2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Understanding and Improving Persistent
Transactions on Optane™ DC Memory

2" Michael Spear
Lehigh University
USA
spear @lehigh.edu

1% Pantea Zardoshti
Lehigh University
USA
zardoshti @lehigh.edu

Abstract—Storing data structures in high-capacity byte-
addressable persistent memory instead of DRAM or a storage
device offers the opportunity to (1) reduce cost and power
consumption compared with DRAM, (2) decrease the latency
and CPU resources needed for an I/O operation compared with
storage, and (3) allow for fast recovery as the data structure
remains in memory after a machine failure. The first commer-
cial offering in this space is Intel® Optane™ Direct Connect
(Optane™ DC) Persistent Memory. Optane™ DC promises
access time within a constant factor of DRAM, with larger
capacity, lower energy consumption, and persistence. We present
an experimental evaluation of persistent transactional memory
performance, and explore how Optane™ DC durability domains
affect the overall results. Given that neither of the two available
durability domains can deliver performance competitive with
DRAM, we introduce and emulate a new durability domain,
called PDRAM, in which the memory controller tracks enough
information (and has enough reserve power) to make DRAM
behave like a persistent cache of Optane™ DC memory.

In this paper we compare the performance of these durability
domains on several configurations of five persistent transactional
memory applications. We find a large throughput difference,
which emphasizes the importance of choosing the best durability
domain for each application and system. At the same time,
our results confirm that recently published persistent transac-
tional memory algorithms are able to scale, and that recent
optimizations for these algorithms lead to strong performance,
with speedups as high as 6x at 16 threads.

Index Terms—Persistent Memory, Non-Volatile Memory,
Transactional Memory, Storage, Concurrency, Optane™

I. INTRODUCTION

In 2019, Intel® Optane™ Direct Connect Persistent Mem-
ory (Optane™ DC) became commercially available. Optane™
DC creates many new opportunities for system designers and
programmers. At the simplest level, Optane™ DC can be
thought of as a DRAM alternative that has higher density
and lower power consumption, albeit at the cost of higher
latency and lower throughput. More exciting is that Optane™
DC memory can be persistent: it can retain its contents for
extended periods of time, without requiring any energy to
do so. This means, for example, that OptaneTM DC can be
a new layer in the storage hierarchy [1], or even replace
conventional disk and SSD devices when high performance
is paramount. The impact of such a transition on software
will be profound, as it would mean that the entire memory
hierarchy would become byte-addressable, and persistence

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00044

aida.vosoughi @oracle.com

348

4™ Garret Swart
Oracle Corp.
USA
garret.swart@oracle.com

3" Aida Vosoughi
Oracle Corp.
USA

features would become available to programmers without the
need for system calls.

Optane™ DC is one of many technologies for byte-
addressable persistent memory (also know as non-volatile
memory, or NVM). Past notable works include phase change
memory (PCM) [2], [3], STT-MRAM [4]-[6], and resistive
RAM (ReRAM) [7], [8]. Programmers seeking to exploit
any of these technologies have traditionally faced a tradeoff
between performance and ease of use. The easiest approach
is to request that the operating system (OS) treat the NVM as
a storage device. In this case, the OS will create a filesystem
atop the NVM, and programs can load and store files from that
filesystem, instead of an SSD or disk [9]. With this approach,
the latency of the storage device itself is orders of magnitude
faster than SSD, and the program does not require changes in
order to use the NVM. However, potential performance gains
are lost: interactions with the NVM require system calls, and
the programmer must provide code to serialize and de-serialize
data when interacting with files.

The extreme alternative is for programmers to create hand-
crafted algorithms and data structures that operate directly
upon an NVM region that is mapped into a process’s address
space. E.g., a program might use the Linux DAX filesystem to
directly map a file from NVM into its virtual address space. It
could then operate on the addresses within the mapped region,
which would directly modify the persistent representation of
data. The programmer must ensure that this code is resilient to
failure at any point in its execution. Typically this is achieved
through careful management of special persistence-oriented
assembly instructions that allow a program to guarantee a
correctness criteria like linearizable durability [10]. Unfortu-
nately, even simple persistent data structures are considered
publishable research results [11]-[13].

In between these two points is the idea of persistent
language-level transactions [14]-[24] and persistent critical
sections [25]. In these approaches, hereafter referred to as
persistent transactional memory (PTM), programmers map
a file from NVM into the virtual address space. However,
they then identify the regions of their program that might
access these nonvolatile regions, by marking lexically scoped
transactions. The compiler instruments the loads and stores
within these regions, so that each load and store is performed
by a run-time library. The library typically uses undo or redo

IEEE
(@ computer
socl

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

ety

logging so that transactions can appear to execute atomically.
With redo logging, the writes of a transaction are kept in a
private, persistent “redo” log until commit time, and program
data is only updated after the transaction reaches its commit
point. With undo logging, the writes of a transaction are
performed during transaction execution, but the old values
are kept in a private, persistent “undo” log that can be used
to restore program state in the event that the transaction
aborts. With either method, (1) if a failure happens before
a transaction finishes, it can be rolled back; and (2) if a
failure happens after a transaction finishes, all of its changes
are guaranteed to be in persistent memory. In addition to
logging, the current best-performing PTM algorithms use a
table of versioned locks to coordinate the speculative memory
accesses of locations by concurrent threads, using techniques
from software transactional memory (STM) [26], [27].

In this paper, we focus on PTM performance on Optane™
DC systems. Whereas most past PTM research has either
simulated NVM performance or assumed that DRAM per-
formance is an adequate proxy for NVM performance, we
present PTM results on a real Optane™ DC system. In
Section III we experimentally demonstrate that Optane™ DC
performance is not predicted well by DRAM: not only are
Optane™ DC latencies higher than DRAM, but the nature
of transactional execution leads to worse scalability for trans-
actions on Optane™ DC than transactions on DRAM. This
finding considers two different models of hardware support
for durability, described in Section II. We then propose and
evaluate two new hardware durability models in Section IV.
Our new models re-purpose existing features of Optane™ DC
systems to let DRAM serve as a persistent cache of the NVM.
This evaluation informs our conclusions in Section V.

