
1 
 

Friction between a plane strain circular indenter and a thick poroelastic substrate 

Yuan Qi1, Kristin N. Calahan1, Mark E. Rentschler1, Rong Long1* 

1Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, 
USA 

*Corresponding author: rong.long@colorado.edu 

 

Abstract  

This paper presents a computational study on the role of poroelasticity in gel friction. Motivated 

by recent experimental studies in the literature, we develop a plane strain finite element model to 

elucidate the contact mechanics between a circular indenter and a thick poroelastic substrate under 

both normal and shear loadings. Two cases are considered: i) steady state sliding under fixed 

normal displacements, and ii) relaxation under fixed normal and shear displacements. In steady 

state sliding, we find that a net friction force can arise even if no intrinsic adhesive or frictional 

interaction is implemented at the indenter/substrate interface. Such friction force exhibits a non-

monotonic dependence on the sliding velocity and peaks at an intermediate velocity. Our model 

reveals that this friction force is induced by poroelastic diffusion in the gel substrate which can 

lead to considerable asymmetry in both the contact profile and contact pressure. In terms of 

relaxation, if the indenter/substrate interface is set to be frictionless, we find that the friction force 

induced by poroelasticity relaxes to zero with a characteristic time much faster than that of the 

normal force. When a finite friction coefficient is introduced at the interface, the normalized 

relaxation curve for the friction force approaches that for the normal force as the friction coefficient 

increases. These modeling results suggest that poroelasticity can be an important contributing 

mechanism for gel friction.  
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1. Introduction 

 The friction of gels is a fundamental problem ubiquitously found in biological systems (e.g., 

cartilage) and engineering applications (e.g., contact lens). For example, the friction of biological 

interfaces involving cartilage (Ateshian, 2009; Krishnan et al., 2004; Moore and Burris, 2014) and 

mucous surfaces (Pult et al., 2015) is directly related to the lubrication and wear of tissues, and 

thus is of critical importance for applications including artificial joints (Greene et al., 2011, 2008; 

Jin et al., 1992; McCutchen, 1962) and regenerative medicine (Sterner et al., 2017). More recently, 

the need to develop medical robotic devices with in vivo mobility (Sliker et al., 2012) demands a 

fundamental understanding of the friction between synthetic materials and biological tissues 

(Sliker et al., 2010). Unlike macroscopic stiff surfaces that follow Amontons’ laws of friction, 

many biological interfaces are soft, aqueous and dynamic (Gong, 2006; Pitenis et al., 2017), 

thereby exhibiting complex frictional behaviors far beyond Amontons’ laws (Gong et al., 1997). 

In this regard, hydrogels provide an ideal model system to enable experimental and theoretical 

investigations on the friction of soft and aqueous interfaces (Gong, 2006). Extensive experimental 

studies in the literature have revealed that gel friction depends on a wide range of parameters which 

can be largely categorized into three types: i) loading parameters such as sliding velocity 

(Delavoipière et al., 2018; Gong et al., 1997; Reale and Dunn, 2017) and normal pressure (Gong 

et al., 1997), ii) surface conditions such as roughness (Persson and Scaraggi, 2018; Yashima et al., 

2014) and interface fluid domain (Yamamoto et al., 2014), and iii) gel properties such as network 

mesh size (Shoaib et al., 2018), electric charges (Gong et al., 2002), and water content (Dunn et 

al., 2013).  

 The dependence on the sliding velocity, referred to as the rate-dependence hereafter, is a key 

feature of gel friction. Several physical mechanisms can contribute to the rate-dependence of gel 

friction. The theory established by Gong and Osada (1998) described the interplay of two 

mechanisms: adhesion and hydrodynamic lubrication. Specifically, this model considers two cases 

of surface interaction between a hydrogel and a substrate when immersed in water: repulsive or 

attractive. For the repulsive case, friction is governed by the lubrication of the hydrated water layer 

of the gel network at the interface. For the attractive case, the adsorption and detachment of gel 

polymer chains on the substrate surface results in rate-dependent interface adhesion, and thus can 

also contribute to friction in addition to the lubrication layer. Such adhesive friction was modeled 

by tracking the stretch of adsorbed chains and the kinetics of chain adsorption and detachment, 
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similar to Schallamach’s theory of rubber friction (Schallamach, 1963). As the sliding velocity 

increases, the dominant mechanism transitions from adhesive interaction to hydrodynamic 

lubrication (Kurokawa et al., 2005). For either adhesion or lubrication, the mechanism described 

above only accounts for what occurs at the interface. Most gels exhibit rate-dependent, inelastic 

bulk properties, e.g., viscoelasticity and poroelasticity, which can also lead to rate-dependent 

friction by inducing energy dissipation upon contact deformation (Delavoipière et al., 2018; 

Kagata et al., 2002; Rennie et al., 2005; Shoaib and Espinosa-Marzal, 2018). Several recent works 

were devoted to the coupling between bulk dissipative behavior and interface adhesion (Shoaib 

and Espinosa-Marzal, 2018) or hydrodynamic lubrication (Smyth and Green, 2017), and how such 

coupling governs gel friction.  

This work focuses on a particular aspect of gel friction: the role of poroelasticity. In recent 

experimental studies on gel friction, it was found that poroelastic diffusion in the gel substrate can 

lead to an asymmetric contact area (Delavoipière et al., 2018) and rate-dependent kinetic friction 

(Delavoipière et al., 2018; Reale and Dunn, 2017). Prior to these works, the poroelastic relaxation 

in gel substrates upon normal contact with a cylindrical indenter (Hui et al., 2006) or a spherical 

indenter (Hu et al., 2011, 2010) was leveraged as a method to characterize the elasticity and 

permeability of gels. Theoretical or computational analyses of the poroelastic contact mechanics 

involving lateral displacements of the indenter are important for understanding the effect of 

poroelasticity on gel friction. Delavoipière et al. (2018) developed an analytical model to quantify 

how poroelasticity affects the contact pressure between a rigid spherical indenter and a thin gel 

layer under steady state sliding. However, in comparison to normal contact, the analyses of 

poroelastic contact mechanics with lateral displacements are still limited. Here we present a two-

dimensional (2D) finite element analysis on the poroelastic contact mechanics between a rigid 

circular indenter and a thick gel substrate under the plane strain condition. In Section 2, we 

highlight relevant experimental results in the literature and define two problems for our finite 

element model: steady state sliding under fixed normal displacements and relaxation under fixed 

normal and shear displacements. Modeling results for these two problems are presented and 

discussed in Sections 3 and 4, respectively, and conclusions are provided in Section 5.  

