27 return
13 sfence function Abort .Eager ()
// algorithm specific: // changes for NVM // changes for NVM
14 ResetMetadata () 28 sfence 41 clwb (ul.writeBack ())
- 29 clwb (s < inactive) 2 sfence
function Read.Lazy (addr) 30 sfence 43 clwb (s < inactive)
// Check redo log: // algorithm specific: 44 sfence
15 if addr € rl then 31 | ResetMetadata () // algorithm specific:
16 | return rl.get(addr) 45 ResetMetadata ()
// algorithm-specific:
17 val <-ConsistentRead (addr)
// abort on error, else return val:
18 if err then Abort.Lazy ()
19 return val

persist the change (lines 38-39). In addition, aborting is more
complex, since it must restore memory, and that restoration
must reach the NVM before the transaction marks itself as
inactive.

For a successful transaction, both eager and lazy will incur
2W 42 clwb operations, to ensure that the redo or undo log
is persisted, that all writes to program memory are persisted,
and to persist two toggles of the transaction’s state. The key
difference is in fences: the lazy algorithm has 4, whereas the
eager algorithm has W + 3 fences.

B. Ensuring Progress and Instrumentation

Unlike STM, PTM cannot use irrevocability. There are
two problems. The first is that irrevocability does not use
instrumentation, and thus there is no mechanism by which
an irrevocable transaction can perform the clwb instructions
needed to ensure that updates reach the NVM. The second is
that in PDOM-1, the program counter is not persistent. If an
irrevocable transaction is in the midst of performing I/O when
there is a system failure, there may not be a mechanism for
determining, at recovery-time, if the I/O has taken place. For
the former problem, this means PTM cannot use irrevocability
for ensuring progress. For the latter, programs that perform /O
from STM transactions will need to be rewritten in order to
use PTM.

Without irrevocability, we require a new mechanism to
prevent starvation and livelock. We propose an “hourglass”

scheduler. We say that a transaction Tp is distressed if it
has aborted k£ consecutive times. After k aborts, irrevocability
would require that Tp set some flag to prevent new transaction
attempts from starting, and then wait for all active transactions
to commit or abort. Then Tp would run in isolation, after
which it would clear the flag. Note that 7)p must wait after
setting the flag, because it will not use instrumentation, and
thus will not be able to detect conflicts with concurrent
transactions.

The key idea behind the hourglass is to reduce concurrency
slowly, without making 7Tp wait, in the hopes that Tp can
complete earlier than if it waited until it could run in isolation.
Briefly, after Tp sets the flag, it immediately begins its
(instrumented) transaction. Concurrent transactions continue to
execute, and may cause 7Tp to abort. However, new transaction
attempts are not allowed, to include attempts by transactions
that aborted. Thus once Tp has set the flag, it is guaranteed
that every concurrent transaction will either (a) commit, and
then be forbidden from starting a new transaction, or (b) abort,
and then be forbidden from starting a new transaction. While
these transactions are running, 7’p tries to complete. If it
continues to fail, it is guaranteed to eventually run in isolation,
and thus it can no longer starve.!

I'Starvation is possible if some thread T' can never acquire the flag.
Substituting the flag with an adaptation of the wait-free enqueue of the MCS
lock [28] would ensure progress even in the worst case.

223

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

5500
—_ — 4400
& g
< < 3300
Lock —+— p-lock-lazy —*— 3 3
Orec-eager —8— p-orec-eager —= E) S 2200
Orec-lazy —e— p-orec-lazy o o
NOrec —— p-norec —4— = =
Ring —— p-ring —v— 1100 %
TLRW —— p-tirw ¥
Orec-mixed —&— p-orec-mixed 0
p-lock-eager —<— 1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48
Number of Threads Number of Threads
(a) Legends (b) B+Tree Insert (c) B+Tree Mix
m @ @
Qo Qo Qo
< < <
= =1 =1
Q Qo Qo
< = <
(=) (=) (=2
> > >
o o o
< = =
= [=
1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48
Number of Threads Number of Threads Number of Threads
(d) TPCC-B+Tree (e) TPCC-HashTable (f) TATP
1400
. 120 ¢ _ @
8 & 2
< < N
=] 5 =
Q. Q =3
< < o
[=2] [=2] <
3 =} [=2]
°] 2
= =S 2
=
1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48

Number of Threads

(g) Vacation (low)

Number of Threads

(h) Vacation (high)

Number of Threads

(i) Memcached

Fig. 2: Performance comparison of general-purpose STM to naive PTM (general model).

An added benefit of the hourglass, relative to irrevocability,
is reduced latency in Begin. While the details of implement-
ing irrevocability are outside of the scope of this paper, the
coordination between regular and irrevocable transactions in
Begin resembles Dekker locks [29], requiring every transac-
tion to announce its intent to start, then fence, then check for
irrevocable transactions, and possibly clear its intention and
loop. In contrast, hourglass does not require transactions to
announce that they have started, saving a memory fence. In
the worst case, this could allow each thread to “sneak™ one
additional transaction attempt after 7’p sets the flag, but as
long as distressed transactions are rare, we expect the latency
savings to outweigh this risk.

