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ABSTRACT

We study how adding unknown linear safety constraints affects the
performance of Thompson Sampling in the linear stochastic bandit
problem. The additional constraints must be met at each round in
spite of uncertainty about the environment requiring that the learner
acts conservatively in choosing her actions. In this setting, we pro-
pose Safe-LTS, the first safe Thompson Sampling based algorithm,
and we prove that it achieves no-regret learning. We obtain regrets
that have the same dependence on the total number of rounds (mod-
ulo logarithmic factors) as Safe-UCB, a recently proposed safe al-
gorithm that uses the upper confidence bound principle. Finally, we
provide numerical simulations that demonstrate the efficacy of our
algorithm.

Index Terms— multi-armed bandit, Thompson Sampling,
stochastic linear bandit, safe learning, online learning.

1. INTRODUCTION

The stochastic multi-armed bandit problem is a sequential decision-
making problem where at each round, the learner chooses an action,
and observes the corresponding stochastic reward [1]. The learner’s
goal is to maximize reward over 7' rounds. In the stochastic linear
bandit (LB) problem, the expected value of the reward is an unknown
linear function of the action. Two popular approaches have been
studied for the LB setting. On the one hand, UCB-based algorithms,
build a confidence region over the unknown environment and choose
an action that maximizes the expected reward in the most favorable
environment in the confidence region [2, 3,4, 5, 6]. Specifically, Lin-
ear UCB (LUCB) achieves regret of order O(Tl/ 2logT) [4]. On
the other hand, Thompson Sampling (TS) based algorithms, define a
prior over the unknown environment, and at each round choose the
action that maximizes the expected reward based on a sample from
that prior [7, 8, 9, 10, 11, 12, 13, 14, 15]. Specifically, linear TS
(LTS) achieves regret of order (D(Tl/2 log3/? T) [12, 14].

This paper focuses on the effect of additional safety constraints
on the performance of Linear TS. The concept of safe learning has
attracted notable attention in recent years and aims to enable the use
of learning algorithms in safety-critical systems with strict reliability
requirements that need to be met at all rounds [16, 17, 18, 19, 20].
Focusing specifically on safety constraints in the LB setting, [21]
studies a setting where the cumulative reward needs to stay above
of a known baseline at each round and proposes a UCB-based al-
gorithm. In this paper, we consider the LB problem with linear
stage-wise constraints first proposed in [22, 23]. The authors of [23]
propose a safe UCB-based algorithm and provide both a problem
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dependent regret bound of order 6(\/?) and a worst-case bound of
order 6(T2/ 3). None of the aforementioned papers consider safe
learning in the context of TS. Compared to UCB-based algorithms,
TS-based algorithms have favorable computational features, since at
each round, they involve solving a simple optimization with linear
objective (rather than one with a possibly hard bilinear objective),
e.g. [12]. We propose Safe-LTS, a safe TS algorithm, that prov-
ably achieves a O(v/T) problem-dependent bound and a O(T/?)
worst-case bound.

1.1. Safe stochastic linear bandit problem

We summarize the safe stochastic linear bandit problem recently in-
troduced in [23].

Reward. The learner is given a convex and compact set of ac-
tions Dy € R?. At each round ¢, by playing an action z:; € Do, the
learner observes a reward

o=y Oy + &b, (1)

which is linear in the fixed but unknown parameter 0, € RY with
additive zero-mean random noise &;.

Safety constraint. The learning environment is restricted by a linear
safety constraint of the form

JthBG* <z, 2)

which must be satisfied at every round ¢. Here, the matrix B €
R?*4 and the positive constant z are known to the learner. Note that
in this setting, after playing an action x;, the value = ' B6, is not
observed. Given the unknown nature of the parameter 6., in order
to not violate (2) with high probability, the learner must choose her
actions conservatively.

Goal. The cumulative pseudo-regret of the learner up to round T’
is defined as R(T) = >, x, 0, — x/ 0., where x¢,t € [T] are
the played actions at each round ¢, and x. is the optimal safe action
that maximizes the expected reward, i.e., . = arg maxzepy z' 0.,
where the safe set of actions D (0, ) is defined as

D§(0,) := {x € Dy : &' BO, < z}. 3)

For simplicity of exposition, we drop the dependence of D (6, ) on
0, and refer to the cumulative pseudo-regret simply as regret. The
goal of the learner is to control the growth of the pseudo-regret while
choosing safe actions.

