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Abstract—Storing data structures in high-capacity byte-
addressable persistent memory instead of DRAM or a storage
device offers the opportunity to (1) reduce cost and power
consumption compared with DRAM, (2) decrease the latency
and CPU resources needed for an I/O operation compared with
storage, and (3) allow for fast recovery as the data structure
remains in memory after a machine failure. The first commer-
cial offering in this space is Intel® OptaneTM Direct Connect
(OptaneTM DC) Persistent Memory. OptaneTM DC promises
access time within a constant factor of DRAM, with larger
capacity, lower energy consumption, and persistence. We present
an experimental evaluation of persistent transactional memory
performance, and explore how OptaneTM DC durability domains
affect the overall results. Given that neither of the two available
durability domains can deliver performance competitive with
DRAM, we introduce and emulate a new durability domain,
called PDRAM, in which the memory controller tracks enough
information (and has enough reserve power) to make DRAM
behave like a persistent cache of OptaneTM DC memory.

In this paper we compare the performance of these durability
domains on several configurations of five persistent transactional
memory applications. We find a large throughput difference,
which emphasizes the importance of choosing the best durability
domain for each application and system. At the same time,
our results confirm that recently published persistent transac-
tional memory algorithms are able to scale, and that recent
optimizations for these algorithms lead to strong performance,
with speedups as high as 6× at 16 threads.

Index Terms—Persistent Memory, Non-Volatile Memory,
Transactional Memory, Storage, Concurrency, OptaneTM

I. INTRODUCTION

In 2019, Intel® OptaneTM Direct Connect Persistent Mem-

ory (OptaneTM DC) became commercially available. OptaneTM

DC creates many new opportunities for system designers and

programmers. At the simplest level, OptaneTM DC can be

thought of as a DRAM alternative that has higher density

and lower power consumption, albeit at the cost of higher

latency and lower throughput. More exciting is that OptaneTM

DC memory can be persistent: it can retain its contents for
extended periods of time, without requiring any energy to

do so. This means, for example, that OptaneTM DC can be

a new layer in the storage hierarchy [1], or even replace

conventional disk and SSD devices when high performance

is paramount. The impact of such a transition on software

will be profound, as it would mean that the entire memory

hierarchy would become byte-addressable, and persistence

features would become available to programmers without the

need for system calls.

OptaneTM DC is one of many technologies for byte-

addressable persistent memory (also know as non-volatile

memory, or NVM). Past notable works include phase change

memory (PCM) [2], [3], STT-MRAM [4]–[6], and resistive

RAM (ReRAM) [7], [8]. Programmers seeking to exploit

any of these technologies have traditionally faced a tradeoff

between performance and ease of use. The easiest approach

is to request that the operating system (OS) treat the NVM as

a storage device. In this case, the OS will create a filesystem

atop the NVM, and programs can load and store files from that

filesystem, instead of an SSD or disk [9]. With this approach,

the latency of the storage device itself is orders of magnitude

faster than SSD, and the program does not require changes in

order to use the NVM. However, potential performance gains

are lost: interactions with the NVM require system calls, and

the programmer must provide code to serialize and de-serialize

data when interacting with files.

The extreme alternative is for programmers to create hand-

crafted algorithms and data structures that operate directly

upon an NVM region that is mapped into a process’s address

space. E.g., a program might use the Linux DAX filesystem to

directly map a file from NVM into its virtual address space. It

could then operate on the addresses within the mapped region,

which would directly modify the persistent representation of

data. The programmer must ensure that this code is resilient to

failure at any point in its execution. Typically this is achieved

through careful management of special persistence-oriented

assembly instructions that allow a program to guarantee a

correctness criteria like linearizable durability [10]. Unfortu-
nately, even simple persistent data structures are considered

publishable research results [11]–[13].

In between these two points is the idea of persistent

language-level transactions [14]–[24] and persistent critical

sections [25]. In these approaches, hereafter referred to as

persistent transactional memory (PTM), programmers map

a file from NVM into the virtual address space. However,

they then identify the regions of their program that might

access these nonvolatile regions, by marking lexically scoped

transactions. The compiler instruments the loads and stores

within these regions, so that each load and store is performed

by a run-time library. The library typically uses undo or redo
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logging so that transactions can appear to execute atomically.

With redo logging, the writes of a transaction are kept in a

private, persistent “redo” log until commit time, and program

data is only updated after the transaction reaches its commit

point. With undo logging, the writes of a transaction are

performed during transaction execution, but the old values

are kept in a private, persistent “undo” log that can be used

to restore program state in the event that the transaction

aborts. With either method, (1) if a failure happens before

a transaction finishes, it can be rolled back; and (2) if a

failure happens after a transaction finishes, all of its changes

are guaranteed to be in persistent memory. In addition to

logging, the current best-performing PTM algorithms use a

table of versioned locks to coordinate the speculative memory

accesses of locations by concurrent threads, using techniques

from software transactional memory (STM) [26], [27].