M

II. BACKGROUND

Figures 1 and 2 present a depiction of an x86 system
outfitted with Optane™ DCmemory. The letter “C” represents
a core, the L3 cache is shared among cores, and the L1 and
L2 caches are shared among the hyperthreads of a core. The
memory controller (MC) is able to interact with both the
Optane™ DCmemory and DRAM. Stores to the Optane™
modules must pass through the Write Pending Queue (WPQ)
within the memory controller.

A. Optane™ Operating Modes

Current Optane™ DC®©-based systems can operate in two
modes, both of which retain some traditional DRAM in
addition to Optane™ DCmemory. The first mode is "Memory
Mode”, depicted in Figure 1(a). Memory Mode treats DRAM
like a cache of the Optane™ DCmemory, and disregards
persistence. This is represented by the gray line between the
DRAM and Optane™ modules: in Memory Mode, the system
operates as if there was a memory hierarchy in which DRAM
sat between the L3 and the Optane™ memory, and data
moved across the gray line. In contrast, ”AppDirect Mode”
(Figure 1(b)) treats the Optane™ DC and DRAM as separate
memories. The red box indicates that both the Optane™

349

(a) Memory Mode

(b) AppDirect Mode

Fig. 1: Optane™ Operating Modes

memory and the memory controller are persistent: once a store
reaches the boundary of the Asynchronous DRAM Refresh
(ADR), there is sufficient reserve power to guarantee that the
store will pass through the WPQ to the Optane™ memory and
be written, even if the system experiences a power failure.
To achieve the illusion of DRAM caching pages of
Optane™ DC© memory, in Memory Mode the on-CPU mem-
ory controller maintains a table (DIR) that remaps physical
addresses in the DRAM to physical addresses in the NVM.
When a page of NVM is listed in the table, loads and stores
route to DRAM instead. From a programmer’s perspective,
this gives the illusion of a substantially larger memory than is
possible using only DRAM, which runs at roughly the speed of
DRAM, but which is not persistent. The memory controller is
responsible for implementing optimizations, such as prefetch-
ing and asynchronous writeback, to hide the higher latency of
the Optane™ DCmemory. While low-level characteristics of
the Optane™ DCmemory imply that data written in Memory
Mode retains its value upon power failure, contents are en-
crypted/decrypted using a unique key that is regenerated upon
reboot. Thus upon system restart, the contents of Optane™
DCmemory in Memory Mode are effectively reset to random.
In AppDirect Mode, the OS and applications are aware that
physical pages of DRAM and Optane™ memory are disjoint.
By mapping these physical pages into different regions of
virtual memory, a program can, by way of regular loads
and stores, explicitly persist program data to the Optane™
DCmemory. This complicates the programming model, by
requiring the programmer to partition data into volatile and
nonvolatile spaces. In addition to persistence, important factors
include memory access latency and data structure size.

B. Optane™ Persistence Domains

To benefit from persistence, it is not enough to simply run
an application in AppDirect Mode, because some parts of
the system are not persistent. Clearly the Optane™ DIMMs
themselves are persistent, and any store that is acknowledged
by Optane™ will not be lost on power failure. On the other
hand, L1 caches are currently not persistent, and thus it is not
enough for a program to issue a store to a virtual address that

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

(b) eADR

(a) ADR

Fig. 2: Optane™ durability domains. ADR appears on the left,
and eADR on the right. With ADR, only stores that reach the
memory controller’s queues are guaranteed to persist. With
eADR, stores to addresses in the Optane™ will be flushed
from the cache on any system failure, and will persist.

maps to Optane™ DCmemory: that store may idle at any level
of the memory hierarchy due to caching policies. Note, too,
that while the CPU may execute stores in one order, they may
be written back to the Optane™ in another order. This raises
challenges analogous to processor memory consistency [28].

Systems vary in terms of which of their components are
persistent, i.e., which are part of the “Durability Domain” [29].
Figure 2 presents the two available durability domains for
Optane™ DCsystems. In the figure, components within the red
box are considered to be durable. We do not show the simplest
domain, “No Power Reserve”, as it has been deprecated [30].
In that domain, only the Optane™ DCDIMMs themselves
were durable, and programs had to ensure that stores reached
the Optane™ if they were to be persisted. This proved to be
too cumbersome and slow [31], [32].

The domain in Figure 2(a) introduces a small amount of
reserve power. This power is sufficient to flush the memory
controller’s write queues even when the system loses power.
The Intel Asynchronous DRAM Refresh (ADR) provides this
guarantee [31]. To ensure that a write to cache line X is
seen during an ADR, a programmer issues the clwb X
instruction to flush the data back to the memory controller.
Of course, subsequent loads and stores can be reordered with
respect to the clwb. To order two persistent flushes (e.g., the
initialization of data and the setting of a flag to indicate that
the initialization is complete), a program must perform the first
store and clwb it, then issue a store fence (sfence) [33],
and then perform the second store and clwb it. The overhead
of these flush and fence instructions can be reduced through
a transactional programming interface.

The final domain, extended ADR (“eADR”) provides more
power reserve than ADR. In addition to providing enough
power to flush the WPQ, there is also enough reserve power
to allow the system to execute instructions that cause all of
the data in the caches to be flushed to the Optane™ DIMM:s.

350

It is easiest to imagine that this reserve power is an auxiliary
battery that is employed upon power failure to gracefully shut
down the system [34]-[37]. With eADR, it is generally not
necessary for programs to explicitly execute clwb and fence
instructions. However, the OS must be able to handle a power-
fail signal by flushing caches and queues before the reserve
energy is depleted. The OS must also be able to detect if it
the reserve was insufficient, and reliably report the failure to
the application.

Note that in ADR, a store may become visible to other cores
(via the L3) before it has persisted. In eADR, a store becomes
persistent and durable when it reaches the L2. This has surpris-
ing consequences for programmers. As an example, with ADR,
programmers cannot use Intel’s Transactional Synchronization
eXtensions (TSX): c1lwb causes a store to leave the L1, which
also causes the transaction to abort. In contrast, with eADR
programmers can use TSX: when the transaction commits, its
changes become visible to other threads, and simultaneously
they cross into the durability domain.