2. SAFE LINEAR THOMPSON SAMPLING ALGORITHM

We propose a safe version of the linear Thompson Sampling (LTS)
that respects the safety constraint (2) at each round ¢. Specifically,
our algorithm includes two distinct so-called pure exploration and
exploration-exploitation phases. In the pure exploration phase, the



algorithm randomly samples a parameter 0,. Then, it chooses the
optimal safe action corresponding to the sampled parameter 6; from
a known (seed) safe subset D C D, and observes the correspond-
ing reward. In the exploration-exploitation phase, at any round ¢,
the algorithm samples a perturbed version 0, of the regularized least
square estimate (RLS-estimate) ét. Then, it chooses the optimal
action for the sampled parameter §; while respecting the safety con-
straint (2). In order to ensure that the safety constraint holds at each
round ¢, the algorithm builds a confidence region C; that contains the
unknown parameter 6, with high probability. Then, the algorithm
ensures safety by choosing actions that satisfy the safety constraint
Vv € C;. The summary is presented in Algorithm 1.

Algorithm 1: Safe Linear Thompson Sampling (Safe-
LTS)
1 Input: 6, 7,77, \
s
Set ¢’ = &%
Pure exploration phase:
for t=1,...,7" do
Randomly sample 6; ~ H™
Play the following safe action: x+ = argmax_cpw z' 0,
Observe reward 7

N S AW

8 end for
9 Safe exploration-exploitation phase:
10 fort=T"+1,...,T do

1 Sample 7; ~ H™S
12 Compute the RLS-estimate in (5)
~ . _1

13 Set: et = et + Bt (6/)147: 2 Mt
14 Build the confidence region:

C(d)={veR: Hv —0| <@

t

15 Compute the estimated safe set:

Di ={x €Dy:2" Bv<zVuel(§)} )
16 Play the following safe action: x; = argmax, e ps z' 0,
17| Observe reward ry
18 end for

2.1. Model Assumptions

Let 7y = (Fi,0(z1,...,Ze41,&1,---,&)) be the history at round
t. We make the following standard assumptions.

Assumption 1. For all t, given Fi, & is a zero mean R-sub-
Gaussian for a fixed constant R > 0, i.e., E[{|Fi—1] = 0 and
E[e®t|Fi—1] < exp(a®R?/2), Va € R.

Assumption 2. There exist positive constants S, L such that
041, < S and ||z||, < L,Yz € Do. Also, z" 0, < 1, Vx € D.

Assumption 3. The action set Do is a compact and convex subset
of R that contains the origin.

2.2. Pure exploration phase

The duration of the pure exploration phase, denoted as 7", is pro-
vided as an input to the algorithm. For all rounds ¢ € [T"], the
algorithm randomly samples a parameter 6, from an appropriate TS
distribution H'S, which will be specified in Definition 2.1. Then, it
chooses the optimal action for the sampled parameter from a given
safe subset D € Dj that we define next. The safe action set Dj

is unknown to the learner. However, since the unknown parameter
is bounded, and the action set D is a compact convex body, there
always exists a (sufficiently small) e-ball inside Dj. We assume that
DY is that e-ball. _

Purely random selection of 6;’s in this phase lead to random ac-
tions x;. The purely random action-reward pairs (z¢, 7¢) allow us to
obtain a good estimate of 6,. This is important since the accuracy of
the estimate of 0, determines which actions can be considered safe.
Let Q(D") denote the distribution of the random and independent
actions z; in D" chosen in the first phase. For random variables
X ~ Q(D"), let A_ be the minimum eigenvalue of the co-variance
matrix E[X X ]. Since D" is an e-ball, we have that X = 6/||0]|2
for 6 ~ HTS. Hence,

A= Anin (BIXXT)) = o (E[007 /1013]) > 0. @)

The inequality follows from the anti-concentration property of #**
(see Definition 2.1).

