
Computation-Aware Data Aggregation

Bernhard Haeupler
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

haeupler@cs.cmu.edu

D. Ellis Hershkowitz
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

dhershko@cs.cmu.edu

Anson Kahng
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

akahng@cs.cmu.edu

Ariel D. Procaccia
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

arielpro@cs.cmu.edu

Abstract

Data aggregation is a fundamental primitive in distributed computing wherein a network computes

a function of every nodes’ input. However, while compute time is non-negligible in modern systems,

standard models of distributed computing do not take compute time into account. Rather, most

distributed models of computation only explicitly consider communication time.

In this paper, we introduce a model of distributed computation that considers both computation

and communication so as to give a theoretical treatment of data aggregation. We study both the

structure of and how to compute the fastest data aggregation schedule in this model. As our first

result, we give a polynomial-time algorithm that computes the optimal schedule when the input

network is a complete graph. Moreover, since one may want to aggregate data over a pre-existing

network, we also study data aggregation scheduling on arbitrary graphs. We demonstrate that this

problem on arbitrary graphs is hard to approximate within a multiplicative 1.5 factor. Finally, we

give an O(log n · log OPT
tm

)-approximation algorithm for this problem on arbitrary graphs, where n is

the number of nodes and OPT is the length of the optimal schedule.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;

Theory of computation → Scheduling algorithms

Keywords and phrases Data aggregation, distributed algorithm scheduling, approximation al-

gorithms

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.65

Funding Bernhard Haeupler : Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-

1814603, CCF-1910588, NSF CAREER award CCF-1750808 and a Sloan Research Fellowship.

D. Ellis Hershkowitz: Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603,

CCF-1910588, NSF CAREER award CCF-1750808 and a Sloan Research Fellowship.

Anson Kahng: Supported in part by NSF grants IIS-1350598, IIS-1714140, CCF-1525932, and

CCF-1733556; by ONR grants N00014-16-1-3075 and N00014-17-1-2428; and by a Sloan Research

Fellowship and a Guggenheim Fellowship.

Ariel D. Procaccia: Supported in part by NSF grants IIS-1350598, IIS-1714140, CCF-1525932, and

CCF-1733556; by ONR grants N00014-16-1-3075 and N00014-17-1-2428; and by a Sloan Research

Fellowship and a Guggenheim Fellowship.

© Bernhard Haeupler, D. Ellis Hershkowitz, Anson Kahng, and Ariel D. Procaccia;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 65; pp. 65:1–65:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

65:2 Computation-Aware Data Aggregation

1 Introduction

Distributed systems drive much of the modern computing revolution. However, these systems

are only as powerful as the abstractions which enable programmers to make use of them. A

key such abstraction is data aggregation, wherein a network computes a function of every

node’s input. For example, if every node stored an integer value, a programmer could run

data aggregation to compute the sum or the largest value of every node in the network.

Indeed, the well-studied and widely-used AllReduce abstraction [29, 16] consists of a data

aggregation step followed by a broadcast step.

The utility of modern systems is their ability to perform massive computations and so,

applications of data aggregation often consist of a function which is computationally-intensive

to compute. A rigorous theoretical study of data aggregation, then, must take the cost of

computation into account. At the same time, one cannot omit the cost of communication, as

many applications of data aggregation operate on large datasets which take time to transmit

over a network.

However, to our knowledge, all existing models of distributed computation – e.g., the

CONGEST [28], SINR [4], (noisy) radio network [21, 9, 7, 8], congested clique [12], dual graph

[6], store-and-forward [22, 31], LOCAL [23], and telephone broadcast models [30, 20, 17] – all

only consider the cost of communication. Relatedly, while there has been significant applied

research on communication-efficient data aggregation algorithms, there has been relatively

little work that explicitly considers the cost of computation, and even less work that considers

how to design a network to efficiently perform data aggregation [25, 19, 26, 27, 18]. In this

way, there do not seem to exist theoretical results for efficient data aggregation scheduling

algorithms that consider both the cost of communication and computation.

Thus, we aim to provide answers to two theoretical questions in settings where both

computation and communication are non-negligible:

1. How should one structure a network to efficiently perform data aggregation?

2. How can one coordinate a fixed network to efficiently perform data aggregation?

1.1 Our Model and Problem

The Token Network Model

So as to give formal answers to these questions we introduce the following simple distributed

model, the Token Network Model. A Token Network is given by an undirected graph

G = (V, E), |V | = n, with parameters tc, tm ∈ N which describe the time it takes nodes to

do computation and communication, respectively.1

Time proceeds in synchronous rounds during which nodes can compute on or communicate

atomic tokens. Specifically, in any given round a node is busy or not busy. If a node is not

busy and has at least one token it can communicate: any node that does so is busy for the

next tm rounds, at the end of which it passes one of its tokens to a neighbor in G. If a node

is not busy and has two or more tokens, it can compute: any node that does so is busy for

the next tc rounds, at the end of which it combines (a.k.a. aggregates) two of its tokens into

a single new token.2 At a high level, this means that communication takes tm rounds and

computation takes tc rounds.

1 We assume tc, tm = poly(n) throughout this paper.
2 Throughout this paper, we assume for ease of exposition that the smaller of tc and tm evenly divides

the larger of tc and tm, or equivalently that either tc or tm is 1.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:3

The Token Computation Problem

We use our Token Network model to give a formal treatment of data aggregation

scheduling. In particular, we study the Token Computation problem. Given an input

Token Network, an algorithm for the Token Computation problem must output

a schedule S which directs each node when to compute and when and with whom to

communicate. A schedule is valid if after the schedule is run on the input Token Network

where every node begins with a single token, there is one remaining token in the entire

network; i.e., there is one node that has aggregated all the information in the network. We

use |S| to notate the length of S – i.e., the number of rounds S takes – and measure the

quality of an algorithm by the length of the schedule that it outputs. For completeness, we

give a more technical and formal definition in Appendix A.

Discussion of Modeling Choices

Our Token Network model and the Token Computation problem are designed to

formally capture the challenges of scheduling distributed computations where both computa-

tion and communication are at play. In particular, combining tokens can be understood as

applying some commutative, associative function to the private input of all nodes in a network.

For instance, summing up private inputs, taking a minimum of private inputs, or computing

the intersection of input sets can all be cast as instances of the Token Computation

problem. We assume that the computation time is the same for every operation and that the

output of a computation is the same size as each of the inputs as a simplifying assumption.

We allow nodes to receive information from multiple neighbors as this sort of communication

is possible in practice.

Lastly, our model should be seen as a so-called “broadcast” model [21] of communication.

In particular, it is easy to see that our assumption that a node can send its token to only

a single neighbor rather than multiple copies of its token to multiple neighbors is without

loss of generality: One can easily modify a schedule in which nodes send multiple copies to

one of equal length in which a node only ever sends one token per round. An interesting

followup question could be to consider our problem in a non-broadcast setting.

1.2 Our Results

We now give a high-level description of our technical results.

Optimal Algorithm on Complete Graphs (Section 3)

We begin by considering how to construct the optimal data aggregation schedule in the

Token Network model for complete graphs for given values of tc and tm. The principal

challenge in constructing such a schedule is formalizing how to optimally pipeline computation

and communication and showing that any valid schedule needs at least as many rounds as

one’s constructed schedule. We overcome this challenge by showing how to modify a given

optimal schedule into an efficiently computable one in a way that preserves its pipelining

structure. Specifically, we show that one can always modify a valid optimal schedule into

another valid optimal schedule with a well-behaved recursive form. We show that this

well-behaved schedule can be computed in polynomial time. Stronger yet, we show that the

edges over which communication takes place in this schedule induce a tree. It is important

to emphasize that this result has implications beyond producing the optimal schedule for a

complete graph; it shows one optimal way to construct a network for data aggregation (if

one had the freedom to include any edge), thereby suggesting an answer to the first of our

two research questions.

ITCS 2020

65:4 Computation-Aware Data Aggregation

Hardness and Approximation on Arbitrary Graphs (Section 4)

We next consider the hardness of producing good schedules efficiently for arbitrary graphs

and given values of tc and tm. We first show that no polynomial-time algorithm can produce

a schedule of length within a multiplicative 1.5 factor of the optimal schedule unless P = NP.

This result implies that one can only coordinate data aggregation over a pre-existing network

so well.

Given that an approximation algorithm is the best one can hope for, we next give an al-

gorithm which in polynomial time produces an approximately-optimal Token Computation

schedule. Our algorithm is based on the simple observation that after O(log n) repetitions of

pairing off nodes with tokens, having one node in each pair route a token to the other node

in the pair, and then having every node compute, there will be a single token in the network.

The difficulty in this approach lies in showing that one can route pairs of tokens in a way

that is competitive with the length of the optimal schedule. We show that by considering

the paths in G traced out by tokens sent by the optimal schedule, we can get a concrete

hold on the optimal schedule. Specifically, we show that a polynomial-time algorithm based

on our observation produces a valid schedule of length O(OPT · log n · log OPT
tm

) with high

probability,3 where OPT is the length of the optimal schedule. Using an easy bound on

OPT, this can be roughly interpreted as an O(log2 n)-approximation algorithm. This result

shows that data aggregation over a pre-existing network can be coordinated fairly well.

Furthermore, it is not hard to see that when tc = 0 and tm > 0, or when tc > 0 and tm = 0,

our problem is trivially solvable in polynomial time. However, we show hardness for the

case where tc, tm > 0, which gives a formal sense in which computation and communication

cannot be considered in isolation, as assumed in previous models of distributed computation.

1.3 Terminology

For the remainder of this paper we use the following terminology. A token a contains token a′

if a = a′ or a was created by combining two tokens, one of which contains a′. For shorthand

we write a′ ∈ a to mean that a contains a′. A singleton token is a token that only contains

itself; i.e., it is a token with which a node started. We let av be the singleton token with

which vertex v starts and refer to av as v’s singleton token. The size of a token is the number

of singleton tokens it contains. Finally, let af be the last token of a valid schedule S; the

terminus of S is the node at which af is formed by a computation.

2 Related Work

Cornejo et al. [10] study a form of data aggregation in networks that change over time,

where the goal is to collect tokens at as few nodes as possible after a certain time. However,

they do not consider computation time and they measure the quality of their solutions

with respect to the optimal offline algorithm. Awerbuch et al. [5] consider computation and

communication in a setting where jobs arrive online at nodes, and nodes can decide whether

or not to complete the job or pass the job to a neighbor. However, they study the problem

of job scheduling, not data aggregation, and, again, they approach the problem from the

perspective of competitive analysis with respect to the optimal offline algorithm.

3 Meaning at least 1 − 1/poly(n) henceforth.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:5

Another line of theoretical work related to our own is a line of work in centralized

algorithms for scheduling information dissemination [30, 20, 17]. In this problem, an algorithm

is given a graph and a model of distributed communication, and must output a schedule that

instructs nodes how to communicate in order to spread some information. For instance, in

one setting an algorithm must produce a schedule which, when run, broadcasts a message

from one node to all other nodes in the graph. The fact that these problems consider

spreading information is complementary to the way in which we consider consolidating it.

However, we note that computation plays no role in these problems, in contrast to our

Token Computation problem.

Of these prior models of communication, the model which is most similar to our own is

the telephone broadcast model. In this model in each round a node can “call” another node

to transmit information or receive a call from a single neighbor. Previous results have given a

hardness of approximation of 3 [13] for broadcasting in this model and logarithmic as well as

sublogarithmic approximation algorithms for broadcasting [14]. The two notable differences

between this model and our own are (1) in our model nodes can receive information from

multiple neighbors in a single round4 and (2) again, in our model computation takes a

non-negligible amount of time. Note, then, that even in the special case when tc = 0, our

model does not generalize the telephone broadcast model; as such we do not immediately

inherit prior hardness results from the telephone broadcast problem. Furthermore, (1) and

especially (2) preclude the possibility of an easy reduction from our problem to the telephone

broadcast problem.

There is also a great deal of related applied work; additional details are in Appendix B.

3 Optimal Algorithm for Complete Graphs

In this section we provide an optimal polynomial-time algorithm for the Token Computa-

tion problem on a complete graph. The schedule output by our algorithm ultimately only

uses the edges of a particular tree, and so, although we reason about our algorithm in a fully

connected graph, in reality our algorithm works equally well on said tree. This result, then,

informs the design of an optimal network.

3.1 Binary Trees (Warmup)

We build intuition by considering a natural solution to Token Computation on the complete

graph: naïve aggregation on a rooted binary tree. In this schedule, nodes do computations

and communications in lock-step. In particular, consider the schedule S which alternates

the following two operations until only a single node with tokens remains on a fixed binary

tree: (1) every non-root node that has a token sends its token to its parent in the binary

tree; (2) every v with at least two tokens performs one computation. Once only one node

has any tokens, that node performs computation until only a single token remains. After

log n iterations of this schedule, the root of the binary tree is the only node with any tokens,

and thereafter only performs computation for the remainder of S. However, S does not

efficiently pipeline communication and computation: after each iteration of (1) and (2), the

root of the tree gains an extra token. Therefore, after log n repetitions of this schedule, the

root has log n tokens. In total, then, this schedule aggregates all tokens after essentially

log n(tc + tm) + log n · tc rounds. See Figure 1.

4 See above for the justification of this assumption.

ITCS 2020

65:6 Computation-Aware Data Aggregation

1

32

7654

(a) Round 1.

2

4 5 6 7

31

(b) Round 2.

31-2

4-5 6-7

(c) Round 3.

31-2 4-5 6-7

(d) Round 4.

Figure 1 The naïve aggregation schedule on a binary tree for tc = tm = 1 and n = 7 after 4

rounds. tokens are represented by blue diamonds; a red arrow from node u to node v means that

u sends to v; and a double-ended blue arrow between two tokens a and b means that a and b are

combined at the node. Notice that the root gains an extra token every 2 rounds.

1

32

7654

(a) Round 1.

2

4 5 6 7

31

(b) Round 2.

