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—— Abstract

Data aggregation is a fundamental primitive in distributed computing wherein a network computes
a function of every nodes’ input. However, while compute time is non-negligible in modern systems,
standard models of distributed computing do not take compute time into account. Rather, most
distributed models of computation only explicitly consider communication time.

In this paper, we introduce a model of distributed computation that considers both computation
and communication so as to give a theoretical treatment of data aggregation. We study both the
structure of and how to compute the fastest data aggregation schedule in this model. As our first
result, we give a polynomial-time algorithm that computes the optimal schedule when the input
network is a complete graph. Moreover, since one may want to aggregate data over a pre-existing
network, we also study data aggregation scheduling on arbitrary graphs. We demonstrate that this

problem on arbitrary graphs is hard to approximate within a multiplicative 1.5 factor. Finally, we
OPT

give an O(logn - log - )-approximation algorithm for this problem on arbitrary graphs, where n is
the number of nodes and OPT is the length of the optimal schedule.
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1 Introduction

Distributed systems drive much of the modern computing revolution. However, these systems
are only as powerful as the abstractions which enable programmers to make use of them. A
key such abstraction is data aggregation, wherein a network computes a function of every
node’s input. For example, if every node stored an integer value, a programmer could run
data aggregation to compute the sum or the largest value of every node in the network.
Indeed, the well-studied and widely-used AllReduce abstraction [29, 16] consists of a data
aggregation step followed by a broadcast step.

The utility of modern systems is their ability to perform massive computations and so,
applications of data aggregation often consist of a function which is computationally-intensive
to compute. A rigorous theoretical study of data aggregation, then, must take the cost of
computation into account. At the same time, one cannot omit the cost of communication, as
many applications of data aggregation operate on large datasets which take time to transmit
over a network.

However, to our knowledge, all existing models of distributed computation — e.g., the
CONGEST [28], SINR [4], (noisy) radio network [21, 9, 7, 8], congested clique [12], dual graph
[6], store-and-forward [22, 31], LOCAL [23], and telephone broadcast models [30, 20, 17] — all
only consider the cost of communication. Relatedly, while there has been significant applied
research on communication-efficient data aggregation algorithms, there has been relatively
little work that explicitly considers the cost of computation, and even less work that considers
how to design a network to efficiently perform data aggregation [25, 19, 26, 27, 18]. In this
way, there do not seem to exist theoretical results for efficient data aggregation scheduling
algorithms that consider both the cost of communication and computation.

Thus, we aim to provide answers to two theoretical questions in settings where both
computation and communication are non-negligible:

1. How should one structure a network to efficiently perform data aggregation?
2. How can one coordinate a fixed network to efficiently perform data aggregation?

1.1 OQOur Model and Problem
The Token Network Model

So as to give formal answers to these questions we introduce the following simple distributed
model, the TOKEN NETWORK Model. A TOKEN NETWORK is given by an undirected graph
G = (V,E), |V| = n, with parameters t., t,, € N which describe the time it takes nodes to
do computation and communication, respectively.!

Time proceeds in synchronous rounds during which nodes can compute on or communicate
atomic tokens. Specifically, in any given round a node is busy or not busy. If a node is not
busy and has at least one token it can communicate: any node that does so is busy for the
next t,, rounds, at the end of which it passes one of its tokens to a neighbor in G. If a node
is not busy and has two or more tokens, it can compute: any node that does so is busy for
the next ¢. rounds, at the end of which it combines (a.k.a. aggregates) two of its tokens into
a single new token.2 At a high level, this means that communication takes t,, rounds and
computation takes t. rounds.

L We assume tc, tm = poly(n) throughout this paper.
2 Throughout this paper, we assume for ease of exposition that the smaller of t. and t,, evenly divides
the larger of t. and t,,, or equivalently that either t. or ¢,, is 1.
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The Token Computation Problem

We use our TOKEN NETWORK model to give a formal treatment of data aggregation
scheduling. In particular, we study the TOKEN COMPUTATION problem. Given an input
TOKEN NETWORK, an algorithm for the TOKEN COMPUTATION problem must output
a schedule S which directs each node when to compute and when and with whom to
communicate. A schedule is valid if after the schedule is run on the input TOKEN NETWORK
where every node begins with a single token, there is one remaining token in the entire
network; i.e., there is one node that has aggregated all the information in the network. We
use |S| to notate the length of S — i.e., the number of rounds S takes — and measure the
quality of an algorithm by the length of the schedule that it outputs. For completeness, we
give a more technical and formal definition in Appendix A.

Discussion of Modeling Choices

Our TOKEN NETWORK model and the TOKEN COMPUTATION problem are designed to
formally capture the challenges of scheduling distributed computations where both computa-
tion and communication are at play. In particular, combining tokens can be understood as
applying some commutative, associative function to the private input of all nodes in a network.
For instance, summing up private inputs, taking a minimum of private inputs, or computing
the intersection of input sets can all be cast as instances of the TOKEN COMPUTATION
problem. We assume that the computation time is the same for every operation and that the
output of a computation is the same size as each of the inputs as a simplifying assumption.
We allow nodes to receive information from multiple neighbors as this sort of communication
is possible in practice.