2.3. Safe exploration-exploitation phase

In this paper, we follow [12, 14] and define LTS as a generic random-
ized algorithm constructed on the RLS-estimate of the unknown pa-
rameter 0, (rather than a Bayesian algorithm that updates a prior dis-
tribution every round). Specifically, ateachround ¢t = 7" +1,...,T
of the safe exploration-exploitation phase, the Safe-LTS algorithm
uses the previous action-observation pairs to compute the Gram ma-
trix A, and the RLS-estimate 6, of 0, defined as follows

t—1 t—1
Ay :)\IJrZ:vsxz, ét :A;IZTS:ES. %)
s=1 s=1

Based on 6;, the algorithm constructs a confidence region C; (") as

C(d)={veR: Hv — 4,

mg@Wn, (6)

where 3:(8") is chosen according to Theorem 2 in [4] in order to
ensure that 0, € C;(8") with probability at least 1 — §’. In particular,

we choose 3:(8') = R\/dlog (H(t}#) + +v\S. Then, at

any round ¢ = T’ 4 1,...,T, the algorithm samples a perturbed
parameter 6; according to:

~ ~ _1
0r =6, + Be(8") A, 2. (7

Here, 7 is a random sample drawn i.i.d. from the appropriately
defined TS distribution H™ and rotated by the Gram matrix A;. Fi-
nally, the algorithm chooses the optimal action to play assuming the
the true parameter is equal to 6;, while also respecting the safety
constraint (2). As the learner does not know the safe action set Dg,
it is key to create a conservative inner approximation of D based on
the confidence region C¢(4") as follows [23]:

D :={ze€Dy:z Bv<zVvel()} ®)

Chosen actions belong this set. Note that, with high probability,
D;i C Dy, since its actions are safe with respect to all parameter
vectors in C¢(d"), and not only for the true parameter 6. This con-
servative definition of the safe decision set could contribute to the
growth of the overall regret. Next, we will study this effect closely.
Considering the original LTS algorithm from a frequentist point
of view, [12] showed that as long as 7, is sampled from a distribu-
tion A that satisfies certain anti-concentration and concentration



properties, a regret of order O(d/? log'/? d - T*/? 10g®/? T') can be
guaranteed. The conditions on 7, provided by [12] ensure that LTS
explores enough but not too much. However, in a safety-constrained
setting, the distributional assumptions proposed by [12] no longer
provide sufficient exploration to sufficiently expand the safe set for
all problem instances. To address this issue, let us define the fol-
lowing critical parameter referred to as the safety gap for a given
problem instance:

A=z —x, B,. )

Note that A > 0. We provide two problem specific regret bounds
that hold for A > 0 and A = 0, respectively. We show that the
following distributional properties for %™, provide sufficient explo-
ration in order to bound the regret.

Definition 2.1. #™ is a multivariate distribution on R?, absolutely
continuous with respect to the Lebesgue measure which satisfies the
following properties for t > T + 1:

* (anti-concentration) there exists a positive probability p such
that for any u € R? with ||ul|, = 1,

Py ars (ume > ki) > p. (10)

* (concentration) there exist positive constants ¢, ¢’ such that
Vo € (0,1),

'd
P, s <|Im|l2 <k cdlog(cg)) >1-4, (1D

where

S A >0,

A+ (t—1)L2 ifA =0 (12)

{1
ke = ,
L+ 2 IBllo\/ 557755972

For example, it can be easily checked that the properties in Definition
2.1 are satisfied by a multivariate i.i.d Gaussian distribution with all
entries having a (possibly time-dependent) variance k7.

3. REGRET ANALYSIS

In this section, we study the regret of Safe-LTS. At each round ¢, the
learner chooses her action from the estimated safe set D; given in
(8). To see how this affects the learner’s regret, consider the follow-
ing decomposition of the instantaneous regret R, ¢t > T" + 1:

:L':@,( =20, — x?ét +x:9~t — x?ﬂ* (13)

Term I Term II

Ry :=2x]0, —

On the one hand, controlling Term II is standard and follows previ-
ous results (e.g., [4]). On the other hand, controlling Term I, which
is termed the regret of the safety in [23], is more challenging. The
reason is that in the safe version of TS, x, does not generally be-
long to Df. Our main contribution towards establishing the regret is
upper bounding Term I.