31-2

4-5 6-7

(c) Round 3.

1-3 4-5 6-7

(d) Round 4.

Figure 2 The aggregation schedule on a binary tree for tc = tm = 1 and n = 7 after 4 rounds

where the root pipelines its computations. Again, tokens are represented by blue diamonds; a red

arrow from node u to node v means that u sends to v; and a double-ended blue arrow between two

tokens a and b means that a and b are combined at the node. Notice that the root will never have

more than 3 tokens when this schedule is run.

For certain values of tc and tm, we can speed up naïve aggregation on the binary tree

by pipelining the computations of the root with the communications of other nodes in the

network. In particular, consider the schedule S′ for a fixed binary tree for the case when

tc = tm in which every non-root node behaves exactly as it does in S but the root always

computes. Since the root always computes in S′, even as other nodes are sending, it does

not build up a surplus of tokens as in S. Thus, this schedule aggregates all tokens after

essentially log n(tc + tm) rounds when tc = tm, as shown in Figure 2.

However, as we will prove, binary trees are not optimal even when they pipeline compu-

tation at the root and tc = tm. In the remainder of this section, we generalize this pipelining

intuition to arbitrary values of tc and tm and formalize how to show a schedule is optimal.

Figure 3 T (16) for tc = 2, tm = 1.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:7

3.2 Complete Graphs

We now describe our optimal polynomial-time algorithm for complete graphs. This algorithm

produces a schedule which greedily aggregates on a particular tree, T ∗
n . In order to describe

this tree, we first introduce the tree T (R, tc, tm). This tree can be thought of as the largest

tree for which greedy aggregation aggregates all tokens in R rounds given computation cost

tc and communication cost tm. We will overload notation and let T (R) denote T (R, tc, tm)

for some fixed values of tc and tm. Let the root of a tree be the node in that tree with no

parents. Also, given a tree T1 with root r we define T1 join T2 as T1 but where r also has

T2 as an additional subtree. We define T (R) as follows (see Figure 3 for an example):

T (R) :=

{

A single leaf if R < tm + tc

T (R− tc) join T (R− tc − tm) otherwise

Since an input to the Token Computation problem consists of n nodes, and not

a desired number of rounds, we define R∗(n, tc, tm) to be the minimum value such that

|T (R∗(n, tc, tm))| ≥ n. We again overload notation and let R∗(n) denote R∗(n, tc, tm).

Formally,

R∗(n) := min{R : |T (R)| ≥ n}.

We let T ∗
n denote T (R∗(n)). For ease of presentation we assume that |T ∗

n | = n.5

The schedule produced by our algorithm will simply perform greedy aggregation on T ∗
n .

We now formally define greedy aggregation and establish its runtime on the tree T (R).

I Definition 1 (Greedy Aggregation). Given an r-rooted tree, let the greedy aggregation

schedule be defined as follows. In the first round, every node except for r sends its token to

its parent. In subsequent rounds we do the following. If a node is not busy and has at least

two tokens, it performs a computation. If a non-root node is not busy, has exactly one token,

and has received a token from every child in previous rounds, it forwards its token to its

parent.

I Lemma 2. Greedy aggregation on T (R) terminates in R rounds.

Proof. We will show by induction on k ≥ 0 that greedy aggregation results in the root of

T (k) having a token of size |T (k)| after k rounds. The base cases of k ∈ [0, tm + tc) are

trivial, as nothing needs to be combined. For the inductive step, applying the inductive

hypothesis and using the recursive structure of our graph tells us that the root of T (k + tc)

has a token of size |T (k)| at its root in k rounds, and the root of the child T (k − tm) has

a token of size |T (k − tm)| at its root in k − tm rounds. Therefore, by the definition of

greedy aggregation, the root of T (k − tm) sends its token of size |T (k − tm)| to the root of

T (k + tc) at time k − tm, which means the root of T (k + tc) can compute a token of size

|T (k − tm)|+ |T (k)| = |T (k + tc)| by round k + tc. J

To build intuition about how quickly T ∗
n grows, see Figure 6 for an illustration of |T ∗

n | as

a function of n for specific values of tc and tm. Furthermore, notice that T (R) and T ∗
n are

constructed in such a way that greedy aggregation pipelines computation and communication.

We can now formalize our optimal algorithm, which simply outputs the greedy aggregation

schedule on T ∗
n , as Algorithm 1. The following theorem is our main result for this section.

5 If |T ∗
n | > n, then we could always “hallucinate” extra nodes where appropriate.

ITCS 2020

65:8 Computation-Aware Data Aggregation

Algorithm 1 OptComplete(tc, tm, n).

Input: tc, tm, n

Output: A schedule for Token Computation on Kn with parameters tc and tm

Arbitrarily embed T ∗
n into Kn

return Greedy aggregation schedule on T ∗
n embedded in Kn

I Theorem 3. Given a complete graph Kn on n vertices and any tm, tc ∈ Z
+, OptComplete

optimally solves Token Computation on the Token Network (Kn, tc, tm) in polynomial

time.

To show that Theorem 3 holds, we first note that OptComplete trivially runs in

polynomial time. Therefore, we focus on showing that greedy aggregation on T ∗
n optimally

solves the Token Computation problem on Kn. We demonstrate this claim by showing

that, given R rounds, |T (R)| is the size of the largest solvable graph. Specifically, we

will let N∗(R) be the size of the largest complete graph on which one can solve Token

Computation in R rounds, and we will argue that N∗(R) obeys the same recurrence as

|T (R)|.

First notice that the base case of N∗(R) is trivially 1.

I Lemma 4. For R ∈ Z
+
0 we have that N∗(R) = 1 for R < tc + tm.

Proof. If R < tc + tm, there are not enough rounds to send and combine a token, and so the

Token Computation problem can only be solved on a graph with one node. J

We now show that for the recursive case N∗(R) is always at least as large as N∗(R −

tc) + N∗(R− tc − tm), which is the recurrence that defines |T (R)|.

I Lemma 5. For R ∈ Z
+
0 we have that N∗(R) ≥ N∗(R−tc)+N∗(R−tc−tm) for R ≥ tc+tm.

Proof. Suppose R ≥ tc + tm. Let S1 be the optimal schedule on the complete graph of

N∗(R− tc) nodes with terminus vt1 and let S2 be the optimal schedule on the complete graph

of size N∗(R− tc− tm) with corresponding terminus vt2. Now consider the following solution

on the complete graph of N∗(R− tc) + N∗(R− tc− tm) nodes. Run S1 and S2 in parallel on

N∗(R− tc) and N∗(R− tc − tm) nodes respectively, and once S2 has completed, forward the

token at vt2 to vt1 and, once it arrives, have vt1 perform one computation. This is a valid

schedule which takes R rounds to solve Token Computation on N∗(R−tc)+N∗(R−tc−tm)

nodes. Thus, we have that N∗(R) ≥ N∗(R− tc) + N∗(R− tc − tm) for R ≥ tc + tm. J

It remains to show that this bound on the recursion is tight. To do so, we case on whether

tc ≥ tm or tc < tm. When tc ≥ tm, we perform a straightforward case analysis to show that

N∗ follows the same recurrence as T ∗
n . Specifically, we case on when the last token in the

optimal schedule was created to show the following.

I Lemma 6. When tc ≥ tm for R ∈ Z
+
0 it holds that N∗(R) = N∗(R− tc)+N∗(R− tc− tm).

Proof. Suppose that R ≥ tc + tm. By Lemma 5, it is sufficient to show that N∗(R) ≤

N∗(R − tc) + N∗(R − tc − tm). Consider the optimal solution given R rounds. The last

action performed by any node must have been a computation that combines two tokens, a

and b, at the terminus vt because, in an optimal schedule, any further communication of the

last token increases the length of the schedule. We now consider three cases.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:9

Round t

Round t Round t + tm

Round t + tm

Equivalent

(a) Combining insight.

Round t Round t + tm

Equivalent

Round t Round t + tm

(b) Shortcutting insight.

Figure 4 An illustration of the shortcutting and combining insights. Here, tokens are denoted by

blue diamonds, and hallucinated tokens are denoted by striped red diamonds. As before, a red arrow

from node u to node v means that u sends to v, and a double-ended blue arrow between two tokens

a and b means that a and b are combined at the node. Notice that which nodes have tokens and

when nodes have tokens are the same under both modifications (though in the combining insight, a

node is only hallucinating that it has a token).

In the first case, a and b were both created at vt. Because both of a or b could not have

been created at time R− tc, one of them must have been created at time R− 2tc at the

latest. This means that N∗(R) ≤ N∗(R−tc)+N∗(R−2tc) ≤ N∗(R−tc)+N∗(R−tc−tm).

In the second case, exactly one of a or b (without loss of generality, a) was created at vt.

This means that b must have been sent to vt at latest at time R− tc − tm. It follows that

N∗(R) ≤ N∗(R− tc) + N∗(R− tc − tm).

In the last case, neither a nor b was created at vt. This means that both must have been

sent to vt at the latest at time R − tc − tm. We conclude that N∗(R) ≤ N∗(R − tc −

tm) + N∗(R− tc − tm) ≤ N∗(R− tc) + N∗(R− tc − tm).

Thus, in all cases we have N∗(R) ≤ N∗(R− tc) + N∗(R− tc − tm). J

We now consider the case in which communication is more expensive than computation,

tc < tm. One might hope that the same case analysis used when tc ≥ tm would prove the

desired result for when tc < tm. However, we must do significantly more work to show that

N∗(R) = N∗(R− tc) + N∗(R− tc − tm) when tc < tm. We do this by establishing structure

on the schedule which solves Token Computation on KN∗(R) in R rounds: we successively

modify an optimal schedule in a way that does not affect its validity or length but which

adds structure to the schedule.

Specifically, we leverage the following insights – illustrated in Figure 4 – to modify

schedules. Combining insight: Suppose node v has two tokens in round t, a and b, and v

sends a to node u in round t. Node v can just aggregate a and b, treat this aggregation as it

treats b in the original schedule and u can just pretend that it receives a in round t + tm.

That is, u can “hallucinate” that it has token a. Note that this insight crucially leverages

the fact that tc < tm, since otherwise the performed computation would not finish before

round t + tm. Shortcutting insight: Suppose node v sends a token to node u in round t and

node u sends a token to node w in a round in [t, t + tm]. Node v can “shortcut” node u and

send to w directly and u can just not send.

ITCS 2020

65:10 Computation-Aware Data Aggregation

Through modifications based on these insights we show that there exists an optimal

schedule where the last node to perform a computation never communicates, and every

computation performed by this node computes on the token with which this node started.

This structure, in turn, allows us to establish the following lemma, which asserts that when

tc < tm we have that N∗(R) and |T (R)| follow the same recurrence.

I Lemma 7. When tc < tm, for R ∈ Z
+
0 it holds that N∗(R) = N∗(R−tc)+N∗(R−tc−tm).

The proof of the lemma is relegated to Appendix D. We are now ready to prove the

theorem.

Proof of Theorem 3. On a high level, we argue that the greedy aggregation schedule on

T (R) combines N∗(R) nodes in R rounds and is therefore optimal. Combining Lemma 4,

Lemma 6, and Lemma 7 we have the following recurrence on N∗(R) for R ∈ Z
+
0 .

N∗(R) =

{

1 if R < tc + tm

N∗(R− tc) + N∗(R− tc − tm) if R ≥ tc + tm

Notice that this is the recurrence which defines |T (R)| so for R ∈ Z
+
0 we have that

N∗(R) = |T (R)|, and by Lemma 2, the greedy aggregation schedule on T (R) terminates in

R rounds.

Thus, the greedy aggregation schedule on T (R) solves Token Computation on K|T (R)| =

KN∗(R) in R rounds, and therefore is an optimal solution for KN∗(R). Since T ∗
n is the smallest

T (R) with at most n nodes, greedy aggregation on T ∗
n is optimal for Kn and so OptComplete

optimally solves Token Computation on Kn. Finally, the polynomial runtime is trivial. J

4 Hardness and Approximation for Arbitrary Graphs

We now consider the Token Computation problem on arbitrary graphs. Unlike in the case

of complete graphs, the problem turns out to be computationally hard on arbitrary graphs.

The challenge in demonstrating the hardness of Token Computation is that the optimal

schedule for an arbitrary graph does not have a well-behaved structure. Our insight here

is that by forcing a single node to do a great deal of computation we can impose structure

on the optimal schedule in a way that makes it reflect the minimum dominating set of the

graph. The following theorem formalizes this; its full proof is relegated to Appendix E.

I Theorem 8. Token Computation cannot be approximated by a polynomial-time algorithm

within (1.5− ε) for ε ≥ 1
o(log n) unless P = NP.

Therefore, our focus in this section is on designing an approximation algorithm. Spe-

cifically, we construct a polynomial-time algorithm, SolveTC, which produces a schedule

that solves Token Computation on arbitrary graphs using at most O(log n · log OPT
tm

)

multiplicatively more rounds than the optimal schedule, where OPT is the length of the

optimal schedule. Define the diameter D of graph G as maxv,u d(u, v). Notice that OPT/tm

is at most (n− 1)tc/tm + D since OPT ≤ (n− 1)(tc + D · tm): the schedule that picks a pair

of nodes, routes one to the other then aggregates and repeats n− 1 times is valid and takes

(n− 1)(tc + D · tm) rounds. Thus, our algorithm can roughly be understood as an O(log2 n)

approximation algorithm. Formally, our main result for this section is the following theorem

whose lengthy proof we summarize in the rest of this section.

I Theorem 9. SolveTC is a polynomial-time algorithm that gives an O(log n · log OPT
tm

)-

approximation for Token Computation with high probability.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:11

The rest of this section provides an overview of this theorem’s lengthy proof. Our

approximation algorithm, SolveTC, is given as Algorithm 2. SolveTC performs O(log n)

repetitions of: designate some subset of nodes with tokens sinks and the rest of the nodes

with tokens sources; route tokens at sources to sinks. If tc > tm, we will delay computations

until tokens from sources arrive at sinks, and if tm ≥ tc, we will immediately aggregate

tokens that arrive at the same node.