III. PTM PERFORMANCE ON OPTANE™

Whereas past work would either simulate NVM, or else
assume that DRAM latencies were a reasonable proxy for
NVM, the availability of Optane™ DC systems allows experi-
mentation that reveals the true latencies and bottlenecks. In this
section, we focus on two questions. The first is quite simply
“How effectively do measurements on DRAM systems predict
performance on Optane™ DC systems?” The second question
is “What is the performance impact of providing enough
reserve power to operate in the eADR durability domain?”
An especially important aspect of this latter question is that
past work has studied persistent versions of various STM
algorithms [38], and concluded that explicit fences and flushes
favor certain algorithms over others. It is important to know
whether these findings also hold with eADR, which does not
require those fences and flushes.

A. Experimental Platform

All experiments in this paper were conducted on a system
containing two 2.30 GHz Intel Xeon Gold 5218 CPUs. Each
CPU has 16 cores / 32 threads. Due to known scalability
bottlenecks in PTM algorithms when crossing chips,Optane™
experiments were limited to a maximum of 32 threads, with
all threads pinned to a single chip. The machine ran Linux
kernel version 4.14.35.

The system memory consists of two parts: 192GB of DRAM
and 1.5 TB of Optane™ DC memory. The Optane™ memory
was split across 12 DIMMSs, and interleaving was enabled.
This is the recommended configuration for maximizing the
throughput of the Optane™ memory. Since we limited exper-
iments to a single chip, only half of the DRAM and half of the
Optane™ DC memory was available to the experiments. Note
that the latencies of a c1lwb instruction are the same whether
the cache line is being flushed to DRAM or Optane™ DC.
However, the latencies of loads and stores to DRAM are lower
than the latencies of loads and stores to Optane™ DC memory.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

Software was compiled using LLVM/Clang 6.0 with O3 op-
timizations. We used the open-source LLVM PTM plugin [39],
which provides a suite of different PTM algorithms [38].
We used the best-performing redo-based PTM (“orec-lazy”)
and the best-performing undo-based PTM (“orec-eager”), with
every optimization enabled. We then tuned the algorithms for
Optane™ . The most significant modification was to the hash
table used for undo and redo logging: we split it, placing the
index in DRAM, with the copy of program data in Optane™
memory. Experiments use the DAX filesystem and Makalu
allocator [40] to manage memory from the persistent heap.

We consider every open-source multi-threaded PTM bench-
mark we could find. This led to the following experiments:

o The write-only TATP telecom application benchmark
from DudeTM [16].

o Two microbenchmarks that stress the B+ Tree from
DudeTM. The first is an insert-only workload that per-
forms 2M insertions of unique keys into a tree that is
initially empty; the second performs an equal mix of
inserts, lookups, and removes using a key range of 22!

e Two configurations of the write-only TPCC benchmark
from DudeTM, one using a B+ Tree, the other using a
Hash Table.

o Two configurations of the Vacation travel reservation
benchmark [41] from Whisper [42], at high and low
contention, respectively.

« The memcached key/value store [32], [43], [44]. For this
experiment, we ran memaslap on the second CPU to
generate a stream of requests for memcached to process.
The get/set ratio was set to 50/50, with 128B keys and
1KB values [45].

Each trial was run five times, and the average throughput
is reported. With the exception of the B+Tree insert-only
workload, each trial of each benchmark ran for one minute. We
did not observe significant variance. Due to space constraints
we defer discussion of memcached until Section IV-E, where
we focus on the impact of large data sets.

B. Comparing DRAM and Optane™ Behaviors in ADR

Figures 3 and 4 present the behavior of each benchmark
at various thread levels, to understand whether past results
that approximated Optane™ latencies with DRAM can lead
to reasonable conclusions about Optane™ performance. In this
subsection, we focus on the four curves marked “ADR”. The
“U” and “R” suffixes indicate whether an experiment used
undo logging or redo logging. Past work has shown that when
the working set of a transaction is not statically known (as is
the case for all of our experiments), then undo logging incurs
a fencing overhead linear in the number of writes (these serve
to order the flushes of writes to the undo log before speculative
writes to persistent data). Curves labeled “DRAM?” correspond
to executions in which the persistent data is stored in an 80GB
DRAM ramdisk; that is, the data is not truly persistent. Curves
labeled “Optane™ ” use Optane™ DC memory in AppDirect
mode for the persistent data. Both sets of curves have the same
numbers of clwb instructions, and these instructions exhibit

351

[Threads [1] 2 [4 | 8 [16 | 32 |
DRAM_ADR | 0 | 21.5 | 2868 | 3331 | 46.13 | 63.43
DRAM_cADR | 0 | 27.55 | 36.57 | 44.99 | 5921 | 87.02
Optanc_ADR | 0 | 26.56 | 24.96 | 25.15 | 34.51 | 49.56
Optane_cADR | 0 | 2596 | 29.13 | 3129 | 473 | 7031

TABLE I: Ratio of commits to aborts for TPCC (Hash Table)
with redo logging (ADR).

similar latencies regardless of whether data ultimately routes
from the WPQ to DRAM or Optane™ memory (86 ns and
94 ns, respectively [46]). The load latency on L3 misses is
roughly 3x higher for Optane™ than DRAM [46].

Our first finding is that past recommendations regarding the
costs of undo logging remain true: in almost every case, redo
logging outperforms undo logging. This is despite the higher
instruction count for redo logging (due to reads performing
lookups in the redo log), and a direct consequence of the
cost of fences for undo logging. While these fences could be
aggregated via static analysis for workloads whose write sets
are predictable, in our workloads such analysis is not possible.
The only outlier for this finding is the TATP workload: every
TATP transaction performs a small number of writes, and thus
the cost of fences is not as significant as in other workloads.

We also found that the timing of c1wb instructions does not
affect performance. In the redo log experiments, writes to the
redo log must be flushed before the transaction commits. The
flushes could be done incrementally, upon each write to the
redo log, or in a tight loop immediately before committing. We
expected the latter option to increase pressure on the WPQs,
and increase latency. However, our experiments showed no
noticeable difference in performance: performing many flushes
at once did not create more pressure on the WPQ than
staggering the flushes during transaction execution.