C. Performance of Naive PTM and STM

Figure 2 presents the performance of several general-
purpose STM algorithms and their PTM equivalents across
a set of common persistence benchmarks. We compare
seven STM algorithms. “Lock” refers to a lightweight, non-

concurrent STM where all transactions are protected by a
single global lock. “Orec-eager” uses ownership records and
undo logging, similar to GCC TM [14]. “Orec-lazy” is iden-
tical to “orec-eager”, except it acquires locks at commit time
and uses redo logging [13], [15]. “Orec-mixed” uses redo
logging, but still acquires locks early, like orec-eager [30].
Orec-mixed has less overhead than orec-lazy on lines 15-16,
because it can use knowledge of the locations it has locked
to reduce the incidence of lookups in the redo log. However,
for workloads with high contention, it is likely to scale worse
than orec-lazy. “NOrec” [18] is a lazy algorithm that does
not use orecs, instead relying on a single sequence lock to
order transaction commits, and storing the values it reads so
that it can validate address/value pairs instead of orec version
numbers. “TLRW” [19] is an eager algorithm with carefully-
crafted readers/writer locks. “Ring” [16] is a lazy algorithm
that uses a log of 1024-entry bit vectors to capture the history
of committed writer transactions. The persistent versions of the

above algorithms are indicated by the “p” prefix. They were

224

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

created via the transformation in Listing 1. The exception is
“Lock”. We created two versions of “Lock”, one eager, one
lazy. These implementations bridge the gap between STM and
past work on persistent critical sections [31]. Excluding “lock™
algorithms, all STM and PTM algorithms ensure progress with
the hourglass scheduler.

We instrumented code using an open-source LLVM exten-
sion for STM [24], which has been shown to have low in-
strumentation latency for general-purpose STM. We integrated
the 7 STM and 8§ PTM algorithms into it, which allowed us
to isolate differences among STM algorithms, e.g., by using
the same redo and undo log implementations. For the “p-
lock-eager” PTM, we created a custom version of the LLVM
extension that did not instrument reads. We also employed
Link Time Optimization (LTO), which inlined most of the
function call overhead related to instrumentation.

All experiments were conducted on a Dell PowerEdge R640
with two 2.1GHz Intel Xeon Platinum 8160 processors and
192GB of RAM. Each processor has 24 cores / 48 threads,
runs Red Hat Linux server 7.4, and uses LLVM/Clang 6.0 with
O3 optimizations. Experiments are the average of five trials;
to avoid NUMA effects, we limited execution to a single CPU
socket. Note that on this system, the RAM is not persistent,
but clwb incurs accurate latencies.

We consider every open-source multi-threaded PTM bench-
mark we could find, which includes (i) one real world ap-
plication, Memcached [32], [33], [1]; (ii) write-only bench-
marks from DudeTM [34]: the TPCC transaction processing
benchmark, TATP telecom application benchmark, and a B+
tree data structure microbenchmark; (iii) the “vacation” travel
reservation benchmark [35], [1]. We tested the B+ tree for
an insert-only workload, as well as a workload with an even
mix of lookup, insert, range query, and remove operations.
We ran two TPCC benchmarks, one using a B+ tree as
the index, the other using a hashtable; both were the New
Order workload. We tested Update Location transactions for
TATP, using a hashtable for the index. We also looked at
the recommended “high” and “low” contention settings for
vacation. We evaluated Memcached by assigning 8 threads in
one NUMA zone to serve as clients, and then varying from
1 to 48 worker threads in a second NUMA zone. For the
Memcached experiments, we used a get/set ratio of 90/10.

The most striking finding of these experiments is that
supporting persistence seems to tip the balance in favor of
lazy strategies. We shall see in subsequent sections that this
observation is mitigated, to a degree, by algorithm-specific
optimizations for eager PTM. While the performance of orec-
lazy and orec-eager are competitive with each other across all
benchmarks, the linear number of sfence instructions hurts
the performance of p-orec-eager. The (eager) TLRW algorithm
is consistently among the best in Figure 2(c)(f)(g)(h), as is
the persistent version. The success of persistent TLRW is its
unique, scalable approach to privatization safety: it does not
require quiescence, which introduces costs that grow with the
number of threads.

Another surprise was the poor performance of NOrec.

Support for persistence can increase the time that transactions
spend holding locks. NOrec is more sensitive to this overhead
than the other STM algorithms we consider. NOrec is lauded
for its ability to provide a simple, scalable fallback when
hardware TM cannot succeed [36], [37], but at the current
time, the c1lwb instruction is incompatible with hardware TM.
Without hardware acceleration, p-norec does not appear viable.

For orec-mixed, which matches the PTM algorithm in
Mnemosyne [30], we see that the optimization for reducing
lookups in the redo log has little benefit: it has a scalability
cost, due to early locking, and does not save much read lookup
latency. Consequently, orec-lazy performs better overall. Note
that the scalability trends from the original Mnemosyne paper
match with the behaviors we observed.

The last algorithm we considered was RingSTM. Like
NOrec, RingSTM is a scalable lazy STM. RingSTM is less
precise in its conflict detection than any of the other al-
gorithms we consider, potentially leading to more aborts.
However, it provides a feature that NOrec lacks: like the
orec-based algorithms and TLRW, it can overlap the write-
back of multiple software transactions. Unfortunately, naively
transforming RingSTM to support persistence does not result
in good performance.