4.1 Token Computation Extremes (Warmup)

Before moving on to a more technical overview of our algorithm, we build intuition by

considering two extremes of Token Computation.

tm � tc

First, consider the case where tm � tc; that is, communication is very cheap compared to

computation. As computation is the bottleneck here, we can achieve an essentially optimal

schedule by parallelizing computation as much as possible. That is, consider a schedule

consisting of O(log n) repetitions of: (1) each node with a token uniquely pairs off with

another node with a token; (2) one node in each pair routes its token to the other node in

its pair; (3) nodes that received a token perform one computation. This takes O(tc · log n)

rounds to perform computations along with some amount of time to perform communications.

But, any schedule takes at least Ω(tc · log n) rounds, even if communication were free and

computation were perfectly parallelized. Because the time to perform communications is

negligible, this schedule is essentially optimal.

tc � tm

Now consider the case where tc � tm; that is, computation is very cheap compared to

communication. In this setting, we can provide an essentially optimal schedule by minimizing

the amount of communication that occurs. In particular, we pick a center c of the graph6

and have all nodes send their tokens along the shortest path towards c. At any point during

this schedule, it is always more time efficient for a node with multiple tokens to combine

its tokens together before forwarding them since tc � tm. Thus, if at any point a node

has multiple tokens, it combines these into one token and forwards the result towards c.

Lastly, c aggregates all tokens it receives. This schedule takes tm · r time to perform its

communications, where r is the radius of the graph,7 and some amount of time to perform

its computations. However, because for every schedule there exists a token that must travel

at least r hops, any schedule takes at least Ω(r · tm) rounds. Computations take a negligible

amount of time since tc � tm, which means that this schedule is essentially optimal.

See Figure 5 for an illustration of these two schedules. Thus, in the case when tm � tc,

we have that routing between pairs of nodes and delaying computations is essentially optimal,

and in the case when tc � tm, we have that it is essentially optimal for nodes to greedily

aggregate tokens before sending. These two observations will form the foundation of our

approximation algorithm.

6 The center of graph G is arg min
v

maxu d(v, u) where d(v, u) is the length of the shortest u − v path.
7 The radius of graph G is minv maxu d(v, u).

ITCS 2020

65:12 Computation-Aware Data Aggregation

(a) tm � tc. (b) tc � tm.

Figure 5 An illustration of essentially optimal schedules for the extremes of the Token Com-

putation problem. Dotted red arrows give the node towards which each node routes. In the case

where tm � tc one would repeat this sort of routing O(log n) times.

4.2 Approximation Algorithm

Recall that our approximation algorithm routes tokens from designated sources to designated

sinks O(log n) times. Formally, the problem which our algorithm solves O(log n) times is as

follows.

I Definition 10 (Route and Compute Problem). The input to the Route and Compute

Problem consists of a set U ⊆ V and a set of directed paths ~PU = { ~Pu : u ∈ U} where: (1)

u ∈ U has a token and is the source of ~Pu; (2) every sink of every path ~Pu has a token; (3)

if u and tu are the sources and sinks of ~Pu ∈ ~PU , respectively, then neither u nor tu are

endpoints of any ~Pu′ ∈ ~PU for u′ 6= u. A solution of cost C is a schedule of length C which,

when run, performs computations on a constant fraction of tokens belonging to nodes in U .

SolveTC repeatedly calls a subroutine, GetDirectedPaths, to get a set of paths for

which it would like to solve the Route and Compute Problem. It then solves the Route

and Compute Problem for these paths, using RoutePathsm if tc ≤ tm or RoutePathsc

if tc > tm. Below we give an overview of these procedures. The proofs of the lemmas in this

section, as well as further details regarding SolveTC, are relegated to Appendix F.

Algorithm 2 SolveTC.

Input: Token Computation instance given by graph G = (V, E), tc, tm

Output: A schedule for the input Token Computation problem

W ← V

for iteration i ∈ O(log n) do
~PU ← GetDirectedPaths(W, G)

if tc > tm then RoutePathsm(~PU)

if tc ≤ tm then RoutePathsc(~PU)

W ← {v : v has 1 token}

4.2.1 Producing Paths on Which to Route

We now describe GetDirectedPaths. First, for a set of paths P, we define the vertex

congestion of P as con(P) = maxv

∑

P ∈P(# occurences of v ∈ P), and the dilation of P as

maxP ∈P |P |.

Given that nodes in W ⊆ V have tokens, GetDirectedPaths solves a flow LP which

has a flow for each w ∈ W whose sinks are w′ ∈ W such that w′ 6= w. The objective

of this flow LP is the vertex congestion. The flow for each w ∈ W defines a probability

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:13

distribution over (undirected) paths with endpoints w and w′ where w′ 6= w and w′ ∈ W .

Given these probability distributions, we repeatedly sample paths by taking random walks

proportional to LP values of edges until we produce a set of paths – one for each w ∈W –

with low vertex congestion. Lastly, given our undirected paths, we apply another subroutine

to direct our paths and fix some subset of nodes U ⊂W as sources such that |U | is within

a constant fraction of |W |. The key property of the LP we use is that it has an optimal

vertex congestion comparable to OPT, the length of the optimal Token Computation

schedule. Using this fact and several additional lemmas we can prove the following properties

of GetDirectedPaths.

I Lemma 11. Given W ⊆ V , GetDirectedPaths is a randomized polynomial-time

algorithm that returns a set of directed paths, ~PU = {Pu : u ∈ U} for U ⊆W , such that with

high probability at least 1/12 of nodes in W are sources of paths in ~PU each with a unique

sink in W . Moreover,

con(~PU) ≤ O

(

OPT

min(tc, tm)
log

OPT

tm

)

and dil(~PU) ≤
8OPT

tm
.

4.2.2 Routing Along Produced Paths

We now specify how we route along the paths produced by GetDirectedPaths. If tc > tm,

we run RoutePathsm to delay computations until tokens from sources arrive at sinks, and

if tm ≥ tc, we run RoutePathsc to immediately aggregate tokens that arrive at the same

node.

Case of tc > tm

RoutePathsm adapts the routing algorithm of Leighton et al. [22] – which was simplified

by Rothvoß [31] – to efficiently route from sources to sinks.8 We let OPTRoute be this

adaptation of the algorithm of Leighton et al. [22].

I Lemma 12. Given a set of directed paths ~PU with some subset of endpoints of paths

in ~PU designated sources and the rest of the endpoints designated sinks, OPTRoute is a

randomized polynomial-time algorithm that w.h.p. produces a Token Network schedule

that sends from all sources to sinks in O(con(~PU) + dil(~PU)).

Given ~PU , RoutePathsm is as follows. Run OPTRoute and then perform a single

computation. As mentioned earlier, this algorithm delays computation until all tokens have

been routed.

I Lemma 13. RoutePathsm is a polynomial-time algorithm that, given ~PU , solves the

Route and Compute Problem w.h.p. using O(tm(con(~PU) + dil(~PU)) + tc) rounds.

Case of tc ≤ tm

Given directed paths ~PU , RoutePathsc is as follows. Initially, every sink is asleep and

every other node is awake. For O(dil(~PU) · tm) rounds we repeat the following: if a node is

not currently sending and has exactly one token then it forwards this token along its path; if

8 Our approach for the case when tc > tm can be simplified using techniques from Srinivasan and Teo [32].

In fact, using their techniques we can even shave the log OPT
tc

factor in our approximation. However,

because these techniques do not take computation into account, they do not readily extend to the case
when tc ≤ tm. Thus, for the sake of a unified exposition, we omit the adaptation of their results.

ITCS 2020

65:14 Computation-Aware Data Aggregation

a node is not currently sending and has two or more tokens then it sleeps for the remainder

of the O(dil(~PU) · tm) rounds. Lastly, every node combines any tokens it has for tc · con(~PU)

rounds.

I Lemma 14. RoutePathsc is a polynomial-time algorithm that, given ~PU , solves the

Route and Compute Problem w.h.p. using O(tc · con(~PU) + tm · dil(~PU)) rounds.

By leveraging the foregoing results, we can prove Theorem 9; see Appendix F.3 for details.

5 Future Work

There are many promising directions for future work. First, as Section 4.1 illustrates, the

extremes of our problem – when tc � tm and when tm � tc – are trivial to solve. However,

our hardness reduction demonstrates that for tc = 1 and tm in a specific range, our problem

is hard to approximate. Determining precisely what values of tm and tc make our problem

hard to approximate is open.

Next, it is not always the case that there exists a centralized coordinator to produce a

schedule. We hope to give an analysis of our problem in a distributed setting as no past

work in this setting takes computation into account. Even more broadly, we hope to analyze

formal models of distributed computation in which nodes are not assumed to have unbounded

computational resources and computation takes a non-trivial amount of time.

We also note that there is a gap between our hardness of approximation and the approx-

imation guarantee of our algorithm. The best possible approximation, then, is to be decided

by future work.

Furthermore, we are interested in studying technical challenges similar to those studied in

approximation algorithms for network design. For instance, we are interested in the problem

in which each edge has a cost and one must build a network subject to budget constraints

which has as efficient a Token Computation schedule as possible.

Lastly, there are many natural generalizations of our problem. For instance, consider the

problem in which nodes can aggregate an arbitrary number of tokens together, but the time

to aggregate multiple tokens is, e.g., a concave function of the number of tokens aggregated.

These new directions offer not only compelling theoretical challenges but may be of practical

interest.

References

1 I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks.

IEEE Communications Magazine, 40(8):102–114, 2002.

2 I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a

survey. Computer Networks, 38(4):393–422, 2002.

3 G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy conservation in wireless

sensor networks: a survey. Ad Hoc Networks, 7(3):537–568, 2009.

4 Matthew Andrews and Michael Dinitz. Maximizing capacity in arbitrary wireless networks in

the SINR model: Complexity and game theory. In IEEE INFOCOM 2009, pages 1332–1340.

IEEE, 2009.

5 Baruch Awerbuch, Shay Kutten, and David Peleg. Competitive distributed job scheduling.

In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages

571–580. ACM, 1992.

6 Keren Censor-Hillel, Seth Gilbert, Fabian Kuhn, Nancy Lynch, and Calvin Newport. Struc-

turing unreliable radio networks. Distributed Computing, 27(1):1–19, 2014.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:15

7 Keren Censor-Hillel, Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Broadcasting

in Noisy Radio Networks. In Proceedings of the ACM Symposium on Principles of Distributed

Computing, pages 33–42. ACM, 2017.

8 Keren Censor-Hillel, Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Erasure

Correction for Noisy Radio Networks, 2018. CoRR, Vol. abs/1805.04165. arXiv:1805.04165.

9 Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks-problem analysis and

protocol design. IEEE Transactions on Communications, 33(12):1240–1246, 1985.

10 Alejandro Cornejo, Seth Gilbert, and Calvin Newport. Aggregation in dynamic networks.

In Proceedings of the 2012 ACM symposium on Principles of distributed computing, pages

195–204. ACM, 2012.

11 I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proceedings of the 46th

Annual ACM Symposium on Theory of Computing (STOC), pages 624–633, 2014.

12 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique

model. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,

pages 367–376. ACM, 2014.

13 M. Elkin and G. Kortsarz. A combinatorial logarithmic approximation algorithm for the

directed telephone broadcast problem. SIAM journal on Computing, 35(3):672–689, 2005.

14 M. Elkin and G. Kortsarz. Sublogarithmic approximation for telephone multicast. Journal of

Computer and System Sciences, 72(4):648–659, 2006.

15 M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and Company,

1979.

16 A. Grama. Introduction to parallel computing. Pearson Education, 2003.

17 J. Iglesias, R. Rajaraman, R. Ravi, and R. Sundaram. Rumors across radio, wireless, telephone.

In Proceedings of the Leibniz International Proceedings in Informatics (LIPIcs), volume 45,

2015.

18 N. Jain, J. M. Lau, and L. Kale. Collectives on two-tier direct networks. In Proceedings of the

European MPI Users’ Group Meeting, pages 67–77, 2012.

19 B. Klenk, L. Oden, and H. Fröning. Analyzing communication models for distributed thread-

collaborative processors in terms of energy and time. In Proceedings of the IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), pages 318–327, 2015.

20 G. Kortsarz and D. Peleg. Approximation algorithms for minimum-time broadcast. SIAM

Journal on Discrete Mathematics, 8(3):401–427, 1995.

21 Eyal Kushilevitz and Yishay Mansour. Computation in Noisy Radio Networks. In SODA,

volume 98, pages 236–243, 1998.

22 F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling in

O(congestion + dilation) steps. Combinatorica, 14(2):167–186, 1994.

23 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,

21(1):193–201, 1992.

24 L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A realistic network/application model

for scheduling divisible loads on large-scale platforms. In Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages 10–pp, 2005.

25 L. Oden, B. Klenk, and H. Fröning. Energy-efficient collective reduce and allreduce operations

on distributed GPUs. In Proceedings of the 14th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), pages 483–492, 2014.

26 P. Patarasuk and X. Yuan. Bandwidth efficient all-reduce operation on tree topologies. In

Proceedings of the 21st IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 1–8, 2007.

27 P. Patarasuk and X. Yuan. Bandwidth optimal all-reduce algorithms for clusters of workstations.

Journal of Parallel and Distributed Computing, 69(2):117–124, 2009.

28 D. Peleg. Distributed computing. SIAM Monographs on Discrete Mathematics and Applications,

5, 2000.

ITCS 2020

65:16 Computation-Aware Data Aggregation

29 R. Rabenseifner. Optimization of collective reduction operations. In Proceedings of the

International Conference on Computational Science, pages 1–9, 2004.

30 R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast time. In Pro-

ceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS), pages

202–213, 1994.

31 T. Rothvoß. A simpler proof for O(congestion+dilation) packet routing. In Proceedings of

the International Conference on Integer Programming and Combinatorial Optimization, pages

336–348, 2013.

