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Abstract—We consider the problem of an electricity aggrega-
tor attempting to learn customers’ electricity usage models while
implementing a load shaping program by means of broadcasting
dispatch signals in real-time. We adopt a multi-armed bandit
problem formulation to account for the stochastic and unknown
nature of customers’ responses to dispatch signals. We propose
a constrained Thompson sampling heuristic, Con-TS-RTP, as a
solution to the load shaping problem of the electricity aggregator
attempting to influence customers’ usage to match various desired
demand profiles (i.e., to reduce demand at peak hours, integrate
more intermittent renewable generation, track a desired daily
load profile, etc). The proposed Con-TS-RTP heuristic accounts
for day-varying target load profiles (i.e., multiple target load pro-
files reflecting renewable forecasts and desired demand patterns)
and takes into account the operational constraints of a distri-
bution system to ensure that customers receive adequate service
and to avoid potential grid failures. We provide a discussion on
the regret bounds for our algorithm as well as a discussion on
the operational reliability of the distribution system’s constraints
being upheld throughout the learning process.

Index Terms—Constrained optimization, distribution network,
multi-armed bandit, real-time pricing, demand response,
Thompson sampling.

I. INTRODUCTION

IN ORDER to integrate the increasing volume of intermit-
tent renewable generation in modern power grids, aggre-

gators are exploring various methods to manipulate both
residential and commercial loads in real-time. As a result,
various demand response (DR) frameworks are gaining pop-
ularity because of their ability to shape electricity demand
by broadcasting time-varying signals to customers; however,
most aggregators have not implemented complex DR pro-
grams beyond peak shaving and emergency load reduction
initiatives. One reason for this is the customers’ unknown and
time-varying responses to dispatch signals, which can lead to
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economic uncertainty for the aggregator and reliability con-
cerns for the grid [1]. The aggregator could explicitly request
price sensitivity information from its customers; however, this
two-way negotiation has a large communication overhead and
most customers cannot readily characterize their price sensi-
tivities, and even if they could, they might not be willing to
share this private information. As such, aggregators prefer the
1-way passive approach because it does not require any real-
time feedback from the customer and it does not require new
communication infrastructure for reporting preferences (e.g., a
Web portal, phone application, etc.). With this in mind, future
load shaping initiatives for renewable integration (i.e., more
complex objectives than peak shaving) need to be able to pas-
sively learn customers’ response to dispatch signals only from
historical data of past interactions [2].

Recently, much work has been done for aggregators attempt-
ing to learn customers’ price responses whilst implementing
peak shaving DR programs. The authors of [3] present a data-
driven strategy to estimate customers’ demands and develop
prices for DR. In [4], the authors use linear regression models
to derive estimations of customers’ responses to DR signals.
Similarly, [5] develops a joint online learning and pricing algo-
rithm based on linear regression. In [6], the authors present a
contract-based DR strategy to learn customer behavior while
broadcasting DR signals. The authors of [7] present an online
learning approach based on piecewise linear stochastic approx-
imation for an aggregator to sequentially adjust its DR prices
based on the behavior of the customers in the past. In [8],
the authors develop a risk-averse learning approach for aggre-
gators operating DR programs. In [9], a learning algorithm
for customers’ utility functions is developed and it is assumed
that the aggregator acts within a two-stage (day-ahead and
real-time) electricity market. Additionally, the authors of [10]
present a learning framework for forecasting individual loads
and DR capabilities and find that users with more variable con-
sumption patterns are more effective DR participants. Using
a similar framework as in this work, a multi-armed bandit
(MAB) formulation is used in [11], [12] to determine which
customers to target in DR programs.

In addition to learning how customers respond to DR
signals, an aggregator must also consider power system con-
straints to ensure reliable operation (e.g., nodal voltage, trans-
former capacities, and line flow limits). In real distribution
systems, it is critical that these constraints are satisfied at every
time step to ensure customers receive adequate service and to
avoid potential grid failures even without sufficient knowledge
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about how customers respond to price signals (i.e., in early
learning stages) [13], [14]. One paper similar to ours that con-
siders these realistic constraints, [15], presents a least-square
estimator approach to learn customer sensitivities and imple-
ments DR in a distribution network. The authors of [15] show
that their least-square algorithm’s parameter estimation error
converges to zero over time, thus the algorithm’s regret is
sublinear while also accounting for the distribution network’s
constraints.

Similar to the aforementioned papers, the work presented
in this manuscript considers the problem of an aggrega-
tor passively learning the customers’ price sensitivities while
running a load shaping program. However, our approach
permits more complex load shaping objectives (e.g., track-
ing a daily target load profile) and varies in terms of both
load modeling and learning approach from all the above
papers. Specifically, we present a multi-armed bandit (MAB)
heuristic akin to Thompson sampling (TS) to tackle the
trade-off between exploration of untested price signals and
exploitation of well-performing price signals while ensur-
ing grid reliability. It is important to note that the standard
TS heuristic cannot guarantee that grid reliability constraints
are upheld during the learning process. As such, we present
two modified versions of TS while retaining the funda-
mental principles TS is based on. Furthermore, we provide
discussion on how the constraints are upheld (i.e., opera-
tional reliability) for the modified heuristics, discussion on the
performance of the heuristics compared to a clairvoyant solu-
tion, and simulation results highlighting the strengths of the
method.

In our work, we make use of a load clustering technique in
order to exploit the known physical structure of the problem
and make use of our prior knowledge of how flexible elec-
tric appliances behave to lower the problem dimensionality.
We note that grouping (clustering) loads for dimensional
reduction is common in DR literature [16]. Some pertinent
examples include [17] where the authors aggregate hetero-
geneous thermostatically controlled loads (TCLs) using an
LTI “bin” model, [18] where the authors group EVs into
“classes” depending on their charging availability, [19] where
the authors present a load profile clustering method for load
data classification based on information entropy, piecewise
aggregate approximation, and spectral clustering, [20] where
the authors present aggregate models for classes of TCLs that
include statistical information of the population, systemati-
cally deal with heterogeneity, and account for a second-order
effects, [21] where the authors propose a clustering tech-
nique for determining natural segmentation of customers and
identification of temporal consumption patterns in the smart
grid domain, and [22] where the authors develop cohorts, or
groups of consumers with similar consumption patterns, from
correlations between daily loads.

The main contributions of this work are as follows:
• We use the multi-armed bandit (MAB) framework to

model the stochastic and unknown nature of customers’
daily aggregate response to electricity prices.

• We make use of an appliance clustering methodology
to provide a mesoscopic model of the price responsive

demand of a large population of flexible appliances and
reduce the dimensionality of the learning problem.

• Our learning framework can account for daily variabilities
and realistic grid reliability constraints that are critical for
daily operation in spite of uncertainty about customers’
price response.

• We present two modified heuristics based on Thompson
sampling (TS) as solutions to the constrained learning and
pricing problem.

• We provide a performance guarantee in the form of a
regret bound and discussion on the reliability guarantees
of the approach as well as a distribution system case study
demonstrating the efficacy of the approach.