In this paper, we focus on PTM performance on OptaneTM

DC systems. Whereas most past PTM research has either

simulated NVM performance or assumed that DRAM per-

formance is an adequate proxy for NVM performance, we

present PTM results on a real OptaneTM DC system. In

Section III we experimentally demonstrate that OptaneTM DC

performance is not predicted well by DRAM: not only are

OptaneTM DC latencies higher than DRAM, but the nature

of transactional execution leads to worse scalability for trans-

actions on OptaneTM DC than transactions on DRAM. This

finding considers two different models of hardware support

for durability, described in Section II. We then propose and

evaluate two new hardware durability models in Section IV.

Our new models re-purpose existing features of OptaneTM DC

systems to let DRAM serve as a persistent cache of the NVM.

This evaluation informs our conclusions in Section V.

II. BACKGROUND

Figures 1 and 2 present a depiction of an x86 system

outfitted with OptaneTM DCmemory. The letter “C” represents

a core, the L3 cache is shared among cores, and the L1 and

L2 caches are shared among the hyperthreads of a core. The

memory controller (MC) is able to interact with both the

OptaneTM DCmemory and DRAM. Stores to the OptaneTM

modules must pass through the Write Pending Queue (WPQ)

within the memory controller.

A. OptaneTM Operating Modes

Current OptaneTM DC©-based systems can operate in two

modes, both of which retain some traditional DRAM in

addition to OptaneTM DCmemory. The first mode is ”Memory

Mode”, depicted in Figure 1(a). Memory Mode treats DRAM

like a cache of the OptaneTM DCmemory, and disregards

persistence. This is represented by the gray line between the

DRAM and OptaneTM modules: in Memory Mode, the system

operates as if there was a memory hierarchy in which DRAM

sat between the L3 and the OptaneTM memory, and data

moved across the gray line. In contrast, ”AppDirect Mode”

(Figure 1(b)) treats the OptaneTM DC and DRAM as separate

memories. The red box indicates that both the OptaneTM

(a) Memory Mode (b) AppDirect Mode

Fig. 1: OptaneTM Operating Modes

memory and the memory controller are persistent: once a store

reaches the boundary of the Asynchronous DRAM Refresh

(ADR), there is sufficient reserve power to guarantee that the

store will pass through the WPQ to the OptaneTM memory and

be written, even if the system experiences a power failure.

To achieve the illusion of DRAM caching pages of

OptaneTM DC© memory, in Memory Mode the on-CPU mem-

ory controller maintains a table (DIR) that remaps physical

addresses in the DRAM to physical addresses in the NVM.

When a page of NVM is listed in the table, loads and stores

route to DRAM instead. From a programmer’s perspective,

this gives the illusion of a substantially larger memory than is

possible using only DRAM, which runs at roughly the speed of

DRAM, but which is not persistent. The memory controller is

responsible for implementing optimizations, such as prefetch-

ing and asynchronous writeback, to hide the higher latency of

the OptaneTM DCmemory. While low-level characteristics of

the OptaneTM DCmemory imply that data written in Memory

Mode retains its value upon power failure, contents are en-

crypted/decrypted using a unique key that is regenerated upon

reboot. Thus upon system restart, the contents of OptaneTM

DCmemory in Memory Mode are effectively reset to random.

In AppDirect Mode, the OS and applications are aware that

physical pages of DRAM and OptaneTM memory are disjoint.

By mapping these physical pages into different regions of

virtual memory, a program can, by way of regular loads

and stores, explicitly persist program data to the OptaneTM

DCmemory. This complicates the programming model, by

requiring the programmer to partition data into volatile and

nonvolatile spaces. In addition to persistence, important factors

include memory access latency and data structure size.

B. OptaneTM Persistence Domains

To benefit from persistence, it is not enough to simply run

an application in AppDirect Mode, because some parts of

the system are not persistent. Clearly the OptaneTM DIMMs

themselves are persistent, and any store that is acknowledged

by OptaneTM will not be lost on power failure. On the other

hand, L1 caches are currently not persistent, and thus it is not

enough for a program to issue a store to a virtual address that
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(a) ADR (b) eADR

Fig. 2: OptaneTM durability domains. ADR appears on the left,

and eADR on the right. With ADR, only stores that reach the

memory controller’s queues are guaranteed to persist. With

eADR, stores to addresses in the OptaneTM will be flushed

from the cache on any system failure, and will persist.

maps to OptaneTM DCmemory: that store may idle at any level

of the memory hierarchy due to caching policies. Note, too,

that while the CPU may execute stores in one order, they may

be written back to the OptaneTM in another order. This raises

challenges analogous to processor memory consistency [28].

