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ABSTRACT

We study how adding unknown linear safety constraints affects the

performance of Thompson Sampling in the linear stochastic bandit

problem. The additional constraints must be met at each round in

spite of uncertainty about the environment requiring that the learner

acts conservatively in choosing her actions. In this setting, we pro-

pose Safe-LTS, the first safe Thompson Sampling based algorithm,

and we prove that it achieves no-regret learning. We obtain regrets

that have the same dependence on the total number of rounds (mod-

ulo logarithmic factors) as Safe-UCB, a recently proposed safe al-

gorithm that uses the upper confidence bound principle. Finally, we

provide numerical simulations that demonstrate the efficacy of our

algorithm.

Index Terms— multi-armed bandit, Thompson Sampling,

stochastic linear bandit, safe learning, online learning.

1. INTRODUCTION

The stochastic multi-armed bandit problem is a sequential decision-

making problem where at each round, the learner chooses an action,

and observes the corresponding stochastic reward [1]. The learner’s

goal is to maximize reward over T rounds. In the stochastic linear

bandit (LB) problem, the expected value of the reward is an unknown

linear function of the action. Two popular approaches have been

studied for the LB setting. On the one hand, UCB-based algorithms,

build a confidence region over the unknown environment and choose

an action that maximizes the expected reward in the most favorable

environment in the confidence region [2, 3, 4, 5, 6]. Specifically, Lin-

ear UCB (LUCB) achieves regret of order O(T 1/2 log T ) [4]. On

the other hand, Thompson Sampling (TS) based algorithms, define a

prior over the unknown environment, and at each round choose the

action that maximizes the expected reward based on a sample from

that prior [7, 8, 9, 10, 11, 12, 13, 14, 15]. Specifically, linear TS

(LTS) achieves regret of order O(T 1/2 log3/2 T ) [12, 14].

This paper focuses on the effect of additional safety constraints

on the performance of Linear TS. The concept of safe learning has

attracted notable attention in recent years and aims to enable the use

of learning algorithms in safety-critical systems with strict reliability

requirements that need to be met at all rounds [16, 17, 18, 19, 20].

Focusing specifically on safety constraints in the LB setting, [21]

studies a setting where the cumulative reward needs to stay above

of a known baseline at each round and proposes a UCB-based al-

gorithm. In this paper, we consider the LB problem with linear

stage-wise constraints first proposed in [22, 23]. The authors of [23]

propose a safe UCB-based algorithm and provide both a problem
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dependent regret bound of order Õ(
√
T ) and a worst-case bound of

order Õ(T 2/3). None of the aforementioned papers consider safe

learning in the context of TS. Compared to UCB-based algorithms,

TS-based algorithms have favorable computational features, since at

each round, they involve solving a simple optimization with linear

objective (rather than one with a possibly hard bilinear objective),

e.g. [12]. We propose Safe-LTS, a safe TS algorithm, that prov-

ably achieves a Õ(
√
T ) problem-dependent bound and a Õ(T 2/3)

worst-case bound.

1.1. Safe stochastic linear bandit problem

We summarize the safe stochastic linear bandit problem recently in-

troduced in [23].

Reward. The learner is given a convex and compact set of ac-

tions D0 ∈ R
d. At each round t, by playing an action xt ∈ D0, the

learner observes a reward

rt := x>t θ? + ξt, (1)

which is linear in the fixed but unknown parameter θ? ∈ R
d with

additive zero-mean random noise ξt.
Safety constraint. The learning environment is restricted by a linear

safety constraint of the form

x>t Bθ? ≤ z, (2)

which must be satisfied at every round t. Here, the matrix B ∈
R

d×d and the positive constant z are known to the learner. Note that

in this setting, after playing an action xt, the value x>Bθ? is not

observed. Given the unknown nature of the parameter θ?, in order

to not violate (2) with high probability, the learner must choose her

actions conservatively.