The remainder of the paper is organized as follows:
Section II presents the aggregator’s daily objective as well
as the customers’ load model. Section III describes the
multi-armed bandit formulation for the electricity pricing
problem, presents the modified TS heuristic, and discusses
its performance and reliability. Section IV presents simula-
tion results that showcase the efficacy of the approach. The
online Appendix [23] contains a table of notation and proofs.

II. PROBLEM FORMULATION

A. The Aggregator’s Objective

The aggregator’s main goal is to select dispatch sig-
nals to manipulate customer demand according to a given
optimization objective that varies daily. Specifically, we con-
sider the case where the aggregator broadcasts a dispatch
signal pτ = [p(t)]t=1,...,T to the population of customers
each day (we use t = 1, . . . , T to index time of day and
τ = 1, . . . , T to index days). The set of dispatch signals
available for use by the aggregator is denoted as P . In this
paper, without a loss of generality, we will assume that the
dispatch signal sent to customers for load shaping purposes is
a real-time pricing (RTP) signal.1

The aggregator’s cost function could cover a broad range
of goals including (but not limited to) manipulating the
population’s load to match a target profile, minimizing the
distribution grid’s electricity cost from the regional retailer, or
solving for the dispatch of multiple generators, if a market is
operated at the distribution system level.

In this work, on each day τ , we assume the aggrega-
tor’s cost function is a fixed and known nonlinear function
f (Dτ (pτ ), Vτ ) that depends on the load profile Dτ (pτ ) of the
population in response to the daily broadcasted price pτ and
a random exogenous parameter vector Vτ .2 The population’s
load profile on day τ , Dτ (pτ ), is a T × 1 vector with the

1The reader should note that this choice is not fundamental to the devel-
opment of the modified learning heuristics we present in this paper. It only
allows us to provide a concrete characterization of the response to dispatch
signals by mathematically modeling the customers as cost-minimizing agents
equipped with home energy management systems in Section II-D.

2We note that the function f need not have a closed form representa-
tion and thus can represent the solution of an economic dispatch problem
with multiple generators, which can still be handled through our framework.
However, without loss of generality and purely for brevity of notation, here
we focus on common distribution systems which usually lack two-sided mar-
kets, and thus we focus on load profile manipulation for renewable integration
and distribution system protection.
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tth element corresponding to the population’s power demand
during time period t. The exogenous and given T × 1 vector
Vτ varies daily and can correspond to a daily target profile
reflecting renewable generation forecasts, weather predictions,
and grid conditions. We consider the exogenous vectors to be
i.i.d. drawn from a distribution defined on a finite sample space
V , with each outcome drawn with a nonzero probability. We
would like the reader to note that this assumption is only made
for convenience for our theoretical regret performance guar-
antee in Theorem 1. In a real-world implementation, the daily
exogenous parameters could be correlated across days (e.g.,
due to weather, seasons, weekday/weekend, etc.). However,
this correlation does not affect the safety guarantees of our
algorithm or its applicability (i.e., it only affects our formal
regret results).

The aggregator must ensure that the broadcasted price sig-
nals do not result in load profiles that violate distribution
system reliability constraints (e.g., nodal voltage, transformer
capacities, or line flow limits). As such, if the aggregator had
full information about how the population responds to price
signals (i.e., full knowledge of Dτ (pτ )), the aggregator can
solve the following optimization problem on day τ to select
the optimal price p�

τ :

p�
τ = arg min

pτ ∈P
f (Dτ (pτ ), Vτ ) (1)

s.t. gj(Dτ (pτ )) ≤ 0, ∀j = 1, . . . , J (2)

where gj(·)j=1,...,J is used to represent the reliability con-
straints for the distribution system. We note that these general
constraints need not be linear for the proposed Thompson
sampling approach.

However, as explained in the introduction, knowledge of
customers’ price response is unavailable to the aggregator.
Recall, 1) the aggregator does not want to directly query
customers for their price sensitivities, 2) most customers
cannot readily characterize their price sensitivities, and 3) cus-
tomers might not be willing to share this private information.
Accordingly, the aggregator needs a method to sequentially
choose daily price signals to simultaneously 1) control their
daily incurred cost; 2) learn the customers’ price response
models; and 3) ensure the distribution system constraints are
not violated at any time.

B. Distribution System Operational Constraints

As stated previously, there are various operational con-
straints within a distribution system that should be met in order
to ensure adequate service for customers and to prevent grid
failures. In the aggregator’s daily optimization in Section II-A,
the constraints are formulated as general functions gj(·)j=1,...,J .
Specifically, these general functions represent distribution
system parameters (i.e., the nodal voltage uτ (t) and power flow
through distribution lines fτ (t)) that should obey the following
constraints:

uτ (t) ≥ umin, ∀t, τ, (3)

uτ (t) ≤ umax, ∀t, τ, (4)

fτ (t) ≤ Smax, ∀t, τ, (5)

where umin, umax, and Smax correspond to the lower voltage
limit, upper voltage limit, and power flow limit, respectively,
for the population’s connection to the distribution grid. We
note that uτ (t) and fτ (t) can be easily derived from the pop-
ulation’s load profile Dτ (pτ ) (See Section IV-B). Now that
we have described the aggregator’s objective and the distri-
bution system’s constraints, we next describe the customers’
load model as well as their price response model.

C. Load Flexibility Model

It is hard to approach the problem of learning the response
of a population of customers to complex dispatch signals
such as RTP as a complete “black box problem”, i.e., by
just observing the broadcasted price and the load response.
There are many reasons for this, including 1) the existence
of random or exogenous parameters which lead to variabil-
ity in the temporal and geographical behavior of electricity
demand; 2) the variability of the control objective on a daily
basis (e.g., due to randomness in renewable generation outputs,
market conditions, or baseload); and 3) the small size of the
set of observations that one can gather compared to the high
dimensional structure of the load (there are only 365 days in a
year, so only 365 sets of prices can be posted). Hence, in this
paper, we will be exploiting the known physical structure of
the problem and making use of our statistical prior knowledge
of how the load behaves to lower the problem dimensionality.