 

2. Problem definition 
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2.1 Experimental results in the literature 

   In this section, we briefly review relevant experimental works in the literature (Delavoipière 

et al., 2018; Johannes et al., 2019; Reale and Dunn, 2017) to put our work into perspective. These 

studies adopted similar experimental configurations, i.e., shearing a rigid spherical probe indented 

on a gel substrate as shown in Fig.1a. Two types of loading conditions are discussed here: steady 

state sliding and relaxation.  

 

 

Figure 1 (a) Schematic showing the experimental configuration of a rigid sphere indenting and 
shearing on a gel substrate. (b) Experimental data from literature showing kinetic friction force Fs 
under steady state sliding with fixed normal forces Fn versus sliding velocity Vs. Data points are 
extracted from Figure 2 of Delavoipière et al. (2018). (c) Experimental data from literature 
showing the relaxation of normal or shear force under fixed normal or shear displacements. Data 
points for the normal force are extracted from the last step loading in Figure 3C (normal) of 
Johannes et al. (2019) and then normalized. Data points for the shear force are extracted from the 
first step loading in Figure 4A (shear) of Johannes et al. (2019) and then normalized.  

 

 Regarding steady state sliding, Delavoipière et al. (2018) used a glass sphere (R = 25.9mm) on 

a thin poly(dimethylacrylamide) gel layer (h =3.1m) bonded to a glass surface, while Reale and 

Dunn (2017) used a smaller glass sphere (R =1.7mm) on a thick polyacrylamide gel substrate (h = 
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9mm). Despite the differences in dimension and material, both works showed that the kinetic 

friction force Fs under steady state sliding with a fixed normal force depends on the sliding velocity 

Vs (see Fig.1b). This rate dependence was attributed to the competition between poroelastic 

diffusion in the bulk gel and the advection caused by indenter sliding, which was characterized by 

the Péclet number Pe. It is important to note that the definitions of Péclet number in Delavoipière 

et al. (2018) and Reale and Dunn (2017) differ by a factor of order 1 but are consistent in terms of 

scaling analysis (see Appendix 1 for a detailed discussion). The experimental results in 

Delavoipière et al. (2018) show that the kinetic friction force Fs is a non-monotonic function of 

the sliding velocity Vs as illustrated in Fig.1b. The range of sliding velocity corresponds to 0.04 

<~ Pe <~ 400, and the friction force peaks at Pe ~ 1. On the other hand, Reale and Dunn (2017) 

showed that the friction coefficient (or friction force under a fixed normal force) decreases with 

Pe, but their experiments cover the range of 3.5 ≤ Pe ≤ 5500 which presumably falls onto the 

decaying branch of friction coefficient versus Pe.  

 Two different approaches were developed to model the dependence of kinetic friction on Pe: 

Delavoipière et al. (2018) considered the energy dissipation due to poroelastic diffusion, whereas 

Reale and Dunn (2017) factored the effect of poroelastic relaxation into an effective, rate-

dependent adhesion energy. In principle,  these two approaches may be reconciled by recognizing 

that energy dissipation can lead to an increase in the effective adhesion energy as in the adhesion 

of viscoelastic solids (Barthel and Frétigny, 2009). Nevertheless, both approaches are based on 

energetics. Delavoipière et al. (2018) also developed an analytical model to address the underlying 

mechanics for the steady state sliding of a rigid spherical indenter on a thin gel substrate. Because 

of the thin substrate, they first used the elastic foundation approximation to determine the normal 

strain in the substrate. Using this approximate strain solution, they further calculated the pore 

pressure field and the interface contact pressure. The model showed that the contact area was 

circular for Pe < 1, but became asymmetric when Pe > 1. Interestingly, in both regimes the contact 

pressure was found to be asymmetric, i.e., the contact pressure near the leading edge of the indenter 

was larger than that near the trailing edge, which was induced by the uneven pore pressure in the 

gel substrate. This result implies that even if the interface is intrinsically frictionless, the 

poroelasticity could still induce a net friction force through the asymmetric contact pressure. 

However, since the model by Delavoipière et al. (2018) was approximate and only applicable in 

the thin substrate limit, whether this implication holds for other geometry (e.g., thick substrate) is 
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unclear. If it holds, what governs the rate-dependence of poroelasticity induced friction? These 

questions will be addressed in Section 3. 

 The previous works reviewed above focus on the rate-dependent kinetic friction force under 

fixed normal forces. In a recent work (Johannes et al., 2019), we studied the three-dimensional 

(3D) contact area of a spherical indenter (steel core coated by an elastomer layer with total radius 

R =265m) on a polyacrylamide gel substrate (h =420m). Significant relaxation of normal or 

shear force was observed under step loadings of normal or shear displacement. For example, the 

time history of normal and shear forces, normalized by their values at the beginning of relaxation, 

is shown in Fig.1c. Note that the time in Fig.1c is defined relative to the beginning of relaxation, 

i.e., just after a step loading of normal or shear displacement is applied. These results show that 

the shear force relaxes faster and to a much larger extent than the normal force. Although 

poroelastic relaxation in hydrogel substrates under normal indentation has been extensively 

modeled (Hu et al., 2011, 2010; Hui et al., 2006), studies on the relaxation under shear 

displacements are lacking, which will be explored in Section 4. 