Clearly, it would suffice to show that Term I is non-positive.
While this is not the case in general, [12] proves that for TS algo-
rithms it suffices to show that the term is non-positive with a con-
stant probability. (We skip the details for brevity; see [12, Appendix
D]).) Moreover, [12] proves that this indeed happens in the classical
setting with no safety constraints. Our main technical contribution
is extending this result to a setting with unknown constraints.

Let O = {# € R? : 2 6, > 2 6.} be the so-called set of op-
timistic parameters, where Ty = arg maX;ep; z' 0, is the optimal
action for the sampled parameter 6, from the conservative decision
set D7 . LTS is considered optimistic if it samples frequently enough
from the set O, The challenge in Safe-LTS is that Dj # D
and so we cannot directly adopt the approach used [12]. In the next
lemma, we show that Safe-LTS samples 6; from the optimistic set
with a positive probability despite the safety constraints. Compared
to [12], our proof is simpler and extends to the safe setting.

Lemma 3.1. Ler O = {0 € R : 2]0 > 2] 0.} be the set of
optimistic parameters. Fort =T’ +1,...,T and 0, defined in (7),
P9, € ©7") > p.

Next, we provide a proof sketch of Lemma 3.1. Simply stated, we
need to show that

a =P (/8 >2]0.) > p,

where p is strictly positive. Similar to [23], consider an enlarged
confidence region C; centred on 6, as follows

() = {v R [lv — Ol 4, < 26:(8)}
and the corresponding “shrunk” safe decision set as
Di:= {z €Dy : x Bu < z,Yv € ét(d/)}
={z €Do:z' Bb,+26:(5) Bz, + <z} € D;

Further define a; as the largest number in (0, 1] such that azz. €
ﬁf ,1.e.,

(2, BO. +26:(8) 1Bzl 51 ) < 2. (14)

By feasibility of ax., we have that xtT 9} > atmfét. Therefore, to
prove the lemma, it suffices to show that

_ 1
Pz, 0, > —x]0.) > p.
(€73
. 1
Using the definition of 6; = 6, + £:(8') A, 2, it suffices that
1 . 1
P <5t(5’)xIAt e 2 @ (0= 0)+ (- - 1)@{9*) >p.
t

At this point, recall from Section 2.3 that [|0, — 0:]|a, < B:(6").
Also, by Assumption 2, ;cI 0, < 1. All these combined, it remains
to show that for any vector ||u|2 = 1 it holds

1/Oét -1

Plu'm>14-—2t"—
< A CO A

> 2 p 15)

In order to show (15), we need to control the term 1/ — 1. We
accomplish this by controling the minimum eigenvalue of the Gram
matrix Amin(A¢). In order to do so, we use the fact that the Gram ma-
trix forms a non-decreasing sequence Amin(At) > Amin(A7/41),¢ >
T’+1, and rely on the pure exploration phase to bound Amin (A7 1).
In essence, the pure exploration phase helps us develop a sufficiently
accurate estimate of D for t > T' + 1 [23].

Recall the definition of A_ in (4). The matrix Chernoff in-

equality [23, Lemma 1] shows that appropriately choosing 7" can

Amin(A7741) > A+ )“ZT/. Next, we use this fact to show that (15)

holds. We consider separately the cases A > 0 and A = 0.




3.1. Problem dependent upper bound

For the case where A > 0, it can be shown that by choosing an
appropriate 7", we can guarantee that z, € D forall t = T' +
1,...,T. Specifically, [23, Lemma 2] shows that choosing T" of
order O(log T'), ensures that =, € D; with high probability. In ref-
erence to our earlier discussion this means for t > 7' + 1, oy =
1. Therefore, the second term inside the probability in (15) van-
ishes and the desired lower bound follows directly from the anti-
concentration property (10) for k; = 1. This completes the proof of
Lemma 3.1 for the case A > 0.

As mentioned previously, once Lemma 10 is shown to be true,
we can adapt the results of [12] to prove a total regret for Safe-LTS

of order O(v/T). We summarize the end result next.

Theorem 3.2. Let Assumptions 1, 2 and 3 holds. Fora ¢ € (0,1),
with probability 1 — 0, we have that

R(T)< 2T+

(Br(8") + 7 (6") (1 + ;f))\/%(T —-17) log(m%im)
Ayr(8') [16(T —T)L* . 4

T \/ ot 8G) (e

where §' = &, v1(8) = Bi(8")1/ cdlog(52).