Specifically, to lower the dimensionality for the learning
problem, we explore the fact that flexible loads only show
limited number of “load signatures” (justified due to the
automated nature of load response through home energy man-
agement systems, the limited types of flexible appliances, and
the common electricity usage patterns that emerge from elec-
tricity customers as shown in [10], [24]). Let us assume that
electric appliances can belong to a finite number of clusters
c ∈ C. For each cluster c, we denote Dc as the set of feasi-
ble daily power consumption schedules that satisfy the energy
requirements of the corresponding appliances. Any power con-
sumption schedule, [dc(t)]t=1,...,T = Dc ∈ Dc, would satisfy
the daily power needs of an appliance in cluster c. For exam-
ple, consider a cluster that represents plug-in electric vehicles
(EVs) that require Ec kWh in the time interval [t1, t2] with a
maximum charging rate of ρc kW. Accordingly, the set Dc of
daily feasible power consumption schedules is given by:

Dc =
{

Dc|
t2∑

t=t1

dc(t) = Ec; 0 ≤ dc(t) ≤ ρc

}
. (6)

Another specific cluster example is that of electric appliances
that are uninterruptible but can perform load shifting (e.g.,
a dishwasher cannot be interrupted once it is turned on but
the start time of the cycle can be shifted). Let �c(·) denote
the load profile of uninterruptible cluster c appliances once
they are turned on. For example, �c(·) could be a rectangular
pulse function that outputs the rated power of the appliance,
ρc for the duration of the appliance’s cycle and 0 otherwise.
To relay their load flexibility, cluster c users can specify a time
interval [tc,1, tc,2] within which the appliance cycle must start
(e.g., a user wants the dishwasher to be finished before dinner).
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Thus the home energy management system can calculate the
best values for the time shift, denoted by tc, as long as it
lies within the interval [tc,1, tc,2]. The set Dc of daily feasible
power consumption schedules for appliances in this cluster is
given by:

Dc = {
Dc|dc(t) = �c(t − tc); tc ∈ [

tc,1, tc,2
]}

. (7)

For discussion on characterizing the sets for other flexi-
ble appliances, including interruptible [25, Sec. 3.2], non-
interruptible [25, Sec.3.4], and thermostatically controlled
loads [25, Sec. 3.3], we refer the reader to [25].

By adopting this model, the total power consumption flex-
ibility of a population of customers can be characterized as a
function of how many appliances belong to each cluster within
the population. Let us denote ac as the number of appliances
in cluster c (note that this will vary on a day by day basis
as described in the next section). With this notation, we can
write the set of feasible daily power consumption profiles for
the population, D:

D =
∑
c∈C

acDc, (8)

where the summation and scalar multiplication operations are
defined in the sense of Minkowski addition.3

We would like to note that choosing the number of clus-
ters in the model is a control knob that can be tuned by the
aggregator as shown in [26]. Using a higher number of poten-
tial appliance clusters will increase the accuracy of the load
model (i.e., reduce the quantization error in the reproduction
of the individual load profiles) and yield better performance
in the daily optimization once the true parameters have been
sufficiently learned by the aggregator. However, increasing the
number of load clusters increases the size of the problem space
and increases the randomness in the customers’ daily loads
thus slowing down the learning rate of the algorithm. The
number of clusters will vary depending on the system being
analyzed as well as the aggregator’s preferences.

D. Price Response Model

In this section, we discuss how the total population responds
to dynamic electricity prices given the load flexibility model
in (8) and how clustering is used to reduce the dimensionality
of the problem. There are two main ways dynamic pric-
ing affects the power consumption: 1) Automated per cluster
response: Within each load cluster c (i.e., given pre-specified
preferences such as EV charging deadlines or AC temperature
set points), we assume that the customer chooses the power
consumption profile Dc ∈ Dc that minimizes their electricity
cost dependent on the daily broadcasted price pτ . For appli-
ances in cluster c on day τ , we assume all will choose the
same minimum cost power consumption profile:

D̃c,τ (pτ ) = arg min
Dc∈Dc

T∑
t=1

p(t)dc(t). (9)

3For two sets A and B defined on a finite dimensional Euclidean space, the
Minkowski sum is defined as A + B = {a + b | a ∈ A, b ∈ B}.

We assume that each appliance will always choose the cost
minimizing power consumption profile out of the available
profile set to combat the fact that the available profile sets Dc

for each cluster can be infinitely large. Thus, we have effec-
tively reduced the dimensionality of the problem as we know
a priori how each cluster will respond to each price signal
(i.e., each cluster will always select its cost minimizing pro-
file). Due to the automated nature of home energy management
systems, each cluster selecting its cost minimizing profile is a
reasonable assumption once the customers have defined their
flexibility preferences, e.g., the desired charge amounts and
deadlines for EVs [27], [28]. 2) Preference Adjustment: We
also consider the fact that customers may respond to price
signals by adjusting their preferences. Consider the following
example: two customers (Customer-A and Customer-B) live in
the same neighborhood but have different sensitivities to elec-
tricity prices. If electricity prices are high on a hot summer day,
Customer-A might shutdown their air conditioner to avoid a
large electricity bill; however, Customer-B prioritizes comfort
over cost-savings, and leaves their air conditioner on, no mat-
ter the cost. As shown in the previous example, the number of
appliances in each cluster, i.e., ac in (8), also depends on the
daily posted price vector pτ , and are now denoted as ac(pτ ).

Combining the automated per cluster response and prefer-
ence adjustment, we can define the population’s load on day
τ in response to the posted price pτ as follows:

D�
τ (pτ ) =

∑
c∈C

ac(pτ )D̃c,τ (pτ ). (10)

As stated before, if the aggregator has full knowledge of
the customers’ price responses, which reduces to having full
knowledge of the preference adjustments ac(pτ ), then the
aggregator can pick the daily price vector p�

τ in order to
shape the population’s power consumption according to (1).
However, as we cannot assume this, we model the ac(pτ )’s as
random variables with parameterized distributions, φc, based
on the posted price signal pτ and an unknown but constant
parameter vector θ�. Here, θ� represents the true model for
the customers’ sensitivity to the price signals. This allows for
the complex response of the customer population to be repre-
sented as a single vector, thus reducing the dimensionality of
the problem. We note that while ac(pτ ) may only take integer
values in reality, we believe it is justified to relax this inte-
grality constraint and allow it to take continuous values with
large enough appliance population size. With this in mind, we
would like to highlight three properties of the price response
model:

1) The preference adjustment models ac(pτ ) are stochas-
tic and their distributions φc are parameterized by pτ

and θ�. This is due to exogenous factors outside of the
aggregator’s scope that influence customers’ power con-
sumption profiles resulting in a level of stochasticity in
the responses to prices (i.e., customers will not respond
to prices in the same fashion each day).

2) The probability distributions of ac(pτ ) (i.e., φc) are
unknown to the aggregator, i.e., the aggregator does not
know the true parameter θ� of the stochastic model.
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3) The realizations of ac(pτ ) are not directly observable
by the aggregator. The aggregator can only monitor
the population’s total consumption profile Dτ and can-
not observe the decomposed response of each cluster
ac(pτ )D̃c,τ (pτ ) independently.

Because we have introduced stochasticity to customers’
price response models, we appropriately alter the aggregator’s
optimization problem for selecting the price signal on day τ

to account for the distributions φc:

p�
τ = arg min

pτ ∈P
E{φc}c∈C

[
f (Dτ (pτ ), Vτ )

]
(11)

s.t. P{φc}c∈C
[
gj(Dτ (pτ )) ≤ 0

] ≥ 1 − μ, ∀j (12)

where μ is the aggregator’s desired reliability metric for the
distribution system constraints. In (11), the aggregator now
considers minimizing an expected cost and is subject to prob-
abilistic reliability constraints in (12) that depend on the
distributions φc of the preference adjustment models ac(pτ ).