 

2.2 Finite element model 

We build a finite element (FE) model using the commercial software ABAQUS (version 2017, 

Simulia, Dassault Systèmes, Providence, RI) to study the effect of poroelasticity on gel friction. 

Since gel friction involves multiple contributing mechanisms, we make the following assumptions 

to capture the key effects of poroelasticity while keeping the model tractable.  

 Plane strain condition: the 3D deformation induced by shear loadings of a spherical indenter 

on a gel substrate is computationally expensive to simulate. Therefore, here we consider a 2D 

plane strain model consisting of a rigid circular indenter (radius = R) on a gel substrate 

(thickness = h). 

 Thick substrate (h>>R): we assume the limit of thick gel substrate (i.e., h >> R) to reduce the 

number of independent parameters, although in experiments the ratio h/R can cover a large 

range, e.g., ~10-4 in Delavoipière et al. (2018) and 5 in Reale and Dunn (2017).  

 Linear poroelasticity model: we assume the gel substrate undergoes infinitesimal displacement 

and strain during indentation and shear, which allows us to use the linear poroelastic model 
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(Cheng, 2016) and adopt the linear kinematics by turning off the “NLGEOM” option in 

ABAQUS. 

 No adhesion at the interface: interfacial adhesion can be a potentially significant contributing 

mechanism for gel friction (Gong and Osada, 1998). Here we assume zero adhesion at the 

interface between the indenter and the gel substrate to isolate the effect of poroelasticity. 

 Friction on the interface: we first assume the interface to be frictionless and check whether a 

net friction force can arise solely due to poroelastic diffusion. Next, the model will be extended 

to include a finite friction coefficient  at the interface. 

In reality, a fluid layer may be present between the indenter and the gel substrate, which can 

influence the friction and adhesion on the interface. For example, the fluid layer can reduce friction 

through hydrodynamic lubrication. As described in Section 1, this effect has been considered in 

the gel friction theory by Gong and Osada (1998). As for adhesion, usually it is weak, if not zero, 

when the contact interface is submerged in fluids (Delavoipière et al., 2018; Johannes et al., 2019; 

Reale and Dunn, 2017). In certain cases, an interfacial fluid layer may enhance adhesion through 

capillary interaction (Bhushan, 2003). In this work, we assume zero adhesion and adopt simple 

interface friction models (i.e., frictionless or constant friction coefficient) in order to focus on the 

effect of poroelasticity.  

The linear poroelastic solid model implemented in our FE simulations is briefly described as 

follows. We treat the gel substrate as an isotropic, fully saturated poroelastic medium, and assume 

both the solid and fluid constituents are incompressible. In this case, the stress-strain relation is 

given by (Cheng, 2016): 

   
2

2
1 2mn mn ss mn mn

G
G p

    


  


,             (1) 

where mn is the stress component, mn is the strain component, G is the shear modulus,  is the 

Poisson’s ratio in the fully drained state, p is the pore pressure, and mn is the Kronecker delta. 

Note that the subscripts (e.g., m, n or s) ranges from 1 to 3 and the Einstein’s summation convention 

of summing over repeated indices is adopted. The flux vector q, i.e., the volume of fluid passing 

through a unit area per unit time, is governed by the Darcy’s law: 

k
p


  q ,                (2)  
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where k is the intrinsic permeability (unit: m2) and  is the dynamic viscosity of the fluid 

constituent (unit: Pa.s). Since both the solid and fluid constituents are incompressible, the bulk 

strain ss can only be due to fluid transport, which leads to the following continuity equation: 

0ss

t


 


q  ,             (3) 

where t is the time. Combining the strain compatibility equations and eq.(1), we can obtain the 

following harmonic equation (Cheng, 2016): 

 
 

2 2 1
0

1 2 ss

G
p





 

     
.               (4) 

Substituting eq.(2) and eq.(4) into eq.(3), we obtain a diffusion equation in terms of the bulk strain 

ss: 

2 0ss
ssD

t

 
  


,               (5) 

where the diffusivity D is defined as 

 
 

2 1

1 2

Gk
D


 





.               (6)  

To facilitate the FE similations, we set the shear modulus G = 27.9 kPa and drained Poisson’s ratio 

ν = 0.28 according to Hu et al. (2010). Without loss of generality, the permeability is set to be k = 

9.9×10−9 m2. Note that the permeability k* in ABAQUS (unit: m/s) has a different definition from 

k in eq.(2). They are related by 

* wk k



 ,                (7) 

where w is the specific weight (i.e., weight per unit volume) of the fluid constituent. We use default 

values for both w and  which correspond to w =103 N/m3 and  = 103 Pa.s. As a result, the 

diffusivity is D = 9.04×10−7 m2/s. 

 The geometry, boundary conditions and loading history of our FE model are illustrated in Fig.2. 

Figure 2a shows the 2D plane strain mesh. The thickness h and width w of the gel substrate are far 

larger than the radius (R=30mm) of the rigid circular indenter, i.e., h = 50R and w = 100R. The 
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bottom boundary is fixed and impermeable, while the other three boundaries are free and subjected 

to zero pore pressure. The contact between the rigid indenter and the gel substrate is assumed to 

be hard contact. In addition, the contacting interface is assumed to be frictionless or frictional with 

a coefficient μ. The gel substrate is meshed by 73766 CPE4P four-point quadrilateral elements 

with the smallest element size lmin = R/120 within the contact region such that there are at least 55 

elements at the contact interface (see Fig.2a). The “Soil” analysis step in ABAQUS Standard is 

applied to simulate the poroelastic response of the gel substrate. Additional details on the effect of 

damping factor and substrate width w are given in Appendix 2. Although friction experiments 