IV. PTM OPTIMIZATIONS
A. Captured Memory

Most STM systems avoid instrumentation for accesses to
memory on stack frames whose lifetime was limited by
the scope of the transaction. In addition, Riegel et al. [22]
and Dragojevic et al. [38] developed techniques to avoid
instrumentation of “captured memory”, locations that could
be statically shown to be accessible only to the thread running
the transaction. In some cases, captured memory would still
require lightweight undo logging, e.g., for accesses to portions
of the stack that were not transaction-local. While effective,
captured memory optimizations are not part of modern STM
implementations, due to the pointer analysis needed before any
significant gains are achieved.

For NVM transactions, an important subset of captured
memory is the memory allocated to a transaction during its
execution. In our workloads, a transaction that allocates mem-
ory (e.g., calls malloc) is guaranteed to wrife to that memory.
Thus it needs some amount of instrumentation (at least a
clwb of each cache line written). A lightweight, dynamic
optimization for these allocations can have a significant impact
on latency. We call this optimization “last allocation tracking.”

A typical STM will log the result of every malloc called
within a transaction, so that it can free those pointers if
the transaction aborts. To support last allocation tracking, we
instead store a tuple, consisting of the returned value and also
the size of the allocated region. We then make the following
two modifications to the PTM implementation. First, on any
Read or Write, we check if the address being accessed is
within the range of the most recent allocation. If so, we do
not perform any further instrumentation, instead performing
the read or write directly to memory. This results in an

225

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

[| TPCC-HashTable | TPCC-B+Tree | B+Tree (Insert) | Vacation (low) [Vacation (high) | Memcached ||

p-lock-eager 1.674 1.543 1.235 1.190 1.139 1.01
p-lock-lazy 1.055 1.045 1.041 1.026 1.021 1.01
p-orec-eager 1.674 1.443 1.126 1.179 1.177 1.272
p-orec-lazy 1.115 1.101 1.048 1.067 1.069 1.12
p-norec 1.107 1.081 1.061 1.052 1.024 0.999
p-ring 1.068 1.093 1.011 1.003 1.092 1.031
p-tlrw 1.626 1.358 1.127 1.173 1.162 1.264
p-orec-mixed 1.118 1.125 1.088 1.099 1.058 1.026

TABLE II: Speedup from the last allocation tracking optimization (single thread)

[| TPCC-HashTable | TPCC-B+Tree | TATP | B+Tree (Insert) | B+Tree (Mix) [Vacation (low) | Vacation (high) | Memcached ||

p-lock-eager 1.229 1.519 1.049 1.366
p-lock-lazy 1.086 1.227 1.296 1.226
p-orec-eager 1.185 1.464 1.224 1.406
p-orec-lazy 1.041 1.124 1.084 1.113
p-norec 0.423 0.315 0.905 0.750
p-ring 1.022 1.121 1.107 1.158
p-tlrw 1.251 1.347 1.116 1.357
p-orec-mixed 1.088 1.113 1.052 1.063

1.167 1.231 1.197 1.11
1.229 1.218 1.205 1.03
1.109 1.185 1.196 1.16
1.096 1.104 1.120 1.114
1.042 0.651 0.567 1.02
1.075 1.076 1.058 1.022
1.183 1.155 1.177 1.139
1.086 1.144 1.097 1.055

TABLE III: Single-thread speedup of aligned memory and coarse-grained logging

additional branch before lines 15 and 20 for the lazy algorithm
in Listing 1, and before lines 32 and 37 of the eager algorithm.
Second, at commit time, prior to line 7 of the lazy algorithm
or line 29 of the eager algorithm, we loop through the list of
allocations. For each, we iterate through its range, and clwb
once per cache line. In this manner, we ensure that all writes to
the new memory region have crossed the persistence domain
before marking the transaction as complete. For completeness,
note that these steps must also be performed in the read-only
fast path of the commit operations, in case a transaction’s only
writes are to a region it allocated.

Last allocation tracking affects latency, but not scalability.
To evaluate its effectiveness, Table II presents its impact on
single-threaded execution of our benchmarks. In the “lock-
eager” algorithm, where reads are not instrumented, the impact
should be least; however, it is 13% or higher for all but
Memcached. This is due to the reduction in sfence instruc-
tions that the technique achieves for eager algorithms. Indeed,
p-orec-eager and p-tlrw also show substantial improvement.
The benefits for lazy algorithms are more limited (3% to
12%), and more in line with the gains to be expected from
captured memory instrumentation in STM. We conclude that
last allocation tracking is a generally effective strategy, and
particularly effective for eager PTM.

B. Memory Alignment and Logging Granularity

The TP model assumes addresses in NVM will only be
accessed transactionally. Since NVM is given to the program
at the granularity of pages, the IP model permits a coarser
granularity of management than in general-purpose STM.