Lastly, our model should be seen as a so-called “broadcast” model [21] of communication.
In particular, it is easy to see that our assumption that a node can send its token to only
a single neighbor rather than multiple copies of its token to multiple neighbors is without
loss of generality: One can easily modify a schedule in which nodes send multiple copies to
one of equal length in which a node only ever sends one token per round. An interesting
followup question could be to consider our problem in a non-broadcast setting.

1.2 OQur Results

We now give a high-level description of our technical results.

Optimal Algorithm on Complete Graphs (Section 3)

We begin by considering how to construct the optimal data aggregation schedule in the
ToKEN NETWORK model for complete graphs for given values of ¢, and t,,. The principal
challenge in constructing such a schedule is formalizing how to optimally pipeline computation
and communication and showing that any valid schedule needs at least as many rounds as
one’s constructed schedule. We overcome this challenge by showing how to modify a given
optimal schedule into an efficiently computable one in a way that preserves its pipelining
structure. Specifically, we show that one can always modify a valid optimal schedule into
another valid optimal schedule with a well-behaved recursive form. We show that this
well-behaved schedule can be computed in polynomial time. Stronger yet, we show that the
edges over which communication takes place in this schedule induce a tree. It is important
to emphasize that this result has implications beyond producing the optimal schedule for a
complete graph; it shows one optimal way to construct a network for data aggregation (if
one had the freedom to include any edge), thereby suggesting an answer to the first of our
two research questions.
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Hardness and Approximation on Arbitrary Graphs (Section 4)

We next consider the hardness of producing good schedules efficiently for arbitrary graphs
and given values of ¢, and t,,. We first show that no polynomial-time algorithm can produce
a schedule of length within a multiplicative 1.5 factor of the optimal schedule unless P = NP.
This result implies that one can only coordinate data aggregation over a pre-existing network
so well.

Given that an approximation algorithm is the best one can hope for, we next give an al-
gorithm which in polynomial time produces an approximately-optimal TOKEN COMPUTATION
schedule. Our algorithm is based on the simple observation that after O(logn) repetitions of
pairing off nodes with tokens, having one node in each pair route a token to the other node
in the pair, and then having every node compute, there will be a single token in the network.
The difficulty in this approach lies in showing that one can route pairs of tokens in a way
that is competitive with the length of the optimal schedule. We show that by considering
the paths in G traced out by tokens sent by the optimal schedule, we can get a concrete
hold on the optimal schedule. Specifically, we show that a polynomial-time algorithm based
on our observation produces a valid schedule of length O(OPT - logn - log %) with high
probability,® where OPT is the length of the optimal schedule. Using an egsy bound on
OPT, this can be roughly interpreted as an O(log® n)-approximation algorithm. This result
shows that data aggregation over a pre-existing network can be coordinated fairly well.

Furthermore, it is not hard to see that when t. = 0 and ¢,,, > 0, or when t., > 0 and ¢,,, = 0,
our problem is trivially solvable in polynomial time. However, we show hardness for the
case where t.,t,, > 0, which gives a formal sense in which computation and communication
cannot be considered in isolation, as assumed in previous models of distributed computation.

1.3 Terminology

For the remainder of this paper we use the following terminology. A token a contains token a’
if a = a’ or a was created by combining two tokens, one of which contains a’. For shorthand
we write @’ € a to mean that a contains a’. A singleton token is a token that only contains
itself; i.e., it is a token with which a node started. We let a, be the singleton token with
which vertex v starts and refer to a, as v’s singleton token. The size of a token is the number
of singleton tokens it contains. Finally, let as be the last token of a valid schedule S; the
terminus of S is the node at which ay is formed by a computation.

2 Related Work

Cornejo et al. [10] study a form of data aggregation in networks that change over time,
where the goal is to collect tokens at as few nodes as possible after a certain time. However,
they do not consider computation time and they measure the quality of their solutions
with respect to the optimal offline algorithm. Awerbuch et al. [5] consider computation and
communication in a setting where jobs arrive online at nodes, and nodes can decide whether
or not to complete the job or pass the job to a neighbor. However, they study the problem
of job scheduling, not data aggregation, and, again, they approach the problem from the
perspective of competitive analysis with respect to the optimal offline algorithm.

3 Meaning at least 1 — 1/poly(n) henceforth.
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Another line of theoretical work related to our own is a line of work in centralized
algorithms for scheduling information dissemination [30, 20, 17]. In this problem, an algorithm
is given a graph and a model of distributed communication, and must output a schedule that
instructs nodes how to communicate in order to spread some information. For instance, in
one setting an algorithm must produce a schedule which, when run, broadcasts a message
from one node to all other nodes in the graph. The fact that these problems consider
spreading information is complementary to the way in which we consider consolidating it.
However, we note that computation plays no role in these problems, in contrast to our
TOKEN COMPUTATION problem.

Of these prior models of communication, the model which is most similar to our own is
the telephone broadcast model. In this model in each round a node can “call” another node
to transmit information or receive a call from a single neighbor. Previous results have given a
hardness of approximation of 3 [13] for broadcasting in this model and logarithmic as well as
sublogarithmic approximation algorithms for broadcasting [14]. The two notable differences
between this model and our own are (1) in our model nodes can receive information from
multiple neighbors in a single round* and (2) again, in our model computation takes a
non-negligible amount of time. Note, then, that even in the special case when t. = 0, our
model does not generalize the telephone broadcast model; as such we do not immediately
inherit prior hardness results from the telephone broadcast problem. Furthermore, (1) and
especially (2) preclude the possibility of an easy reduction from our problem to the telephone
broadcast problem.