Finally, we see that scalability on Optane™ is worse than

scalability on DRAM. For example, in the Vacation workloads
the maximum throughput is reached at a lower thread count,
and the gap at peak throughput is substantially larger than
the gap at low thread counts. To explore this behavior in
more detail, Tables I and II report the number of commits
per abort for the TPCC (Hash Table) workload. There are
two important trends. The first is that the ratios are lower
for Optane™ than DRAM at every thread level. The second
is that the ratio decreases more rapidly for Optane™ than
for DRAM. During a transaction’s execution, it is inevitable
that some of the added fences and flushes must occur while a
transaction is holding locks. These fences and flushes extend
the duration of the critical section, and thus increasing the
window of contention during which other transactions will
abort. In addition, it is known that Optane™ DC reads tend
to scale with the thread count, whereas writes reach their
maximum throughput quickly. For example, Izraelevitz et al.
needed 17 threads to reach the maximum read throughput
of Optane™ DC, but only 4 to reach the maximum write
throughput [46].

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

5000

B+ Tree (Insert)

4000

3000

2000

Throughput (Ktps)

1000}
o

Number of Threads

(a) B+ Tree Insert

TPCC (B+ Tree)

8000,

B+ Tree (Mix)

0 TPCC (Hash Table)

7000

6000

5000

3000

Throughput (Ktps)
=
]
8
8

2000

1000 2=~

Throughput (Ktps)

4 8
Number of Threads

(b) B+ Tree Mix

Vacation (low)

4
Number of Threads

(c) TPCC (Hash Table)

Vacation(high)

Throughput (Ktps)
Throughput (Ktps)
w
8
8

400

w
S
3

== ADR_DRAM_U

& -4 ADR_DRAM_R

* = eADR_DRAM_U
o @ eADR_DRAM_R
o-8 ADR Optane_U
a—a ADR Optane R
#—+ eADR Optane U
o c eADR_Optane R

N
o
3

Throughput (Ktps)

"
S
S

Number of Threads

(d) TPCC (B+ Tree)

4
Number of Threads

(e) Vacation (low)

16 32 1 2 4 8 16 32
Number of Threads

(f) Vacation (high)

Fig. 3: Performance comparison between DRAM (not persistent) and Optane™ for the B+Tree, TPCC, and Vacation workloads.

TATP

16000} = = ADR_DRAM_U

x4 ADR_DRAM_R

* + eADR_DRAM_U
@ o eADR_DRAM_R
©-8 ADR Optane_U
4&—4 ADR Optane R
#—+ eADR_Optane_U
o o eADR_Optane R

14000

12000

10000

8000

Throughput (Ktps)

6000]
4000} -~
S

2000}

0

Number of Threads

(a) TATP

Fig. 4: Performance comparison between DRAM (not persis-
tent) and Optane™ for the TATP workload.

H Threads \ 1 \ 2 \ 4 \ 8 \ 16 \ 32 H
DRAM_ADR | 0 | 344 | 242 | 205 | 1.82 | 1.66
DRAM_eADR | 0 | 463 | 299 | 2.64 | 2.02 | 1.65
Optane_ADR 0] 334 | 216 | 1.71 | 1.39 1.4
Optane_eADR | 0 | 3.76 2.7 1.73 1.22 1.12

TABLE II: Ratio of commits to aborts for TPCC (Hash Table)
with undo logging (ADR).

C. Contrasting eADR and ADR Performance

Next, we compare the performance of the system under
the ADR and eADR durability domains. For the purposes
of these experiments, we assume that the system has enough
reserve power to flush all cached Optane™ pages back to

352

Optane™ DIMMs in the event of a system failure. Then, we
can transform the ADR algorithms to eADR by eliding c1lwb
and fence instructions.

Returning to Figures 3 and 4, the most significant finding
is that eADR provides substantial performance gains for every
workload except Vacation. When we focus on the “redo”
PTMs, this result speaks to the latency of clwb instructions,
as they are the only aspect of the algorithm that changes.
Clearly, avoiding the need to flush cache lines to the memory
controller has a significant impact on performance. In addition,
even Vacation sees improvements, but these improvements are
muted somewhat. This is largely a consequence of Vacation
having non-trivial amounts of work between transactions:
the fraction of the program that is transactional (and hence
affected by eADR) is greater in the other workloads.

To understand these gains in more detail, we created an
incorrect version of our PTM algorithms, in which ADR
algorithms continued to use correct clwb instructions, but
did not issue any memory fences. A snapshot of the latency
improvements appear in Table III. In comparing the numbers
in the table to the results in Figures 3 and 4, the main finding
is that a substantial fraction of the improvement results from
removing fences.

Even with these advantages, eADR still does not reach the
performance of DRAM. There are two related factors which
introduce latency. The first is that the WPQs are bounded, and
become saturated. The second is that write latency is higher for
Optane™ than for DRAM. Note that while the eADR PTMs
do not explicitly issue clwb instructions, data still evicts

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

[[TPCC | TATP [Vacation (low) [Vacation (high) |
Undo 8% 10% 17% 12%
Redo 10% 10%-27% 7%-17% T%-17%

TABLE III: Speedup from removing memory fences from
write instrumentation in ADR algorithms.

from the L3 to Optane™ | through the WPQs. In separate
experiments, we measured the performance counters for L3
hits and misses, as well as for DRAM and pmem through-
put. These measurements showed that eADR workloads were
writing back to the Optane™ with a lower bandwidth than
DRAM writeback; this explains the remaining latency. The
known problem of WPQ saturation [46] explains the decrease
in scalability.

IV. NEW MODELS FOR PERSISTENCE

In Section III, we observed that eADR can substantially
improve performance versus ADR, primarily because eADR
does not require explicit fences and flushes. In this section, we
introduce two new durability models, which are able to deliver
better performance than eADR. While neither is available in
hardware today, nor does either require substantially different
support than is available in Optane™ DC systems today.