In STM, when a transaction accesses the byte at address A,
it cannot eagerly read adjacent bytes, even if those addresses
are protected by the same metadata (e.g., the same orec),
because adjacent addresses may be accessed by a concurrent,
non-transactional thread. Thus with undo logs, entries in the
log must have variable granularity, and with redo logs, a

system must either (a) log at the granularity of individual
bytes, or (b) accompany each coarse log entry with a bitmap
indicating which bytes of the entry are valid. These choices
also affect how the redo log is checked during reads (lines 15—
16): In a general-purpose STM implementation that supports
C++ casting and mixed-granularity access, the lookup in
Listing 1 may need to use the bitmap to compose bytes from
the redo log with bytes that would be read on line 17.
Composing logging granularity with memory alignment
creates a new opportunity to improve PTM performance. We
dynamically replace each malloc of NVM with a call to
aligned_malloc, and we align on a boundary that is deter-
mined by the underlying STM (e.g., to match orec granularity).
We then log at that same granularity. For undo logging, this
means we can log at a fixed granularity (we chose half a
cache line, 32 bytes); the log then holds (address,value)
tuples, instead of (address, value,length). For redo logging,
the redo log no longer needs a bitmap, and redo log entries
always are populated with a full 32 bytes of program data
read from NVM. As discussed above, Read is also simplified,
leading to fewer instructions and fewer branches on each read.

Our decision to use 32-byte granularity was based on
balancing improvements in performance (especially for TPCC
and Vacation) against the increased potential for conflicts due
to false sharing and the potential for unnecessary logging due
to poor spatial locality (especially in the B+ Tree and TATP).
In separate experiments, we found that 16-byte granularity im-
proved performance for the B+ Tree, and 64-byte granularity
was best for TPCC. We opted to show a single consistent
granularity, and we encourage developers to think carefully
about granularity, so that it can be a tunable parameter in
future systems.

Table III presents the impact of this optimization for single-
threaded code. Note that while the optimization has the
potential to harm scalability, if threads concurrently access
the same cache line, such problems do not manifest in our

226

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

[| TPCC-HashTable [TPCC-B+Tree | TATP | B+Tree (Insert) [B+Tree (Mix) | Vacation (low) [Vacation (high) [Memcached |

[Speedup | 13.3% [142% | 067% | 1091%

[25% | 285% | 405% | 907% |

TABLE IV: Single-thread speedup of fence pipelining for TLRW

benchmarks, which exhibit good spatial locality and are free
from false sharing.

The impact of the optimization varies by workload and PTM
algorithm. While it is generally effective, it performs poorly
for NOrec. NOrec differs from the other algorithms in this
study, in that it does not use metadata to detect conflicts among
threads. Instead, it logs the locations that were read, and the
values observed at those locations. Coarsening the redo log
granularity leads to a coarsening of the read log, which means
that any read must log 32 bytes. This increased write pressure
during reads translates to worse performance for NOrec, while
the other PTM algorithms enjoy speedups of 2% to 46%.

Note that in the GP model, exploiting this optimization
would require the transaction to maintain two redo logs: one
for NVM addresses, with coarse granularity, and one for
DRAM addresses, with STM granularity.

C. Fence Pipelining

Eager PTM algorithms incur a penalty due to the need to
flush undo log entries before writing new values to the NVM.
With W writes, the addition of W' sfences has a deleterious
effect on single-thread latency, even in p-lock-eager.

Among eager STM algorithms, TLRW is unique in that
every memory access, whether read or write, must acquire
a lock. These acquisition operations cause the same type of
ordering as is needed for undo logging. That is, in TLRW,
line 34 has a memory fence, as does line 37. However, the
fence on line 37 must precede the clwb on line 38, as it is
necessary before dereferencing addr.

While we cannot combine two fences within the same
Write call, we can coalesce the sfence on line 39 with
a subsequent fence in the next call to Read or Write. Our
TLRW “pipeline” optimization defers the write and clwb on
line 40, by storing the address and value to a thread-local
variable. It also omits the fence on line 39. Then, on the next
Read or Write, after line 34 or line 37, we execute the
deferred store and clwb. We also execute the deferred store
immediately before line 33, and immediately before line 29.
In this manner, the most recent write to NVM delays until
the transaction performs its next operation that requires a
memory fence, allowing the fences to be combined. As a
result, persistent TLRW is able to reduce its fencing overhead
to the same as the original TLRW algorithm.

Table IV shows the impact on single-thread latency for
TLRW when using this optimization. Across our benchmarks,
the optimization reaches 14% speedup in the best case, and
never reduces performance.

D. Deferred Flushing

In lazy PTM algorithms, the Commit operation is respon-
sible for writing values to main memory on line 10. These

values must be flushed to the NVM via clwb instructions.
Unfortunately, c1wb has high latency, and line 10 executes
while holding locks. We propose shrinking the critical sections
by performing the c1lwb instructions after locks are released.

As long as a thread has not yet marked itself inactive,
it would seem that it could tolerate a crash between line 10
and some later point when it has released locks but not yet
performed its c1wbs: during recovery, it could replay its redo
log again, and perform the c1lwbs then. However, an incorrect
ordering could arise. In Listing 1, if two transactions both
write to X, and there is a system failure during one of the
transactions’ execution of line 10, then the other thread is
either (a) not yet to line 5, or (b) past line 14. Thus during
recovery, only one thread will have X in its active redo log.
In contrast, if the c1lwbs happen after locks are released, but
before becoming inactive, then two threads can have X in
their redo logs, and the recovery algorithm will not know
which to write back first.