We note that the formulated chance constraints are enforced
with respect to uncertainty in the clusters’ price sensitiv-
ity parameters, not to the exogenous context vector Vτ . In
this work, we assume the daily exogenous vector is fully
known each day and does not add uncertainty to the problem.
However, uncertainties in the exogenous vector are impor-
tant to real-world systems such as the power grid and can
be accommodated by our approach by adding external noise
to these vectors in the same fashion as noise being added
to the population’s load. This, of course, would further slow
down the learning rate of the algorithm due to the added noise
reducing the effectiveness of each posterior update.

Clearly, the aggregator needs to learn the underlying param-
eters of the stochastic models φc of how customers respond
to price signals in order to select price signals for load
shaping initiatives (i.e., the aggregator needs to learn θ�).
Our proposed learning approach and pricing strategy for an
electricity aggregator is detailed in the next section.

III. REAL-TIME PRICING VIA MULTI-ARMED BANDIT

A. Multi-Armed Bandit Overview

We utilize the multi-armed bandit (MAB) framework to
model the iterative decision making procedure of an aggrega-
tor implementing a daily load shaping program [29]–[31]. The
MAB problem can be described as a decision making problem
where an agent has a set of available actions but can only
take one action per round. After an action is taken, the agent
experiences a cost that is dependent on the action taken. The
agent can only learn about the distribution of costs from each
action by experimenting. Throughout this iterative procedure,
the agent faces the core dilemma: should the agent exploit
actions that have yielded small costs, or explore actions that
have not been tested thoroughly? The goal in a MAB problem
is to develop a strategy for selecting actions that balance this
trade-off and minimize the cumulative cost over a given time
span. More thorough explanation and background of the MAB
problem can be found in [32].

For the electricity pricing problem, the MAB framework
exemplifies the exploration-exploitation trade-off dilemma

faced by an aggregator each day. Namely, should the aggrega-
tor choose to broadcast untested prices (i.e., explore) to learn
more information about the customers? Or should the aggre-
gator choose to broadcast well-performing prices (i.e., exploit)
to manipulate the daily electricity demand?

To evaluate the performance of an algorithm that aims to
tackle the exploration-exploitation trade-off, one commonly
examines the algorithm’s regret. Formally, regret is defined as
the cumulative difference in cost incurred over T days between
a clairvoyant algorithm (i.e., the optimal strategy that is aware
of the customers’ price responses) and any proposed algorithm
that does not know the customers’ price responses:

RT =
T∑

τ=1

f (Dτ (pτ ), Vτ ) − f
(
Dτ

(
p�

)
, Vτ

)
. (13)

Instead of considering the cumulative difference in objec-
tive function value, an alternative metric for regret is to count
the number of times that suboptimal price signals are selected
over the T days. For this, we introduce the following notation:
let pVτ ,� denote the optimal price signal for the true model
of the population’s price response θ� when the daily exoge-
nous parameter Vτ is observed on day τ . Any price signal
pτ �= pVτ ,� is considered a suboptimal price. Moreover, we
denote Nτ (p, V) as the number of times up to day τ that the
algorithm simultaneously observes the exogenous parameter
V and selects the price signal p. As such, the total number of
times that suboptimal price signals are selected over T days is:

∑
V∈V

∑
p∈{P\pV,�}

NT (p, V) =
T∑

τ=1

1
{
pτ �=pVτ ,�

}
, (14)

where 1{·} is the indicator function that is set equal to one
if the criteria is met and zero otherwise. Subsequently, in an
iterative decision making problem such as this, the question
arises: how can an aggregator learn to price electricity with
bounded regret, and what are the regret bounds we can pro-
vide for a proposed algorithm given dynamically changing
grid conditions and reliability constraints? In the following
sections, we present a modified Thompson sampling heuristic
for the electricity pricing problem to simultaneously learn the
true model θ� for the population, select the daily price signals,
ensure grid reliability, and provide a regret guarantee.

B. Thompson Sampling

Thompson sampling (TS) is a well-known MAB heuristic
for choosing actions in an iterative decision making problem
with the exploration-exploitation dilemma [32]–[34]. Two
other well-studied frameworks, greedy algorithms and upper-
confidence bound (UCB) algorithms, have shown promise in
this problem area. However, greedy algorithms are inferior
to Thompson sampling in regret performance and UCB algo-
rithms are restricted to simpler linear optimizations [35]–[37],
whereas Thompson sampling can readily handle more general
objective functions such as those adopted in our paper [38].
Additionally, a novel aspect of our paper is that we have
shown how to modify the Thompson sampling heuristic to
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account for reliability constraints with a theoretical guaran-
tee (Proposition 1). There are no other bandit optimization
approaches known to be able to handle general objective func-
tions with safety constraints. Relevant works here include the
analysis of the performance of the UCB algorithm in the linear
MAB setting with linear safety-constraints [39], and well as
linear TS with linear constraints [40]. In the latter work, it is
shown that in the linear case, the presence of linear constraints
do not negatively affect the regret performance of TS, which
is remarkable and could be a preliminary justification as to
why TS performs well in our paper in the presence of general
(non-linear) cost and constraint functions.

Simply put, the integral characteristic of Thompson sam-
pling is that the algorithm’s knowledge on day τ of the
unknown parameter θ� is represented by the prior distribu-
tion πτ−1. Each day the algorithm samples ˜θ τ from the prior
distribution, and selects an action assuming that the sampled
parameter is the true parameter. The algorithm then makes an
observation dependent on the chosen action and the hidden
parameter and performs a Bayesian update on the parame-
ter’s distribution πτ based on the new observation. Because
TS samples parameters from the prior distribution, the algo-
rithm has a chance to explore (i.e., draw new parameters) and
can exploit (i.e., draw parameters that are likely to be the true
parameter) through out the run of the algorithm.

C. Constrained Thompson Sampling

In this section, we present the MAB heuristic titled Con-TS-
RTP adopted to the electricity pricing problem. Con-TS-RTP
is a modified Thompson sampling algorithm where the daily
optimization problem is subject to constraints (standard TS
algorithms do not have constraints)[41].

When initializing π0, the initial distribution on the cus-
tomers’ unknown parameter can be selected by the aggregator.
If the aggregator has access to prior information regarding the
true parameter, then they could initialize the prior as a dis-
tribution of their choice. However, if the aggregator has no
prior knowledge, a uniform distribution among all available
parameters may be used to model the lack of knowledge of
the aggregator.

Each day, the algorithm observes the daily target profile Vτ ,
draws a parameter ˜θ τ from the prior distribution, broadcasts
a price signal to the customers, observes the load profile of
the population in response to the broadcasted price, and then
performs a Bayesian update on the parameter’s distribution
πτ based on the new observation. We note that there are no
restrictions on the class of optimization problem to be solved
each day; however, in order for our regret guarantee to hold,
the aggregator must be able to find the globally optimal solu-
tion and can use any desired solution method to do so. In our
experimental examples, we assume that θ ’s and pτ ’s are cho-
sen from discrete sets in order to be able to guarantee that
an enumeration method could solve for the globally optimal
price signals each day in spite of non-convexities that arise.