The fundamental enabling mechanism for our new durability
models is the directory used by the memory controller when
the system runs in Memory Mode. Recall from Section II
that Optane™ can run in either AppDirect Mode or Memory
Mode. In AppDirect Mode, a filesystem on the Optane™
DC memory is mapped into the virtual address space of the
program. In Memory Mode, the memory controller maintains
a directory in DRAM, and uses the directory to create the
illusion that DRAM is a cache of physical Optane™ DC
pages. The controller is then responsible for writing DRAM
pages back to Optane™ when those physical DRAM pages
are to be used to cache different physical Optane™ pages.

A. The Persistent DRAM Durability Domain

Our first new durability domain, PDRAM, gives the illusion
that all of DRAM is persistent. It combines the persistence of
AppDirect Mode with the caching behavior of Memory Mode.
In more detail, let F' be a range of persistent physical pages
in AppDirect Mode that are managed as a file. To use the
mechanisms of Memory Mode to cache pages of F' in DRAM,
few changes are required. Let D; be the ith page of DRAM,
and let P; be the jth page of Optane™ memory allocated to
F'. Note that the directory in Memory Mode already provides
the following behaviors:

o If D; is to cache P;, then D; must be initialized with
data from P; before the first read or write of D;.

e While D; is caching P;, reads and writes of P; can be
satisfied by routing them to D,.

o If D; is dirty, and D; is needed to cache some new page
P, then D; must be written back to P; first.

In addition to tracking which pages are dirty, the memory
controller already implements policies that asynchronously

353

(a) PDRAM (b) PDRAM-Lite

Fig. 5: Proposed Durability Domains. In PDRAM, every
DRAM page can potentially cache a page of Optane™ mem-
ory, and sufficient battery power is required to flush every
DRAM page to Optane™ on a power failure. In PDRAM-
Lite, a bounded number of DRAM pages can cache Optane™
memory.

write dirty pages from DRAM to Optane™ | and that prefetch
pages from Optane™ to DRAM.

Given the above properties, the only reason why P; is not
persistent is energy: if some large number of pages D, are
dirty, then on a system failure, there must be enough reserve
power to flush all data from the caches to DRAM, and then
write all of the dirty pages of DRAM to the Optane™ memory.
With a limited number of WPQs, and writeback occurring at
cache-line granularity, a single 4KB page would require 64
writebacks, which would exceed the WPQ capacity. Thus the
required reserve power would need to be enough to keep the
entire CPU and memory system running for quite some time.

Figure 5(a) depicts the PDRAM Durability Domain. Like
eADR, it treats the caches as persistent. However, it requires
a directory in DRAM, so that it can potentially flush all of
DRAM to Optane™ on a power signal.

B. The PDRAM-Lite Durability Domain

While the mechanisms for enabling PDRAM are largely
present in existing systems (to support Memory Mode), our
PDRAM proposal is still idealistic, in that it requires a
significant amount of reserve power, most likely in the form
of an external battery. We note that making all of DRAM
into a cache of Optane™ memory may not be advantageous.
ADR increases Optane DIMM power draw, because its lack
of write coalescing leads to more power-hungry writes. eADR
requires 1s of reserve power (capacitors) for write back on
a power failure (power leakage and additional manufacturing
cost are assumed to be negligible). PDRAM would use more
power to drive its DRAM cache. Assuming RAM consumes
50% of system power, if half of DRAM was used as a
PDRAM cache, system power requirements could increase by
as much as 25%, and > 10s of reserve power could be needed.
This would necessitate a lithium-ion battery, bringing non-
negligible leakage (though likely still under 3W). We expect

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

5000, B+Tree (Insert)

4000

3000

2000

Throughput (Ktps)

1000te 7

Number of Threads

(a) B+Tree Insert

TPCC (B+Tree)

8000

B+Tree (Mix)

TPCC (Hash Table)

7000

6000

5000

4000

3000

Throughput (Ktps)

2000

1000

200

Throughput (Ktps)

Number of Threads

(b) B+Tree Mix

Vacation(low)

Number of Threads

(c) TPCC (Hash Table)

Vacation(high)

Throughput (Ktps)
Throughput (Ktps)

400

w
S
S

N
S
S

~ + eADR_DRAM_U
o o eADR_DRAM R
#—+ eADR_Optane_U
-0 eADR_Optane R
4+~ eADR_PDRAM_U
44 eADR_PDRAM R
oo eADR_PDRAM Lite R

Throughput (Ktps)

100152

Number of Threads

(d) TPCC (B+Tree)

Number of Threads

(e) Vacation (low)

8 16 32 1 2 4 8 16 32
Number of Threads

(f) Vacation (high)

Fig. 6: Performance comparison between different durability models for the B+Tree, TPCC, and Vacation workloads.

18000 TATP

*+ eADR_DRAM_U
16000H o © eADR_DRAM_R
#—+ eADR_Optane_U
14000|0 o eADR_Optane R
4+~ eADR_PDRAM_U
12000 a—a eADR_PDRAM_R
oo eADR_PDRAM Lite R

10000

8000

Throughput (Ktps)

6000

4000

2000

Number of Threads

(a) TATP

Fig. 7: Durability model performance (TATP workload).

PDRAM-Lite’s cache to be a small fraction of DRAM, with
corresponding decreases in system and reserve power.

On the one hand, certain memory regions (such as the stack,
or the lookup tables of a redo log) typically do not require
persistence. Additionally, the specific case of redo-based PTM
has simpler persistence requirements than undo-based PTM.
As we shall see, for some workloads a redo-based PTM can
get by with a lightweight variation on PDRAM, which we call
PDRAM-Lite, and show in Figure 5.

From the previous experiments presented in this paper, we
can conclude that PTM favors redo logging over undo logging
even under the eADR durability domain. This is primarily
because of the reduction in fences: with undo logging, each

354

update to persistent state must be preceded by a store to the
persistent undo log, ordered via sfence. In redo logging, the
only fences are to ensure that all redo log entries are persisted
before writeback begins, and to order writeback with respect
to status updates. Thus if a transaction performs W writes,
undo logging will perform O(W) fences, and redo logging
will perform O(1) fences.