Conveniently, in all but the TLRW algorithm, some global
counter, or single global lock, is used to order all writing
transactions. For algorithms that use a global counter, we can
use the value of this counter in place of active, and 0 in
place of inactive, to convey the commit order to the recovery
algorithm, so that writeback can be done in the proper order.
For TLRW and single-lock algorithms, we use the CPU’s high-
resolution timestamp counter (rdtscp), which is coherent
across cores on the x86.

In more detail, we replace the active status word with a
timestamp representing the transaction’s commit order. Then
we split line 10, such that the write-back occurs without
clwbs. After write-back completes, we release locks (part of
line 14), then we issue the clwbs, then clear the status, and
then run the rest of line 14. In this manner, flushing new values
to the persistence domain is done without holding locks. Note
that if a thread delays before issuing its c1lwb of location L,
then some other thread may lock L, update it, and flush its
update. In this case, coherence ensures that the delayed c1wb
will flush the new value.

Table V depicts the performance improvement from this
optimization. The effect is most pronounced for TATP, which
is dominated by small transactions. In TATP, at 24 threads
performance is more than 2.7x the unoptimized 24-thread
throughput. For some workloads, we observe a small slow-
down (up to 3%), due to the shorter critical sections leading
to transactions committing in different orders. However, the
overall impact is positive.

V. COMBINING OPTIMIZATIONS

We conclude our evaluation by measuring the impact of
optimizations, in combination, for each benchmark. We are

227

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

[‘ TPCC-HashTable ‘ TATP ‘ B+Tree (Insert) ‘ Vacation (low) ‘ Memcached |
Threads 4 8 24 4 8 24 8 24 4 8 24 4 8 24
p-lock-lazy 1.199 | 1.003 1.258 | 1.317 | 1.392 | 2.791 1.069 | 1.643 1.056 | 1.035 | 1.032 | 1.085 1.005 1.33 1.354
p-orec-lazy 1.026 | 1.052 | 1.007 | 1.018 | 1.056 | 1.050 | 1.010 | 0.998 | 1.008 | 1.012 | 1.017 | 0.998 | 1.057 | 1.368 | 1.485
p-norec 1.108 1.167 1.147 1.301 1.245 1.229 1.086 1.141 1.169 1.061 1.087 1.100 | 0.992 1.256 1.272
p-ring 1.041 1.028 1.130 1.152 1.211 1.457 1.085 1.145 1.152 1.027 1.014 1.017 1.111 1.184 1.631
p-orec-mixed | 0.998 1.003 1.012 | 0.979 1.002 1.034 1.002 1.017 1.047 | 0971 0.980 | 0.991 1.201 1.271 1.321

TABLE V: Speedup of Deferred Flushing (single thread)

particularly focused on understanding the implications of the
programming model on performance.

Recall that in the general (GP) model, a single transaction
might access both NVM and DRAM. In such a scenario,
the cost of determining the nature of an address may be
expensive: if N persistent heaps are mapped into the program’s
address space, then determining if an address A is in NVM
could require N base/bound checks. To avoid the worst case,
our GP implementations of PTM omit optimizations that
are inappropriate for DRAM transactions. Since every GP
transaction might access DRAM, we also keep privatization
overheads (e.g., quiescence) in place. In contrast, PTM algo-
rithms in the IP model follow prior work [30], [12] in only
requiring quiescence when unmapping a persistent region, so
that individual transactions do not need to quiesce.

This leads to the following configurations. For the GP
model, we use the hourglass scheduler, last allocation tracking,
fence pipelining (in TLRW), and deferred flushing. For the IP
model, we add 32-byte logging granularity for redo and undo
logs, and we remove quiescence. Note that TLRW does not
require quiescence.

A. Performance in the General Persistence Model

In Figure 3, algorithms optimized for the GP model are
prefixed with gp. After optimization, the performance for each
algorithm improves, often by a substantial margin. The peak
speedup of the best choice, when compared to the naive PTM
transformation (from Figure 2), is from 1.1x (b) to 1.3x
(1), with a geometric mean of 1.22x. If it were possible to
pick the best PTM algorithm at run time, based on advance
knowledge of the workload, thread count, and other program
characteristics, we might expect this much improvement. Note
that the decision may not be difficult, since either gp-orec-
lazy or gp-tlrw is near the top in every workload. If only one
algorithm could be used for all programs, gp-orec-lazy appears
to provide the best overall performance.

Fence pipelining had a significant effect on eager TLRW,
helping it to perform 1.7 better than other PTM algorithms
on Vacation, compared to 1.15x without the optimization.
However, eager TLRW has unsatisfactory performance in
benchmarks with high write frequencies or large read sets,
due to the latency of acquiring locks on every read.

The most disappointing results were for RingSTM and
NOrec. While these algorithms provide privatization safety
without quiescence, neither matched gp-orec-lazy at high
thread counts. In separate experiments, we made RingSTM
somewhat more competitive at low thread counts by using

its “relaxed commit order” optimization [16]. However, this
optimization sacrifices privatization safety, and is offset by a
need for quiescence. In the case of NOrec, note that whenever
a writing transaction commits, all other transactions block.
Adding clwb instructions and fences to the commit sequence
for PTM increases latency at this most critical point.