Goal. The cumulative pseudo-regret of the learner up to round T
is defined as R(T ) =

∑T
t=1 x

>
? θ? − x>t θ?, where xt, t ∈ [T ] are

the played actions at each round t, and x? is the optimal safe action

that maximizes the expected reward, i.e., x? = argmaxx∈Ds

0
x>θ?,

where the safe set of actions Ds
0(θ?) is defined as

Ds
0(θ?) := {x ∈ D0 : x>Bθ? ≤ z}. (3)

For simplicity of exposition, we drop the dependence of Ds
0(θ?) on

θ? and refer to the cumulative pseudo-regret simply as regret. The

goal of the learner is to control the growth of the pseudo-regret while

choosing safe actions.

2. SAFE LINEAR THOMPSON SAMPLING ALGORITHM

We propose a safe version of the linear Thompson Sampling (LTS)

that respects the safety constraint (2) at each round t. Specifically,

our algorithm includes two distinct so-called pure exploration and

exploration-exploitation phases. In the pure exploration phase, the



algorithm randomly samples a parameter θ̃t. Then, it chooses the

optimal safe action corresponding to the sampled parameter θ̃t from

a known (seed) safe subset Dw ⊂ D0, and observes the correspond-

ing reward. In the exploration-exploitation phase, at any round t,
the algorithm samples a perturbed version θ̃t of the regularized least

square estimate (RLS-estimate) θ̂t. Then, it chooses the optimal

action for the sampled parameter θ̃t while respecting the safety con-

straint (2). In order to ensure that the safety constraint holds at each

round t, the algorithm builds a confidence region Ct that contains the

unknown parameter θ? with high probability. Then, the algorithm

ensures safety by choosing actions that satisfy the safety constraint

∀v ∈ Ct. The summary is presented in Algorithm 1.

Algorithm 1: Safe Linear Thompson Sampling (Safe-

LTS)

1 Input: δ, T, T ′, λ

2 Set δ′ = δ
6T

3 Pure exploration phase:

4 for t = 1, . . . , T ′ do

5 Randomly sample θ̃t ∼ HTS

6 Play the following safe action: xt = argmaxx∈Dwx
>θ̃t

7 Observe reward rt

8 end for

9 Safe exploration-exploitation phase:

10 for t = T ′ + 1, . . . , T do

11 Sample ηt ∼ HTS

12 Compute the RLS-estimate in (5)

13 Set: θ̃t = θ̂t + βt(δ
′)A

−
1

2

t ηt
14 Build the confidence region:

Ct(δ
′) = {v ∈ R :

∥∥∥v − θ̂t

∥∥∥
At

≤ βt(δ
′)}

15 Compute the estimated safe set:

Ds
t = {x ∈ D0 : x>Bv ≤ z, ∀v ∈ Ct(δ

′)}
16 Play the following safe action: xt = argmaxx∈Ds

t

x>θ̃t

17 Observe reward rt

18 end for

2.1. Model Assumptions

Let Ft = (F1, σ(x1, . . . , xt+1, ξ1, . . . , ξt)) be the history at round

t. We make the following standard assumptions.

Assumption 1. For all t, given Ft, ξt is a zero mean R-sub-

Gaussian for a fixed constant R ≥ 0, i.e., E[ξt|Ft−1] = 0 and

E[eαξt |Ft−1] ≤ exp(α2R2/2), ∀α ∈ R.

Assumption 2. There exist positive constants S,L such that

‖θ?‖2 ≤ S and ‖x‖2 ≤ L, ∀x ∈ D0. Also, x>θ? ≤ 1, ∀x ∈ D0.

Assumption 3. The action set D0 is a compact and convex subset

of Rd that contains the origin.

2.2. Pure exploration phase

The duration of the pure exploration phase, denoted as T ′, is pro-

vided as an input to the algorithm. For all rounds t ∈ [T ′], the

algorithm randomly samples a parameter θ̃t from an appropriate TS

distribution HTS, which will be specified in Definition 2.1. Then, it

chooses the optimal action for the sampled parameter from a given

safe subset Dw ∈ Ds
0 that we define next. The safe action set Ds

0

is unknown to the learner. However, since the unknown parameter

is bounded, and the action set Ds
0 is a compact convex body, there

always exists a (sufficiently small) ε-ball inside Ds
0. We assume that

Dw is that ε-ball.