(Delavoipière et al., 2018; Reale and Dunn, 2017) are typically conducted under fixed normal 

forces, here we apply displacement boundary conditions in both the normal and shear directions 

to ensure convergence of the simulations. Specifically, two cases of loading histories are 

considered as shown in Fig.2b and Fig.2c. In both cases, a normal indentation displacement un is 

first applied with a velocity of 10mm/s and then held fixed for the rest of the simulation. The first 

case corresponds to steady state sliding, where the shear displacement us is continuously increased 

at a fixed velocity Vs (see Fig.2b). The second case is for shear force relaxation, where us is first 

increased at a fixed rate and then held fixed. The directions of un and us are shown in Fig.1a. The 

normal indentation depth in all simulations is kept small (un = 1 mm, 2 mm or 3 mm) to satisfy the 

infinitesimal deformation assumption.  
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Figure 2 (a) Mesh geometry and boundary condition of the FE model. (b) Loading history of the 
normal displacement un and shear displacement us for steady state sliding. (c) Loading history of 
un and us for shear force relaxation. 

  

3. Steady state sliding  

3.1 Frictionless interface 

 We first focus on the case of steady state sliding with a frictionless interface. Under continuous 

sliding with a fixed normal displacement (see Fig.2b), we find that the indenter experiences a net 

friction force (see Fig.3b) even though the interface is frictionless with zero shear traction. Figure 

3b also shows that the net friction force reaches a steady state value after a transient stage, and the 

steady state friction exhibits a non-monotonic dependence on the sliding velocity Vs. In Fig.3a, we 

plot the steady state friction Fs as a function of Vs for three normal indentation depths un (= 1, 2, 

or 3 mm). These results show that Fs increases with the indentation depth un at a fixed Vs, but the 

velocity Vsmax at which the peak friction occurs slightly decreases with un (see Fig.3c).   

 

Figure 3 (a) Steady state friction force Fs versus the sliding velocity Vs for three different normal 
displacements (un = 1, 2, and 3 mm). (b) The friction force Fs versus shear displacement us at given 
sliding velocities (normal displacement un =3 mm). (c) The sliding velocity Vsmax where peak 
friction force occurs decays slightly with the prescribed normal displacement un. The symbols are 
extracted from part (a) and the dashed line is given by an empirical fitting formula, Vsmax 
=2.18/(un+1.03) to guide the view.  
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 To understand the underlying mechanics of the steady state friction response, we show in Fig.4 

the FE results for a representative case with un= 3 mm and Vs = 0.7 mm/s. For comparison, the 

same loading condition is applied to a control case where the substrate is elastic with the same G 

and  (= 0.28) as the drained pororelastic solid. Results from the elastic control case are also shown 

in Fig.4. Since the interface is frictionless, the net friction force, if any, should come from the 

normal pressure pc within the contact region. In Fig.4a where the arc angle  is used to describe 

the location within the contact region, we see that the contact pressure pc is asymmetric about the 

center of the indenter: pc along the leading edge of the contact region (i.e., on the left of the indenter 

center) is considerably higher than the trailing edge. This is associated with an asymmetric contact 

region: the leading edge is wider than the trailing edge. As a result, integral of the horizontal 

component of pc in the contact region leads to a non-zero net force resisting the sliding motion, 

i.e., the friction force. In contrast, Fig.4b shows that for the elastic control, the contact region and 

pc are symmetric about the center of the indenter, which implies a zero net friction force. The zero 

net friction force for the elastic control is expected since sliding does not induce any additional 

deformation due to the frictionless interface, and the distribution of pc should be the same as that 

for pure normal indentation. To illustrate this point, we note that analytical solution for pc under 

normal indentation is available based on the plane strain Hertz solution (Johnson, 1987): 

   

1/22

2

2
1n

c

F x
p

a a
 

  
 

 ,               (8) 

where Fn is the normal compressive force, x is the horizontal coordinate measured from the center 

of contact region, and a is the half contact width. The contact width a is related to the normal force 

by: 

   
 2 2 1 nF R

a
G





  ,                (9) 

where R is the indenter radius. Since sinx R  , eq.(8) can be rewritten as 

   
 
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
 
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a

R
     

 
 .        (10) 
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Using the value of Fn from the FE result, we first calculate a using eq.(9) and then plot eq.(10) in 

Figs.4a and 4b as the dashed line. It can be seen that eq.(10) agrees well with the FE result of 

elastic control, but not the poroelastic case. 

 

 

Figure 4 (a-b) Normalized contact pressure pc/G along the interface for the poroelastic case and 
the elastic control where un= 3mm and Vs = 0.7mm/s. The symbols represent FE results and the 
dashed line represents the plane strain Hertz solution in eq.(10). (c-d) Contours of the normal stress 
components (c) 11 and (d) 22 in the substrate for the poroelastic case and the elastic control. The 
subscripts “1” and “2” denote the horizontal and vertical directions, respectively.  
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Figure 5 (a-c) Normalized contact pressure pc/G along the interface for the poroelastic case with 
un= 3mm and three different Vs: (a) 0.05mm/s, (b) 0.7mm/s, and (c) 100mm/s. Also, plotted is the 
plane strain Hertz solution in eq.(10) with two different Poisson’s ratios (0.28 and 0.5) for the 
drained and undrained states of the poroelastic substrate. (d-e) Contours of (d) pore pressure p and 
(e) normal stress 22 in the substrate under steady state sliding. In (d-e), the top, middle and bottom 
rows correspond the cases with Vs = 0.05, 0.7, and 100mm/s, respectively.   