Systems vary in terms of which of their components are

persistent, i.e., which are part of the “Durability Domain” [29].

Figure 2 presents the two available durability domains for

OptaneTM DCsystems. In the figure, components within the red

box are considered to be durable. We do not show the simplest

domain, “No Power Reserve”, as it has been deprecated [30].

In that domain, only the OptaneTM DCDIMMs themselves

were durable, and programs had to ensure that stores reached

the OptaneTM if they were to be persisted. This proved to be

too cumbersome and slow [31], [32].

The domain in Figure 2(a) introduces a small amount of

reserve power. This power is sufficient to flush the memory

controller’s write queues even when the system loses power.

The Intel Asynchronous DRAM Refresh (ADR) provides this

guarantee [31]. To ensure that a write to cache line X is

seen during an ADR, a programmer issues the clwb X
instruction to flush the data back to the memory controller.

Of course, subsequent loads and stores can be reordered with

respect to the clwb. To order two persistent flushes (e.g., the
initialization of data and the setting of a flag to indicate that

the initialization is complete), a program must perform the first

store and clwb it, then issue a store fence (sfence) [33],
and then perform the second store and clwb it. The overhead
of these flush and fence instructions can be reduced through

a transactional programming interface.

The final domain, extended ADR (“eADR”) provides more

power reserve than ADR. In addition to providing enough

power to flush the WPQ, there is also enough reserve power

to allow the system to execute instructions that cause all of

the data in the caches to be flushed to the OptaneTM DIMMs.

It is easiest to imagine that this reserve power is an auxiliary

battery that is employed upon power failure to gracefully shut

down the system [34]–[37]. With eADR, it is generally not

necessary for programs to explicitly execute clwb and fence
instructions. However, the OS must be able to handle a power-

fail signal by flushing caches and queues before the reserve

energy is depleted. The OS must also be able to detect if it

the reserve was insufficient, and reliably report the failure to

the application.

Note that in ADR, a store may become visible to other cores

(via the L3) before it has persisted. In eADR, a store becomes

persistent and durable when it reaches the L2. This has surpris-

ing consequences for programmers. As an example, with ADR,

programmers cannot use Intel’s Transactional Synchronization

eXtensions (TSX): clwb causes a store to leave the L1, which
also causes the transaction to abort. In contrast, with eADR

programmers can use TSX: when the transaction commits, its

changes become visible to other threads, and simultaneously

they cross into the durability domain.

III. PTM PERFORMANCE ON OPTANETM

Whereas past work would either simulate NVM, or else

assume that DRAM latencies were a reasonable proxy for

NVM, the availability of OptaneTM DC systems allows experi-

mentation that reveals the true latencies and bottlenecks. In this

section, we focus on two questions. The first is quite simply

“How effectively do measurements on DRAM systems predict

performance on OptaneTM DC systems?” The second question

is “What is the performance impact of providing enough

reserve power to operate in the eADR durability domain?”

An especially important aspect of this latter question is that

past work has studied persistent versions of various STM

algorithms [38], and concluded that explicit fences and flushes

favor certain algorithms over others. It is important to know

whether these findings also hold with eADR, which does not

require those fences and flushes.

A. Experimental Platform

All experiments in this paper were conducted on a system

containing two 2.30 GHz Intel Xeon Gold 5218 CPUs. Each

CPU has 16 cores / 32 threads. Due to known scalability

bottlenecks in PTM algorithms when crossing chips,OptaneTM

experiments were limited to a maximum of 32 threads, with

all threads pinned to a single chip. The machine ran Linux

kernel version 4.14.35.

The system memory consists of two parts: 192GB of DRAM

and 1.5 TB of OptaneTM DC memory. The OptaneTM memory

was split across 12 DIMMs, and interleaving was enabled.

This is the recommended configuration for maximizing the

throughput of the OptaneTM memory. Since we limited exper-

iments to a single chip, only half of the DRAM and half of the

OptaneTM DC memory was available to the experiments. Note

that the latencies of a clwb instruction are the same whether
the cache line is being flushed to DRAM or OptaneTM DC.

However, the latencies of loads and stores to DRAM are lower

than the latencies of loads and stores to OptaneTM DC memory.
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Software was compiled using LLVM/Clang 6.0 with O3 op-

timizations. We used the open-source LLVM PTM plugin [39],

which provides a suite of different PTM algorithms [38].