If we consider the timing of a system failure with respect to
a program that uses redo-based PTM, we see that storing the
redo log persistently is necessary, but the persistence is often
overkill. Suppose that a transaction 7" has not yet reached
its commit point. In that case, if a system failure occurs,
the recovery procedure will re-try 7'; the previous redo log
is discarded. Furthermore, in the common case where system
failures do not happen, an about-to-commit transaction will
persist its redo log, mark itself committed, write back the redo
log, and then discard the redo log. Redo logs are ephemeral
and rarely require persistence.

At the same time, notice that in redo-based PTM, a transac-
tion only performs stores to the Optane™ memory at commit
time. Until the commit point, a redo-based transaction keeps its
entire write working set in the (highly compact) redo log. For
transactions with modest write set sizes, it would be possible
to use a small amount of PDRAM for the transactions’ redo
logs, without caching any other Optane™ pages in DRAM.
We refer to this approach as PDRAM-Lite. As shown in
Figure 5, a smaller directory is needed to track the small
number of DRAM pages that serve as a cache of Optane™

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

pages. Furthermore, when a power failure signal arrives, after
flushing the caches, the recovery operation can decide which
pages of PDRAM-Lite to flush to Optane™ by checking the
state of the corresponding transactions. For any transaction
that is still in-flight, its redo log can be skipped.

While PDRAM-Lite will require more reserve power than
eADR, we expect that in many workloads, only small amounts
of memory will suffice, and thus the energy overhead will be
modest. For example, the Vacation benchmark never requires
more than 37 contiguous cache lines (roughly half a page) for
its redo log. TPCC (Hash Table) requires at most 36 cache
lines. If these are representative of emerging PTM workloads,
then a handful of pages per thread, with a fall-back to using
Optane™ memory directly, should suffice.

C. Simulating PDRAM

To simulate PDRAM-Lite, we modified the redo log imple-
mentation for the eADR redo-based PTM implementations,
placing the entire log in DRAM. In additional testing, we
found that the difference in latency between DRAM and
Memory Mode was negligible for applications with working
sets up to 16MB, and thus we expect the latency of redo
log accesses in PDRAM-Lite to be a fair approximation. As
with eADR, we ignore the fact that our system does not have
enough reserve power to provide durability guarantees.

More interestingly, we found that it is possible to simulate
the full PDRAM proposal on existing Optane™ DC systems.
The mechanics of PDRAM are already employed in Memory
Mode; the challenge is only to make the data persist. We
found that when running in Memory Mode, we could create
an 750GB RAM Disk on the Optane™ memory, and then
mmap () it into the virtual address space of the application.
Loads and stores would typically route to the DRAM cache,
but would ultimately (e.g., on program termination) be flushed
back to the Optane™ memory. As with PDRAM-Lite, this
simulation does not account for the added reserve power that
would be required to flush caches and write back dirty pages
from DRAM. However, the latencies we observed were in
keeping with expected latencies for DRAM and Optane™ DC.

D. Evaluation of PDRAM and PDRAM-Lite

Figures 6 and 7 repeat the experiments of Section III. As
before, the “DRAM?” curves show the performance of the PTM
workloads and algorithms when only accessing DRAM. The
eADR curves are also the same. However, we now add two
curves that simulate PDRAM, using redo and undo logging,
as well as a redo logging PTM that simulates PDRAM-Lite.

The first goal of these experiments is to determine whether
PDRAM can bridge the gap between DRAM and eADR. The
result is largely affirmative. In TATP, the B+Tree microbench-
marks, and Vacation, PDRAM matches DRAM performance
up until Optane™ scalability bottlenecks (WPQ saturation)
occur. The same is generally true for TPCC.

The second goal is to determine whether PDRAM-Lite of-
fers sufficient value. The result here is less clear: PDRAM-Lite
outperforms eADR in every case, but the gains are marginal

355

for all but TATP and TPCC. In fact, this result confirms
a finding from [46]: Optane™ DC throughputs are much
closer to DRAM throughput for regular access patterns than
for irregular patterns. Moving the redo log into DRAM does
not have a significant impact on latency, since the compact
log, with its regular access pattern, did not have much worse
latency than DRAM to begin with.

E. Exploring the Impact of Workload Size with Memcached

We conclude our evaluation by investigating the impact of
working set size on the throughput of transactions. Figure 8
presents the throughput (requests per second) of memcached
with a single worker thread. We vary the working set size
by changing the number of items stored in the cache. In
the experiment, a set of client threads, running on a separate
NUMA socket, issue an equal mix of get and set commands,
using random keys. This leads to poor locality, such that every
read will effectively be handled by the smallest level of the
memory hierarchy that is capable of holding the entire working
set. In addition, by limiting the server to a single thread, we
avoid saturating the read or write bandwidth of the Optane™
DC memory. In this way, we are able to isolate the latency of
Optane™ DC vs. DRAM.

The experiment considers a small working set (32MB),
which fits in the L3 cache. It then considers working sets
starting at 32GB and increasing in increments of 64GB. At
96GB, the working set cannot fit in DRAM, nor can it be
completely cached in DRAM (e.g., for PDRAM). In this
manner, we are able to observe how the Optane™ DC memory
behaves for ADR, eADR, PDRAM, and PDRAM-Lite.

For the PDRAM-Lite approach, we observe a broad trend
throughout the experiments: its performance is only marginally
better than Optane™ performance with the eADR durability
model and redo logging. This result is reasonable, since the
highest Optane™ overheads relate to random reads and writes;
the PDRAM-Lite model only focuses on writes to the redo log,
which are regular and hence do not incur the highest latencies.

Next, we observe a precipitous drop in performance for all
configurations when the working set increases from 32MB
to 32GB. This is expected, since the L3 is able to cache
both DRAM and Optane™ locations at 32MB (for ADR,
only Optane™ reads benefit from caching; for eADR and the
PDRAM approaches, Optane™ writes also benefit). At the
same time, fitting the working set in the L3 does not overcome
the fundamental differences between the algorithms. Stores to
Optane™ still must eventually flush, and flush more slowly
than flushes of stores to DRAM. Additionally, c1wb and fence
instructions (in ADR) have unavoidable latencies.