32 A. Srinivasan and C. Teo. A constant-factor approximation algorithm for packet routing and

balancing local vs. global criteria. SIAM Journal on Computing, 30(6):2051–2068, 2001.

33 S. Viswanathan, B. Veeravalli, and T. G. Robertazzi. Resource-aware distributed scheduling

strategies for large-scale computational cluster/grid systems. IEEE Transactions on Parallel

and Distributed Systems, 18(10), 2007.

A Formal Model, Problem, and Definitions

Let us formally define the Token Computation problem. The input to the problem is a

Token Network specified by graph G = (V, E) and parameters tc, tm ∈ N. Each node

starts with a single token.

An algorithm for this problem must provide a schedule, S : V × [l] → V ∪ {idle, busy}

where we refer to |S| := l as the length of the schedule. Intuitively, a schedule S directs each

node when to compute and when to communicate as follows:

S(v, r) = v′ 6= v indicates that v begins passing a token to v′ in round r of S;

S(v, r) = v indicates that v begins combining two token in round r of S;

S(v, r) = idle indicates that v does nothing in round r;

S(v, r) = busy indicates that v is currently communicating or computing.

Moreover, we define the number of computations that v has performed up to round r

as CS(v, r) :=
∑

r′∈[r−tc] 1(S(v, r′) == v), the number of messages that v has received up

to round r as RS(v, r) :=
∑

r′∈[r−tm]

∑

v′ 6=v 1(S(v′, r′) == v), and the number of messages

that v has sent up to round r as MS(v, r) :=
∑

r′∈[r−tm]

∑

v′ 6=v 1(S(v, r′) == v′). Finally,

define the number of tokens a node has in round r of S as follows.

tokensS(v, r) := I(v) + RS(v, r)−MS(v, r)− CS(v, r).

A schedule, S, is valid for Token Network (G, tc, tm) if:

1. Valid communication: If S(v, r) = v′ 6= v then (v, v′) ∈ E, S(v, r′) = busy for r′ ∈

[r + 1, r + tm] and tokensS(v, r) ≥ 1;

2. Valid computation: If S(v, r) = v then S(v, r′) = busy for r′ ∈ [r + 1, r + tc] and

tokensS(v, r) ≥ 2;

3. Full aggregation:
∑

v∈V tokensS(v, |S|) = 1.

An algorithm solves Token Computation if it outputs a valid schedule.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:17

B Deferred Related Work

There is a significant body of applied work in resource-aware scheduling, sensor networks,

and high-performance computing that considers both the relative costs of communication

and computation, often bundled together in an energy cost. However, these studies have

been largely empirical rather than theoretical, and much of the work considers distributed

algorithms (as opposed to our centralized setting).

AllReduce in HPC

There is much related applied work in the high-performance computing space on AllRe-

duce [29, 16]. However, while there has been significant research on communication-efficient

AllReduce algorithms, there has been relatively little work that explicitly considers the cost

of computation, and even less work that considers the construction of optimal topologies for

efficient distributed computation. Researchers have empirically evaluated the performance

of different models of communication [25, 19] and have proven (trivial) lower bounds for

communication without considering computation [26, 27]. Indeed, to the best of our know-

ledge, the extent to which they consider computation is through an additive penalty that

consists of a multiplicative factor times the size of all inputs at all nodes, as in the work of

Jain et al. [18]; crucially, this penalty is the same for any schedule and cannot be reduced via

intelligent scheduling. Therefore, there do not seem to exist theoretical results for efficient

algorithms that consider both the cost of communication and computation.

Resource-Aware Scheduling

In the distributed computation space, people have considered resource-aware scheduling on a

completely connected topology with different nodes having different loads. Although this

problem considers computation-aware communication, these studies are much more empirical

than theoretical, and only consider distributed solutions as opposed to centralized algorithms

[33, 24].

Sensor Networks

Members of the sensor networks community have studied the problem of minimizing an energy

cost, which succinctly combines the costs of communication and computation. However,

sensor networks involve rapidly-changing, non-static topologies [1, 2], which means that

their objective is not to construct a fixed, optimal topology, but rather to develop adaptive

algorithms for minimizing total energy cost with respect to an objective function [3].

ITCS 2020

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:19

pretends that it receives token a1 at time t + tm: any round in which S∗ has u compute

on or communicate a1, u now simply does nothing; nodes that were meant to receive a1

do the same. It is easy to see that by repeatedly applying the above procedure to every

node when it sends when it has more than one token, we can reduce the number of tokens

every node has whenever it sends to at most one. The total runtime of this schedule is no

greater than that of S∗, namely R, because tc < tm. Moreover, it clearly still solves Token

Computation on KN∗(R). Call the schedule S∗
1 .

Achieving properties (1) and (2)

Now, we show how to modify S∗
1 into S∗

1−2 such that properties (1) and (2) both hold. Again,

S∗
1−2 is of length R and solves Token Computation on KN∗(R). We use our shortcutting

insight here. Suppose that (2) does not hold for S∗
1 ; i.e., there exists a v that receives a

token a1 from node u while sending another token a2 to node u′. We say that node u is

bothering node v in round t if node u communicates a token a1 to v in round t, and node v

communicates a token a2 to node u′ ∈ V \ {v, u} in round [t, t + tm]. Say any such pair is a

bothersome pair. Furthermore, given a pair of nodes (u, v) and round t such that node u is

bothering node v in round t, let the resolution of (u, v) in round t be the modification in

which u sends its token directly to the node u′ to which v sends its token. Note that each

resolution does not increase the length of the optimal schedule because, by the definition of

bothering, this will only serve as a shortcut; u′ will receive a token from u at the latest in

the same round it would have received a token from v in the original schedule, and nodes u′

and v can pretend that they received tokens from v and u, respectively. However, it may

now be the case that node u ends up bothering node u′. We now show how to repeatedly

apply resolutions to modify S∗
1 into a schedule S∗

1−2 in which no node bothers another in

any round t.

Consider the graph Bt(S
∗
1) where the vertices are the nodes in G and there exists a

directed edge (u, v) if node u is bothering node v in round t in schedule S∗
1 . First, consider

cycles in Bt(S
∗
1). Note that, for any time t in which Bt(S

∗
1) has a cycle, we can create a

schedule S̃∗
1 in which no nodes in any cycle in Bt(S

∗
1) send their tokens in round t; rather,

they remain idle this round and pretend they received the token they would have received

under S∗
1 . Clearly, this does not increase the length of the optimal schedule and removes all

cycles in round t. Furthermore, this does not violate property (1) because fewer nodes send

tokens in round t, and no new nodes send tokens in round t.

Therefore, it suffices to consider an acyclic, directed graph Bt(S̃1). Now, for each round

t, we repeatedly apply resolutions until no node bothers any other node during that round.

Note that for every t, each node can only be bothering at most one other node because

nodes can only send one message at a time. This fact, coupled with the fact that Bt(S̃1) is

acyclic, means that Bt(S̃1) is a DAG where nodes have out-degree 1. It is not hard to see

that repeatedly applying resolutions to a node v which bothers another node will decrease

the number of edges in Bt(S̃1) by 1. Furthermore, because there are n total nodes in the

network, the number of resolutions needed for any node v at time t is at most n.

Furthermore, repeatedly applying resolutions to Bt(S̃1) for times t = 1, . . . , R in order

results in a schedule S∗
1−2 with no bothersome pairs at any time t and that still satisfies

property (1), and so schedule S∗
1−2 satisfies properties (1) and (2). Since each resolution did

not increase the length of the schedule we also have that S∗
1−2 is of length R. Lastly, S∗

1−2

clearly still solves Token Computation on KN∗(R).

ITCS 2020

65:20 Computation-Aware Data Aggregation

Achieving properties (1) - (3)

Now, we show how to modify S∗
1−2 into S∗

1−3 which satisfies properties (1), (2), and (3).

We use our shortcutting insight here as well as some new ideas. Given S∗
1−2, we show by

induction over k from 0 to R − tm, where R is the length of an optimal schedule, that we

can modify S∗
1−2 such that if a node finishes communicating in round R − k (i.e., begins

communicating in round R−k− tm), it remains idle in rounds t′ ∈ (R−k, R] in the modified

optimal schedule. The base case of k = 0 is trivial: If a node communicates in round R− tm,

it must remain idle in round R because the entire schedule is of length R.

Suppose there exists a node v that finishes communicating in round t = R− k but is not

idle in some round t′ > R − k in S∗
1−2; furthermore, let round t′ be the first round after t

in which node v is not idle. By property (1), node v must have sent its only token away in

round t, and therefore node v must have received at least one other token after round t but

before round t′. We now case on the type of action node v performs in round t′.

If node v communicates in round t′, it must send a token it received after time t but

before round t′. Furthermore, as this is the first round after t in which v is not idle, v

cannot have performed any computation on this token, and by the inductive hypothesis,

v must remain idle from round t′ + tm on. Therefore, v receives a token au from some

node u and then forwards this token to node u′ at time t′. One can modify this schedule

such that u sends au directly to u′ instead of sending to v.

If node v computes in round t′, consider the actions of node v after round t′ + tc. Either

v eventually performs a communication after some number of computations, after which

point it is idle by the inductive hypothesis, or v only ever performs computations from

time t′ on.

In round t′, v must combine two tokens it received after time t + tm by property (1). Note

that two distinct nodes must have sent the two tokens to v because, by the inductive

hypothesis, each node that sends after round t remains idle for the remainder of the

schedule. Therefore, the nodes u1 and u2 that sent the two tokens to v must have been

active at times t′
1, t′

2 > t, where t1 ≤ t2, after which they remain idle for the rest of the

schedule. Call the tuple (v, u1, u2) a switchable triple. We can modify the schedule to

make v idle at round t′ by picking the node that first sent to v and treating it as v while

the original v stays idle for the remainder of the schedule. In particular, we can modify

S∗
1−2 such that, without loss of generality, u2 sends its token to u1 and u1 performs the

computation that v originally performed in S∗
1−2. Note that this now ensures that v will

be idle in round t′ and does not increase the length of the schedule, as u1 takes on the

role of v. Furthermore, node u1’s new actions do not violate the inductive hypothesis:

Either u1 only ever performs computations after time t′, or it eventually communicates

and thereafter remains idle.

We can repeat this process for all nodes that are not idle after performing a communication

in order to produce a schedule S∗
1−3 in which property (3) is satisfied.

First, notice that these modifications do not change the length of S∗
1−2: in the first case u′

can still pretend that it receives au at time t′ + tm even though it now receives it in an earlier

round and in the second case u2 takes on the role of v at the expense of no additional round

overhead. Also, it is easy to see that S∗
1−3 still solves Token Computation on KN∗(R).

We now argue that the above modifications preserve (1) and (2). First, notice that the

modifications we do for the first case do not change when any nodes send and so (1) is

satisfied. In the second case, because we switch the roles of nodes, we may potentially add a

send for a node. However, note that we only require a node u1 to perform an additional send

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:21

when it is part of a switchable triple (v, u1, u2), and u1 takes on the role of v in the original

schedule from time t′ on. However, because S∗
1−2 satisfies (1), u was about to send its only

token away and therefore only had one token upon receipt of the token from u2. Therefore,

because u1 performs the actions that v performs in S∗
1−2 from time t′ on, and because at

time t′, both u1 and v have exactly two tokens, (1) is still satisfied by S∗
1−3. Next, we argue

that (3) is a strictly stronger condition than (2). In particular, we show that since S∗
1−3

satisfies (3) it also satisfies (2). Suppose for the sake of contradiction that S∗
1−3 satisfies (3)

but not (2). Since (2) is not satisfied there must exist some node v that sends in some round

t to, say node u, but receives a token in some round in [t, t + tm]. By (3) it then follows that

v is idle in all rounds after t. However, u also receives a token in round t + tm. Therefore, in

round t + tm, two distinct nodes have tokens, one of which is idle in all rounds after t + tm;

this contradicts the fact that S∗
1−3 solves Token Computation. Thus, S∗

1−3 must also

satisfy (2)

Achieving properties (1) - (4)

It is straightforward to see that S∗
1−3 also satisfies property (4). Indeed, by property (3),

if the terminus ever sends in round t < R− tc, then the terminus must remain idle during

rounds t′ > t, meaning it must be idle in round R − tc which contradicts the fact that in

this round the terminus performs a computation. Therefore, S∗
1−4 = S∗

1−3 satisfies properties

(1) - (4), and we know that there exists an optimal schedule in which vt is always either

computing or idle.

Achieving the final property

We now argue that we can modify S∗
1−4 into another optimal schedule S̃∗ such that every

computation done at the terminus vt involves a token that contains the original singleton

token that started at the terminus. Suppose that in S∗
1−4, vt performs computation that

does not involve avt
. Take the first instance in which vt combines tokens a1 and a2, neither

of which contains avt
, in round t. Because this is the first computation that does not involve

a token containing avt
, both a1 and a2 must have been communicated to the terminus in

round t− tm at the latest.

Consider the earliest time t′ > t in which vt computes a token acomb that contains all of

a1, a2, and avt
. We now show how to modify S∗

1−4 into S̃′ such that vt computes a token

a′
comb at time t′ that contains all of a1, a2, and avt

and is at least the size of acomb by having

nodes swap roles in the schedule between times t and t′. Furthermore, because the rest of the

schedule remains the same after time t′, this implies that S̃′ uses at most as many rounds as

S∗
1−4, and therefore that S̃′ uses at most R rounds.

The modification is as follows. At time t, instead of having vt combine tokens a1 and a2,

have vt combine one of them (without loss of generality, a1) with the token containing avt
.

Now, continue executing S∗
1−4 but substitute a2 for the token containing avt

from round t

on; this is a valid substitution because vt possesses a2 at time t. In round t′, vt computes a

token a′
comb = acomb; the difference from the previous schedule is that the new schedule has

one fewer violation of property (4), i.e., one fewer round in which it computes on two tokens,

neither of which contains avt
.