We used the best-performing redo-based PTM (“orec-lazy”)

and the best-performing undo-based PTM (“orec-eager”), with

every optimization enabled. We then tuned the algorithms for

OptaneTM . The most significant modification was to the hash

table used for undo and redo logging: we split it, placing the

index in DRAM, with the copy of program data in OptaneTM

memory. Experiments use the DAX filesystem and Makalu

allocator [40] to manage memory from the persistent heap.

We consider every open-source multi-threaded PTM bench-

mark we could find. This led to the following experiments:

• The write-only TATP telecom application benchmark

from DudeTM [16].

• Two microbenchmarks that stress the B+ Tree from

DudeTM. The first is an insert-only workload that per-

forms 2M insertions of unique keys into a tree that is

initially empty; the second performs an equal mix of

inserts, lookups, and removes using a key range of 221.
• Two configurations of the write-only TPCC benchmark
from DudeTM, one using a B+ Tree, the other using a

Hash Table.

• Two configurations of the Vacation travel reservation
benchmark [41] from Whisper [42], at high and low

contention, respectively.

• The memcached key/value store [32], [43], [44]. For this
experiment, we ran memaslap on the second CPU to

generate a stream of requests for memcached to process.

The get/set ratio was set to 50/50, with 128B keys and

1KB values [45].

Each trial was run five times, and the average throughput

is reported. With the exception of the B+Tree insert-only

workload, each trial of each benchmark ran for one minute. We

did not observe significant variance. Due to space constraints

we defer discussion of memcached until Section IV-E, where

we focus on the impact of large data sets.

B. Comparing DRAM and OptaneTM Behaviors in ADR

Figures 3 and 4 present the behavior of each benchmark

at various thread levels, to understand whether past results

that approximated OptaneTM latencies with DRAM can lead

to reasonable conclusions about OptaneTM performance. In this

subsection, we focus on the four curves marked “ADR”. The

“U” and “R” suffixes indicate whether an experiment used

undo logging or redo logging. Past work has shown that when

the working set of a transaction is not statically known (as is

the case for all of our experiments), then undo logging incurs

a fencing overhead linear in the number of writes (these serve

to order the flushes of writes to the undo log before speculative
writes to persistent data). Curves labeled “DRAM” correspond

to executions in which the persistent data is stored in an 80GB

DRAM ramdisk; that is, the data is not truly persistent. Curves

labeled “OptaneTM ” use OptaneTM DC memory in AppDirect

mode for the persistent data. Both sets of curves have the same

numbers of clwb instructions, and these instructions exhibit

Threads 1 2 4 8 16 32

DRAM ADR 0 21.5 28.68 33.31 46.13 63.43
DRAM eADR 0 27.55 36.57 44.99 59.21 87.02
Optane ADR 0 26.56 24.96 25.15 34.51 49.56
Optane eADR 0 25.96 29.13 31.29 47.3 70.31

TABLE I: Ratio of commits to aborts for TPCC (Hash Table)

with redo logging (ADR).

similar latencies regardless of whether data ultimately routes

from the WPQ to DRAM or OptaneTM memory (86 ns and

94 ns, respectively [46]). The load latency on L3 misses is

roughly 3× higher for OptaneTM than DRAM [46].

Our first finding is that past recommendations regarding the

costs of undo logging remain true: in almost every case, redo

logging outperforms undo logging. This is despite the higher

instruction count for redo logging (due to reads performing

lookups in the redo log), and a direct consequence of the

cost of fences for undo logging. While these fences could be

aggregated via static analysis for workloads whose write sets

are predictable, in our workloads such analysis is not possible.

The only outlier for this finding is the TATP workload: every

TATP transaction performs a small number of writes, and thus

the cost of fences is not as significant as in other workloads.

We also found that the timing of clwb instructions does not
affect performance. In the redo log experiments, writes to the

redo log must be flushed before the transaction commits. The

flushes could be done incrementally, upon each write to the

redo log, or in a tight loop immediately before committing. We

expected the latter option to increase pressure on the WPQs,

and increase latency. However, our experiments showed no

noticeable difference in performance: performing many flushes

at once did not create more pressure on the WPQ than

staggering the flushes during transaction execution.