The first part is a trivial bound over the pure exploration phase,
since from Assumption 2, we have z 0, < 1,Vx € Dy. The second
part is a regret of safety which is of order O( \/T) when T" is chosen
as O(logT).

3.2. General upper bound

As it is stated in [23], when the safety gap A = 0, there is no guar-
antee that x, € Dj for ¢t > T’. Thus, in order to show that for
t=T +1,...,T, Safe-LTS samples from the optimistic set with
constant probability, we need to appropriately modify the distribu-
tional properties for H™ in [12] as it is stated in (10) and (11). In
order to prove (15) recall that o, £ > T" + 1 is such that

1 2
o = L+ ZA(@) 1Bz, an

Substituting this in (15), it suffices that

(1Bl 4—1
2077 A T s )

@ >Plu"np>14+2
z ”"E*HA;l

Thanks to the pure exploration phase, we have

—1
1Bzl -1 . 1Bzl / Amax (Vi)
||x*||A:1 Hx*||2 Amin(‘/ti
Amax (V2) [X+(t—1)L2
<|IB —F——<||B —
= H HQ Amin(VT’-‘—l) — H ||2 )\-‘r()\,T’)/Q

The last inequality comes from upper bounding the Amax(V;) and
lower bounding Amin(V%). Specifically, from Lemma 1 in [23], we
can lower bound Amin (V) With Amin (V771 1). Moreover, by Assump-
tion 2, |||, < L, we can upper bound Amax (V;) with A+ (¢ —1) L.
From the anti-concentration inequality (10), we can get ¢+ > p.

Naive Safe-LUCB
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Fig. 1. Comparison of the average per-step regret of Safe-LTS with
Safe-LUCB and Naive Safe-LUCB.

Therefore, from [12, Theorem 1] and [23, Theorem 3] we know that
with choosing 7" of order O(T%/?), we are able show that when

A = 0, we can obtain the regret of order O(T%/3). With replac-
ing v7(8') in (16) with ¢7(8') = Br(8")kry/cdlog(%2), we can
obtain the formal regret bound for the case when A = 0.

4. NUMERICAL RESULTS

We evaluate the performance of Safe-LTS by comparing it against
1) Safe-LUCB presented in [23] and 2) Naive Safe-LUCB, which is
a modification of the LUCB algorithm presented in [3, 4] that sim-
ply requires actions to be chosen from the estimated safe set (but
with no pure exploration phase involved). Fig. 1 compares the aver-
age per step regret % of Safe-LTS against that of Safe-LUCB and
of Naive Safe-LUCB over 20 problem realizations. The result ver-
ifies that Safe-LTS is a no-regret learning algorithm. Also, Safe-
LTS and Safe-LUCB are seen to have similar general regret of or-
der 6(T2/ 3). Moreover, Fig. 1 demonstrates the importance of
pure exploration phase considering the performance of Naive Safe-
LUCB. For the simulation we consider a time horizon 7" = 10000,
0 = 1/4T, and R = 0.1. The reward and parameter 0, are sampled
from N(0, I4), and z is sampled uniformly from [0, 1]. We consider
a decision set Xy = [—1,1]* in R*. As discussed in [3] LUCB-
based algorithms have computational issues with confidence regions
defined with 2-norms. Instead, we use Safe-LUCB with modified
confidence regions according to the 1-norm; see [23]. On the other
hand, Safe-LTS does not suffer from this issue.

5. CONCLUSION

In this paper, we study a linear stochastic bandit problem with un-
known safety constraints. These constraints depend on the unknown
parameter 6., and must be satisfied at each round. We propose
a Thompson Sampling-based algorithm called Safe-LTS, which
consists of two phases: a pure exploration phase and a TS-based
exploration-exploitation phase. We show regret bounds that depend
on a problem-specific parameter referred to as the safety gap, A.
Specifically, when A > 0, we show that Safe-LTS has a general re-
gret of order O(v/T), and, when A = 0, a regret of order O(T%/?).
An interesting direction for future work would is to investigate
whether the worst-case bound for A = 0 can be improved.
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