B. Performance in the Ideal Persistence Model

We now turn our attention to the performance of PTM
algorithms after applying the additional optimizations of the
IP model. Here, we find that improvements in single-thread
latency, arising from the use of coarse granularity logging and
last access tracking, are stable: the boost to algorithms at one
thread is borne out at higher thread counts. Furthermore, when
it can be assumed that transactions only access NVM, and thus
do not require quiescence, the scalability is greatly improved.

As a result, the three orec-based algorithms rise above the
rest, with only one instance (Vacation, low contention, 48
threads) where TLRW outperforms. Furthermore, while opti-
mizations are effective in reducing the overhead of orec-eager,
the lazy algorithms perform better, and in general, increasing
laziness (via commit-time locking) has a beneficial impact
on scalability. The mixed mode (encounter-time locking with
write-back), which was proposed for Mnemosyne [30], occa-
sionally outperforms orec-lazy, but when orec-lazy performs
better, it is by a larger margin, suggesting that orec-lazy is the
best PTM algorithm for the IP model. The peak performance
speedup for orec-lazy, when comparing with the GP model, is
from 1.23x (d) to 4.06x (c), with a geometric mean of 1.92x
across all benchmarks.

C. Implications for STM

As we have discussed throughout this paper, the program-
ming models for STM and PTM are governed by different
requirements. General-purpose STM must assume a worst
case, as described by Yoo et al. [5], that does not occur
for PTM. Still, the optimizations proposed in this paper can
be applicable to STM, so long as the underlying workload
and system exhibit the right characteristics. For example, the
workloads in our experiments are compatible with the IP
model, and thus any STM produced from an IP algorithm
by removing clwb and sfence instructions should be both
correct and faster than that corresponding IP algorithm. As
future work, we believe it will be valuable to develop static
analyses that can discover when PTM optimizations can be
applied to an STM workload.

228

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

gp-orec-eager —&—

gp-orec-lazy —e—
gp-norec —4— . .
gp-ring —v— & &
gp-trw —— < <
gp-orec-mixed —&— 3 3
ip-orec-eager —= 5 5
ip-orec-lazy 3]
ip-norec —4— £ £
ip-ring —v—
) ip-tirw —+ !
ip-orec-mixed 12 4 8 16 24 32 48 1 2 4 8 16 24 32 48
Number of Threads Number of Threads
(a) Legends (b) B+Tree Insert (c) B+Tree Mix
500 600 13000
. . —. 10400
[%2] 2] (%]
=3 =3 s
< € < 7800
> > >
o o o
< < <
= 2 2 5200
< o 1
= = =
= = = 2600
= 0
12 4 8 16 24 32 48 12 4 16 24 32 48 1 2 4 8 16 24 32 48
Number of Threads Number of Threads Number of Threads
(d) TPCC-B+Tree (e) TPCC-HashTable (f) TATP
1500 1200 800
. 1200 __ 1000 -
3 <3 2
< g 800 S
= L = 4
S 900 5 =
2 o 600 E
2 600t =) 2
3 3 400 3
F 00! = £
200 =
o o F
1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48 1 2 4 8 16 24 32 48

Number of Threads

(g) Vacation (low)

Number of Threads

(h) Vacation (high)

Number of Threads

(1) Memcached

Fig. 3: Optimized performance of PTM algorithms. The GP prefix indicates that the PTM applied optimizations for the General
Persistence model. IP indicates that additional optimizations for the Ideal Persistence model were also applied.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the performance of PTM algo-
rithms. We considered two programming models, one in which
a single transaction could interact with traditional DRAM and
also NVM, and another in which transactions only accessed
NVM. We also presented optimizations for PTM, significantly
improved PTM latency and throughput.

Our study is the most comprehensive to date, considering
a diverse set of STM algorithms and every publicly-available
PTM benchmark. It shows that the choice of PTM algorithm
will depend critically on the programming model: under
our general persistence model, a variety of PTM algorithms
performed comparably well, especially at low thread counts,
whereas in the ideal model, a single algorithm was best. An
important question is whether the ideal model is realistic: at
the time of this writing, there are no commercially-available
NVM-only systems, nor are there any production-worthy ap-

229

plications that use STM for transactions over DRAM. Fur-
thermore, at the present time hardware TM (HTM) is not
compatible with NVM.

In the future, we plan to use HTM to prefetch or pre-
compute results for persistent transactions, even if those results
must be flushed using a software protocol. We also plan to
look at special-purpose STM algorithms, to see if there are
opportunities to optimize them for PTM. Additionally, while
the p-orec-lazy algorithm has proven to be the most successful,
its latency for performing lookups in its redo log is not trivial.
We plan to develop hardware extensions, such as content-
addressable memory, to reduce this overhead in the common
case. We also plan to explore new STM and PTM algorithms
that are able to offer stable performance and good scaling on
NUMA systems. Lastly, we plan to explore static analysis that
can reduce instrumentation, e.g., by decomposing the PTM
interface and coalescing undo or redo operations, similar to
past work on STM [39].

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers, as well as
our colleagues in the SG5 group, for their feedback and advice.
This work was supported by the Intel and NSF joint research
center for Computer Assisted Programming for Heterogeneous
Architectures (CAPA) under grant CCF-1723624, as well as
NSF grant CAREER-1253362. Any opinions, findings, and
conclusions or recommendations expressed in this material are

tho

se of the authors and do not necessarily reflect the views

of Intel or the National Science Foundation.