 

 The result in Fig.4a leads to the following question: what gives rise to the asymmetric contact 

pressure in the poroelastic case? To gain insight, we plot the stress fields of 11 and 22 within the 

substrate in Figs.4c and 4d. Asymmetry in both stress fields is clearly observed for the poroelastic 

case, in contrast to the symmetric stress fields in the elastic control. Since the pore pressure p is 

zero at the interface due to the prescribed boundary condition, it does not contribute directly to the 

contact pressure pc. Instead, the asymmetric profile of pc must be related to asymmetric 

deformation field induced by poroelastic diffusion in the substrate, as manifested by the 

asymmetric contact width in Fig.4a. As shown in Fig.5, steady state sliding of the indenter can 
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cause a high pore pressure region in front of the indenter and a low pore pressure region behind it, 

implying that fluid is driven from the leading edge of the indenter to the trailing edge. This uneven 

distribution of pore pressure breaks the symmetry of the substrate deformation field, thereby 

leading to asymmetric contact pressure pc and hence a net friction force Fs. This mechanism also 

explains why Fs increases with the normal indentation depth un observed in Fig.3b, because a larger 

un gives rise to a wider contact region.  

 Next, we discuss the rate-dependence of poroelasticity induced friction. Figure 5 shows the 

results for three cases with un = 3 mm and different values of Vs (= 0.05, 0.7 and 100 mm/s) that 

represent the regimes of low, intermediate and high sliding velocities. Specifically, we first plot 

the contact pressure distribution for Vs =0.05, 0.7 and 100mm/s in Fig.5a, 5b, and 5c, respectively. 

Interestingly, the contact pressure is nearly symmetric under both low and high velocities (i.e., 

0.05 and 100mm/s), which is consistent with the low friction force in these two regimes as shown 

in Fig.3a. Figures 5d and 5e show the fields of pore pressure p and normal stress 22 in the substrate 

for these three cases. At low velocity (Vs =0.05mm/s), the pore pressure field is approximately 

antisymmetric about the center of the indenter, which consists of a positive p region ahead of the 

indenter and a negative p region behind it (note that Vs points to the left). However, because the 

substrate is almost in the drained state due to the low velocity, the magnitude of p is too small to 

influence 22. Therefore, 22 is still approximately symmetric about the indenter center. As Vs 

increases to 0.7mm/s, the magnitude of p is sufficiently large which results in an asymmetric 22 

field leading to the asymmetric contact pressure in Fig.5b. At high velocity (Vs =100mm/s), the 

positive p region dominates and is roughly symmetric about the indenter center, while the negative 

p region is suppressed. This corresponds to the undrained state of the substrate. Therefore, even 

though the magnitude of p is high, 22 is again nearly symmetric about the indenter center and so 

is the contact pressure in Fig.5c. It should be noted that these results were based on the assumption 

of a zero pore pressure condition on the top surface of the gel substrate, including the contact 

region. In reality, the impermeable indenter may resist poroelastic diffusion across the contact 

interface. This condition implies that the flux within the contact region should be finite or even 

zero (i.e., completely impermeable), while the substrate surface outside the contact region is still 

subjected to zero pore pressure. However, during steady state sliding the contact region keeps 

moving, which makes it challenging to prescribe different boundary conditions within and outside 

the contact region. In Appendix 3, we show that the results in Figs.5a-5c do not change 
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qualitatively if the zero pore pressure condition on the entire top surface of the gel substrate is 

replaced by a zero flux condition. Therefore, the assumed zero pore pressure condition at the 

contact interface does not qualitatively affect our conclusion regarding the asymmetry of contact 

pressure.  

 To provide theoretical support for the FE results in Fig.5d, we note that an analytical solution 

for the plane strain problem of steady state translation of a vertical concentrated force acting on a 

poroelastic half space is available in the literature (Cheng, 2016). Although our problem involves 

a circular indenter with a finite radius R, the concentrated force solution can provide a good 

approximation for material points whose distance to the contact region center is much larger than 

R. We set up a moving coordinate system centered at the concentrated force with the x-axis 

pointing horizontally left and y-axis pointing vertically down. The pore pressure field p(x, y) in 

the substrate is given by Chapter 7.16 of Cheng (2016) 

         
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and   

   
V

V
Dl

  ,                     (13) 

where “Im” in eq.(11) means the imaginary part of a complex number, l is a dummy variable for 

integration, Fn is the concentrated force (pointing vertically downward), V is the translational 

velocity of the concentrated force, D is the diffusivity of the poroelastic substrateand is the 

Poisson’s ratio of the drained state. In our problem, the origin of x-y system is located at the center 

of contact region and the sliding velocity Vs is equivalent to V. Next we consider two limiting cases.  

 First, in the limit of V → ∞, the first order approximation of eq.(12) is 

     ly
np y F e ,              (14) 

which leads to 
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       2 2
0

, coslyn nF F y
p x y e lx dl

x y 


 

 .           (15) 

This result implies that the pore pressure field is symmetric about the y-axis as V → ∞, which is 

consistent with the high velocity regime (Vs = 100mm/s) shown in Fig.5d. Moreover, eq.(15) 

coincides with the hydrostatic pressure field given by the Flamant solution for a vertical downward 

point force acting on an incompressible elastic half space (Johnson, 1987): 

    2 23
ss nF y

x y




 


.             (16)  

Therefore, as the limit of V → ∞, the poroelastic substrate remains in its undrained state and 

behaves as an incompressible elastic solid.  

 Second, in the limit of V → 0, the first order approximation of eq.(12) is 

        22 1 1
iVly

ly
np y F e e   

    
 



 ,           (17) 

which leads to 

           
2 2

0

1 1
, sinn nlyF F VVy xy

p x y e lx dl
D D x y

 
 


 

 
 .                 (18) 

This result has two implications: i) the pore pressure field is antisymmetric about the y-axis as V 

→ 0; ii) the magnitude of pore pressure p scales linearly with V and thus is small, both of which 

are consistent with the low velocity regime (Vs = 0.05 mm/s) shown in Fig.5d. In this limit, the 

poroelastic substrate is in the drained state and behaves as a compressible elastic solid.  