There is also a great deal of related applied work; additional details are in Appendix B.

3 Optimal Algorithm for Complete Graphs

In this section we provide an optimal polynomial-time algorithm for the TOKEN COMPUTA-
TION problem on a complete graph. The schedule output by our algorithm ultimately only
uses the edges of a particular tree, and so, although we reason about our algorithm in a fully
connected graph, in reality our algorithm works equally well on said tree. This result, then,
informs the design of an optimal network.

3.1 Binary Trees (Warmup)

We build intuition by considering a natural solution to TOKEN COMPUTATION on the complete
graph: naive aggregation on a rooted binary tree. In this schedule, nodes do computations
and communications in lock-step. In particular, consider the schedule S which alternates
the following two operations until only a single node with tokens remains on a fixed binary
tree: (1) every non-root node that has a token sends its token to its parent in the binary
tree; (2) every v with at least two tokens performs one computation. Once only one node
has any tokens, that node performs computation until only a single token remains. After
log n iterations of this schedule, the root of the binary tree is the only node with any tokens,
and thereafter only performs computation for the remainder of S. However, S does not
efficiently pipeline communication and computation: after each iteration of (1) and (2), the
root of the tree gains an extra token. Therefore, after logn repetitions of this schedule, the
root has logn tokens. In total, then, this schedule aggregates all tokens after essentially
logn(te + t) + logn - t. rounds. See Figure 1.

4 Gee above for the justification of this assumption.
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(a) Round 1. (b) Round 2. (c) Round 3. (d) Round 4.

Figure 1 The naive aggregation schedule on a binary tree for t. = ¢, = 1 and n = 7 after 4
rounds. tokens are represented by blue diamonds; a red arrow from node u to node v means that
u sends to v; and a double-ended blue arrow between two tokens a and b means that a and b are
combined at the node. Notice that the root gains an extra token every 2 rounds.

(a) Round 1. (b) Round 2. (c) Round 3. (d) Round 4.

Figure 2 The aggregation schedule on a binary tree for t. = t,, = 1 and n = 7 after 4 rounds
where the root pipelines its computations. Again, tokens are represented by blue diamonds; a red
arrow from node u to node v means that u sends to v; and a double-ended blue arrow between two
tokens a and b means that a and b are combined at the node. Notice that the root will never have
more than 3 tokens when this schedule is run.

For certain values of t. and t,,, we can speed up naive aggregation on the binary tree
by pipelining the computations of the root with the communications of other nodes in the
network. In particular, consider the schedule S’ for a fixed binary tree for the case when
t. = t, in which every non-root node behaves exactly as it does in S but the root always
computes. Since the root always computes in S’, even as other nodes are sending, it does
not build up a surplus of tokens as in S. Thus, this schedule aggregates all tokens after
essentially logn(t. + t,,) rounds when t. = t,,, as shown in Figure 2.

However, as we will prove, binary trees are not optimal even when they pipeline compu-
tation at the root and t. = t,,. In the remainder of this section, we generalize this pipelining
intuition to arbitrary values of t. and t,, and formalize how to show a schedule is optimal.

Figure 3 T'(16) for t. = 2, tm = 1.
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3.2 Complete Graphs

We now describe our optimal polynomial-time algorithm for complete graphs. This algorithm
produces a schedule which greedily aggregates on a particular tree, 7). In order to describe
this tree, we first introduce the tree T'(R, t¢, t,,). This tree can be thought of as the largest
tree for which greedy aggregation aggregates all tokens in R rounds given computation cost
t. and communication cost ¢,,. We will overload notation and let T'(R) denote T(R,tc, %)
for some fixed values of ¢, and t,,. Let the root of a tree be the node in that tree with no
parents. Also, given a tree T7 with root r we define 17 JOIN Ty as T} but where r also has
T5 as an additional subtree. We define T'(R) as follows (see Figure 3 for an example):

T(R) — {A single leaf if R<ty+t.

T(R—t.) JOIN T(R —t. —t,) otherwise

Since an input to the TOKEN COMPUTATION problem consists of n nodes, and not

a desired number of rounds, we define R*(n,t.,t,,) to be the minimum value such that

|T(R*(n,te,tm))| > n. We again overload notation and let R*(n) denote R*(n,tc,tm).
Formally,

R*(n) == min{R : |T(R)| > n}.
We let T denote T'(R*(n)). For ease of presentation we assume that |T}f| = n.?

The schedule produced by our algorithm will simply perform greedy aggregation on T';.
We now formally define greedy aggregation and establish its runtime on the tree T'(R).

» Definition 1 (Greedy Aggregation). Given an r-rooted tree, let the greedy aggregation
schedule be defined as follows. In the first round, every node except for r sends its token to
its parent. In subsequent rounds we do the following. If a node is not busy and has at least
two tokens, it performs a computation. If a non-root node is not busy, has exactly one token,
and has received a token from every child in previous rounds, it forwards its token to its
parent.