[1]

2

—

[3]

[4]

[51

[6

—

[71

[8

—

[9

[t

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS’17,
Xi’an, China, April 2017.

N. Shavit and D. Touitou, “Software Transactional Memory,” in Pro-
ceedings of the 14th ACM Symposium on Principles of Distributed
Computing, Ottawa, ON, Canada, Aug. 1995.

M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Soft-
ware Transactional Memory for Dynamic-sized Data Structures,” in
Proceedings of the 22nd ACM Symposium on Principles of Distributed
Computing, Boston, MA, Jul. 2003.

A. Dragojevic and T. Harris, “STM in the Small: Trading Generality for
Performance in Software Transactional Memory,” in Proceedings of the
EuroSys2012 Conference, Bern, Switzerland, Apr. 2012.

R. Y. et al., “Kicking the Tires of Software Transactional Memory:
Why the Going Gets Tough,” in Proceedings of the 20th SPAA, Munich,
Germany, Jun. 2008.

V. Marathe, A. Mishra, A. Trivedi, Y. Huang, F. Zaghloul, S. Kashyap,
M. Seltzer, T. Harris, S. Byan, B. Bridge, and D. Dice, “Persistent
memory transactions,” in arXiv preprint arXiv:1804.00701, 2018.

J. C. et al,, “NV-Heaps: Making Persistent Objects Fast and Safe
with Next-generation, Non-volatile Memories,” in Proceedings of the
Sixteenth ASPLOS, New York, NY, USA, Mar. 2011.

Intel Corporation, “Nvml: Implementing persistent memory applica-
tions,” https://www.snia.org/sites/default/files/.

M. Spear, V. Marathe, L. Dalessandro, and M. Scott, “Privatization Tech-
niques for Software Transactional Memory (POSTER),” in Proceedings
of the 26th ACM Symposium on Principles of Distributed Computing,
Portland, OR, Aug. 2007.

A. Welc, B. Saha, and A.-R. Adl-Tabatabai, “Irrevocable Transactions
and their Applications,” in Proceedings of the 20th ACM Symposium
on Parallelism in Algorithms and Architectures, Munich, Germany, Jun.
2008.

T. Zhou, P. Zardoshti, and M. Spear, “Practical Experience with
Transactional Lock Elision,” in Proceedings of the 46th International
Conference on Parallel Processing, Bristol, UK, Aug. 2017.

A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms
for persistent transactional memory,” in Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures. ~ ACM,
2018, pp. 271-282.

D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II,” in Pro-
ceedings of the 20th International Symposium on Distributed Computing,
Stockholm, Sweden, Sep. 2006.

P. F et al,, “Dynamic Performance Tuning of Word-Based Software
Transactional Memory,” in Proceedings of the 13th PPoPP, Salt Lake
City, UT, Feb. 2008.

M. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott, “A Compre-
hensive Strategy for Contention Management in Software Transactional
Memory,” in Proceedings of the 14th ACM Symposium on Principles
and Practice of Parallel Programming, Raleigh, NC, Feb. 2009.

M. S. et al., “RingSTM: Scalable Transactions with a Single Atomic
Instruction,” in Proceedings of the 20th SPAA, Munich, Germany, Jun.
2008.

M. Olszewski, J. Cutler, and J. G. Steffan, “JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory,” in Pro-
ceedings of the 16th International Conference on Parallel Architecture
and Compilation Techniques, Brasov, Romania, Sep. 2007.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

230

L. Dalessandro, M. Spear, and M. L. Scott, “NOrec: Streamlining STM
by Abolishing Ownership Records,” in Proceedings of the 15th PPoPP,
Bangalore, India, Jan. 2010.

D. Dice and N. Shavit, “TLRW: Return of the Read-Write Lock,” in
Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, Santorini, Greece, Jun. 2010.

ISO/IEC JTC 1/SC 22/WG 21, “Technical Specification for C++
Extensions for Transactional Memory,” May 2015. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits, J. Cownie,
R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier, S. Preis, B. Saha,
A. Tal, and X. Tian, “Design and Implementation of Transactional
Constructs for C/C++,” in Proceedings of the 23rd ACM Conference on
Object Oriented Programming, Systems, Languages, and Applications,
Nashville, TN, USA, Oct. 2008.

T. Riegel, C. Fetzer, and P. Felber, “Automatic Data Partitioning in
Software Transactional Memories,” in Proceedings of the 20th ACM
Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, Jun. 2008.

D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere,
“Evaluation of AMD’s Advanced Synchronization Facility within a
Complete Transactional Memory Stack,” in Proceedings of the Eu-
r0Sys2010 Conference, Paris, France, Apr. 2010.

P. Zardoshti, T. Zhou, P. Balaji, M. Scott, and M. Spear, “Simplifying
Transactional Memory Support in C++,” pp. 25:1-25:24, Jul. 2019.

J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance Pathologies in Hardware Transactional
Memory,” in Proceedings of the 34th International Symposium on
Computer Architecture, San Diego, CA, Jun. 2007.

W. N. Scherer III and M. L. Scott, “Advanced Contention Management
for Dynamic Software Transactional Memory,” in Proceedings of the
24th ACM Symposium on Principles of Distributed Computing, Las
Vegas, NV, Jul. 2005.