Purely random selection of θ̃t’s in this phase lead to random ac-

tions xt. The purely random action-reward pairs (xt, rt) allow us to

obtain a good estimate of θ?. This is important since the accuracy of

the estimate of θ? determines which actions can be considered safe.

Let Q(Dw) denote the distribution of the random and independent

actions xt in Dw chosen in the first phase. For random variables

X ∼ Q(Dw), let λ− be the minimum eigenvalue of the co-variance

matrix E[XX>]. Since Dw is an ε-ball, we have that X = θ̃/‖θ̃‖2
for θ̃ ∼ HTS . Hence,

λ− := λmin

(
E[XX>]

)
= ε2λmin

(
E

[
θ̃θ̃>

/
‖θ̃‖22

])
> 0. (4)

The inequality follows from the anti-concentration property of HTS

(see Definition 2.1).

2.3. Safe exploration-exploitation phase

In this paper, we follow [12, 14] and define LTS as a generic random-

ized algorithm constructed on the RLS-estimate of the unknown pa-

rameter θ? (rather than a Bayesian algorithm that updates a prior dis-

tribution every round). Specifically, at each round t = T ′+1, . . . , T
of the safe exploration-exploitation phase, the Safe-LTS algorithm

uses the previous action-observation pairs to compute the Gram ma-

trix At and the RLS-estimate θ̂t of θ? defined as follows

At = λI +

t−1∑

s=1

xsx
>

s , θ̂t = A−1
t

t−1∑

s=1

rsxs. (5)

Based on θ̂t, the algorithm constructs a confidence region Ct(δ
′) as

Ct(δ
′) = {v ∈ R :

∥∥∥v − θ̂t

∥∥∥
At

≤ βt(δ
′)}, (6)

where βt(δ
′) is chosen according to Theorem 2 in [4] in order to

ensure that θ? ∈ Ct(δ
′) with probability at least 1− δ′. In particular,

we choose βt(δ
′) = R

√
d log

(
1+(t−1)L2/λ

δ′

)
+

√
λS. Then, at

any round t = T ′ + 1, . . . , T , the algorithm samples a perturbed

parameter θ̃t according to:

θ̃t = θ̂t + βt(δ
′)A

−
1

2

t ηt. (7)

Here, ηt is a random sample drawn i.i.d. from the appropriately

defined TS distribution HTS and rotated by the Gram matrix At. Fi-

nally, the algorithm chooses the optimal action to play assuming the

the true parameter is equal to θ̃t, while also respecting the safety

constraint (2). As the learner does not know the safe action set Ds
0,

it is key to create a conservative inner approximation of Ds
0 based on

the confidence region Ct(δ
′) as follows [23]:

Ds
t := {x ∈ D0 : x>Bv ≤ z, ∀v ∈ Ct(δ

′)}. (8)

Chosen actions belong this set. Note that, with high probability,

Ds
t ⊆ Ds

0, since its actions are safe with respect to all parameter

vectors in Ct(δ
′), and not only for the true parameter θ?. This con-

servative definition of the safe decision set could contribute to the

growth of the overall regret. Next, we will study this effect closely.

Considering the original LTS algorithm from a frequentist point

of view, [12] showed that as long as ηt is sampled from a distribu-

tion HTS that satisfies certain anti-concentration and concentration



properties, a regret of order O(d3/2 log1/2 d ·T 1/2 log3/2 T ) can be

guaranteed. The conditions on ηt provided by [12] ensure that LTS

explores enough but not too much. However, in a safety-constrained

setting, the distributional assumptions proposed by [12] no longer

provide sufficient exploration to sufficiently expand the safe set for

all problem instances. To address this issue, let us define the fol-

lowing critical parameter referred to as the safety gap for a given

problem instance:

∆ := z − x>? Bθ?. (9)

Note that ∆ ≥ 0. We provide two problem specific regret bounds

that hold for ∆ > 0 and ∆ = 0, respectively. We show that the

following distributional properties for HTS, provide sufficient explo-

ration in order to bound the regret.