» Lemma 2. Greedy aggregation on T(R) terminates in R rounds.

Proof. We will show by induction on k& > 0 that greedy aggregation results in the root of
T(k) having a token of size |T'(k)| after k rounds. The base cases of k € [0,t,, + t.) are
trivial, as nothing needs to be combined. For the inductive step, applying the inductive
hypothesis and using the recursive structure of our graph tells us that the root of T'(k + t.)
has a token of size |T'(k)| at its root in k rounds, and the root of the child T'(k — t,,,) has
a token of size |T'(k — t,,)| at its root in k — t,, rounds. Therefore, by the definition of
greedy aggregation, the root of T'(k — t,,) sends its token of size |T'(k — t,,)| to the root of
T(k + t.) at time k — ¢,,, which means the root of T'(k + t.) can compute a token of size
|T(k —tm)| +|T(k)| = |T(k +t.)| by round k + t.. <

To build intuition about how quickly T} grows, see Figure 6 for an illustration of |T}¢| as
a function of n for specific values of ¢, and t,,. Furthermore, notice that T(R) and T, are

constructed in such a way that greedy aggregation pipelines computation and communication.

We can now formalize our optimal algorithm, which simply outputs the greedy aggregation
schedule on T, as Algorithm 1. The following theorem is our main result for this section.

5 If |T7:| > n, then we could always “hallucinate” extra nodes where appropriate.
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Algorithm 1 OPTCOMPLETE(¢c, tm, 1).

Input: t., t,,, n

Output: A schedule for TOKEN COMPUTATION on K, with parameters t. and t,,
Arbitrarily embed T} into K,

return Greedy aggregation schedule on 7' embedded in K,

» Theorem 3. Given a complete graph K,, onn vertices and any t,,,t. € ZT, OPTCOMPLETE
optimally solves TOKEN COMPUTATION on the TOKEN NETWORK (K, t.,t,,) in polynomial
time.

To show that Theorem 3 holds, we first note that OPTCOMPLETE trivially runs in
polynomial time. Therefore, we focus on showing that greedy aggregation on T}’ optimally
solves the TOKEN COMPUTATION problem on K,,. We demonstrate this claim by showing
that, given R rounds, |T'(R)| is the size of the largest solvable graph. Specifically, we
will let N*(R) be the size of the largest complete graph on which one can solve TOKEN
COMPUTATION in R rounds, and we will argue that N*(R) obeys the same recurrence as
I T(R)|.

First notice that the base case of N*(R) is trivially 1.
» Lemma 4. For R € Z§ we have that N*(R) =1 for R < t.+t,.

Proof. If R < t.+ t,,, there are not enough rounds to send and combine a token, and so the
ToKEN COMPUTATION problem can only be solved on a graph with one node. |

We now show that for the recursive case N*(R) is always at least as large as N*(R —
tc) + N*(R —t. — t,,), which is the recurrence that defines |T'(R)|.

» Lemma 5. For R € Z§ we have that N*(R) > N*(R—t.)+N*(R—t.—ty,) for R > t.+t,,.

Proof. Suppose R > t. + t,,. Let S; be the optimal schedule on the complete graph of
N*(R—t.) nodes with terminus v¢; and let So be the optimal schedule on the complete graph
of size N*(R —t. — t,,) with corresponding terminus v;5. Now consider the following solution
on the complete graph of N*(R —t.)+ N*(R —t. — t;,) nodes. Run S; and S5 in parallel on
N*(R —t.) and N*(R —t. — t,,) nodes respectively, and once Sy has completed, forward the
token at v4o to vy and, once it arrives, have vy; perform one computation. This is a valid
schedule which takes R rounds to solve TOKEN COMPUTATION on N*(R—t.)+N*(R—tc.—tm)
nodes. Thus, we have that N*(R) > N*(R —t.) + N*(R —t. — t;) for R > t. + t. <

It remains to show that this bound on the recursion is tight. To do so, we case on whether
te >ty or to < t,,. When t, > t,,, we perform a straightforward case analysis to show that
N* follows the same recurrence as 7). Specifically, we case on when the last token in the
optimal schedule was created to show the following.

> Lemma 6. When t. > t,, for R € Z7 it holds that N*(R) = N*(R—to)+ N*(R—te—tm).

Proof. Suppose that R > t. + t,,. By Lemma 5, it is sufficient to show that N*(R) <
N*(R —t.) + N*(R — t. — t;,). Consider the optimal solution given R rounds. The last
action performed by any node must have been a computation that combines two tokens, a
and b, at the terminus v; because, in an optimal schedule, any further communication of the
last token increases the length of the schedule. We now consider three cases.
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Round ¢ Round ¢ + t, Round ¢ Round ¢ + ¢,

......

Equivalent —M8 —— —— Equivalent

Round ¢ Round ¢ + t, Round ¢ Round ¢ + t,

E—0 0—@

(a) Combining insight. (b) Shortcutting insight.