Finally, we see that scalability on OptaneTM is worse than
scalability on DRAM. For example, in the Vacation workloads

the maximum throughput is reached at a lower thread count,

and the gap at peak throughput is substantially larger than

the gap at low thread counts. To explore this behavior in

more detail, Tables I and II report the number of commits

per abort for the TPCC (Hash Table) workload. There are

two important trends. The first is that the ratios are lower

for OptaneTM than DRAM at every thread level. The second

is that the ratio decreases more rapidly for OptaneTM than

for DRAM. During a transaction’s execution, it is inevitable

that some of the added fences and flushes must occur while a

transaction is holding locks. These fences and flushes extend

the duration of the critical section, and thus increasing the

window of contention during which other transactions will

abort. In addition, it is known that OptaneTM DC reads tend

to scale with the thread count, whereas writes reach their

maximum throughput quickly. For example, Izraelevitz et al.

needed 17 threads to reach the maximum read throughput

of OptaneTM DC, but only 4 to reach the maximum write

throughput [46].
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(a) B+ Tree Insert (b) B+ Tree Mix (c) TPCC (Hash Table)

(d) TPCC (B+ Tree) (e) Vacation (low) (f) Vacation (high)

Fig. 3: Performance comparison between DRAM (not persistent) and OptaneTM for the B+Tree, TPCC, and Vacation workloads.

(a) TATP

Fig. 4: Performance comparison between DRAM (not persis-

tent) and OptaneTM for the TATP workload.

Threads 1 2 4 8 16 32

DRAM ADR 0 3.44 2.42 2.05 1.82 1.66
DRAM eADR 0 4.63 2.99 2.64 2.02 1.65
Optane ADR 0 3.34 2.16 1.71 1.39 1.4
Optane eADR 0 3.76 2.7 1.73 1.22 1.12

TABLE II: Ratio of commits to aborts for TPCC (Hash Table)

with undo logging (ADR).

C. Contrasting eADR and ADR Performance

Next, we compare the performance of the system under

the ADR and eADR durability domains. For the purposes

of these experiments, we assume that the system has enough

reserve power to flush all cached OptaneTM pages back to

OptaneTM DIMMs in the event of a system failure. Then, we

can transform the ADR algorithms to eADR by eliding clwb
and fence instructions.
Returning to Figures 3 and 4, the most significant finding

is that eADR provides substantial performance gains for every

workload except Vacation. When we focus on the “redo”

PTMs, this result speaks to the latency of clwb instructions,
as they are the only aspect of the algorithm that changes.

Clearly, avoiding the need to flush cache lines to the memory

controller has a significant impact on performance. In addition,

even Vacation sees improvements, but these improvements are

muted somewhat. This is largely a consequence of Vacation

having non-trivial amounts of work between transactions:

the fraction of the program that is transactional (and hence

affected by eADR) is greater in the other workloads.
To understand these gains in more detail, we created an

incorrect version of our PTM algorithms, in which ADR

algorithms continued to use correct clwb instructions, but

did not issue any memory fences. A snapshot of the latency

improvements appear in Table III. In comparing the numbers

in the table to the results in Figures 3 and 4, the main finding

is that a substantial fraction of the improvement results from

removing fences.
Even with these advantages, eADR still does not reach the

performance of DRAM. There are two related factors which

introduce latency. The first is that the WPQs are bounded, and

become saturated. The second is that write latency is higher for

OptaneTM than for DRAM. Note that while the eADR PTMs

do not explicitly issue clwb instructions, data still evicts
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TPCC TATP Vacation (low) Vacation (high)

Undo 8% 10% 17% 12%
Redo 10% 10%-27% 7%-17% 7%-17%

TABLE III: Speedup from removing memory fences from

write instrumentation in ADR algorithms.

from the L3 to OptaneTM , through the WPQs. In separate

experiments, we measured the performance counters for L3

hits and misses, as well as for DRAM and pmem through-
put. These measurements showed that eADR workloads were

writing back to the OptaneTM with a lower bandwidth than

DRAM writeback; this explains the remaining latency. The

known problem of WPQ saturation [46] explains the decrease

in scalability.

IV. NEW MODELS FOR PERSISTENCE

In Section III, we observed that eADR can substantially

improve performance versus ADR, primarily because eADR

does not require explicit fences and flushes. In this section, we

introduce two new durability models, which are able to deliver

better performance than eADR. While neither is available in

hardware today, nor does either require substantially different

support than is available in OptaneTM DC systems today.

The fundamental enabling mechanism for our new durability

models is the directory used by the memory controller when

the system runs in Memory Mode. Recall from Section II

that OptaneTM can run in either AppDirect Mode or Memory

Mode. In AppDirect Mode, a filesystem on the OptaneTM

DC memory is mapped into the virtual address space of the

program. In Memory Mode, the memory controller maintains

a directory in DRAM, and uses the directory to create the

illusion that DRAM is a cache of physical OptaneTM DC

pages. The controller is then responsible for writing DRAM

pages back to OptaneTM when those physical DRAM pages

are to be used to cache different physical OptaneTM pages.

A. The Persistent DRAM Durability Domain

Our first new durability domain, PDRAM, gives the illusion

that all of DRAM is persistent. It combines the persistence of

AppDirect Mode with the caching behavior of Memory Mode.