Definition 2.1. HTS is a multivariate distribution on R
d, absolutely

continuous with respect to the Lebesgue measure which satisfies the

following properties for t ≥ T ′ + 1:

• (anti-concentration) there exists a positive probability p such

that for any u ∈ R
d with ‖u‖2 = 1,

Pηt∼HTS

(
u>ηt ≥ kt

)
≥ p. (10)

• (concentration) there exist positive constants c, c′ such that

∀δ ∈ (0, 1),

Pηt∼HTS

(
‖ηt‖2 ≤ kt

√
cd log(

c′d

δ
)

)
≥ 1− δ, (11)

where

kt =

{
1 , if ∆ > 0,

1 + 2
z
‖B‖2

√
λ+(t−1)L2

λ+(T ′+λ−)/2
, if ∆ = 0.

(12)

For example, it can be easily checked that the properties in Definition

2.1 are satisfied by a multivariate i.i.d Gaussian distribution with all

entries having a (possibly time-dependent) variance k2t .

3. REGRET ANALYSIS

In this section, we study the regret of Safe-LTS. At each round t, the

learner chooses her action from the estimated safe set Ds
t given in

(8). To see how this affects the learner’s regret, consider the follow-

ing decomposition of the instantaneous regret Rt, t ≥ T ′ + 1:

Rt := x>? θ? − x>t θ? = x>? θ? − x>t θ̃t︸ ︷︷ ︸
Term I

+x>t θ̃t − x>t θ?︸ ︷︷ ︸
Term II

(13)

On the one hand, controlling Term II is standard and follows previ-

ous results (e.g., [4]). On the other hand, controlling Term I, which

is termed the regret of the safety in [23], is more challenging. The

reason is that in the safe version of TS, x? does not generally be-

long to Ds
t . Our main contribution towards establishing the regret is

upper bounding Term I.

Clearly, it would suffice to show that Term I is non-positive.

While this is not the case in general, [12] proves that for TS algo-

rithms it suffices to show that the term is non-positive with a con-

stant probability. (We skip the details for brevity; see [12, Appendix

D]).) Moreover, [12] proves that this indeed happens in the classical

setting with no safety constraints. Our main technical contribution

is extending this result to a setting with unknown constraints.

Let Θopt
t = {θ ∈ R

d : x>t θ̃t ≥ x>? θ?} be the so-called set of op-

timistic parameters, where xt = argmaxx∈Ds

t
x>θ̃t is the optimal

action for the sampled parameter θ̃t from the conservative decision

set Ds
t . LTS is considered optimistic if it samples frequently enough

from the set Θopt
t . The challenge in Safe-LTS is that Ds

t 6= Ds
0

and so we cannot directly adopt the approach used [12]. In the next

lemma, we show that Safe-LTS samples θ̃t from the optimistic set

with a positive probability despite the safety constraints. Compared

to [12], our proof is simpler and extends to the safe setting.

Lemma 3.1. Let Θopt
t = {θ ∈ R

d : x>t θ ≥ x>? θ?} be the set of

optimistic parameters. For t = T ′ + 1, . . . , T and θ̃t defined in (7),

P(θ̃t ∈ Θopt
t ) ≥ p.

Next, we provide a proof sketch of Lemma 3.1. Simply stated, we

need to show that

qt = P

(
x>t θ̃t ≥ x>? θ?