Figure 4 An illustration of the shortcutting and combining insights. Here, tokens are denoted by
blue diamonds, and hallucinated tokens are denoted by striped red diamonds. As before, a red arrow
from node u to node v means that u sends to v, and a double-ended blue arrow between two tokens
a and b means that a and b are combined at the node. Notice that which nodes have tokens and
when nodes have tokens are the same under both modifications (though in the combining insight, a
node is only hallucinating that it has a token).

In the first case, a and b were both created at v;. Because both of a or b could not have
been created at time R — t., one of them must have been created at time R — 2t. at the
latest. This means that N*(R) < N*(R—t.)+N*(R—2t.) < N*(R—t.)+N*(R—tc.—tm).
In the second case, exactly one of a or b (without loss of generality, a) was created at v;.
This means that b must have been sent to v; at latest at time R —t. — t,,,. It follows that
N*(R) < N*(R—t.)+ N* (R —te — tim).

In the last case, neither a nor b was created at v;. This means that both must have been
sent to vy at the latest at time R — t. — t,,. We conclude that N*(R) < N*(R — t. —
tm) + N*(R—t.—tm) < N*(R—t.) + N*(R—tc — tm).

Thus, in all cases we have N*(R) < N*(R —t.) + N*(R —to — tym). <

We now consider the case in which communication is more expensive than computation,
te < t;,. One might hope that the same case analysis used when t. > t,, would prove the
desired result for when t. < t,,. However, we must do significantly more work to show that
N*(R)=N*(R—t.)+ N*(R —t. — t;,) when t. < t,,. We do this by establishing structure
on the schedule which solves TOKEN COMPUTATION on K- (g) in R rounds: we successively
modify an optimal schedule in a way that does not affect its validity or length but which
adds structure to the schedule.

Specifically, we leverage the following insights — illustrated in Figure 4 — to modify
schedules. Combining insight: Suppose node v has two tokens in round ¢, a and b, and v
sends a to node u in round t. Node v can just aggregate a and b, treat this aggregation as it

treats b in the original schedule and w can just pretend that it receives a in round ¢ + t,,.

That is, u can “hallucinate” that it has token a. Note that this insight crucially leverages
the fact that t. < t,,, since otherwise the performed computation would not finish before
round t + t,,. Shortcutting insight: Suppose node v sends a token to node u in round ¢ and
node u sends a token to node w in a round in [¢,¢ + ¢,,]. Node v can “shortcut” node u and
send to w directly and u can just not send.
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Through modifications based on these insights we show that there exists an optimal
schedule where the last node to perform a computation never communicates, and every
computation performed by this node computes on the token with which this node started.
This structure, in turn, allows us to establish the following lemma, which asserts that when
te < t, we have that N*(R) and |T(R)| follow the same recurrence.

» Lemma 7. When t, < t,, for R € Zg it holds that N*(R) = N*(R—t.)+ N*(R—t.—tm).

The proof of the lemma is relegated to Appendix D. We are now ready to prove the
theorem.

Proof of Theorem 3. On a high level, we argue that the greedy aggregation schedule on
T(R) combines N*(R) nodes in R rounds and is therefore optimal. Combining Lemma 4,
Lemma 6, and Lemma 7 we have the following recurrence on N*(R) for R € Z{ .

N*(R) = 1 ifR<t.+1tn
AN (R—t)+ N*(R—t.—tn) fR>te+tn

Notice that this is the recurrence which defines |T'(R)| so for R € Z$ we have that
N*(R) = |T(R)|, and by Lemma 2, the greedy aggregation schedule on T(R) terminates in
R rounds.

Thus, the greedy aggregation schedule on T'(R) solves TOKEN COMPUTATION on K|p(ry| =
K n+(ry in R rounds, and therefore is an optimal solution for Ky« (g). Since T}, is the smallest
T(R) with at most n nodes, greedy aggregation on T)¢ is optimal for K,, and so OPTCOMPLETE
optimally solves TOKEN COMPUTATION on K. Finally, the polynomial runtime is trivial. <

4 Hardness and Approximation for Arbitrary Graphs

We now consider the TOKEN COMPUTATION problem on arbitrary graphs. Unlike in the case
of complete graphs, the problem turns out to be computationally hard on arbitrary graphs.
The challenge in demonstrating the hardness of TOKEN COMPUTATION is that the optimal
schedule for an arbitrary graph does not have a well-behaved structure. Our insight here
is that by forcing a single node to do a great deal of computation we can impose structure
on the optimal schedule in a way that makes it reflect the minimum dominating set of the
graph. The following theorem formalizes this; its full proof is relegated to Appendix E.

» Theorem 8. TOKEN COMPUTATION cannot be approximated by a polynomial-time algorithm

within (1.5 —€) for e > m unless P = NP.

Therefore, our focus in this section is on designing an approximation algorithm. Spe-
cifically, we construct a polynomial-time algorithm, SOLVET C, which produces a schedule
that solves TOKEN COMPUTATION on arbitrary graphs using at most O(logn - log %)
multiplicatively more rounds than the optimal schedule, where OPT is the length of the
optimal schedule. Define the diameter D of graph G as max,, ,, d(u,v). Notice that OPT/t,,
is at most (n — 1)t./t,, + D since OPT < (n— 1)(t. + D - t,,,): the schedule that picks a pair
of nodes, routes one to the other then aggregates and repeats n — 1 times is valid and takes
(n —1)(t. + D - t,,) rounds. Thus, our algorithm can roughly be understood as an O(log® n)
approximation algorithm. Formally, our main result for this section is the following theorem
whose lengthy proof we summarize in the rest of this section.