We repeat this process for every step in which the terminus does not compute on the

token containing avt
, resulting in a schedule S̃∗ in which the terminus is always combining

a communicated token with a token containing its own singleton token. Note that these

modifications do not affect properties (1) - (4) because this does not affect the sending

ITCS 2020

65:22 Computation-Aware Data Aggregation

actions of any node, and therefore S̃∗ still satisfies properties (1) - (4). It easily follows,

then, that S̃∗ solves Token Computation on KN∗(R) in R rounds. Thus, S̃∗ is a schedule

of length R that solves Token Computation on KN∗(R) in which every computation the

terminus vt does is on two tokens, one of which contains avt
, and, by (4), the terminus vt

never communicates. J

Having shown that the schedule corresponding to N∗(R) can be modified to satisfy a

nice structure when tc < tm, we can conclude our recursive bound on N∗(R).

I Lemma 7. When tc < tm, for R ∈ Z
+
0 it holds that N∗(R) = N∗(R−tc)+N∗(R−tc−tm).

Proof. Suppose R ≥ tc + tm. We begin by applying Lemma 15 to show that N∗(R) ≤

N∗(R − tc) + N∗(R − tc − tm). Let vt be the terminus of the schedule S̃∗ using R rounds

as given in Lemma 15. By Lemma 15, in all rounds after round tm of S̃∗ it holds that vt is

either computing on a token that contains avt
or busy because it did such a computation.

Notice that it follows that every token produced by a computation at vt contains avt
.

Now consider the last token produced by our schedule. Call this token a. By definition of

the terminus, a must be produced by a computation performed by vt, combining two tokens,

say a1 and a2, in round R− tc at the latest. Since every computation that vt does combines

two tokens, one of which contains avt
, without loss of generality let a1 contain avt

.

We now bound the size of a1 and a2. Since a1 exists in round R− tc we know that it is of

size at most N∗(R− tc). Now consider a2. Since every token produced by a computation at

vt contains avt
and a2 does not contain avt

it follows that a2 must either be a singleton token

that originates at a node other than v, or a2 was produced by a computation at another

node. Either way, a2 must have been sent to v, who then performed a computation on a2 in

round R− tc at the latest. It follows that a2 exists in round R− tc − tm, and so a2 is of size

no more than N∗(R− tc − tm).

Since the size of a just is the size of a1 plus the size of a2, we conclude that a is of size

no more than N∗(R − tc) + N∗(R − tc − tm). Since, S̃∗ solves Token Computation on

a complete graph of size N∗(R), we have that a is of size N∗(R) and so we conclude that

N∗(R) ≤ N∗(R− tc) + N∗(R− tc − tm) for R ≥ tc + tm when tc < tm.

Lastly, since N∗(R) ≥ N∗(R− tc) + N∗(R− tc − tm) for R ≥ tc + tm by Lemma 5, we

conclude that N∗(R) = N∗(R− tc) + N∗(R− tc − tm) for R ≥ tc + tm when tc < tm. J

E Proof of Theorem 8

As a warmup for our hardness of approximation result, and to introduce some of the

techniques, we begin with a proof that the decision version of Token Computation is

NP-complete in Appendix E.1. We then prove the hardness of approximation result in

Appendix E.2.

E.1 NP-Completeness (Warmup)

An instance of the decision version of Token Computation is given by an instance of

Token Computation and a candidate `. An algorithm must decide if there exists a schedule

that solves Token Computation in at most ` rounds.

We reduce from k-dominating set.

I Definition 16 (k-dominating set). An instance of k-dominating set consists of a graph

G = (V, E); the decision problem is to decide whether there exists κ ⊆ V where |κ| = k such

that for all v ∈ V \ κ there exists ν ∈ κ such that (v, ν) ∈ E.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:23

(a) G.

d
∗

a

β
<latexit sha1_base64="nMlHsQmETmhpvx3XSja1T26bpMI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPBi8cqpi20oWy2k3bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGiv5vRAN7Vdrbt2dg6wSryA1KNDsV796g4RlMUrDBNW667mpCXKqDGcCp5VepjGlbEyH2LVU0hh1kM+PnZIzqwxIlChb0pC5+nsip7HWkzi0nTE1I73szcT/vG5mopsg5zLNDEq2WBRlgpiEzD4nA66QGTGxhDLF7a2EjaiizNh8KjYEb/nlVdK6qHuXdff+qtZ4KOIowwmcwjl4cA0NuIMm+MCAwzO8wpsjnRfn3flYtJacYuYY/sD5/AHJUI62</latexit>

(b) Ψ(G, 1).

Figure 7 An example of Ψ for a given graph G and tm = 1. Nodes and edges added by Ψ are

dashed and in blue. Notice that |β| = ∆ + tm = 3 + 1 = 4.

Recall that k-dominating set is NP-complete.

I Lemma 17 (Garey and Johnson [15]). k-dominating set is NP-complete.

Given an instance of k-dominating set, we would like to transform G into another

graph G′ in polynomial time such that G has a k-dominating set iff there exists a Token

Computation schedule of some particular length for G′ for some values of tc and tm.

We begin by describing the intuition behind the transformation we use, which we call

Ψ. Any schedule on graph G in which every node only performs a single communication

and which aggregates all tokens down to at most k tokens corresponds to a k-dominating

set of G; in particular, those nodes that do computation form a k-dominating set of G. If

we had a schedule of length < 2tm which aggregated all tokens down to k tokens, then we

could recover a k-dominating set from our schedule. However, our problem aggregates down

to only a single token, not k tokens. Our crucial insight, here, is that by structuring our

graph such that a single node, a, must perform a great deal of computation, a must be the

terminus of any short schedule. The fact that a must be the terminus and do a great deal of

computation, in turn, forces any short schedule to aggregate all tokens in G down to at most

k tokens at some point, giving us a k-dominating set.

Formally, Ψ is as follows. Ψ takes as input a graph G and a value for tm and outputs

G′ = (V ′, E′). G′ has G as a sub-graph and in addition has auxiliary node a where a is

connected to all v ∈ V ; a is also connected to dangling nodes d ∈ β, where |β| = ∆+tm, along

with a special dangling node d∗.9 Thus, G′ = (V ∪ {a, d∗} ∪ β, E ∪ {(a, v′) : v′ ∈ V ′ \ {a}}).

See Figure 7.

We now prove that the optimal Token Computation schedule on G′ = Ψ(G, tm) can

be upper bounded as a function of the size of the minimum dominating set of G.

I Lemma 18. The optimal Token Computation schedule on G′ = Ψ(G, tm) is of length

at most 2tm + ∆ + k∗ for tc = 1, where k∗ is the minimum dominating set of G.

Proof. We know by definition of k∗ that there is a dominating set of size k∗ on G. Call this

set κ and let σ : V → κ map any given v ∈ V to a unique node in κ that dominates it. We

argue that it must be the case that Token Computation requires at most 2tm + tc(∆ + k∗)

rounds on G′ for tc = 1. Roughly, we solve Token Computation by first aggregating at κ

and then aggregating at a.

In more detail, in stage 1 of the schedule, every d ∈ β sends to a, every node v ∈ V sends

to σ(v) and a sends to d∗. This takes tm rounds. In stage 2, each node does the following

in parallel. Node d∗ computes and sends its single token to a. Each ν ∈ κ computes until

9 ∆ is the max degree of G.

ITCS 2020

65:24 Computation-Aware Data Aggregation

it has a single token and sends the result to a. Node a combines all tokens from β ∪ {d∗}.

Node d∗ takes 1 + tm rounds to do this. Each ν ∈ κ takes at most ∆ + tm rounds to do this.

Node a takes ∆ + tm rounds to do this since a will receive d∗’s token after tm + 1 rounds

(and ∆ ≥ 1 without loss of generality). Thus, stage 2, when done in parallel, takes ∆ + tm

rounds. At this point a has k∗ + 1 tokens and no other node in G′ has a token. In stage 3, a

computes until it has only a single token, which takes k∗ rounds.

In total the number of rounds used by this schedule is tm + ∆ + tm + k∗ = 2tm + ∆ + k∗.

Thus, the total number of rounds used by the optimal Token Computation schedule on

G′ is at most 2tm + ∆ + k∗. J

Next, we show that any valid Token Computation schedule on G′ = Ψ(G, tm) that has

at most two serialized sends corresponds to a dominating set of size bounded by the length

of the schedule.

I Lemma 19. Given G′ = Ψ(G, tm) and a Token Computation schedule S for G′ where

|S| < 3tm, tc = 1, κ = {v : v ∈ G, v sends to a in S} is a dominating set of G of size

|S| − 2tm −∆.

Proof. Roughly, we argue that a must be the terminus of S and must perform at most

|S| − 2tm −∆ computations on tokens from G, each of which is the aggregation of a node’s

token and some of its neighbors’ tokens. We begin by arguing that a must be the terminus.

First, we prove that no d ∈ β ∪ {d∗} is the terminus of S. Suppose for the sake of

contradiction that some d̄ ∈ β ∪ {d∗} is the terminus. Since our schedule takes fewer than

3tm rounds, we know that every node sends a token that is not just the singleton token with

which it starts at most once. Thus, a sends tokens that are not just the singleton token that

it starts with at most once. Since |β ∪{d∗} \ {d̄}| = ∆ + tm and a is the only node connected

to these nodes, we know that every singleton token that originates in β ∪ {d∗} \ {d̄} must

travel through a. Moreover, since a sends tokens that are not just the singleton token that

it starts with at most once, a must send all such tokens as a single token. It follows that

a must perform at least ∆ + tm computations, but then our entire schedule takes at least

tm + ∆ + tm + tm = 3tm + ∆ > 3tm rounds – a contradiction to our assumption that our

schedule takes less than 3tm rounds.

We now argue that no v ∈ G is the terminus. Suppose for the sake of contradiction

that some v̄ ∈ V is the terminus. Again, we know that a sends tokens that are not just

the singleton token that it starts with at most once. Thus, every token in β ∪ {d∗} must

travel through a, meaning that a must perform ∆ + tm + 1 computations. It follows that the

schedule takes tm + ∆ + tm + tm + 1 > 3tm rounds, a contradiction to our assumption that

the schedule takes < 3tm rounds.

Thus, since no d ∈ β ∪ {d∗} and no v ∈ G is the terminus, we know that a must be the

terminus.

We now argue that a sends a token in the first round and this is the only time that a

sends (i.e., the only thing that a sends is the singleton token that it starts with, which it

sends immediately). Assume for the sake of contradiction that a sends a token that it did

not start with. It must have taken at least tm rounds for this token to arrive at a and at

least an additional tm rounds for a to send a token containing it. Moreover, since a is the

terminus, a token containing this token must eventually return to a and so an additional tm

rounds are required. Thus, at least 3tm rounds are required if a sends a token other than

that with which it starts, a contradiction to the fact that our schedule takes < 3tm rounds.

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:25

Thus, since a is the terminus, our schedule solves Token Computation in fewer than

3tm rounds, and no computations occur in the first tm rounds, a does at most |S| − tm

computations. Since a never sends any token aside from its singleton token, and a is the only

node to which β ∪ {d∗} are connected, we know that a must combine all tokens of nodes in

β ∪ {d∗}, where a must take ∆ + tm rounds to do so. Thus, since a takes ∆ + tm rounds to

aggregate tokens from β ∪ {d∗} and it performs at most |S| − tm computations in total, a

must receive at most |S| − 2tm −∆ tokens from G. It follows that |κ| ≤ |S| − 2tm −∆.

Since each token sent by a node in κ to a must be sent at the latest in round |S| − tm

and since |S| < 3tm, we have that every token sent by a node in κ is formed in fewer than

2tm rounds. It follows that each such token is formed by tokens that travel at most 1 hop in

G. Since every node in G must eventually aggregate its tokens at a, it follows that every

node in G is adjacent to a node in κ. Thus κ is a dominating set of G, and as shown before

|κ| ≤ |S| − 2tm −∆. J

Having shown that the optimal Token Computation schedule of G′ = Ψ(G, tm) is closely

related to the size of the minimum dominating set, we prove that Token Computation is

NP-complete.

I Theorem 20. The decision version of Token Computation is NP-complete.

Proof. The problem is clearly in NP. To show hardness, we reduce from k-dominating set.

Specifically, we give a polynomial-time Karp reduction from k-dominating set to the decision

version of Token Computation.

Our reduction is as follows. First, run Ψ(G, tm) for tm = ∆ + k + 1 to get back G′.

Next, return a decision version instance of Token Computation given by graph G′ with

tm = ∆ + k + 1, tc = 1 and ` = 2tm + ∆ + k. We now argue that G′ has a schedule of length

` iff G has a k-dominating set.

Suppose that G has a k-dominating set. We know that k ≥ k∗, where k∗ is the minimum

dominating of G, and so by Lemma 18 we know that G′ has a schedule of length at most

2tm + ∆ + k∗ ≤ 2tm + ∆ + k.

Suppose that G′ has a Token Computation schedule S of length at most 2tm + ∆ + k.

Notice that by our choice of tm, we have that |S| = 2tm + ∆ + k < 3tm and so by

Lemma 19 we know that κ = {v : v ∈ G, v sends to a in S} is a dominating set of G of

size |S| − 2tm −∆. Since |S| ≤ 2tm + ∆ + k we conclude that |κ| = |S| − 2tm −∆ ≤ k.

Lastly, notice that our reduction, Ψ, runs in polynomial time since it adds at most a

polynomial number of vertices and edges to G. Thus, we conclude that k-dominating is

polynomial-time reducible to the decision version of Token Computation, and therefore

the decision version of Token Computation is NP-complete. J

E.2 Hardness of Approximation

We now show that unless P = NP there exists no polynomial-time algorithm that approximates

Token Computation multiplicatively better than 1.5.

Recall that k-dominating set is Ω(log n) hard to approximate.

I Lemma 21 (Dinur and Steurer [11]). Unless P = NP every polynomial-time algorithm

approximates minimum dominating set at best within a (1− o(1))(log n) multiplicative factor.