 The drained and undrained limits are further illustrated by plotting the plane strain Hertz 

solution of contact pressure pc in Figs.5a-5c. Specifically, we first use the normal force Fn from 

the FE result to determine the contact width in eq.(9) and then calculate pc/G using eq.(10). Unlike 

Figs.4a-4b, here we plot two cases with different Poisson’s ratios:  = 0.28 or 0.5. The former 

corresponds to the drained limit (compressible) of the gel, and the latter corresponds to the 

undrained limit (incompressible) of the gel. The contact pressure profiles in the low velocity (see 

Fig.5a) and high velocity (see Fig.5c) regimes (see Fig.5a) agree well with the drained elastic 

solution ( = 0.28) and undrained elastic solution ( = 0.5), respectively. In the intermediate 
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velocity regime (see Fig.5b), the contact pressure profile deviates from both elastic solutions. The 

FE result of pc near the center of contact region (|| ~0o) is bounded between the two elastic 

solutions, indicating that this is a region of active poroelastic diffusion. Interestingly, pc approaches 

the drained elastic solution near the leading edge of the contact region and the undrained elastic 

solution near the trailing edge of the contact region. This suggests that the substrate material near 

the leading edge of the contact region is more compliant than that near the trailing edge, which 

leads to a larger contact width at the leading edge. 

 Finally, we note that the non-monotonic rate-dependence of friction force and the asymmetric 

contact region have been experimentally observed by Delavoipière et al. (2018) for a spherical 

indenter on a thin hydrogel substrate. The friction experiments in Delavoipière et al. (2018) were 

conducted under fixed normal forces. Therefore, the decrease in friction force at high sliding 

velocities is accompanied by a reduction in the size of contact area. In contrast, our simulations 

were performed under fixed normal displacements, where the contact size is approximately the 

same for different sliding velocities. The rate-dependence of friction force observed in our 

simulations is mainly caused by the rate-dependent pore pressure field and the asymmetry in 

contact pressure, as explained above.      

3.2 Frictional interface  

 When a non-zero friction coefficient  is implemented at the interface, poroelasticity can still 

contribute to the steady state friction force by inducing an extra net shear force through the 

mechanism of asymmetric contact pressure. This phenomenon is illustrated in Fig.6 where the 

friction force Fs versus shear displacement us curves are plotted for un = 1 mm, Vs = 10 mm/s and 

three different friction coefficients . For cases with non-zero , the friction Fs first increases 

abruptly when us is small (see Fig.6b), followed by a more gradual increase of Fs until a plateau is 

achieved. The first stage (i.e., abrupt increase of Fs) is due to static friction, where the substrate 

deforms with a fixed contact area and Fs results from frictional shear tractions on the interface. As 

a result, this stage is absent for  = 0. The second stage (i.e., gradual increase of Fs) is attributed 

to poroelastic diffusion associated with indenter sliding, and follows a similar trend for all three 

cases of .  
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Figure 6 (a) Friction force Fs versus shear displacement us for three different interface friction 
coefficients ( = 0, 0.001, and 0.01). Also plotted are the results for elastic substrate with the same 
shear modulus G as the poroelastic substrate and Poisson’s ratio  = 0.28 or 0.495. Note that the 
normal displacement is fixed at un =1mm and the sliding velocity is Vs =10mm/s. (b) A zoom-in 
view at small us to show the abrupt increase of Fs at small us. 

 

 To highlight the effect of poroelasticity, we take the case of  = 0.01 as an example and replace 

the poroelastic substrate by an elastic one with the same G and  (= 0.28) as the drained limit. 

Result for the elastic case ( = 0.28) is shown in Fig.6 as a dotted line. As expected, Fs settles at 

a constant value once sliding starts. Interestingly, the elastic case ( = 0.28) exhibits a higher shear 

compliance than the poroelastic case during the static friction stage (see Fig.6b), and a lower shear 

force Fs than the poroelastic case at the onset of sliding. We attribute the difference to the fact that 

the elastic case with  = 0.28 represents the drained limit and thus is more compliant than the 

poroelastic substrate. This is evidenced by the dashed line in Fig.6 where we change the Poisson 

ratio  of the elastic case to 0.495, i.e., closer to the undrained limit of the poroelastic substrate. 

The elastic case with  = 0.495 approaches the poroelastic case during the static friction stage, and 

the onset of sliding occurs at the same Fs. After the onset of sliding, the friction force in the 

poroelastic case continues to increase, which corresponds to the transient build-up of asymmetric 

contact pressure before a steady state is achieved.   

 

4. Relaxation under fixed shear displacement 

4.1 Frictionless interface 
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 Poroelastic diffusion in the substrate can also lead to the relaxation of normal force Fn and 

shear force Fs if the displacements un and us are fixed. Here we focus on relaxation of the shear 

force Fs which will be compared with that of the normal force Fn. We start with the frictionless 

case and apply the loading history in Fig.2c. Specifically, the normal displacement un is first 

increased to 3mm at 10mm/s and then held fixed. After that, the shear displacement us is increased 

to 2mm at a velocity Vs and then held fixed. The relaxation histories of Fs for three cases with 

different Vs are shown in Fig.7a. Note that the time t is relative to the onset of fixing us, which is 

different for these two cases. The initial value of Fs at the beginning of relaxation (t = 0) is different 

in the three cases due to the rate dependence of Fs under sliding. The long-term limit of Fs is 

practically zero, which is expected because of the frictionless interface. 

 

Figure 7 (a) Time history of shear force Fs after us is increased to 2mm at Vs = 0.05, 0.6, or 
500mm/s and then held fixed. (b) Normalized time history for the normal force Fn (solid line) and 
shear force Fs (dashed lines).  

 

 To facilitate comparison between the relaxation history of Fn and Fs, we plot the force 

normalized by its initial value at the beginning of relaxation (t =0) in Fig.7b. Again, the time t is 

not defined in the absolute sense, but rather relative to the onset of fixing un (for Fn) or us (for Fs). 