» Theorem 9. SOLVETC is a polynomial-time algorithm that gives an O(logn - log
approximation for TOKEN COMPUTATION with high probability.

OPT
tm )-
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The rest of this section provides an overview of this theorem’s lengthy proof. Our
approximation algorithm, SOLVETC, is given as Algorithm 2. SOLVETC performs O(logn)
repetitions of: designate some subset of nodes with tokens sinks and the rest of the nodes
with tokens sources; route tokens at sources to sinks. If ¢, > t,,, we will delay computations
until tokens from sources arrive at sinks, and if t,, > t., we will immediately aggregate
tokens that arrive at the same node.

4.1 Token Computation Extremes (Warmup)

Before moving on to a more technical overview of our algorithm, we build intuition by
considering two extremes of TOKEN COMPUTATION.

tm L te

First, consider the case where t¢,,, < t.; that is, communication is very cheap compared to
computation. As computation is the bottleneck here, we can achieve an essentially optimal
schedule by parallelizing computation as much as possible. That is, consider a schedule
consisting of O(logn) repetitions of: (1) each node with a token uniquely pairs off with
another node with a token; (2) one node in each pair routes its token to the other node in
its pair; (3) nodes that received a token perform one computation. This takes O(t. - logn)

rounds to perform computations along with some amount of time to perform communications.

But, any schedule takes at least Q(¢. - logn) rounds, even if communication were free and
computation were perfectly parallelized. Because the time to perform communications is
negligible, this schedule is essentially optimal.

tc<<tm

Now consider the case where t. < t,,; that is, computation is very cheap compared to
communication. In this setting, we can provide an essentially optimal schedule by minimizing
the amount of communication that occurs. In particular, we pick a center ¢ of the graph®
and have all nodes send their tokens along the shortest path towards c. At any point during
this schedule, it is always more time efficient for a node with multiple tokens to combine
its tokens together before forwarding them since t. < t,,. Thus, if at any point a node

has multiple tokens, it combines these into one token and forwards the result towards c.

Lastly, ¢ aggregates all tokens it receives. This schedule takes t,, - r time to perform its
communications, where r is the radius of the graph,” and some amount of time to perform
its computations. However, because for every schedule there exists a token that must travel
at least r hops, any schedule takes at least Q(r - t,,) rounds. Computations take a negligible
amount of time since ¢, < t,,, which means that this schedule is essentially optimal.

See Figure 5 for an illustration of these two schedules. Thus, in the case when t,, < t.,
we have that routing between pairs of nodes and delaying computations is essentially optimal,
and in the case when t. < t,,,, we have that it is essentially optimal for nodes to greedily
aggregate tokens before sending. These two observations will form the foundation of our
approximation algorithm.

5 The center of graph G is arg min, max, d(v,u) where d(v,u) is the length of the shortest u — v path.
7 The radius of graph G is min, max,, d(v, u).
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(a) tm < te. (b) te < tm.

Figure 5 An illustration of essentially optimal schedules for the extremes of the TOKEN COM-
PUTATION problem. Dotted red arrows give the node towards which each node routes. In the case
where t,, < t. one would repeat this sort of routing O(logn) times.

4.2 Approximation Algorithm

Recall that our approximation algorithm routes tokens from designated sources to designated
sinks O(logn) times. Formally, the problem which our algorithm solves O(logn) times is as
follows.

» Definition 10 (ROUTE AND COMPUTE Problem). The input to the ROUTE AND COMPUTE
Problem consists of a set U C V and a set of directed paths Py = {ﬁu :u € U} where: (1)
u € U has a token and is the source of P,; (2) every sink of every path P, has a token; (3)
if v and t,, are the sources and sinks of 15; € 75(}, respectively, then neither u nor ¢, are
endpoints of any Py € Py for o/ # u. A solution of cost C is a schedule of length C' which,
when run, performs computations on a constant fraction of tokens belonging to nodes in U.

SOLVET C repeatedly calls a subroutine, GETDIRECTEDPATHS, to get a set of paths for
which it would like to solve the ROUTE AND COMPUTE Problem. It then solves the ROUTE
AND COMPUTE Problem for these paths, using ROUTEPATHS,, if t. < t,, or ROUTEPATHS,
if t, > t,,,. Below we give an overview of these procedures. The proofs of the lemmas in this
section, as well as further details regarding SOLVET C, are relegated to Appendix F.

Algorithm 2 SoLvETC.