The observation on day τ is denoted as Yτ = D�
τ (pτ ) and

we assume that each Yτ comes from the observation space Y
that is known a priori. When performing the Bayesian update,
the algorithm makes use of the following likelihood function:

Algorithm 1 CON-TS-RTP
Input: Parameter set 	; Price set P; Observation set Y;
Voltage constraints umin, umax; Power flow constraint Smax,
Reliability metrics μ, ν

Initialize π0 based on aggregator’s available prior knowl-
edge of customer sensitivity.

1: for Day index τ = 1...T do
2: Sample the daily hidden parameter ˜θ τ ∈ 	 from the

aggregator’s prior distribution πτ−1.
3: Observe the daily exogenous parameter Vτ .
4: Broadcast the daily price signal:

p̂τ = arg min
P

E{φc}c∈C
[
f (Dτ (pτ ), Vτ )|θ = ˜θ τ

]
Subject to:

Constraint Set A:⎧⎪⎨
⎪⎩

A.1: P{φc}c∈C [uτ (t) ≥ umin|θ = ˜θ τ ] ≥ 1 − μ, ∀t

A.2: P{φc}c∈C [uτ (t) ≤ umax|θ = ˜θ τ ] ≥ 1 − μ, ∀t

A.3: P{φc}c∈C [fτ (t) ≤ Smax|θ = ˜θ τ ] ≥ 1 − μ, ∀t

Constraint Set B:⎧⎪⎨
⎪⎩

B.1: P{φc}c∈C [uτ (t) ≥ umin|θ ∼ πτ−1] ≥ 1 − ν, ∀t

B.2: P{φc}c∈C [uτ (t) ≤ umax|θ ∼ πτ−1] ≥ 1 − ν, ∀t

B.3: P{φc}c∈C [fτ (t) ≤ Smax|θ ∼ πτ−1] ≥ 1 − ν, ∀t

5: Observe the population’s load response to price pτ :
Yτ = D�

τ (pτ ).
6: Update the aggregator’s knowledge of the true param-

eter in the posterior:

∀S ⊆ 	:πτ (S) =
∫

S �(Yτ ; p̂τ , θ)πτ−1(dθ)∫
	

�(Yτ ; p̂τ , θ)πτ−1(dθ)

7: end for

�(Yτ ; p, θ) = Pθ (D�
τ (pτ ) = Yτ |pτ = p). This function calcu-

lates the likelihood of observing a specific load profile when
broadcasting price p and the true parameter is θ . The pseu-
docode for Con-TS-RTP applied to the constrained electricity
pricing problem is presented in Algorithm 1.

D. Discussion on Regret Performance of Con-TS-RTP

The regret analysis of Con-TS-RTP is inspired by the results
in [38] for TS with nonlinear cost functions. The authors
in [42] extended the regret results from [38] by analyzing the
effects of an objective function that is dependent on exogenous
parameters such as Vτ . The analysis in the aforementioned
papers provides bounds on the total number of times that sub-
optimal price signals selected by the algorithm over T days
as specified in equation (14). The regret guarantee we provide
in this work extends the result further, allowing for constraints
in the daily optimization that are dependent on the sampled
˜θ τ . As such, our regret guarantee applies to the Con-TS-RTP
algorithm with constraints as formulated in Constraint Set A in
Algorithm 1. We refer the reader to the online Appendix [23]
as well as [42] and [38] for further discussion on the derivation
of Theorem 1.
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Assumption 1 (Finitely Many Price Signals, Observations):
|P|, |Y| < ∞.

Assumption 2 (Finite Prior,“Grain of truth”): The prior
distribution π is supported over finitely many particles: |	| <

∞. The true parameter exists within the parameter space:
θ� ∈ 	. The initial distribution π0 has non-zero mass on the
true parameter θ� (i.e., Pπ0 [θ�] > 0).

Assumption 3 (Unique Optimal Price Signal): There is a
unique optimal price signal pV,� for each exogenous parameter
V ∈ V .

Theorem 1: Under assumptions 1-3 and Constraint Set A
in Algorithm 1, for δ, ε ∈ (0, 1), there exists T � ≥ 0 s.t. for
all T ≥ T �, with probability 1 − δ:

∑
V∈V

∑
p∈{P\pV,�}

NT (p, V) ≤ B + C(log T ), (15)

where B ≡ B(δ, ε,P,Y,	) is a problem-dependent constant
that does not depend on T , and C(log T ) depends on T , the
sequence of selected price signals, and the Kullback-Leibler
divergence properties of the bandit problem (i.e., the marginal
Kullback-Leibler divergences of the observation distributions
KL

[
�(Y; p, θ�), �(Y; p, θ)

]
(The complete description of the

C(log T ) term is left to the Appendix).
Proof: The proof is in the online Appendix [23].
In the next section, we discuss the distribution system reli-

ability issue that arises from how the Con-TS-RTP algorithm
handles the distribution system constraints (i.e., Constraint Set
A) and a modification to the Con-TS-RTP algorithm to ensure
the constraints are enforced (i.e., Constraint Set B).

E. Con-TS-RTP With Improved Reliability Constraints

In order for the aggregator to ensure safe operation of the
distribution grid while running the Con-TS-RTP algorithm, the
reliability constraints need to hold for the true price response
model θ� each day. However, with the constraints formulated
as in Algorithm 1’s Constraint Set A, the distribution system
constraints are only enforced for the sampled ˜θ τ and not neces-
sarily the true parameter θ�. This entails that the distributions
{φc}c∈C are parameterized by the sampled ˜θ τ ; therefore, they
are inaccurate if any parameter ˜θ τ �= θ� is sampled. This could
potentially lead to many constraint violations throughout the
run of the algorithm resulting in inadequate service for the
customers and grid failures.

Due to the importance of reliable operation of the distri-
bution system, we present a modification to the Con-TS-RTP
algorithm (i.e., replacing Constraint Set A with Constraint Set
B in Algorithm 1) to increase the reliability of the selected
prices and resulting load profiles with respect to the grid
constraints. Specifically, we propose alternate constraints that
depend on the algorithm’s current knowledge of the true
parameter, instead of the sampled parameter. In other words,
instead of depending on ˜θ τ , the proposed alternate constraints
depend on the prior distributions πτ−1 as follows:

P{φc}c∈C
[
uτ (t) ≥ umin|θ ∼ πτ−1

] ≥ 1 − ν, ∀t (16)

P{φc}c∈C
[
uτ (t) ≤ umax|θ ∼ πτ−1

] ≥ 1 − ν, ∀t (17)

P{φc}c∈C
[
fτ (t) ≤ Smax|θ ∼ πτ−1

] ≥ 1 − ν, ∀t (18)

where ν is a small constant (detailed in Proposition 1). When
considering constraints (16)-(18) in the Con-TS-RTP algo-
rithm, the algorithm will select more conservative price signals
each day that can guarantee the distribution system’s con-
straints are met with high probability by using the information
in the updated prior distributions. Before analyzing the modi-
fied algorithm’s reliability, we make the following assumption:

Assumption 4: There exists ξ� > 0 and λ ≥ 0, such that
for all θ �= θ�, KL

[
�(Y; p, θ�), �(Y; p, θ)

] ≥ ξ�, where

ξ�
θ ,p = max

x∈Z>0

⎧⎨
⎩−λ

x
− 4√

x

√
log |Y||P|

δ
+ log x

2

×
∑
Y∈Y

∣∣∣∣∣log
�
(
Y; p, θ�

)
�(Y; p, θ)

∣∣∣∣∣
⎫⎬
⎭

and

ξ� = max
θ∈	,p∈P

ξ�
θ,p.