In more detail, let F be a range of persistent physical pages

in AppDirect Mode that are managed as a file. To use the

mechanisms of Memory Mode to cache pages of F in DRAM,
few changes are required. Let Di be the ith page of DRAM,
and let Pj be the jth page of Optane

TM memory allocated to

F . Note that the directory in Memory Mode already provides
the following behaviors:

• If Di is to cache Pj , then Di must be initialized with

data from Pj before the first read or write of Di.

• While Di is caching Pj , reads and writes of Pj can be

satisfied by routing them to Di.

• If Di is dirty, and Di is needed to cache some new page

Pk, then Di must be written back to Pj first.

In addition to tracking which pages are dirty, the memory

controller already implements policies that asynchronously

(a) PDRAM (b) PDRAM-Lite

Fig. 5: Proposed Durability Domains. In PDRAM, every

DRAM page can potentially cache a page of OptaneTM mem-

ory, and sufficient battery power is required to flush every

DRAM page to OptaneTM on a power failure. In PDRAM-

Lite, a bounded number of DRAM pages can cache OptaneTM

memory.

write dirty pages from DRAM to OptaneTM , and that prefetch

pages from OptaneTM to DRAM.

Given the above properties, the only reason why Pj is not

persistent is energy: if some large number of pages Di are

dirty, then on a system failure, there must be enough reserve

power to flush all data from the caches to DRAM, and then

write all of the dirty pages of DRAM to the OptaneTM memory.

With a limited number of WPQs, and writeback occurring at

cache-line granularity, a single 4KB page would require 64

writebacks, which would exceed the WPQ capacity. Thus the

required reserve power would need to be enough to keep the

entire CPU and memory system running for quite some time.

Figure 5(a) depicts the PDRAM Durability Domain. Like

eADR, it treats the caches as persistent. However, it requires

a directory in DRAM, so that it can potentially flush all of

DRAM to OptaneTM on a power signal.

B. The PDRAM-Lite Durability Domain

While the mechanisms for enabling PDRAM are largely

present in existing systems (to support Memory Mode), our

PDRAM proposal is still idealistic, in that it requires a

significant amount of reserve power, most likely in the form

of an external battery. We note that making all of DRAM
into a cache of OptaneTM memory may not be advantageous.

ADR increases Optane DIMM power draw, because its lack

of write coalescing leads to more power-hungry writes. eADR

requires 1s of reserve power (capacitors) for write back on

a power failure (power leakage and additional manufacturing

cost are assumed to be negligible). PDRAM would use more

power to drive its DRAM cache. Assuming RAM consumes

50% of system power, if half of DRAM was used as a

PDRAM cache, system power requirements could increase by

as much as 25%, and > 10s of reserve power could be needed.
This would necessitate a lithium-ion battery, bringing non-

negligible leakage (though likely still under 3W). We expect

353

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore.  Restrictions apply. 



(a) B+Tree Insert (b) B+Tree Mix (c) TPCC (Hash Table)

(d) TPCC (B+Tree) (e) Vacation (low) (f) Vacation (high)

Fig. 6: Performance comparison between different durability models for the B+Tree, TPCC, and Vacation workloads.

(a) TATP

Fig. 7: Durability model performance (TATP workload).

PDRAM-Lite’s cache to be a small fraction of DRAM, with

corresponding decreases in system and reserve power.

On the one hand, certain memory regions (such as the stack,

or the lookup tables of a redo log) typically do not require

persistence. Additionally, the specific case of redo-based PTM

has simpler persistence requirements than undo-based PTM.

As we shall see, for some workloads a redo-based PTM can

get by with a lightweight variation on PDRAM, which we call

PDRAM-Lite, and show in Figure 5.

From the previous experiments presented in this paper, we

can conclude that PTM favors redo logging over undo logging

even under the eADR durability domain. This is primarily

because of the reduction in fences: with undo logging, each

update to persistent state must be preceded by a store to the

persistent undo log, ordered via sfence. In redo logging, the
only fences are to ensure that all redo log entries are persisted

before writeback begins, and to order writeback with respect

to status updates. Thus if a transaction performs W writes,

undo logging will perform O(W ) fences, and redo logging
will perform O(1) fences.

If we consider the timing of a system failure with respect to

a program that uses redo-based PTM, we see that storing the

redo log persistently is necessary, but the persistence is often

overkill. Suppose that a transaction T has not yet reached

its commit point. In that case, if a system failure occurs,

the recovery procedure will re-try T ; the previous redo log
is discarded. Furthermore, in the common case where system

failures do not happen, an about-to-commit transaction will

persist its redo log, mark itself committed, write back the redo

log, and then discard the redo log. Redo logs are ephemeral
and rarely require persistence.