Two important differences between the relaxation of normal and shear forces are observed: i) the 

shear force Fs relaxes much faster than the normal force Fn; (ii) the shear force Fs relaxes to zero 

while the normal force Fn relaxes to a plateau value related to the drained state. Both features are 

consistent with experimental data from literature as shown in Fig.1c. The difference in relaxation 

time between Fn and Fs is intriguing. In principle, the characteristic relaxation time due to 
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poroelastic diffusion can be estimated by  ~ L2/D, where L is the size of the diffusion region 

involved in relaxation and D is the poroelastic diffusivity (see eq. (6)). The relaxation processes 

of Fn and Fs should involve the same characteristic length L, i.e., the contact width, and yet exhibit 

substantially different relaxation times. To understand this behavior, we recall that the shear force 

Fs on a frictionless substrate relies on asymmetry of the contact region. Poroelastic diffusion not 

only reduces the contact pressure over time, but also drives interfacial slippage which decreases 

the extent of contact region asymmetry. While the relaxation of normal force Fn is dominated by 

the reduction in contact pressure, the relaxation of shear force Fs is governed by the combined 

effect of contact pressure reduction and interfacial slippage. This mechanism explains why Fs 

relaxes much faster than Fn. It also implies that the relaxation of Fs is dependent on the loading 

history, e.g., the sliding velocity Vs before the onset of relaxation can affect the asymmetry of 

contact region and hence the subsequent time history of relaxation, as shown in Fig.7b. 

 

4.2 Frictional interface 

 Based on the discussion in Section 4.1, we hypothesize that if interfacial slippage is suppressed, 

the relaxation history of shear force Fs should approach that of the normal force Fn. To test this 

hypothesis, we increase the interfacial friction coefficient  in the FE model and rerun the 

simulations where the indenter is first moved to a normal displacement un (=1, 2, or 3mm) at 

10mm/s and then to a shear displacement us =2mm at 500mm/s. Figure 8 shows the relaxation 

histories of Fs for five cases with different . Similar behaviors are observed for all three normal 

displacements un. As expected, increasing  leads to larger Fs over the entire time span of 

relaxation. More interestingly, the relaxation appears to become slower as  increases from 0.01 

to 2. This is consistent with our hypothesis that larger  suppresses interfacial slippage and thus 

slows down the relaxation of Fs.  
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Figure 8 Time history of shear force Fs when us is increased to 2mm at Vs =500mm/s and then 
held fixed. Five cases of interfacial friction coefficient  (=0.01, 0.1, 0.2, 1, 2) and three fixed 
normal displacements: (a) un=1mm, (b) un =2mm, and (c) un = 3mm are considered.  

  

 We take a closer look at the shear force relaxation by plotting the normalized time history for 

un =3mm in Fig.9a. Also included for comparison is the relaxation time history of the 

corresponding normal force. As the friction coefficient  increases from 0.01 to 0.2, the relaxation 

curve of shear force Fs clearly approaches that of the normal force Fn, both in terms of the 

relaxation time and the long-term plateau value. However, when is as large as 2, we observe a 

peculiar fast relaxation event occurring before t ~10−3 s in addition to the main relaxation history. 

Similar behaviors are observed for  = 0.8 and 1. Indeed, the normalized relaxation curves for  = 

0.8 and 1 overlaps that for  = 2 and thus are not shown in Fig.9a. To rule out the possibility of 

numerical error, we refine the mesh for the case of  = 2 so that the minimum element size is 

reduced by 20 times, but still obtain the same result as that in Fig.9a. Next we consider possible 

physical explanations. Since relaxation is driven by poroelastic diffusion in the substrate, the fast 

relaxation event observed for  = 0.8 to 2 indicates that there exists a deformation length scale 

much smaller than the contact width. One possible mechanism is that the compression at the 

leading edge due to the shear loading can induce local wrinkling instability. This behavior has 

been observed in friction experiments between a spherical indenter and a rubber substrate, and 

serves as the precursor for a phenomenon known as the Schallamach wave (Barquins, 1985). The 

tendency of local instability within the contact region can provide an additional length scale that 

is much smaller than contact width. The exact coupling between poroelastic diffusion and local 

elastic instability is an interesting problem that requires a separate study and is not pursued here. 
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Figure 9 (a) Normalized time history of shear force Fs under un =3mm with different interfacial 
friction coefficients  and for the corresponding normal force Fn. (b) The long-term plateau value 
of shear force relaxation Fs(∞)/Fs(0) versus friction coefficient .  

 

 Finally, we plot the long-term plateau value of the normalized shear relaxation curve, referred 

to as Fs(∞)/Fs(0), but actually evaluated at t =105s due to the finite time span of FE results. As 

shown in Fig.9b, the plateau value increases substantially with . Specifically, Fs(∞)/Fs(0) starts 

at ~0.2 when =0.01 and settles at 1/(2−2) when ≥ 0.5. Note that 1/(2−2) is the theoretical 

plateau value for the normal force relaxation Fn(∞)/Fn(0), which describes the transition from the 

undrained state to the drained state of the substrate. 

 

5. Conclusions 

     We present a computational study on the contact mechanics between a rigid indenter and a 

poroelastic substrate under plane strain conditions. Our focus is on the resultant shear force on the 

indenter under two types of loading conditions: i) continuous sliding with a fixed normal 

displacement and ii) relaxation under fixed normal and shear displacements.  