We prove hardness of approximation by using a (1.5− ε) algorithm for Token Computa-

tion to approximate minimum dominating set with a polynomial-time algorithm better than

O(log n). Similar to our proof of NP-completeness, given input graph G whose minimum

ITCS 2020

65:26 Computation-Aware Data Aggregation

dominating set we would like to approximate, we would like to transform G into another

graph G′ such that a (1.5− ε)-approximate Token Computation schedule for G′ allows us

to recover an approximately minimum dominating set.

One may hope to simply apply the transformation Ψ from the preceding section to do so.

However, it is not hard to see that the approximation factor on the minimum dominating set

recovered in this way has dependence on ∆, the maximum degree of G. If ∆ is significantly

larger than the minimum dominating set of G, we cannot hope that this will yield a good

approximation to minimum dominating set. For this reason, before applying Ψ to G, we

duplicate G a total of ∆/ ε times to create graph Gα; this keeps ∆ unchanged but increases

the size of the minimum dominating set.10 By applying Ψ to Gα instead of G to get back

G′
α we are able to free our approximation factor from a dependence on ∆. Lastly, we show

that we can efficiently recover an approximate minimum dominating set for G from an

approximate Token Computation schedule for G′
α using our polynomial-time algorithm

DSFromSchedule. Our full algorithm is given by MDSApx.

We first describe the algorithm – DSFromSchedule – we use to recover a minimum

dominating set for G given a Token Computation schedule for G′
α = Ψ(Gα, tm). We

denote copy i of G as Gi.

Algorithm 3 DSFromSchedule.

Input: G′
α = Ψ(Gα, tm); a valid Token Computation schedule for G′

α, S, of length

< 3tm; ε

Output: A dominating set for G of size |S| − 2tm −∆

K ← ∅

for i ∈
[

∆
ε

]

do

κi ← {v ∈ Vi : v ∈ Gα sends to a in S}

K ← K ∪ {κi}

return arg minκi∈K |κi|

I Lemma 22. Given G′
α = Ψ(Gα, tm) and a valid Token Computation schedule S for

G′
α where |S| < 3tm, tc = 1 and ε ∈ (0, 1], DSFromSchedule outputs in polynomial time a

dominating set of G of size ε
∆ (|S| − 2tm −∆).11

Proof. Polynomial runtime is trivial, so we focus on the size guarantee. By Lemma 19 we

know that κ = {v : v ∈ Gα, v sends to a in S} is a dominating set of Gα of size |S|−2tm−∆.

Moreover, notice that κi = κ ∩ Gi, and so it follows that κi is a dominating set of Gi, or

equivalently G because Gi is just a copy of G. Thus we have that arg minκi∈K |κi| will return

a dominating set of G.

We now prove that arg minκi∈K |κi| is small. Since each κi is disjoint we have
∑∆/ ε

i=1 |κi| =

|κ| ≤ |S| − 2tm −∆. Thus, by an averaging argument we have that there must be some

κi such that |κi| ≤
ε
∆ (|S| − 2tm −∆). It follows that minκi∈K |κi| ≤

ε
∆ (|S| − 2tm −∆),

meaning the κi that our algorithm returns is not only a dominating set of G but of size at

most ε
∆ (|S| − 2tm −∆). J

10 Since the max degree of G and Gα are the same, throughout this section ∆ will be used to refer to both
the max degree of G and the max degree of Gα.

11 Since this lemma allows for ε ∈ (0, 1], it may appear that we will be able to achieve an arbitrarily good
approximation for minimum dominating set. In fact, it might even seems as though we can produce
a dominating set of size smaller than the minimum dominating set by simply letting ε be arbitrarily
small. However, this is not the case. Intuitively, the smaller ε is, the larger Gα is and so the longer any
feasible schedule S must be. Thus, decreases in ε are balanced out by increases in |S| with respect to
the size of our dominating set, ε

∆ (|S| − 2tm − ∆).

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:27

Lastly, we combine Ψ with DSFromSchedule to get MDSApx, our algorithm for

approximating minimum dominating set. Roughly, MDSApx constructs G′
α by applying Ψ

to Gα, uses a (1.5− ε) approximation to Token Computation to get a schedule to G′
α and

then uses DSFromSchedule to extract a minimum dominating set for G from this schedule.

MDSApx will carefully choose a tm that is large enough so that the schedule produced by

the (1.5 − ε) approximation for Token Computation is of length < 3tm but also small

enough so that the produced schedule can be used to recover a small dominating set.

Algorithm 4 MDSApx.

Input: Graph G; (1.5− ε) Token Computation approximation algorithm A

Output: An O(1/ ε)-approximation for the minimum dominating set of G

D ← ∅

for k̂ ∈ [n] do

Gα ←
⋃∆/ ε

i=1 Gi

tm ←
1
ε

(

∆ + k̂∆
ε

)

+ 1; tc ← 1

G′
α ← Ψ (Gα, tm)

Sk̂ ← A
(

G′
α, k̂

ε , tm, tc

)

if |Sk̂| < 3tm then

κk̂ ← DSFromSchedule(Gα, S, ε)

D ← D ∪ {κk̂}

return arg minκ∈D |κ|.

I Lemma 23. Given graph G and a (1.5− ε)-approximation algorithm for Token Com-

putation, A, MDSApx outputs in poly
(

n, 1
ε

)

time a dominating set of G of size O
(

k∗

ε

)

,

where k∗ is the size of the minimum dominating set of G.

Proof. By Lemma 22 we know that any set κk̂ ∈ D is a dominating set of G of size at most
∆
ε

(

|Sk̂| − 2tm −∆
)

. Thus, it suffices to show that D contains at least one dominating set of

G, κk̂ such that Sκ
k̂

is small. We do so now.

Let k∗ be the size of the minimum dominating set of G. We know that k∗ ≤ n and so

in some iteration of MDSApx we will have k̂ = k∗. Moreover, the minimum dominating

set of Gα in this iteration just is ∆k∗

ε since Gα is just ∆
ε copies of G. Consider this

iteration. Let S∗ be the optimal schedule for G′
α when k̂ = k∗. By Lemma 18 we know that

|S∗| ≤ 2tm + ∆ + k∗∆
ε . We now leverage the fact that that we chose tm to be large enough

so that |S∗| < 3tm. In particular, combining the fact that |S∗| ≤ 2tm + ∆ + k∗∆
ε with the

fact that A is a (1.5− ε) approximation we have that

|Sk∗ | ≤ (1.5− ε)|S∗|

≤ (1.5− ε)

(

2tm + ∆ +
k∗∆

ε

)

= 3tm − 2 ε tm + (1.5− ε)

(

∆ +
k∗∆

ε

)

= 3tm − 2 ε tm + (1.5− ε) ε (tm − 1) (By tm dfn.)

= 3tm − ε(0.5 + ε)tm − ε(1.5− ε)

< 3tm. (1)

ITCS 2020

65:28 Computation-Aware Data Aggregation

Thus, since |Sk∗ | < 3tm we know that κk∗ ∈ D. Lastly, we argue that |κk∗ | = O
(

k∗

ε

)

, thereby

showing that arg minκ∈D |κ|, the returned dominating set of our algorithm, is O
(

k∗

ε

)

.

We now leverage the fact that we chose tm to be small enough to give us a small

dominating set. Applying Lemma 22 we have that

|κk∗ | ≤
ε

∆
(|Sk∗ | − 2tm −∆) (By Lemma 22)

<
ε

∆
(tm −∆) (By Equation (1))

=
ε

∆

(

1

ε

(

∆ +
k∗∆

ε

)

+ 1−∆

)

(By tm dfn.)

=

(

1 +
k∗

ε

)

+
ε

∆
− ε

= O

(

k∗

ε

)

Thus, we conclude that MDSApx produces an O
(

k∗

ε

)

minimum dominating set of G.

Lastly, we argue a polynomial in n and 1/ε runtime of MDSApx. First we argue that

each iteration requires polynomial time. Constructing Gα takes polynomial time since the

algorithm need only create ∆
ε = poly

(

n, 1
ε

)

copies of G. Running Ψ also requires polynomial

time since it simply adds polynomially many nodes to Gα. A is polynomial by assumption

and DSFromSchedule is polynomial by Lemma 22. Thus, each iteration takes polynomial

time and since MDSApx has n iterations, MDSApx takes polynomial time in n and 1/ε. J

Given that MDSApx demonstrates an efficient approximation for minimum dominating

set given a polynomial-time (1.5− ε) approximation for Token Computation, we conclude

our hardness of approximation.

I Theorem 8. Token Computation cannot be approximated by a polynomial-time algorithm

within (1.5− ε) for ε ≥ 1
o(log n) unless P = NP.

Proof. Assume for the sake of contradiction that P 6= NP and there existed a polynomial-

time algorithm A that approximated Token Computation within (1.5− ε) for ε = 1
o(log n) .

It follows by Lemma 23 that MDSApx when run with A is a o(log n)-approximation for

minimum dominating set. However, this contradicts Lemma 21, and so we conclude that

Token Computation cannot be approximated within (1.5− ε) for ε ≥ 1
o(log n) . J

F Omitted Lemmas of the Proof of Theorem 9

F.1 Proof of Lemma 11

The goal of this section is to prove Lemma 11, which states the properties of GetDirected-

Paths. To this end we will begin by rigorously defining the LP we use for GetDirected-

Paths and establishing its relevant properties. We then formally define GetDirectedPaths,

establish the properties of its subroutines and then prove Lemma 11.

F.1.1 Our Flow LP

The flow LP we use for GetDirectedPaths can be thought of as flow on a graph G

“time-expanded” by the maximum length that a token in the optimal schedule travels. Given

any schedule we define the distance that singleton token a travels as the number of times

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:29

a0 b0 c0

i0 e0 d0

g0 h0

a1 b1 c1

i1 e1 d1

g1 h1

a2 b2 c2

i2 e2 d2

g2 h2

a3 b3 c3

i3 e3 d3

g3 h3

1

1

1

.5

.5

1

1

1

1

.5

.5

Figure 8 An illustration of non-zero flows for a feasible solution for PathsFlowLP(3) for graph G.

Nodes a, d, and g are in W , and fw is colored by w. For this feasible solution, z = 2.

any token containing a is sent in said schedule. Let L∗ be the furthest distance a singleton

token travels in the optimal schedule. Given a guess for L∗, namely L̂, we define a graph

GL̂ with vertices {vr : v ∈ V, r ∈ [L̂]} and edges {e = (ur, vr+1) : (u, v) ∈ E, r ∈ [L̂ − 1]}.

We have a flow type for each w ∈ W , where W = {v : v has at least 1 token}, which uses

{w′ : w′ ∈W ∧ w′ 6= w} as sinks. Correspondingly, we have a flow variable, fw(xr, yr+1) for

every r ∈ [L̂− 1], w ∈ W and (x, y) ∈ E. The objective function of the LP is to minimize

the maximum vertex congestion, given by variable z. Let z(L̂) be the objective value of our

LP given our guess L̂. Formally, our LP is given in PathsFlowLP(L̂), where Γ(v) gives the

neighbors of v in G. See Figure 8 for an illustration of a feasible solution to this LP.

min z s.t. (PathsFlowLP(L̂))

“Conserve flow across rounds”
∑

x′∈Γ(x)

fw(x′
r−1, xr) =

∑

x′′∈Γ(x)

fw(xr, x′′
r+1) ∀w ∈ W, x 6∈ W, r ∈ [L̂ − 1] (2)

“Every w ∈ W is a source for fw and not a sink for fw”

∑

r∈[L̂−1]

[

∑

x′∈Γ(w)

fw(wr, x′
r+1) −

∑

x′∈Γ(w)

fw(x′
r, wr+1)

]

≥ 1 ∀w ∈ W (3)

“w-flow ends at w′ ∈ W s.t. w′ 6= w”
∑

w′∈W :w′ 6=w

∑

u∈Γ(w′)

fw(u
L̂

, w′

L̂
) = 1 ∀w (4)

“z is the vertex congestion”

z ≥
∑

w

∑

v∈Γ(v)

∑

r∈[D−1]

fw(v′
r, vr+1) ∀v (5)

“Non-negative flow”

fw(xr, yr+1) ≥ 0 ∀, x, y, r, w ∈ W (6)

F.1.2 Proof of the Key Property of our LP

The key property of our LP is that it has an optimal vertex congestion comparable to OPT.

In particular, we can produce a feasible solution for our LP of cost 2OPT by routing tokens

along the paths taken in the optimal schedule.

ITCS 2020

65:30 Computation-Aware Data Aggregation

I Lemma 24. min(tc, tm) · z(2L∗) ≤ 2OPT.

The remainder of this section is a proof of Lemma 24. Consider a W as in Section 4.2.1

where W ← {v : v has at least 1 token} and the optimal schedule that solves Token

Computation in time OPT.

We will prove Lemma 24 by showing that, by sending flow along paths taken by certain

tokens in the optimal schedule, we can provide a feasible solution to PathsFlowLP(L̂)

with value commensurate with OPT. For this reason we now formally define these paths,

OptPaths(W). Roughly, these are the paths taken by tokens containing singleton tokens

that originate in W . Formally, these paths are as follows. Recall that aw is the singleton

token with which node w starts in the optimal schedule. Notice that in any given round of

the optimal schedule exactly one token contains aw. As such, order every round in which a

token containing aw is received by a node in ascending order as r0(w), r1(w) . . . where we

think of w as receiving aw in the first round. Correspondingly, let vi(w) be the vertex that

receives a token containing aw in round ri(w); that is (v1(w), v2(w), . . .) is the path “traced

out” by aw in the optimal schedule. For token a, let C(a) := {aw′ : w′ ∈W ∧ a′
w ∈ a} stand

for all singleton tokens contained by token a that originated at a w′ ∈W . Say that token

a is active if |C(a)| is odd. Let vLw
(w) be the first vertex in (v1(w), v2(w), . . .) where an

active token containing aw is combined with another active token. Correspondingly, let c(w)

be the first round in which an active token containing aw is combined with another active

token. Say that a singleton token aw is pending in round r if r < c(w). We note the following

behavior of pending singleton tokens.