Assumption 4 ensures that as the aggregator performs the
steps in Algorithm 1, the algorithm’s Bayesian updates of the
prior distribution πτ will likely never decrease the mass of
the true parameter θ� below a certain threshold. Specifically,
with Assumption 4, it can be shown (as in [38]) that with
probability 1 − δ

√
2 the following holds for all τ ≥ 1:

πτ

(
θ�

) ≥ π0
(
θ�

)
e−λ|P |, (19)

where λ ≥ 0 is a chosen parameter (from Assumption 4) that
dictates the minimum reachable mass of the true parameter
via Bayesian updating. With the modified constraints (16)-(18)
and the minimum mass of the true parameter specified in (19),
the reliability of Con-TS-RTP can be characterized as follows:

Proposition 1: Under assumptions 1-4, with ν in equa-
tions (16)-(18) chosen such that ν ≤ μπ0(θ

�)e−λ|P |,
with probability 1 − δ

√
2, the Con-TS-RTP algorithm with

Constraint Set B will uphold the probabilistic distribu-
tion system constraints as formulated in (12) for each
day τ = 1, . . . , T .

Proof: The proof is in the online Appendix [23].
Remark: The novelty of Con-TS-RTP is that we can ensure

with high probability an unsafe price signal is never selected.
We can tune the safety parameter to determine what level of
risk is acceptable to the aggregator. We note that the selec-
tion of an unsafe price signal has no effect on the learning
capability of the algorithm. The Con-TS-RTP algorithm will
learn regardless of safe/unsafe price signals. The algorithm
will never crash/stop prematurely due to the selection of an
unsafe price signal; however, the local distribution grid might
surpass safety limits on transformers or line flow limits due
to an unsafe price selection on select very limited days, at
which points protective measures (e.g., relays) should be used
to ensure physical grid safety. We note that this is natural
for any learning algorithm dealing with stochastic conditions
and unknown system parameters. Contingencies can never
be avoided 100%, similar to other grid operation paradigms
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Fig. 1. Radial distribution system.

that deal with uncertain conditions (e.g., wholesale market
dispatch with renewables or possible transmission system con-
tingencies). They could only be avoided with a certain high
probability when making dispatch decisions. However, it is
understood that other protective measures should always be
put in place to avoid physical system damage in case of
contingencies.

IV. EXPERIMENTAL EVALUATION

A. Test Setup: Radial Distribution System

In this section we describe the power distribution system
and the corresponding network parameters for the test case.
We consider an actual radial distribution system from the
ComEd service territory in Illinois, USA (adopted from [43]
and shown in Fig. 1) represented by the undirected graph G
which includes a set of nodes (vertices) N and a set of power
lines (edges) L. In this work, we consider each node as one
population with its own daily load profile; however, each node
could be an aggregation of smaller entities downstream of the
local distribution connection point. The undirected graph is
organized as a tree, with the root node representing the distri-
bution system’s substation where it is connected to the regional
transmission system. We denote N as the total number of nodes
in the network excluding the root node. The nodes are indexed
as i = 0, . . . , N, and the node corresponding to i = 0 (i.e.,
the root node) is the substation. The power lines are indexed
by i = 1, . . . , N where the i-th line is directly upstream of
node i (i.e., line i feeds directly to node i). In the following,
we denote the parent vertex of node i as Ai and the set of
children vertices of node i as Ki.

Furthermore, we assume the aggregator has access to
measurement data at each node’s local connection point.
Specifically, the aggregator measures the active power
demands at each node i at time t on day τ denoted as dP

i,τ (t).
In order to ensure the delivered power is suitable for the elec-
tricity customers, the aggregator also monitors node i’s local
voltage at time t on day τ denoted as vi,τ (t). In the follow-
ing, we denote the active power daily load profile of node i
on day τ as DP

i,τ = [dP
i,τ (t)]t=1,...,T . Additionally, the aggrega-

tor records the active power flows f P
i,τ (t) on each line i ∈ L.

We note that reactive power should also be monitored in dis-
tribution systems, even though it is generally not priced and
customers do not consider it in determining their optimal load
response to prices. As such, we use the superscript Q for the
reactive power at a node, dQ

i,τ (t), and for reactive power flow

TABLE I
DISTRIBUTION SYSTEM PARAMETERS

on a line, f Q
i,τ (t). Each line in the distribution system has its

own internal resistance denoted as Ri, reactance denoted as
Xi, and power limit denoted as Smax

i . The parameters for the
distribution system are listed in Table I.

B. Power Flow Model

In order to solve for the power flow and nodal voltages of
the power distribution system, we make use of the LinDistFlow
model[44], which is a linear approximation for the AC power
flow model.4 The LinDistFlow model has been extensively
studied and verified to be competitive to the nonlinear AC
flow model on many realistic feeder topologies including
radial [46]–[49]. The LinDistFlow model reduces computa-
tional complexity by making use of the following linear power
flow and voltage equations:

dP
i,τ (t) +

∑
j∈Ki

f P
j,τ (t) = f P

Ai,τ
(t); ∀t, τ, i, (20)

dQ
i,τ (t) +

∑
j∈Ki

f Q
j,τ (t) = f Q

Ai,τ
(t); ∀t, τ, i, (21)

uAi,τ (t) − 2
(

f P
i,τ (t)Ri + f Q

i,τ (t)Xi

)
= ui,τ (t); ∀t, τ, i (22)

where (20) accounts for active power and (21) accounts
for reactive power. In (22) we make use of the operator
ui,τ (t) = (

vi,τ (t)
)2 to provide a linear voltage drop relationship

across the distribution system. For the scope of this work, we
assume that the substation connection to the regional transmis-
sion system (node i = 0) is regulated and has a fixed voltage
v0,τ (t) = 12.5kV,∀t, τ .

4The reader should note that the proposed learning approach is not limited
to the LinDistFlow model. There are other power flow models that can be
utilized such as [45].
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Fig. 2. The 5 plots above portray the evolution of the aggregator’s knowledge of the population’s hidden parameter at node 10 throughout the learning
procedure. The true parameter is parameter 4. From left to right: Day 1 (initialized to uniform distribution, i.e., no knowledge of the true parameter), Day 15
prior, Day 30 prior, Day 90 prior, and Day 180 prior. At day 180, the aggregator is about 95% certain that parameter 4 is the true parameter.