M. S. et al.,, “Implementing and Exploiting Inevitability in Software
Transactional Memory,” in Proceedings of the 37th ICPP, Portland, OR,
Sep. 2008.

J. M. Mellor-Crummey and M. L. Scott, “Algorithms for Scalable Syn-
chronization on Shared-Memory Multiprocessors,” ACM Transactions
on Computer Systems, vol. 9, no. 1, 1991.

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture News,
March 2011.

D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
Locks for Non-Volatile Memory Consistency,” in ACM SIGPLAN No-
tices, vol. 49, no. 10. ACM, 2014, pp. 433-452.

memcached.org, “Memcached, a distributed memory object caching
system.” 2014, http://memcached.org/.

W. Ruan, T. Vyas, Y. Liu, and M. Spear, “Transactionalizing Legacy
Code: An Experience Report Using GCC and Memcached,” in Pro-
ceedings of the 19th International Conference on Architectural Support

for Programming Languages and Operating Systems, Salt Lake City,

UT, Mar. 2014.

M. L. et al., “DudeTM: Building Durable Transactions with Decoupling
for Persistent Memory,” in Proceedings of the 22nd ASPLOS, Xi’an,
China, Apr. 2017.

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stan-
ford Transactional Applications for Multi-processing,” in Proceedings
of IISWC, Seattle, WA, Sep. 2008.

A. Matveev and N. Shavit, “Reduced Hardware NORec: A Safe and
Scalable Hybrid Transactional Memory,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Istanbul, Turkey, Mar. 2015.

L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. Scott, and
M. Spear, “Hybrid NOrec: A Case Study in the Effectiveness of Best
Effort Hardware Transactional Memory,” in Proceedings of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Newport Beach, CA, Mar. 2011.
A. Dragojevic, Y. Ni, and A.-R. Adl-Tabatabai, “Optimizing Transac-
tions for Captured Memory,” in Proceedings of the 21st ACM Symposium
on Parallelism in Algorithms and Architectures, Calgary, AB, Canada,
Aug. 2009.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

[39] T. Harris, M. Plesko, A. Shinar, and D. Tarditi, “Optimizing Memory
Transactions,” in Proceedings of the 27th ACM Conference on Program-
ming Language Design and Implementation, Ottawa, ON, Canada, Jun.
2006.

APPENDIX

A. Abstract

This artifact includes two parts to evaluate proposed opti-
mization techniques on different algorithms.

o Performance comparison of STM to naive PTM as
shown in Figure 2 in the paper.

o Optimized performance of PTM algorithms as shown
in Figure 3 in the paper.

B. Artifact check-list (meta-information)

o Algorithm: all algorithms are listed in: llvim-
transmem/Makefile.libnames

o Program: B+Tree, TPCC-B+Tree, TPCC-HashTable, TATP,
Vacation and Memcached

o Compilation: Clang++ 6+, GCC
« Run-time environment: Linux

o Hardware: Intel Xeon Platinum and its successors with CLWB
and SFENCE instructions supported

« Execution: python/bash script

o Metrics: Throughput (Ktps/Kops/s)

o Output: Figures, text files

« How much disk space required (approximately)?: 1GB

« How much time is needed to complete experiments (approx-
imately)?: 23 hours

« Publicly available?: Yes
o Code licenses (if publicly available)?: Lehigh University

o Archived?: Yes, DOI.10.5281/zenodo.3346054.

C. Description

1) How delivered: All the source codes and inputs are delivered
via Github and Zenodo

2) Hardware dependencies: Intel Xeon Platinum and its suc-
cessors with CLWB and SFENCE instructions supported

3) Software dependencies: Docker CE, LLVM, C++ Compiler,
Clang++

4) Data sets: None.

D. Installation

we have prepared a docker file so that users can build their
docker image and perform all the experiments inside the docker.
Note that the docker can influence the result. In order to avoid the
overhead, there is a script to install all the dependencies on ubuntu.
https://github.com/pzardoshti/llvm-transmem

231

E. Experiment workflow

Follow the instructions shown in
https://github.com/pzardoshti/llvm-transmem to build and run
the docker image or the script. Once inside the container, download
the package by the following command.

- git clone https://github.com/pzardoshti/llvm-transmem.git

- cd llvm-transmem

Compile all libraries and benchmarks
- ./compile.sh

Run all benchmarks
- J/run.sh all

generate Figure 2 and 3
- ./generate.sh

FE. Evaluation and expected result

The result of the artifact depends on the hardware, the result may
be different from the one presented in the paper. The output graphs
are located into the result/plots folder and the raw data can be found
in results/data folder which includes throughput.

G. Experiment customization

In order to run each benchmark separately use alphabet number
related to each benchmarks based on Figures 2. For example to run
bplustree (insert), type ”./run.sh b” and to generate its graph, type
”./generate.sh b”. Also scripts related to each benchmarks are located
in scripts/$benchmark_name.

H. Notes

The platform is extendable by adding a new algorithm and reusable
by adding new benchmarks. To add new benchmarks, please follow
instruction in README file located in the root path. Furthermore,
If you have trouble to build and use the docker container or your
machine does not support CLWB and SFENCE instruction, please
contact us via the AE committee, and we will provide a test machine.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:41 UTC from IEEE Xplore. Restrictions apply.