I Lemma 25. In every round of the optimal schedule, if a token is active then it contains

exactly one pending singleton token and if a token is inactive then it contains no pending

singleton tokens.

Proof. We prove this by induction over the rounds of the optimal schedule. As a base case,

we note that in the first round of the optimal schedule a token is active iff it is a singleton

node and every singleton node is pending. Now consider an arbitrary round i and assume

that our claim holds in previous rounds. Consider an arbitrary token a. If a is not computed

on by a node in this round then by our inductive hypothesis we have that it contains exactly

one pending singleton token if it is active and no pending singleton tokens if it is not active.

If a is active and combined with an inactive token, by our inductive hypothesis, the resulting

token contains exactly one pending singleton token. Lastly, if a is active and combined with

another active token by our inductive hypothesis these contain pending singletons aw and

au respectively such that c(w) = c(u) = i; it follows that the resulting token is inactive and

contains no pending singleton tokens. This completes our induction. J

This behavior allows us to pair off vertices in W based on how their singleton tokens are

combined.12

I Lemma 26. For each w ∈ W there exists a unique u ∈ W such that u 6= w and

vLw
(w) = vLu

(u) and c(w) = c(u).

Proof. Consider the round in which a token containing aw, say a, is combined with an active

token, say b, at vertex vLw
(w). Recall that this round is notated c(w). By Lemma 25 we

know that a and b contain exactly one pending singleton token, say aw and au respectively.

12 Without loss of generality we assume that |W | is even here; if not, we can simply drop one element
from W each time we construct OptPaths(W).

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:31

4

1

5

87

6

2 3

(a) Round 1.

1 2

3 45 6

7 8

(b) Round 2.

1-2

5-6

7-8

3-4

(c) Round 3.

3-41-2

5-6 7-8

(d) Round 4.

5-8

1-4

(e) Round 5.

1-4 5-8

(f) Round 6.

1-8

(g) Round 7.

Figure 9 An illustration of the optimal schedule and how OptPaths(W) is constructed from

it for a particular G. Active tokens are denoted by blue diamonds; inactive tokens are denoted by

white diamonds; a dotted red arrow from node u to node v means that u sends to v; a double-ended

blue arrow between two tokens a and b means that a and b are combined at the node; thick, dashed

green lines give a path and its reversal in OptPaths(W) (for a total of 4 paths across all rounds)

where (v1(w), v2(w), . . . vLw
(w) = vLu

(u), vLu−1(u), . . . , v1(u)) = P ∈ OptPaths(w) drawn only in

round c(w). Furthermore, token a labeled with {v : a contains av} and W = {1, 3, 4, 6}.

Since both a and b are active in this round and b contains au we have c(u) = c(w). Moreover,

since both a and b are combined at the same vertex we have vLu
(u) = vLw

(w). Lastly, notice

that this u is unique since by Lemma 25 there is exactly one singleton token, au, contained

by b such that c(u) ≤ c(w). J

Having paired off vertices in W , we can now define OptPaths(W). Fix a w and

let u be the vertex it is paired off with as in Lemma 26. We define OptPath(w) :=

(v1(w), v2(w), . . . vLw
(w) = vLu

(u), vLu−1(u), . . . , v1(u)). Lastly, define OptPaths(W) =
⋃

w∈W OptPath(w). See Figure 9 for an illustration of how OptPaths(W) is constructed

from the optimal schedule.

The critical property of OptPaths(W) is that it has vertex congestion commensurate

with OPT as follows.

I Lemma 27. con(OptPaths(W)) ≤ 2·OPT
min(tc,tm) .

Proof. Call a pair of directed paths in OptPaths(W) complementary if one path is

OptPath(w) and the other OptPath(u) where u is to w as in Lemma 26. We argue

that each pair of complementary paths passing through a given vertex v uniquely account

for either tc or tm rounds of v’s OPT rounds in the optimal schedule. Consider a pair of

complementary paths, P = (OptPath(w), OptPath(u)), passing through a given vertex v.

This pair of paths pass through v because in some round, say rP , v sends a token containing

au or aw or v combines together tokens a and a′ containing au and aw respectively. Say that

whichever of these operations accounts for P is responsible for P . Now suppose for the sake

of contradiction that this operation of v in round rP is responsible for another distinct pair

P ′ of complementary paths, OptPath(w′) and OptPath(u′). Notice that aw, aw′ , au and

au′ are all pending in round rP . We case on whether v’s action is a communication or a

computation and show that v’s operation cannot be responsible for P ′ in either case.

ITCS 2020

65:32 Computation-Aware Data Aggregation

Suppose that v is responsible for P and P ′ because it performs a computation in rP . It

follows that v combines an active token a and another active token a′ where without loss

of generality aw, aw′ ∈ a and au′ , au ∈ a′. However, it then follows that a is active and

contains two pending singleton tokens, which contradicts Lemma 25.

Suppose that v is responsible for P and P ′ because it performs a communication in rP

by sending token a. It follows that without loss of generality aw, aw′ ∈ a. However, either

a is active or it is not. But by Lemma 25 if a is active it contains 1 pending singleton

token and if a is not active then it contains 0 pending singleton tokens. Thus, the fact

that v sends a token containing two pending singleton tokens contradicts Lemma 25.

Thus, it must be the case that v’s action in rP is uniquely responsible for P .

It follows that each computation and communication performed by v uniquely corresponds

to a pair of complementary paths (consisting of a pair of paths in OptPaths(W)) that

passes through v. Since v performs at most OPT/ min(tc, tm) operations in the optimal

schedule, it follows that there are at most OPT/ min(tc, tm) pairs of complementary paths

in OptPaths(W) incident to v. Since each pair consists of two paths, there are at most

2 ·OPT/ min(tc, tm) paths in OptPaths(W) incident to v and so v has vertex congestion at

most 2 ·OPT/ min(tc, tm) in OptPaths(W). Since v was arbitrary, this bound on congestion

holds for every vertex. J

We now use OptPaths(W) to construct a feasible solution for PathsFlowLP(2L∗).

We let f̃ be this feasible solution. Intuitively, f̃ simply sends flow along the paths of

OptPaths(W). More formally define f̃ as follows. For w ∈W and its corresponding path

OptPath(w) = (v1(w), v2(w), . . .) we set f̃w(vi, vi+1) = 1. We set all other variables of f̃ to

0 and let z̃ be the vertex congestion of OptPaths(W).

I Lemma 28. (f̃ , z̃) is a feasible solution for PathsFlowLP(2L∗) where

z̃ ≤ 2OPT/ min(tc, tm).

Proof. We begin by noting that every path in OptPaths(W) is of length at most 2L∗: for

each w ∈W , OptPath(w) is the concatenation of two paths, each of which is of length no

more than L∗. Moreover, notice that for each w ∈W , the sink of OptPath(w) is a w′ ∈W

such that w′ 6= w.

We now argue that (f̃ , z̃) is a feasible solution for PathsFlowLP(2L∗): each vertex v

with incoming w-flow that is not in W \ w sends out this unit of flow and so Equation (2) is

satisfied; since each OptPath(w) is of length at most 2L∗ and ends at a w′ ∈W we have

that every w ∈W is a source for fw and not a sink for fw, satisfying Equation (3); for the

same reason, Equation (4) is satisfied; letting z̃ be the vertex congestion of OptPaths(W)

clearly satisfies Equation (5); and flow is trivially non-zero.

Lastly, since f̃ simply sends one unit of flow along each path in OptPaths(W), our

bound of z̃ ≤ 2OPT/ min(tc, tm) follows immediately from Lemma 27. J

We conclude that f̃ demonstrates that our LP has value commensurate with OPT.

I Lemma 24. min(tc, tm) · z(2L∗) ≤ 2OPT.

Proof. Since Lemma 28 shows that (f̃ , z̃) is a feasible solution for PathsFlowLP(2L∗)

with cost at most 2OPT/ min(tc, tm), our claim immediately follows. J

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:33

F.1.3 GetDirectedPaths Formally Defined

GetDirectedPaths solves our LP for different guesses of the longest path used by the

optimal, samples paths based on the LP solution for our best guess, and then directs these

paths. Formally, GetDirectedPaths is given in Algorithm 5, where ξ := d2(n− 1) · (tc +

D · tm)/tme is the range over which we search for L∗.

Algorithm 5 GetDirectedPaths(G, W).

Input: W ⊆ V where w ∈W has a token

Output: Directed paths between nodes in W

L← arg minL̂∈[ξ]

[

tm · L̂ + min(tc, tm) · t(L̂)
]

f∗
w ← PathsFlowLP(L)

PW ← SampleLPPaths(f∗
w, L, W)

~PU ← AssignPaths(PW , W)

return ~PU

F.1.4 Sampling Paths from LP

Having shown that our LP has value commensurate with OPT and defined our algorithm

based on this LP, we now provide the algorithm which we use to sample paths from our LP

solution, SampleLPPaths. This algorithm produces a single sample by taking a random

walk from each w ∈ W where edges are taken with probability corresponding to their

LP value. It repeats this O(log n) times to produce O(log n) samples. It then takes the

sample with the most low congestion paths, discarding any high congestion paths in said

sample. In particular, SampleLPPaths takes the sample Pi
W that maximizes |Q(Pi

W)|

where Q(Pi
W) = {Pw : Pw ∈ P

i
W , con(Pw) ≤ 10 · z(L̂) log L̂} for an input L̂.

Algorithm 6 SampleLPPaths(f∗
w).

Input: f∗
w, solution to PathsFlowLP(L̂); L̂, guess of L∗; W ⊆ V

Output: Undirected paths between nodes in W

C ← ∅

for sample i ∈ O(log n) do

Pi
W ← ∅

for w ∈W do

v ∼ f∗
w(w1, v2)

Pw ← (w, v)

while v 6∈W do

v′ ∼ f∗
w(v|Pw|, v′

|Pw|+1)

v ← v′

Pw+ = v

Pi
W ← P

i
W ∪ {Pw}

C ← C ∪ Pi
W

PS ← Q(arg maxPi

W
∈C |Q(Pi

W)|)

return PW

The properties of SampleLPPaths are as follows.

ITCS 2020

65:34 Computation-Aware Data Aggregation

I Lemma 29. For any fixed W ⊆ V , L̂ and an optimal solution f∗
w to PathsFlowLP(L̂),

SampleLPPaths is a polynomial-time randomized algorithm that outputs a set of undirected

paths PW such that Pw ∈ PW is an undirected path with endpoints w, w′ ∈ S where w 6= w′.

Also |PW | ≥
1
3 |W | w.h.p., con(PW) ≤ z(L̂) ·O(log L̂), and dil(PW) ≤ L̂.

Proof. Our proof consists of a series of union and Chernoff bounds over our samples. Consider

an arbitrary W ⊆ V . Define Tw for w ∈W as the (directed) subgraph of GL̂ containing arc

(v, u) ∈ EL̂ if for some r we have f∗
w(x, y) > 0. Notice that Tw is a weakly connected DAG

where w has no edges into it: Tw does not contain any cycles since flow only moves from

xr to yr+1 for x, y ∈ V ; by our flow constraints Tw must be weakly connected and wr must

have no edges into it for any r. Moreover, notice that Pw is generated by a random walk on

Tw starting at w1, where if the last vertex added to Pw was v, then we add u to Pw in step

r of the random walk with probability f∗
w(vr, ur+1).

We first argue that every Pw ∈ PW has endpoints w, w′ ∈W for w 6= w′ and dil(PW) ≤ L̂.

By construction, one endpoint of Pw is w. Moreover, the other endpoint of Pw will necessarily

be a w′ ∈W such that w′ 6= w: by Equation (2) flow is conserved and by Equation (4) all

flow from w must end at a point w′ ∈ W such that w′ 6= w; thus our random walk will

always eventually find such an w′. Moreover, notice that our random walk is of length at

most L̂ since Tw is of depth at most L̂. Thus, every Pw is of length at most L̂, meaning

dil(PW) ≤ L̂.

Next, notice that, by the definition of Q, con(PW) ≤ z(L̂) ·O(log L̂) by construction since

every element in Q(arg maxPi

W
∈C |Q(Pi

W)|) has O(z(L̂) ·O(log L̂)) congestion.

Thus, it remains only to prove that |PW | ≥
1
3 |W |. We begin by arguing that for a

fixed path Pw in a fixed set of sampled paths, Pi
W we have con(Pw) ≥ z(L̂) ·O(log L̂) with

probability at most 1
3 . Consider a fixed path Pw ∈ P

i
W and fix an arbitrary v ∈ Pw. Now

let Xwv stand for the random variable indicating the number of times that path Pw visits

vertex w. without loss of generality we know that Pw contains no cycles (since if it did

we could just remove said cycles) and so Xsv is either 1 or 0. By a union bound over

rounds, then, we have E[Xwv] ≤
∑

r

∑

u∈Γ(v) f∗
W (ur, vr+1) · Pr(u taken in (r − 1)th step) ≤

∑

u∈Γ(v)

∑

r f∗
W (ur, vr+1).

Now note that the congestion of a single vertex under our solution is just con(v) =
∑

w∈W Xwv. It follows that

E[con(v)] =
∑

w∈W

E[Xwv] ≤ max
v

∑

w

∑

u∈Γ(v)

∑

r

f∗
W (ur, vr+1) ≤ z(L̂).

Also notice that for a fixed v every Xwv is independent. Thus, we have by a Chernoff bound

that that

Pr(con(v) ≥ z(L̂) ·O(log L̂)) ≤ Pr

(

∑

w∈W

Xwv ≥ E

[

∑

w∈W

Xwv

]

·O(log L̂)

)

≤
1

(L̂)c
(7)

for c given by constants of our choosing. Pw is of length at most L̂ by construction. Thus,

by a union over v ∈ Pw and Equation (7) we have that

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:35

Pr
(

con(Pw) ≥ z(L̂) ·O(log L̂)
)

≤
1

L̂c−1

≤
1

3
.