)
≥ p,

where p is strictly positive. Similar to [23], consider an enlarged

confidence region C̃t centred on θ? as follows

C̃t(δ
′) := {v ∈ R

d : ‖v − θ?‖At
≤ 2βt(δ

′)}

and the corresponding “shrunk” safe decision set as

D̃s
t : = {x ∈ D0 : x>Bv ≤ z, ∀v ∈ C̃t(δ

′)}
= {x ∈ D0 : x>Bθ? + 2βt(δ

′) ‖Bx‖
A−1

t

≤ z} ⊂ Ds
t

Further define αt as the largest number in (0, 1] such that αtx? ∈
D̃s

t , i.e.,

αt

(
x>? Bθ? + 2βt(δ

′) ‖Bx?‖A−1

t

)
≤ z. (14)

By feasibility of αtx?, we have that x>t θ̃t ≥ αtx
>
? θ̃t. Therefore, to

prove the lemma, it suffices to show that

P
(
x>? θ̃t ≥

1

αt
x>? θ?

)
≥ p.

Using the definition of θ̃t = θ̂t + βt(δ
′)A

−
1

2

t ηt, it suffices that

P

(
βt(δ

′)x>? A
−

1

2

t ηt ≥ x>? (θ? − θ̂t) + (
1

α t
− 1)x>? θ?

)
≥ p.

At this point, recall from Section 2.3 that ‖θ? − θ̂t‖At
≤ βt(δ

′).
Also, by Assumption 2, x>? θ? ≤ 1. All these combined, it remains

to show that for any vector ‖u‖2 = 1 it holds

P

(
u>ηt ≥ 1 +

1/αt − 1

βt(δ′)‖x?‖A−1

t

)
≥ p. (15)

In order to show (15), we need to control the term 1/α− 1. We

accomplish this by controling the minimum eigenvalue of the Gram

matrix λmin(At). In order to do so, we use the fact that the Gram ma-

trix forms a non-decreasing sequence λmin(At) ≥ λmin(AT ′+1), t ≥
T ′+1, and rely on the pure exploration phase to bound λmin(AT ′+1).
In essence, the pure exploration phase helps us develop a sufficiently

accurate estimate of Ds
0 for t ≥ T ′ + 1 [23].

Recall the definition of λ− in (4). The matrix Chernoff in-

equality [23, Lemma 1] shows that appropriately choosing T ′ can

λmin(AT ′+1) ≥ λ+
λ−T ′

2
. Next, we use this fact to show that (15)

holds. We consider separately the cases ∆ > 0 and ∆ = 0.



3.1. Problem dependent upper bound

For the case where ∆ > 0, it can be shown that by choosing an

appropriate T ′, we can guarantee that x? ∈ Ds
t for all t = T ′ +

1, . . . , T . Specifically, [23, Lemma 2] shows that choosing T ′ of

order O(log T ), ensures that x? ∈ Ds
t with high probability. In ref-

erence to our earlier discussion this means for t ≥ T ′ + 1, αt =
1. Therefore, the second term inside the probability in (15) van-

ishes and the desired lower bound follows directly from the anti-

concentration property (10) for kt = 1. This completes the proof of

Lemma 3.1 for the case ∆ > 0.

As mentioned previously, once Lemma 10 is shown to be true,

we can adapt the results of [12] to prove a total regret for Safe-LTS

of order Õ(
√
T ). We summarize the end result next.

Theorem 3.2. Let Assumptions 1, 2 and 3 holds. For a δ ∈ (0, 1),
with probability 1− δ, we have that

R(T ) ≤ 2T ′+

(βT (δ
′) + γT (δ

′)(1 +
4

p
))

√
2d(T − T ′) log(

2TL2

d(2λ+ λ−T ′)
)

+
4γT (δ

′)

p

√
16(T − T ′)L2

2λ+ λ−T ′
log(

4

δ
), (16)

where δ′ = δ
6T

, γt(δ) = βt(δ
′)
√
cd log( c

′d
δ
).

The first part is a trivial bound over the pure exploration phase,

since from Assumption 2, we have x>θ? ≤ 1, ∀x ∈ D0. The second

part is a regret of safety which is of order Õ(
√
T ) when T ′ is chosen

as O(log T ).