At the same time, notice that in redo-based PTM, a transac-

tion only performs stores to the OptaneTM memory at commit
time. Until the commit point, a redo-based transaction keeps its
entire write working set in the (highly compact) redo log. For

transactions with modest write set sizes, it would be possible

to use a small amount of PDRAM for the transactions’ redo

logs, without caching any other OptaneTM pages in DRAM.

We refer to this approach as PDRAM-Lite. As shown in

Figure 5, a smaller directory is needed to track the small

number of DRAM pages that serve as a cache of OptaneTM
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pages. Furthermore, when a power failure signal arrives, after

flushing the caches, the recovery operation can decide which

pages of PDRAM-Lite to flush to OptaneTM by checking the

state of the corresponding transactions. For any transaction

that is still in-flight, its redo log can be skipped.

While PDRAM-Lite will require more reserve power than

eADR, we expect that in many workloads, only small amounts

of memory will suffice, and thus the energy overhead will be

modest. For example, the Vacation benchmark never requires

more than 37 contiguous cache lines (roughly half a page) for

its redo log. TPCC (Hash Table) requires at most 36 cache

lines. If these are representative of emerging PTM workloads,

then a handful of pages per thread, with a fall-back to using

OptaneTM memory directly, should suffice.

C. Simulating PDRAM

To simulate PDRAM-Lite, we modified the redo log imple-

mentation for the eADR redo-based PTM implementations,

placing the entire log in DRAM. In additional testing, we

found that the difference in latency between DRAM and

Memory Mode was negligible for applications with working

sets up to 16MB, and thus we expect the latency of redo

log accesses in PDRAM-Lite to be a fair approximation. As

with eADR, we ignore the fact that our system does not have

enough reserve power to provide durability guarantees.

More interestingly, we found that it is possible to simulate

the full PDRAM proposal on existing OptaneTM DC systems.

The mechanics of PDRAM are already employed in Memory

Mode; the challenge is only to make the data persist. We

found that when running in Memory Mode, we could create

an 750GB RAM Disk on the OptaneTM memory, and then

mmap() it into the virtual address space of the application.
Loads and stores would typically route to the DRAM cache,

but would ultimately (e.g., on program termination) be flushed

back to the OptaneTM memory. As with PDRAM-Lite, this

simulation does not account for the added reserve power that

would be required to flush caches and write back dirty pages

from DRAM. However, the latencies we observed were in

keeping with expected latencies for DRAM and OptaneTM DC.

D. Evaluation of PDRAM and PDRAM-Lite

Figures 6 and 7 repeat the experiments of Section III. As

before, the “DRAM” curves show the performance of the PTM

workloads and algorithms when only accessing DRAM. The

eADR curves are also the same. However, we now add two

curves that simulate PDRAM, using redo and undo logging,

as well as a redo logging PTM that simulates PDRAM-Lite.

The first goal of these experiments is to determine whether

PDRAM can bridge the gap between DRAM and eADR. The

result is largely affirmative. In TATP, the B+Tree microbench-

marks, and Vacation, PDRAM matches DRAM performance

up until OptaneTM scalability bottlenecks (WPQ saturation)

occur. The same is generally true for TPCC.

The second goal is to determine whether PDRAM-Lite of-

fers sufficient value. The result here is less clear: PDRAM-Lite

outperforms eADR in every case, but the gains are marginal

for all but TATP and TPCC. In fact, this result confirms

a finding from [46]: OptaneTM DC throughputs are much

closer to DRAM throughput for regular access patterns than

for irregular patterns. Moving the redo log into DRAM does

not have a significant impact on latency, since the compact

log, with its regular access pattern, did not have much worse

latency than DRAM to begin with.

E. Exploring the Impact of Workload Size with Memcached

We conclude our evaluation by investigating the impact of

working set size on the throughput of transactions. Figure 8

presents the throughput (requests per second) of memcached

with a single worker thread. We vary the working set size

by changing the number of items stored in the cache. In

the experiment, a set of client threads, running on a separate

NUMA socket, issue an equal mix of get and set commands,

using random keys. This leads to poor locality, such that every

read will effectively be handled by the smallest level of the

memory hierarchy that is capable of holding the entire working

set. In addition, by limiting the server to a single thread, we

avoid saturating the read or write bandwidth of the OptaneTM

DC memory. In this way, we are able to isolate the latency of

OptaneTM DC vs. DRAM.

The experiment considers a small working set (32MB),

which fits in the L3 cache. It then considers working sets

starting at 32GB and increasing in increments of 64GB. At

96GB, the working set cannot fit in DRAM, nor can it be

completely cached in DRAM (e.g., for PDRAM). In this

manner, we are able to observe how the OptaneTM DC memory

behaves for ADR, eADR, PDRAM, and PDRAM-Lite.