Thus, for a fixed path Pw ∈ P
i
W we know that this path has congestion at least z(L̂)·O(log L̂))

with probability at most 1
3 .

We now argue at least one of our O(log n) samples is such that at least 1
3 of the paths in

the sample have congestion at most z(L̂) ·O(log L̂)). Let Yiw be the random variable that is 1

if Pw ∈ P
i
W is such that con(Pw) ≥ z(L̂) ·O(log L̂)) and 0 otherwise. Notice that E[Yiw] ≤ 1

3

by the fact that a path has congestion at least z(L̂) ·O(log L̂) with probability at most 1
3 .

Now let Zi =
∑

w∈W Yiw stand for the number of paths in sample i with high congestion. By

linearity of expectation we have E[Zi] ≤ |W |
1
3 . By Markov’s inequality we have for a fixed i

that Pr(Zi ≥
2
3 |W |) ≤ Pr(Zi ≥ 2E[Zi]|W |) ≤

1
2 . Now consider the probability that every

sample i is such that more than 2
3 of the paths have congestion more than z(L̂) ·O(log L̂),

i.e. consider the probability that for all i we have Zi ≥ |W |
2
3 . We have

Pr

(

Zi ≥ |W |
2

3
,∀i

)

≤

(

1

2

)O(log n)

=
1

poly(n)
.

Thus, with high probability there will be some sample, i, such that Zi ≤ |W |
2
3 . It follows that

with high probability maxPi

W
∈C |Q(Pi

W)| ≥ 1
3 |W | and since PW = Q(arg maxPi

W
∈C |Q(Pi

W)|),

we conclude that with high probability PW ≥
1
3 |W |.

J

F.1.5 Directing Paths

Given the undirected paths that we sample from our LP, PW , we produce a set of directed

paths ~PU using AssignPaths, which works as follows. Define G′ as the directed supergraph

consisting of nodes W and directed edges E′ = {(w, w′) : w′ is an endpoint of Pw ∈ PW)}.

Let ΓG′(v) = {v′ : (v′, v) ∈ E′ ∨ (v, v′) ∈ E′} give the neighbors of v in G′. For each node

w ∈ G′ with in-degree of at least two we do the following: if v has odd degree delete an

arbitrary neighbor of w from G′; arbitrarily pair off the neighbors of w; for each such pair

(w1, w2) add the directed path Pw1
◦ rev(Pw2

) to ~PU where rev(Pw2
) gives the result of

removing the last element of Pw2
(namely, w) and reversing the direction of the path; remove

{w, w1, w2} from G′. Since we remove all vertices with in-degree of two or more and every

vertex has out-degree 1, the remaining graph trivially consists only of nodes with in-degree

at most 1 and out-degree at most 1. The remaining graph, therefore, is all cycles and paths.

For each cycle or path w1, w2, w3, . . . add the path corresponding to the edge from wi to

wi+1 for odd i to ~PU . We let U be all sources of paths in ~PU and we let Pu be the path in
~PU with source u.

The properties of AssignPaths are as follows.

I Lemma 30. Given W ⊆ V and PW = {Pw : w ∈ W} where the endpoints of Pw are

w, w′ ∈W for w 6= w′, AssignPaths in polynomial-time returns directed paths ~PU where at

least 1/4 of the nodes in W are the source of a directed path in ~PU , each path in ~PU is of

length at most 2 · dil(PW) with congestion at most con(PW) and each path in ~PU ends in a

unique sink in W .

ITCS 2020

65:36 Computation-Aware Data Aggregation

Proof. When we add paths to ~PU that go through vertices of in-degree at least two, for

every 4 vertices we remove we add at least one directed path to ~PU that is at most double

the length of the longest a path in PU : in the worst case v has odd in-degree of 3 and we

add only a single path. When we do the same for our cycles and paths for every 3 vertices

we remove we add at least one directed path to ~PU . Notice that by construction we clearly

never reuse sinks in our directed paths. The bound on congestion and a polynomial runtime

are trivial. J

F.1.6 Proof of Lemma 11

Finally, we conclude with the proof of Lemma 11.

I Lemma 11. Given W ⊆ V , GetDirectedPaths is a randomized polynomial-time

algorithm that returns a set of directed paths, ~PU = {Pu : u ∈ U} for U ⊆W , such that with

high probability at least 1/12 of nodes in W are sources of paths in ~PU each with a unique

sink in W . Moreover,

con(~PU) ≤ O

(

OPT

min(tc, tm)
log

OPT

tm

)

and dil(~PU) ≤
8OPT

tm
.

Proof. The fact that GetDirectedPaths returns a set of directed paths, ~PU , such that

at least 1/12 of nodes in W are sources in a path with a sink in W follows directly from

Lemma 29 and Lemma 30.

We now give the stated bounds on congestion and dilation. First notice that 2L∗ ∈ [ξ].

Moreover, 2OPT ≤ 2(n − 1)(tc + D · tm): the schedule that picks a pair of nodes, routes

one to the other then aggregates and repeats n − 1 times is always feasible and takes

(n− 1)(tc + D · tm) rounds. Thus, 2L∗ ≤ 2 OPT
tm
≤ ξ.

Thus, by definition of L we know that

tm · L + min(tc, tm) · t(L) ≤ 2tm · L
∗ + min(tc, tm) · z(2L∗)

≤ 2L∗ + 2OPT (By Lemma 24)

≤ 4OPT (By dfn. of L∗)

It follows, then, that tm · L ≤ 4OPT and so L ≤ 4OPT
tm

. Similarly, we know that

min(tc, tm) · z(L) ≤ 4OPT and so z(L) ≤ 4OPT
min(tc,tm) .

Lastly, by Lemma 29 we know that dil(PW) ≤ L ≤ 4OPT
tm

and con(PW) ≤ t(L)·O(log L) ≤

O
(

OPT
min(tc,tm) · log OPT

tm

)

. By Lemma 30 we get that the same congestion bound holds for ~PU

and dil(~PU) ≤ 8OPT
min(tc,tm) .

A polynomial runtime comes from the fact that we solve at most (n− 1)(tc + D · tm) =

poly(n) LPs and then sample at most (n− 1)(tc + D · tm) edges O(log n) times to round the

chosen LP. J

F.2 Deferred Proofs of Section 4.2.2

I Lemma 12. Given a set of directed paths ~PU with some subset of endpoints of paths

in ~PU designated sources and the rest of the endpoints designated sinks, OPTRoute is a

randomized polynomial-time algorithm that w.h.p. produces a Token Network schedule

that sends from all sources to sinks in O(con(~PU) + dil(~PU)).

B. Haeupler, D. E. Hershkowitz, A. Kahng, and A. D. Procaccia 65:37

Proof. Given a set of paths ~PU , Rothvoß [31] provides a polynomial-time algorithm that

produces a schedule that routes along all paths in O(conE(~PU) + dil(~PU) where conE(P) =

maxe

∑

P ∈P 1(e ∈ P) is the edge congestion. However, the algorithm of Rothvoß [31] assumes

that in each round a vertex can send a token along each of its incident edges whereas we

assume that in each round a vertex can only forward a single token.

However, it is easy to use the algorithm of Rothvoß [31] to produce an algorithm that

produces a Token Network routing schedule using O(con(~PU) + dil(~PU)) rounds which

assumes that vertices only send one token per round as we assume in the Token Network

model as follows. Let G be our input network with paths ~PU along which we would like to

route where we assume that vertices can only send one token per round. We will produce

another graph G′ on which to run the algorithm of Rothvoß [31]. For each node v ∈ G add

nodes vi and vo to G′. Project each path P ∈ ~PU into G′ to get P ′ ∈ ~PU
′

as follows: if edge

(u, v) is in path P ∈ ~PS then add edge (uo, vi) and edge (vi, vo) to path P ′ in G′. Notice

that con(~PU) = conE(~PU
′
) and dil(~PU) = 2dil(~PU

′
). Now run the algorithm of Rothvoß [31]

on G′ with paths P ′
U to get back some routing schedule S′.

Without loss of generality we can assume that S′ only has nodes in G′ send along a single

edge in each round: every vi is incident to a single outbound edge across all paths (namely

(vi, vo)) and so cannot send more than one token per round; every vo has a single incoming

edge and so receives at most one token per round which, without loss of generality, we can

assume vo sends as soon as it receives (it might be the case that vo collects some number of

tokens over several rounds and then sends them all out at once but we can always just have

vo forward these tokens as soon as they are received and have the recipients “pretend” that

they do not receive them until vo would have sent out many tokens at once).

Now generate a routing schedule for G as follows: if vo sends token a in round r of

S′ then v will send token a in round r of S. Since S only ever has vertices send one

token per round, it is easy to see by induction over rounds that S will successfully route

along all paths. Moreover, S takes as many rounds as S′ which by [31] we know takes

O(con(~P ′
U) + dil(~P ′

U)) = O(con(~PU) + 2dil(~PU)) = O(con(~PU) + dil(~PU)). Thus, we let

OPTRoute be the algorithm that returns S. J

I Lemma 13. RoutePathsm is a polynomial-time algorithm that, given ~PU , solves the

Route and Compute Problem w.h.p. using O(tm(con(~PU) + dil(~PU)) + tc) rounds.

Proof. By Lemma 12, OPTRoute takes tm(con(~PU)+dil(~PU)) rounds to route all sources to

sinks. All sources are combined with sinks in the following computation and so RoutePathsm

successfully solves the Route and Compute Problem since every source has its token

combined with another token. The polynomial runtime of the algorithm is trivial. J

I Lemma 14. RoutePathsc is a polynomial-time algorithm that, given ~PU , solves the

Route and Compute Problem w.h.p. using O(tc · con(~PU) + tm · dil(~PU)) rounds.

Proof. We argue that every source’s token ends at an asleep node with at least two tokens

and no more than con(~PU) tokens. It follows that our computation at the end at least halves

the number of tokens.

First notice that if a vertex falls asleep then it will receive at most con(~PS) tokens by the

end of our algorithm since it is incident to at most this many paths. Moreover, notice that

every token will either end at a sink or a sleeping vertex and every sleeping vertex is asleep

because it has two or more tokens. It follows that every token is combined with at least one

other token and so our schedule at least halves the total number of tokens.

ITCS 2020

65:38 Computation-Aware Data Aggregation

The length of our schedule simply comes from noting that we have O(dil(~PU) · tm)

forwarding rounds followed by con(~PU) · tc rounds of computation. Thus, we get a schedule

of total length O(tc · con(~PS) + tm · dil(~PS)). A polynomial runtime is trivial. J

F.3 Proof of Theorem 9

I Theorem 9. SolveTC is a polynomial-time algorithm that gives an O(log n · log OPT
tm

)-

approximation for Token Computation with high probability.

Proof. By Lemma 11 we know that the paths returned by GetDirectedPaths, ~PU are

such that con(~PU) ≤ O
(

OPT
min(tc,tm) log OPT

tm

)

and dil(~PU) ≤ 8OPT
tm

and the paths returned

have unique sinks and sources in W and there are at least |W |/12 paths w.h.p.

If tc > tm then RoutePathsm is run which by Lemma 13 solves the Route and

Compute Problem in O(tm · con(~PU) + tm · dil(~PU) + tc) rounds which is

≤ O

(

tm ·
OPT

min(tc, tm)
· log

OPT

tm
+ tm ·

8OPT

tm
+ tc

)

= O

(

OPT · log
OPT

tm
+ tc

)

If tc ≤ tm then RoutePathsc is run to solve the Route and Compute Problem which

by Lemma 14 takes O(tc · con(~PU) + tm · dil(~PU)) rounds which is

≤ O

(

tc ·
4OPT

min(tc, tm)
· log

OPT

tm
+ tm ·

8OPT

tm

)

= O

(

OPT · log
OPT

tm

)

Thus, in either case, the produced schedule takes at most O
(

OPT · log OPT
tm

+ tc

)

rounds

to solve the Route and Compute Problem on at least |W |/12 paths in each iteration.

Since solving the Route and Compute Problem reduces the total number of tokens by a

constant fraction on the paths over which it is solved, and we have at least |W |/12 paths in

each iteration w.h.p., by a union bound, every iteration reduces the total number of tokens

by a constant fraction w.h.p. Thus, the concatenation of the O(log n) schedules produced,

each of length O(OPT · log OPT
tm

+ tc), is sufficient to reduce the total number of tokens to 1.

Thus, SolveTC produces a schedule that solves the problem of Token Computation

in O(OPT · log n log OPT
tm

+ tc · log n) rounds. However, notice that tc · log n ≤ OPT (since the

optimal schedule must perform at least log n serialized computations) and so the produced

schedule is of length O(OPT · log n log OPT
tm

+ tc log n) ≤ O(OPT · log n log OPT
tm

). Lastly, a

polynomial runtime is trivial given the polynomial runtime of our subroutines. J

	Introduction
	Our Model and Problem
	Our Results
	Terminology

	Related Work
	Optimal Algorithm for Complete Graphs
	Binary Trees (Warmup)
	Complete Graphs

	Hardness and Approximation for Arbitrary Graphs
	Token Computation Extremes (Warmup)
	Approximation Algorithm
	Producing Paths on Which to Route
	Routing Along Produced Paths

	Future Work
	Formal Model, Problem, and Definitions
	Deferred Related Work
	Deferred Figures
	Proof of Lemma 7
	Proof of Theorem 8
	NP-Completeness (Warmup)
	Hardness of Approximation

	Omitted Lemmas of the Proof of Theorem 9
	Proof of Lemma 11
	Our Flow LP
	Proof of the Key Property of our LP
	GetDirectedPaths Formally Defined
	Sampling Paths from LP
	Directing Paths
	Proof of Lemma 11

	Deferred Proofs of Section 4.2.2
	Proof of Theorem 9