3.2. General upper bound

As it is stated in [23], when the safety gap ∆ = 0, there is no guar-

antee that x? ∈ Ds
t for t > T ′. Thus, in order to show that for

t = T ′ + 1, . . . , T , Safe-LTS samples from the optimistic set with

constant probability, we need to appropriately modify the distribu-

tional properties for HTS in [12] as it is stated in (10) and (11). In

order to prove (15) recall that αt, t > T ′ + 1 is such that

1

αt
= 1 +

2

z
βt(δ

′) ‖Bx?‖2 (17)

Substituting this in (15), it suffices that

qt ≥ P

(
u>ηt ≥ 1 +

2

z

‖Bx?‖A−1

t

‖x?‖A−1

t

)
≥ p. (18)

Thanks to the pure exploration phase, we have

‖Bx?‖A−1

t

‖x?‖A−1

t

≤
‖Bx?‖2

√
λmax(V

−1
t )

‖x?‖2
√
λmin(V

−1
t )

≤ ‖B‖2

√
λmax(Vt)

λmin(VT ′+1)
≤ ‖B‖2

√
λ+ (t− 1)L2

λ+ (λ−T ′)/2
.

The last inequality comes from upper bounding the λmax(Vt) and

lower bounding λmin(Vt). Specifically, from Lemma 1 in [23], we

can lower bound λmin(Vt) with λmin(VT ′+1). Moreover, by Assump-

tion 2, ‖x‖2 ≤ L, we can upper bound λmax(Vt) with λ+(t−1)L2.

From the anti-concentration inequality (10), we can get qt ≥ p.

Fig. 1. Comparison of the average per-step regret of Safe-LTS with

Safe-LUCB and Naive Safe-LUCB.

Therefore, from [12, Theorem 1] and [23, Theorem 3] we know that

with choosing T ′ of order Õ(T 2/3), we are able show that when

∆ = 0, we can obtain the regret of order Õ(T 2/3). With replac-

ing γT (δ
′) in (16) with ψT (δ

′) = βT (δ
′)kT

√
cd log( c

′d
δ
), we can

obtain the formal regret bound for the case when ∆ = 0.

4. NUMERICAL RESULTS

We evaluate the performance of Safe-LTS by comparing it against

1) Safe-LUCB presented in [23] and 2) Naive Safe-LUCB, which is

a modification of the LUCB algorithm presented in [3, 4] that sim-

ply requires actions to be chosen from the estimated safe set (but

with no pure exploration phase involved). Fig. 1 compares the aver-

age per step regret Rt

t
of Safe-LTS against that of Safe-LUCB and

of Naive Safe-LUCB over 20 problem realizations. The result ver-

ifies that Safe-LTS is a no-regret learning algorithm. Also, Safe-

LTS and Safe-LUCB are seen to have similar general regret of or-

der Õ(T 2/3). Moreover, Fig. 1 demonstrates the importance of

pure exploration phase considering the performance of Naive Safe-

LUCB. For the simulation we consider a time horizon T = 10000,

δ = 1/4T , and R = 0.1. The reward and parameter θ? are sampled

from N (0, I4), and z is sampled uniformly from [0, 1]. We consider

a decision set X0 = [−1, 1]4 in R
4. As discussed in [3] LUCB-

based algorithms have computational issues with confidence regions

defined with 2-norms. Instead, we use Safe-LUCB with modified

confidence regions according to the 1-norm; see [23]. On the other

hand, Safe-LTS does not suffer from this issue.

5. CONCLUSION

In this paper, we study a linear stochastic bandit problem with un-

known safety constraints. These constraints depend on the unknown

parameter θ?, and must be satisfied at each round. We propose

a Thompson Sampling-based algorithm called Safe-LTS, which

consists of two phases: a pure exploration phase and a TS-based

exploration-exploitation phase. We show regret bounds that depend

on a problem-specific parameter referred to as the safety gap, ∆.

Specifically, when ∆ > 0, we show that Safe-LTS has a general re-

gret of order Õ(
√
T ), and, when ∆ = 0, a regret of order Õ(T 2/3).

An interesting direction for future work would is to investigate

whether the worst-case bound for ∆ = 0 can be improved.
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