The next interesting point on the X axis is the movement
from 32GB to 96GB. At this point, DRAM no longer caches
the entire working set, which affects PDRAM and PDRAM-
Lite systems. Note that for the DRAM curves, operation
beyond 96GB is not possible. For ADR and eADR curves,
no drop-off was expected, since these algorithms do not use
DRAM to store persistent data. Surprisingly, the PDRAM and
PDRAM-Lite algorithms did not experience any slowdowns

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

18000

Memcached

m-m ADR_DRAM_U
A-A ADR_DRAM R

*-% eADR_DRAM_U
@-@ eADR_DRAM R

160000

OO ADR_Optane_U
A—A ADR_Optane_R

*—% eADR_Optane_U
O-0 eADR_Optane_R

44 PDRAM_U
A&—A PDRAM R

o—a PDRAM_Lite R

140000

wn *\

£120000} ",

o Y

™M .

=100000

= 0y

3 R

2 80000‘”{“? ¢ @ N X N .

2 il b iy T Y I S—" 4 4+ N S—

3 M +——— + 3 4 4 3 ¢ G § & $

£ 600000 -, Amreoeeses A

= S TLRSLEILE W -

40000[™ 5 o 8 ¢ 0 o c o
5

20000

032M 32 96 192

256

320 384 448 512 576 640

Workload Size (GB)

Fig. 8: Performance comparison of memcached at different working set sizes. Beyond 32M, the working set does not fit in
the L3 cache, and beyond 96 GB, the working set does not fit in DRAM.

at this point; only eADR+Undo slowed down at 96GB, and
ADR+Undo had a similar slowdown at 192GB. Delving
deeper into why these specific combinations degrade is future
work. Our suspicion is that hash table re-balancing may be
occurring more frequently for these workload combinations,
but additional testing is required.

We also observed a slowdown at 320GB. One important
factor at this point is that memcached stores an index as well
as values; when the index is cacheable but the data is not,
performance does not degrade as rapidly. For our machine
and workload, 320GB is the point where there ceases to be
much profitable caching of the index, and the entire workload
runs at the speed of the DRAM or Optane™ memory.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the behavior of highly-optimized
PTM algorithms on a system with Intel® Optane™ Direct
Connect (Optane™ DC) memory. To the best of our knowl-
edge, this is the first work to directly study PTM performance
on Optane™ DC.

Our main finding is that the durability model significantly
impacts PTM performance on Optane™ DC.. ADR, which
requires explicit flushes of cache lines to the memory con-
troller’s WPQs, and explicit fences to ensure the ordering
of flushes with respect to stores, is substantially slower than
eADR, which assumes enough reserve power to flush caches
to the Optane™ DC in the event of a power failure. Despite
eADR’s higher performance, it is still below DRAM. Charac-
teristics like bounded WPQs appear to create higher single-
thread latency and worse scalability, because the Optane™
DC memory bandwidth can saturate with many fewer writing
threads than are needed to saturate DRAM bandwidth.

Inasmuch as systems rarely fail, the defensive measures
used by PTM algorithms are usually overkill. In recognition
of that reality, we introduced two new durability domains that
made all (PDRAM) or some (PDRAM-Lite) of DRAM to
be persistent. While hardware does not support this behavior

356

today, we argued that the necessary support is present in
Optane™ DC systems, to support the non-durable Memory
Mode of operation. We then presented realistic software em-
ulation of these durability domains, and evaluated PTM per-
formance. While PDRAM performed as expected, and largely
closed the gap between Optane™ DC and DRAM, PDRAM-
Lite did not. Workload and Optane™ DC characteristics
simply do not result in high latency at the places in the PTM
algorithm where PDRAM-Lite can deliver improvement.

Our findings raise a number of questions that we leave
to future work. First and foremost is the question of reserve
power. The ADR durability domain exists today, with enough
reserve power. It is hypothesized that modest batteries would
enable eADR. We do not have an estimate of the energy
overhead to support PDRAM, nor do we have a formula
or model for estimating reserve power requirements for a
workload. As future work, we plan to investigate the energy
consumption of the durability domains.

Another open question is whether hardware transactional
memory (HTM), or hardware acceleration of STM, is a viable
strategy for accelerating PTM. In particular, while Intel®
Transactional Synchronization Extensions are incompatible
with PTM in ADR, they might work with eADR and PDRAM.
If so, it may be that HTM techniques reduce latency and aid
scalability, or that HTM just causes the WPQs to saturate with
fewer writing threads. Studying HTM behavior in eADR is an
exciting topic for future work.

ACKNOWLEDGMENTS

We thank Brian Hirano for many insightful conversations
during the conduct of this research. At Lehigh, this work was
supported by the Intel and NSF joint research center for Com-
puter Assisted Programming for Heterogeneous Architectures
(CAPA) under Grant CCF-1723624. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the NSF or Intel.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

[10

(11]

[12]

[14]

[15]

[16]

[17]

[18]

(19]

[20]
[21

[22]

REFERENCES

G. Goindi, “Exadata Persistent Memory Accelerator:
with Intel on Optane DC Persistent Memory,”
https://blogs.oracle.com/exadata/persistent-memory-accelerator.
B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEE micro, vol. 30, no. 1, 2010.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” ACM SIGARCH Computer
Architecture News, vol. 37, no. 3, pp. 2-13, 2009.

A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara,
K. Tsunekawa, D. Djayaprawira, N. Watanabe, and S. Yuasa, “Spin-
torque diode effect in magnetic tunnel junctions,” Nature, vol. 438, no.
7066, p. 339, 2005.

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto et al., “A novel
nonvolatile memory with spin torque transfer magnetization switching:
Spin-ram,” in IEEE InternationalElectron Devices Meeting, 2005. IEDM
Technical Digest. 1EEE, 2005, pp. 459-462.

Y. Huai, “Spin-transfer torque mram (stt-mram): Challenges and
prospects,” 2009.

A. Sawa, “Resistive switching in transition metal oxides,” Materials
today, vol. 11, no. 6, pp. 28-36, 2008.

H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp.
2237-2251, 2010.

J. Condit, E. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory,”
in Proceedings of the 22nd ACM SIGOPS Symposium on Operating
Systems Principles, Montana, USA, Oct. 2009.