For the PDRAM-Lite approach, we observe a broad trend

throughout the experiments: its performance is only marginally

better than OptaneTM performance with the eADR durability

model and redo logging. This result is reasonable, since the

highest OptaneTM overheads relate to random reads and writes;

the PDRAM-Lite model only focuses on writes to the redo log,

which are regular and hence do not incur the highest latencies.

Next, we observe a precipitous drop in performance for all

configurations when the working set increases from 32MB

to 32GB. This is expected, since the L3 is able to cache

both DRAM and OptaneTM locations at 32MB (for ADR,

only OptaneTM reads benefit from caching; for eADR and the

PDRAM approaches, OptaneTM writes also benefit). At the

same time, fitting the working set in the L3 does not overcome

the fundamental differences between the algorithms. Stores to

OptaneTM still must eventually flush, and flush more slowly

than flushes of stores to DRAM. Additionally, clwb and fence
instructions (in ADR) have unavoidable latencies.

The next interesting point on the X axis is the movement

from 32GB to 96GB. At this point, DRAM no longer caches

the entire working set, which affects PDRAM and PDRAM-

Lite systems. Note that for the DRAM curves, operation

beyond 96GB is not possible. For ADR and eADR curves,

no drop-off was expected, since these algorithms do not use

DRAM to store persistent data. Surprisingly, the PDRAM and

PDRAM-Lite algorithms did not experience any slowdowns
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Fig. 8: Performance comparison of memcached at different working set sizes. Beyond 32M, the working set does not fit in

the L3 cache, and beyond 96 GB, the working set does not fit in DRAM.

at this point; only eADR+Undo slowed down at 96GB, and

ADR+Undo had a similar slowdown at 192GB. Delving

deeper into why these specific combinations degrade is future

work. Our suspicion is that hash table re-balancing may be

occurring more frequently for these workload combinations,

but additional testing is required.

We also observed a slowdown at 320GB. One important

factor at this point is that memcached stores an index as well

as values; when the index is cacheable but the data is not,

performance does not degrade as rapidly. For our machine

and workload, 320GB is the point where there ceases to be

much profitable caching of the index, and the entire workload

runs at the speed of the DRAM or OptaneTM memory.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the behavior of highly-optimized

PTM algorithms on a system with Intel® OptaneTM Direct

Connect (OptaneTM DC) memory. To the best of our knowl-

edge, this is the first work to directly study PTM performance

on OptaneTM DC.

Our main finding is that the durability model significantly

impacts PTM performance on OptaneTM DC.. ADR, which

requires explicit flushes of cache lines to the memory con-

troller’s WPQs, and explicit fences to ensure the ordering

of flushes with respect to stores, is substantially slower than

eADR, which assumes enough reserve power to flush caches

to the OptaneTM DC in the event of a power failure. Despite

eADR’s higher performance, it is still below DRAM. Charac-

teristics like bounded WPQs appear to create higher single-

thread latency and worse scalability, because the OptaneTM

DC memory bandwidth can saturate with many fewer writing

threads than are needed to saturate DRAM bandwidth.

Inasmuch as systems rarely fail, the defensive measures

used by PTM algorithms are usually overkill. In recognition

of that reality, we introduced two new durability domains that

made all (PDRAM) or some (PDRAM-Lite) of DRAM to

be persistent. While hardware does not support this behavior

today, we argued that the necessary support is present in

OptaneTM DC systems, to support the non-durable Memory

Mode of operation. We then presented realistic software em-

ulation of these durability domains, and evaluated PTM per-

formance. While PDRAM performed as expected, and largely

closed the gap between OptaneTM DC and DRAM, PDRAM-

Lite did not. Workload and OptaneTM DC characteristics

simply do not result in high latency at the places in the PTM

algorithm where PDRAM-Lite can deliver improvement.

Our findings raise a number of questions that we leave

to future work. First and foremost is the question of reserve

power. The ADR durability domain exists today, with enough

reserve power. It is hypothesized that modest batteries would

enable eADR. We do not have an estimate of the energy

overhead to support PDRAM, nor do we have a formula

or model for estimating reserve power requirements for a

workload. As future work, we plan to investigate the energy

consumption of the durability domains.

Another open question is whether hardware transactional

memory (HTM), or hardware acceleration of STM, is a viable

strategy for accelerating PTM. In particular, while Intel®

Transactional Synchronization Extensions are incompatible

with PTM in ADR, they might work with eADR and PDRAM.

If so, it may be that HTM techniques reduce latency and aid

scalability, or that HTM just causes the WPQs to saturate with

fewer writing threads. Studying HTM behavior in eADR is an

exciting topic for future work.
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