C. Distribution System Operational Constraints

The nodal voltages and line flows calculated in (20)-(22)
should obey the following constraints for reliable operation:

ui,τ (t) ≥ umin
i , ∀t, τ, i ∈ N , (23)

ui,τ (t) ≤ umax
i , ∀t, τ, i ∈ N , (24)

f P
i,τ (t)

2 + f Q
i,τ (t)

2 ≤ (
Smax

i

)2
, ∀t, τ, i ∈ L, (25)

where (23)-(24) are the nodal voltage constraints and (25)
corresponds to the power constraints for each distribution line.

D. Load Model and Multi-Armed Bandit Formulation

In this test case, we consider 6 time slots each day, each
4 hours long. We consider 10 unique target load profile vec-
tors, with the daily target profile Vτ for day τ drawn from
a uniform distribution each morning. Each of the 10 target
load profile vectors corresponds to a desired load curve to
accommodate different levels of forecasted renewable genera-
tion. Furthermore, the aggregator transmits daily price signals
pi,τ to each node within the system. The aggregator has a high
and low price for each of the 6 time slots resulting in 26 pos-
sible daily price signals. Since the aggregator is shaping the
electricity demand at each node within the distribution system,
each node has its own cost f (Di,τ (pi,τ ), Vτ ) that is dependent
on the node’s daily demand and the target profile. In this test
case, we assume the cost function for each node is the squared
deviation of the node’s electricity demand from the target
profile: f (Di,τ (pi,τ ), Vτ ) = |Di,τ (pi,τ ) − Vτ |2, thus equally
penalizing over-usage and under-usage of electricity. We note
that the units are KW2 and if the aggregator had a convert-
ing function for the squared deviation (KW2) to $U.S.D., then
we could calculate the monetary losses of the system. In our
experimental examples, we make use of discrete sets for the
available θ ’s and pτ ’s to guarantee that an enumeration-based
method could solve for the globally optimal price signals each
day in spite of problem non-convexities.

We consider 20 unique load flexibility clusters in this test
case. Each cluster’s parameters represent the varying start/stop
times, total energy demands, and power limitations common
to EV loads in residential areas and are of the form presented
in equation (6). We note that we generated the population’s
load price response directly using the same clustering model
(i.e., the actual load response in the simulation is at the level

of 20 clusters and can be well represented by the 20 clusters
plus additive noise. For a discussion on the effects of poor
clustering, we refer the reader to Section IV-F). Each node in
the distribution system is comprised of these 20 load clusters
with its own unique sensitivities ai,c(pτ ) for each cluster. Each
sensitivity parameter is selected as ai,c(pi,τ ) ∼ N (

βc
θ�

i pi,τ
, σ 2)

each day where βc is a cluster specific constant known by
the aggregator (we note that βc represents a priori knowledge
of customers’ preferences and could come from behavioral
studies; however, our framework does not require this and βc

can be completely omitted in cases where prior information is
unavailable). Each node’s price sensitivity, i.e., parameter to
be learned, θ�

i , is a vector of length 6 and the set of possible
parameters, 	, contains 10 unique vectors. Unless noted, the
reliability parameter chosen for the Con-TS-RTP algorithm is
ν = 0.1.

Note on reactive power: We note that reactive power is gen-
erally price insensitive; however, reactive power is present in
a distribution system and affects the constraints of the system.
Reactive power flows alter how the price sensitive loads are
limited by the operational constraints of the system (i.e., active
and reactive flows on lines affect the capacity available for the
price responsive loads). Due to the lack of data as to how much
reactive power is present in the distribution system due to
our appliance clusters and otherwise, for our numerical exam-
ples, we omit the inclusion of reactive power to only view the
appliance clusters’ active load profiles within the distribution
system. For further discussion on this, we refer the reader to
papers that fully capture the effects of reactive power in such
problems such as [50] and [51] in which the authors show-
case techniques to handle distribution systems with chance
constraints.

In the following sections, without loss of generality, we
assume that reactive power is not responsive to the pricing
signals. We note that our proposed learning approach can
accommodate reactive power flows (LinDistFlow can as well);
however, our goal was to show proof of concept of our learn-
ing/pricing approach with active customer loads, thus reactive
power flow will be examined in future work.

E. Results

We simulated the Con-TS-RTP algorithm for 365 days for
an aggregator attempting to learn the sensitivities of the nodes
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Fig. 3. Regret performance of Con-TS-RTP at node 10 with ν = 0.1. Note
that the y-axis (left) units are KW2 for the squared load deviation from the
target profile.

Fig. 4. Deviation of node 10’s demand from a specific daily target profile.

in the system and shape their demands. In the following, we
highlight the results of the simulation at node 10 of the radial
distribution system. Figure 2 presents the evolution of the prior
distribution for node 10’s hidden parameter. On day 1, the prior
was initialized to a uniform distribution among the candidate
parameters, and by day 180 the weight on the true parameter
exceeded 0.95.

Figure 3 presents the regret performance of Con-TS-RTP at
node 10. As seen in Figure 3, the regret curve flattens after
day 130 as the algorithm never chooses a suboptimal price
signal after this day.

Figure 4 presents node 10’s deviation from a specific daily
target profile. On days 2, 3, 4, 53, and 365 the same target
profile (i.e., V2 = V3 = V4 = V53 = V365) was drawn and the
aggregator selected different price signals to shape the node’s
demand. As seen in Fig. 4, the deviation from the target profile
on day 365 is less than the deviation on the other days as
the algorithm has learned the true parameter and selects the
optimal price signal to shape the load.

In Figure 5, we present the distribution system constraint
violations that were avoided by using Con-TS-RTP instead of
an unconstrained TS algorithm. Clearly, in the early learning
stages, the unconstrained TS algorithm does not have accu-
rate knowledge of the hidden parameters and violates the
distribution system constraints often. Con-TS-RTP is more
conservative with its exploration of untested price signals and
avoids the constraint violations made by the unconstrained TS
algorithm. Last, we note that the simulation was implemented
in MATLAB and CVX on an i7 processor with 16gb of RAM.
The 365 day simulations were run in less than 5 minutes.

Fig. 5. Top: Distribution system constraint violations at node 10 avoided
by using Con-TS-RTP instead of an unconstrained TS. Bottom: Distribution
system constraint violations across the entire system avoided by using Con-
TS-RTP instead of an unconstrained TS.

Fig. 6. Effects of changing the number of clusters to model an actual load.
Specifically, load profiles for 4 cluster models compared to the actual load
profile for a population of 100 charging EVs.

F. Effects of Clustering

In this section, we portray the effects of selecting different
numbers of clusters to represent a true load as well as the
effects of selecting too few clusters on the performance of
our Con-TS-RTP algorithm. First, in Figure 6, we perform a
simple demonstration. We considered a population of 100 EVs
with random charging requests and then constructed clusters
to view the accuracy of the clustered load profiles versus the
actual load profile. As shown in Figure 6, using 1, 5, or 10
clusters to represent the EV population results in load profiles
quite different from the actual; however, with 20 clusters, the
load profile begins to match the actual profile.