 For continuous sliding, we find that poroelastic diffusion in the substrate can lead to a net shear 

force even if the contact interface is frictionless. Our FE data reveals that the poroelasticity 

induced friction originates from the asymmetric pore pressure field in the substrate induced by 

sliding. This further causes asymmetric contact pressure at the interface and hence the net 

friction force. The magnitude of such poroelasticity induced friction is sensitive to the sliding 
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velocity: it diminishes at either low or high sliding velocities, where the substrate behaves as 

drained or undrained elastic solid, and the peak friction occurs at an intermediate velocity. We 

find that the rate-dependent pore pressure field within the substrate is responsible for the 

dependence of friction on sliding velocity. For cases with a non-zero interfacial friction 

coefficient, poroelasticity can still induce an extra contribution to the steady state friction.  

 For relaxation, we find that the poroelasticity induced friction force on a frictionless interface 

relaxes much faster than the normal force. In addition, the long-term plateau of the relaxation 

is zero. For cases with a non-zero interfacial friction coefficient, the relaxation curve for 

friction force approaches that of the normal force as the friction coefficient increases, both in 

terms of the relaxation time and the long-term plateau. 

Although our study is based on idealized plane strain geometry and a linear poroelastic model, the 

conclusions drawn from the FE results are qualitatively consistent with experimental data in the 

literature. More importantly, the FE results provide theoretical insights to elucidate the effects of 

bulk poroelasticity on the friction of gels.  

 

Acknowledgement 

The authors would like to thank the National Science Foundation (NSF) for funding this work 

through grant CMMI-1636203. 

 

Appendix 1 Péclet number  

 As described in Section 2.1, despite the differences in geometrical dimensions, both 

Delavoipière et al. (2018) and Reale and Dunn (2017) studied the steady state sliding of a rigid 

glass sphere on a gel substrate under fixed normal force Fn, and defined Péclet number to describe 

the competition between poroelastic diffusion and advection induced by sliding. Their definitions 

of Péclet number are consistent in scaling but are different in values. In Delavoipière et al. (2018), 

the Péclet number is defined as 

     
   

2
0

1 2

0
2 1 4 /4

1 2

s sV a V a
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Ga k D a a
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where Vs is the sliding velocity, D is the poroelastic diffusivity of the gel, a is the contact radius 

during steady state sliding and a0 is the long-term equilibrium contact radius under a fixed normal 

force Fn. Note that the ratio a/a0 is smaller than or equal to 1 because of the fixed normal force 

(rather than fixed normal displacement) during sliding. Indeed, Delavoipière et al. (2018) 

experimentally found that a/a0 is roughly 1 when Pe1 <~ 1, and decreases to ~0.6 for Pe1 up to 

100. In addition, Delavoipière et al. (2018) used a very thin gel substrate, and therefore a0 was 

given by a thin film approximation rather than the Hertz theory. In contrast, the Péclet number in 

Reale and Dunn (2017) is defined as 

     2

2 sV a
Pe

D
 .             (20) 

Since a/a0 ≤1, the difference between eq.(19) and eq.(20) can be as large as eight times.  

 Delavoipière et al. (2018) found that the peak friction force under steady state sliding occurs 

at Pe1~ 1. Since a/a0 ≈ 1 near Pe1~ 1, eq.(19) reduces to Pe1 ≈ Vsa/4D. Using this approximation 

and treating a as half of the total contact width, we found that the Péclet number associated with 

the peak friction in Fig.3a is Pe1 = 1~1.7, which is on the same order as the result in Delavoipière 

et al. (2018). However, due to the large differences in geometry (e.g., plane strain versus spherical 

indentation; thick substrate versus thin substrate) and loading condition (fixed normal 

displacement versus fixed normal force) between our model and the experiments in Delavoipière 

et al. (2018), quantitative comparisons are not pursued here.     

 

Appendix 2 Additional details of the FE simulations 

 To improve convergence in some cases of FE simulations, we applied the automatic 

stabilization option in ABAQUS by specifying a constant damping factor (= 0.02), which adds a 

fictitious viscous force to the global equilibrium equation. Such damping factor does not affect the 

result. In Fig.10, we plot the result of shear force Fs versus shear displacement us under continuous 

sliding either using a damping factor of 0.02 or with no damping factor. The results are nearly 

identical. 
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Figure 10 Effect of damping factor on the FE results. Shear force Fs versus shear displacement us 
under continuous sliding with a fixed normal displacement un =2mm and sliding velocity Vs = 
5mm/s. 

 

 Even though we set the lateral width of the gel substrate w to be much larger than indenter 

radius R (i.e., w = 100R), our FE results still exhibit a minor dependence on w. This is attributed 

to the well-known unbounded far field displacements in the Flamant solution and consequently 

the plane strain contact mechanics solution with an elastic half space (Johnson, 1987). For example, 

by increasing the w to be 200R, the shear force Fs increases slightly, as shown in Fig.11a. However, 

the quantitative trend of the function Fs versus Vs is independent of w. 

 

Figure 11 Effect of the substrate width w on the FE results. (a) Shear force Fs versus shear 
displacement us under continuous sliding with a fixed normal displacement un =1mm and sliding 
velocity Vs = 0.6mm/s. (b) Dependence of the steady state friction force Fs on the sliding velocity 
Vs for the normal displacement of un =3mm. 
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Appendix 3 Effect of poroelastic boundary condition 

 To illustrate the effect of poroelastic boundary condition, we replaced the zero pore 

pressure condition at the entire top surface of the gel substrate by a zero flux condition, and reran 

the simulations of steady state sliding shown in Figs.5a-5c. Results based on the zero pore pressure 

condition or the zero flux condition are compared in Fig.12. One can see that the zero flux 

condition leads to a slight increase in contact pressure, but does not qualitatively change the results.  

 

Figure 12 Normalized contact pressure pc/G along the interface for the poroelastic case with un= 
3mm and three different Vs: (a) 0.05mm/s, (b) 0.7mm/s, and (c) 100mm/s. The open square 
symbols represent points near the leading edge, while the closed circular symbols represent points 
near the trailing edge. The blue symbols are obtained using a zero pore pressure condition on the 
top surface of gel substrate, while the red symbols represent the results using a zero flux condition.
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