Input: TOKEN COMPUTATION instance given by graph G = (V, E), t¢, tn
Output: A schedule for the input TOKEN COMPUTATION problem
WV
for iteration ¢ € O(logn) do

Py < GETDIRECTEDPATHS(W, G)

if t, > t,,, then ROUTEPATHsm(ﬁU)

if t. <t,, then ROUTEPATHSC(P})

W+ {v: v has 1 token}

4.2.1 Producing Paths on Which to Route

We now describe GETDIRECTEDPATHS. First, for a set of paths P, we define the vertex
congestion of P as con(P) = max, ) p.p(# occurences of v € P), and the dilation of P as
maxXpep ‘P|

Given that nodes in W C V have tokens, GETDIRECTEDPATHS solves a flow LP which
has a flow for each w € W whose sinks are w’ € W such that w’ # w. The objective
of this flow LP is the vertex congestion. The flow for each w € W defines a probability
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distribution over (undirected) paths with endpoints w and w’ where v’ # w and v’ € W.
Given these probability distributions, we repeatedly sample paths by taking random walks
proportional to LP values of edges until we produce a set of paths — one for each w € W —
with low vertex congestion. Lastly, given our undirected paths, we apply another subroutine
to direct our paths and fix some subset of nodes U C W as sources such that |U| is within
a constant fraction of |[W|. The key property of the LP we use is that it has an optimal
vertex congestion comparable to OPT, the length of the optimal TOKEN COMPUTATION
schedule. Using this fact and several additional lemmas we can prove the following properties
of GETDIRECTEDPATHS.

» Lemma 11. Given W C V, GETDIRECTEDPATHS is a randomized polynomial-time
algorithm that returns a set of directed paths, Py = {Py : u € U} for U C W, such that with
high probability at least 1/12 of nodes in W are sources of paths in Py each with a unique
sink in W. Moreover,

S S8OPT
) and dil(Py) < .

tm

OPT OPT
- lo
min(te, t,,) tm

con(Py) < O (

4.2.2 Routing Along Produced Paths

We now specify how we route along the paths produced by GETDIRECTEDPATHS. If t. > t,,,
we run ROUTEPATHS,,, to delay computations until tokens from sources arrive at sinks, and
if ¢t,,, > t., we run ROUTEPATHS, to immediately aggregate tokens that arrive at the same
node.

Case of t. > t,,,

ROUTEPATHS,,, adapts the routing algorithm of Leighton et al. [22] — which was simplified
by RothvoB [31] — to efficiently route from sources to sinks.® We let OPTROUTE be this
adaptation of the algorithm of Leighton et al. [22].

» Lemma 12. Given a set of directed paths Py with some subset of endpoints of paths
n ’P} designated sources and the rest of the endpoints designated sinks, OPTROUTE is a
randomized polynomial-time algorithm that w.h.p. produces a TOKEN NETWORK schedule
that sends from all sources to sinks in O(con(Py) + dil(Py)).

Given Py, ROUTEPATHS,, is as follows. Run OPTROUTE and then perform a single
computation. As mentioned earlier, this algorithm delays computation until all tokens have
been routed.

» Lemma 13. ROUTEPATHS,, is a polynomial-time algorithm that, given P_'U, solves the
ROUTE AND COMPUTE Problem w.h.p. using O(tm(con(Py) + dil(Py)) + t.) rounds.

Case of t. < t,,

Given directed paths Py, ROUTEPATHS, is as follows. Initially, every sink is asleep and
every other node is awake. For O(dil(Py) - t,,) rounds we repeat the following: if a node is
not currently sending and has exactly one token then it forwards this token along its path; if

8 Our approach for the case when t. > t,, can be simplified using techniques from Srinivasan and Teo [32].
In fact, using their techniques we can even shave the logtﬂ factor in our approximation. However,

because these techniques do not take computation into acc(dunt, they do not readily extend to the case
when t. < t,,. Thus, for the sake of a unified exposition, we omit the adaptation of their results.
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a node is not currently sending and has two or more tokens then it sleeps for the remainder
of the O(dil(Py) - t,,) rounds. Lastly, every node combines any tokens it has for t. - con(Py)
rounds.

» Lemma 14. ROUTEPATHS, is a polynomial-time algorithm that, given P_ij, solves the
ROUTE AND COMPUTE Problem w.h.p. using O(t. - con(Py) + tm, - dil(Py)) rounds.

By leveraging the foregoing results, we can prove Theorem 9; see Appendix F.3 for details.

5 Future Work

There are many promising directions for future work. First, as Section 4.1 illustrates, the
extremes of our problem — when t. < t,,, and when t,, < t. — are trivial to solve. However,
our hardness reduction demonstrates that for . = 1 and ¢,, in a specific range, our problem
is hard to approximate. Determining precisely what values of ¢,, and t. make our problem
hard to approximate is open.

Next, it is not always the case that there exists a centralized coordinator to produce a
schedule. We hope to give an analysis of our problem in a distributed setting as no past
work in this setting takes computation into account. Even more broadly, we hope to analyze
formal models of distributed computation in which nodes are not assumed to have unbounded
computational resources and computation takes a non-trivial amount of time.

We also note that there is a gap between our hardness of approximation and the approx-
imation guarantee of our algorithm. The best possible approximation, then, is to be decided
by future work.

Furthermore, we are interested in studying technical challenges similar to those studied in
approximation algorithms for network design. For instance, we are interested in the problem
in which each edge has a cost and one must build a network subject to budget constraints
which has as efficient a TOKEN COMPUTATION schedule as possible.