J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of Persistent
Memory Objects Under a Full-System-Crash Failure Model,” in Pro-
ceedings of the 30th International Symposium on Distributed Computing,
Paris, France, Sep. 2016.

N. Cohen, D. T. Aksun, H. Avni, and J. R. Larus, “Fine-Grain Check-
pointing with In-Cache-Line Logging,” in Proceedings of the 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Providence, RI, Apr. 2019.

F. Nawab, J. Izraelevitz, T. Kelly, C. B. M. III, D. R. Chakrabarti, and
M. L. Scott, “Dali: A Periodically Persistent Hash Map,” in Proceedings
of the 31st International Symposium on Distributed Computing, Vienna,
Austria, Oct. 2017.

M. Friedman, M. Herlihy, V. Marathe, and E. Petrank, “A Persistent
Lock-Free Queue for Non-Volatile Memory,” in Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Vienna, Austria, Feb. 2018.

H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ACM SIGARCH Computer Architecture News,
March 2011.

J. Coburn, A. Caulfield, A. Akel, L. Grupp, R. Gupta, R. Jhala, and
S. Swanson, “NV-Heaps: Making Persistent Objects Fast and Safe
with Next-generation, Non-volatile Memories,” in Proceedings of the
Sixteenth ASPLOS, New York, NY, USA, Mar. 2011.

M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren,
“DudeTM: Building Durable Transactions with Decoupling for Persis-
tent Memory,” in Proceedings of the 22nd ASPLOS, Xi’an, China, Apr.
2017.

E. R. Giles, K. Doshi, and P. Varman, “Softwrap: A lightweight
framework for transactional support of storage class memory,” in Mass
Storage Systems and Technologies (MSST), 2015 31st Symposium on.
IEEE, 2015, pp. 1-14.

A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” ACM SIGOPS Op-
erating Systems Review, vol. 50, no. 2, pp. 399-411, 2016.

Partnering
2018,

Intel, “pmem.io: Persistent memory programming blog.” 2014,
https://pmem.io/.

B. Bridge, “Nvm support for ¢ applications.(2015),” 2015.

Intel Corporation, “Persistent memory development kit,”
http://pmem.io/pmdk/.

P. Ramalhete, A. Correia, P. Felber, and N. Cohen, “OneFile: A Wait-
Free Persistent Transactional Memory,” in Proceedings of the 49th In-
ternational Conference on Dependable Systems and Networks, Portland,
OR, Jun. 2019.

357

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms
for persistent transactional memory,” in Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures. ~ACM,
2018, pp. 271-282.

J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Guan, and H. Chen,
“Pisces: a scalable and efficient persistent transactional memory,” in
2019 {USENIX} Annual Technical Conference (ATC, 2019, pp. 913
928.

D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging
Locks for Non-Volatile Memory Consistency,” in ACM SIGPLAN No-
tices, vol. 49, no. 10. ACM, 2014, pp. 433-452.

D. Dice, O. Shalev, and N. Shavit, “Transactional Locking IL,” in Pro-
ceedings of the 20th International Symposium on Distributed Computing,
Stockholm, Sweden, Sep. 2006.

P. Felber, C. Fetzer, and T. Riegel, “Dynamic Performance Tuning of
Word-Based Software Transactional Memory,” in Proceedings of the
13th PPoPP, Salt Lake City, UT, Feb. 2008.

S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66-76, 1996.

Intel Corporation, “Nvml: Implementing persistent memory applica-
tions,” https://www.snia.org/sites/default/files/.

SNIA, “NVM Programming Technical Work Group,”
https://www.snia.org/forums/sssi/nvmp/.

Intel, “NVDIMM Block Window Driver Writer’'s Guide.”

http://pmem.io/documents/NVDIMM_DriverWritersGuide-July-
2016.pdf.

V. Marathe, A. Mishra, A. Trivedi, Y. Huang, F. Zaghloul, S. Kashyap,
M. Seltzer, T. Harris, S. Byan, B. Bridge, and D. Dice, “Persistent
memory transactions,” in arXiv preprint arXiv:1804.00701, 2018.

Intel Architecture Instruction Set Extensions Programming Reference,
319433rd ed., Intel Corp., Feb. 2012.

P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and
D. Lowell, “The rio file cache: Surviving operating system crashes,”
in Acm Sigplan Notices, vol. 31, no. 9. ACM, 1996, pp. 74-83.

J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory
updates via justdo logging,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 2, pp. 427-442, 2016.

D. Narayanan and O. Hodson, “Whole-system persistence,” ACM
SIGARCH Computer Architecture News, vol. 40, no. 1, pp. 401-410,
2012.

F. Nawab, D. R. Chakrabarti, T. Kelly, and C. B. Morrey III, “Procrasti-
nation beats prevention: Timely sufficient persistence for efficient crash
resilience.” in EDBT, 2015, pp. 689-694.

P. Zardoshti, T. Zhou, Y. Liu, and M. Spear, “Optimizing Persistent
Memory Transactions,” in Proceedings of the 28th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
Seattle, WA, Sep. 2019.

P. Zardoshti, T. Zhou, P. Balaji, M. L. Scott, and M. Spear, “Simplifying
Transactional Memory Support in C++,” p. 25, 2019.

K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast
recoverable allocation of non-volatile memory,” in ACM SIGPLAN
Notices, vol. 51, no. 10. ACM, 2016, pp. 677-694.

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stan-
ford Transactional Applications for Multi-processing,” in Proceedings
of IISWC, Seattle, WA, Sep. 2008.

S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with whisper,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS’17,
Xi’an, China, April 2017.

memcached.org, “Memcached, a distributed memory object caching
system.” 2014, http://memcached.org/.

W. Ruan, T. Vyas, Y. Liu, and M. Spear, “Transactionalizing Legacy
Code: An Experience Report Using GCC and Memcached,” in Pro-
ceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems, Salt Lake City,
UT, Mar. 2014.

M. Zhuang and B. Aker, “memaslap-load testing and benchmarking a
server,” 2003.

J. lIzraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module,”
2019.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on January 11,2021 at 19:51:49 UTC from IEEE Xplore. Restrictions apply.