Furthermore, in Figure 7 we show the effects of reducing the
number of clusters in the load model on the regret performance
of our Con-TS-RTP algorithm. Specifically, we focus on the
same setup as Section IV-D with the exception that we have
the Con-TS-RTP algorithm use a 10 cluster model instead of
the 20 cluster model for the population to see the effects of
an inaccurate cluster model. As shown in Figure 7, the regret
curve for this case never flattens and the algorithm is never
able to select the optimal price signal. This is because the
algorithm’s model of the load (i.e., the 10 clusters) is unable
to accurately model the population’s response and causes the
algorithm to select incorrect prices every day.

G. Evolving Price Sensitivity

In this section, we show an example of what happens when
customers’ sensitivities change over time and how a Bayesian
learning approach can naturally adapt and account for these
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Fig. 7. Effects of using too few clusters for the population’s load model.
We show the regret performance of Con-TS-RTP at node 10 with ν = 0.1
for a 10 cluster model instead of the 20 cluster model as previously shown
in Fig. 3. Due to the inaccuracies of the 10 cluster model, the algorithm is
never able to select the optimal price signals.

Fig. 8. Regret performance of Con-TS-RTP at node 10 with ν = 0.1. Note
that on day 250, the hidden parameter was altered.

dynamic changes. Specifically, we simulated the same system
as in Figure 3, but on day 250, we altered the true θ�

i param-
eter. As seen in Figure 8, the regret curves first flatten around
day 125, then increase at day 250, and then flatten again near
day 325. This shows that Con-TS-RTP was able to success-
fully learn the first and second true parameter without any
modifications to the algorithm. The algorithm naturally shifts
its belief about the true parameter as it observes outputs that
do not match its current belief.

H. Non-Repeating Target Profiles

In the previous case study, we assumed a low number of
target profiles (10 profiles) to satisfy the assumptions we have
made for our theoretical results. In this section, we demon-
strate how extending the number of target profiles to 365 does
not negatively affect the performance of the algorithm in prac-
tice. Furthermore, we ensure that once a target profile has been
viewed by the aggregator, it is never drawn again. Thus, each
day the aggregator is posting a price to shape the population’s
load to match a target profile that it has never seen before.
As shown in Figure 9, enlarging the set of target profiles does
not slow down the learning process. Note that in Figure 9 the
regret flattens near trial 100 which matches the duration of
the learning period seen in Figure 3 (i.e., in simulation, the
aggregator is still able to learn the true parameter when the
number of target profiles is increased from 10 to 365, resulting
in similar regret curves).

I. Effects of Varying the System Reliability Metric

In this section, we discuss the effects of varying the
system reliability parameters in the daily optimization’s con-
straints (i.e., altering the value of ν for the system constraints

Fig. 9. Regret performance of Con-TS-RTP at node 10 with ν = 0.1. Note
that on each day, the sampled Vτ has never been seen by the aggregator.

Fig. 10. Regret curves for various system reliability metrics. Each curve is
an average of 20 independent simulations.

formulated as in (16)-(18)). As described in Sections II-D
and III-E, the reliability metric dictates the aggregator’s allow-
able probability of a constraint violation under its current
belief distribution about the unknown parameter. Decreasing
ν is restricting the algorithm to avoid violations and setting
ν = 1 is equivalent to solving the daily optimization with-
out the constraints altogether. In Figure 10, we simulated the
system with varying reliability parameters. Specifically, each
curve shown is the average regret at node 10 over 20 indepen-
dent simulations. As shown in Figure 10, the regret increases
as the desired reliability increases (smaller ν). This is because
the aggregator is forced to select more conservative prices dur-
ing the learning procedure to ensure that the constraints are
met with higher probability.

J. Comparison With Two-Stage Learning

In this section, we present a comparison of the Con-TS-RTP
approach versus a 2-stage “learn” and then “optimize” algo-
rithm, where the first stage consists of pure exploration and
the second stage purely exploits the knowledge gained in the
first stage. The simulation setup is the same as the setup used
in Section IV-D. A description of the 2-stage algorithm used
is as follows: The aggregator decides the duration of the learn-
ing stage a priori, (in Figure 11, we present regret curves for
learning stages with durations of 5, 15, and 25 days) and dur-
ing this learning stage, the aggregator randomly selects price
signals from a predetermined safe set of prices (i.e., prices high

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 07,2021 at 22:50:27 UTC from IEEE Xplore.  Restrictions apply. 



4982 IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 6, NOVEMBER 2020

Fig. 11. Regret performance of Con-TS-RTP and a 2-Stage algorithm at
node 10 with ν = 0.1. Note that the 5 day (blue) and 15 day (red) learning
algorithms were unable to converge to the optimal price signals. The blue and
red curves never flatten because their learning stages were too brief to ade-
quately learn the customers’ preferences and are unable to select the optimal
price signals, resulting in a linearly growing regret. However, the 25 day
(yellow) learning stage algorithm is able to adequately learn the population’s
parameters and select optimal prices after that.

enough such that constraints cannot be violated), observes the
populations’ responses, and performs posterior updates. Then,
after the learning stage is complete, for the remainder of time
the aggregator broadcasts the best price signals with respect
to the knowledge of the unknown parameter at the end of
the learning stage (the selected price signal will ensure safety
but might be potentially suboptimal depending on the dura-
tion of the learning stage). Clearly, the two most significant
shortcomings of the 2-stage approach are: 1) arbitrarily bad
performance during the learning stage due to random price
selection; and 2) difficulty selecting a sufficient duration of
the learning stage. As seen in Figure 11, this 2-stage myopic
algorithm results in linear regret in the 5 day and 15 day learn-
ing stage curves. Due to an insufficient number of posterior
updates, the aggregator is forced to post suboptimal price sig-
nals to ensure safety given its noisy knowledge of the unknown
parameter after the learning stage is over. On the other hand,
the 25 day learning stage is able to converge to the optimal
price signals, but the performance during the learning stage
causes fast growth of regret whereas Con-TS-RTP is able to
avoid all of the aforementioned shortcomings.

V. CONCLUSION

In this paper, we presented a multi-armed bandit problem
formulation for an electricity aggregator attempting to run a
real-time pricing program for load shaping (e.g., to reduce
demand at peak hours, integrate more intermittent renewables,
track a desired daily load profile, etc). We made use of a
constrained Thompson sampling heuristic, Con-TS-RTP, as a
solution to the exploration/exploitation problem of an aggre-
gator passively learning customers’ price sensitivities while
broadcasting price signals that influence customers to alter
their demand to match a desired load profile. The proposed
Con-TS-RTP algorithm permits day-varying target load pro-
files (i.e., multiple target load profiles reflecting renewable
forecasts and desired demand patterns) and takes into account
the actual operational constraints of a distribution system to
ensure that the customers receive adequate service and to avoid
potential grid failures. Additionally, our setup accounts for
complex electricity usage patterns of the customers by clas-
sifying different load clusters based on electricity demand

and load flexibility. We discussed a regret guarantee for the
proposed Con-TS-RTP algorithm which bounds the total num-
ber of suboptimal price signals broadcasted by the aggregator.
Furthermore, we discussed an operational reliability guaran-
tee that ensures the power distribution system constraints
are upheld with high probability throughout the run of the
Con-TS-RTP algorithm.
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