Lastly, there are many natural generalizations of our problem. For instance, consider the
problem in which nodes can aggregate an arbitrary number of tokens together, but the time
to aggregate multiple tokens is, e.g., a concave function of the number of tokens aggregated.
These new directions offer not only compelling theoretical challenges but may be of practical
interest.
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A Formal Model, Problem, and Definitions

Let us formally define the TOKEN COMPUTATION problem. The input to the problem is a
ToKEN NETWORK specified by graph G = (V, E) and parameters t.,t,, € N. Each node
starts with a single token.

An algorithm for this problem must provide a schedule, S : V x [I] — V U {idle, busy}
where we refer to |S| := [ as the length of the schedule. Intuitively, a schedule S directs each
node when to compute and when to communicate as follows:

S(v,r) =v" # v indicates that v begins passing a token to v" in round r of S;

wn

(v,r) = v indicates that v begins combining two token in round r of S;
S(v,r) = idle indicates that v does nothing in round r;
(v,7)

S

v,7) = busy indicates that v is currently communicating or computing.

Moreover, we define the number of computations that v has performed up to round r
as Cs(v,7) = 3 ey, L(S(v, ") == v), the number of messages that v has received up
to round 7 as Rg(v,7) =3, cpp_y, ] 2owze 1(S(V',1") == v), and the number of messages
that v has sent up to round r as Ms(v,7) = 3, ¢y, 1 Doz 1(S(v,7") == 2'). Finally,
define the number of tokens a node has in round r of S as follows.

tokensg(v,7) := I(v) + Rg(v,7) — Mg(v,r) — Cg(v,7).

A schedule, S, is valid for TOKEN NETWORK (G, t., t,,) if:

1. Valid communication: If S(v,r) = v’ # v then (v,v") € E, S(v,r") = busy for r' €
[r 4+ 1,7 + t,,] and tokensg(v,r) > 1;

2. Valid computation: If S(v,r) = v then S(v,r’) = busy for ' € [r + 1,7 + t.] and
tokensg (v, 1) > 2;

3. Full aggregation: ) .y tokenss(v,|S]) = 1.

An algorithm solves TOKEN COMPUTATION if it outputs a valid schedule.
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B Deferred Related Work

There is a significant body of applied work in resource-aware scheduling, sensor networks,
and high-performance computing that considers both the relative costs of communication
and computation, often bundled together in an energy cost. However, these studies have
been largely empirical rather than theoretical, and much of the work considers distributed
algorithms (as opposed to our centralized setting).

AllIReduce in HPC

There is much related applied work in the high-performance computing space on AllRe-
duce [29, 16]. However, while there has been significant research on communication-efficient
AllReduce algorithms, there has been relatively little work that explicitly considers the cost
of computation, and even less work that considers the construction of optimal topologies for
efficient distributed computation. Researchers have empirically evaluated the performance
of different models of communication [25, 19] and have proven (trivial) lower bounds for
communication without considering computation [26, 27]. Indeed, to the best of our know-
ledge, the extent to which they consider computation is through an additive penalty that
consists of a multiplicative factor times the size of all inputs at all nodes, as in the work of
Jain et al. [18]; crucially, this penalty is the same for any schedule and cannot be reduced via
intelligent scheduling. Therefore, there do not seem to exist theoretical results for efficient
algorithms that consider both the cost of communication and computation.

Resource-Aware Scheduling

In the distributed computation space, people have considered resource-aware scheduling on a
completely connected topology with different nodes having different loads. Although this
problem considers computation-aware communication, these studies are much more empirical
than theoretical, and only consider distributed solutions as opposed to centralized algorithms
[33, 24].

Sensor Networks

Members of the sensor networks community have studied the problem of minimizing an energy
cost, which succinctly combines the costs of communication and computation. However,
sensor networks involve rapidly-changing, non-static topologies [1, 2], which means that
their objective is not to construct a fixed, optimal topology, but rather to develop adaptive
algorithms for minimizing total energy cost with respect to an objective function [3].
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Figure 6 An illustration of the optimal schedule length for different sized trees. The solid red
line is the number of rounds taken by greedy aggregation with pipelining on a binary tree (i.e.,
[2-tc-logn + tm - logn]); the dashed blue line is the number of rounds taken by greedy aggregation
on Ty; and the dotted green line is the trivial lower bound of [t. - logn] rounds. Note that though
we illustrate the trivial lower bound of [t. - logn] rounds, the true lower bound is given by the
number of rounds taken by greedy aggregation on T;.

D Proof of Lemma 7

Using our combining and shortcutting insights, we establish the following structure on a
schedule which solves TOKEN COMPUTATION on Ky« (g) in R rounds when t. < t,,.

» Lemma 15. When t. < t,,, for all R € Z{, there exists a schedule, 5%, of length R
that solves TOKEN COMPUTATION on Ky«(r) such that the terminus of S*, vy, never
communicates and every computation performed by v; involves a token that contains vy’s
singleton token, a,,.

Proof. Let S* be some arbitrary schedule of length R which solves TOKEN COMPUTATION
on K n-(ry; we know that such a schedule exists by definition of N*(R). We first show how
to modify S* into another schedule, S7_,, which not only also solves TOKEN COMPUTATION
on Kn=«(gry in R rounds, but which also satisfies the following four properties.

(1) v only sends at time ¢ if v at time ¢ has exactly one token for ¢ € [R];

(2) if v sends in round ¢ then v does not receive any tokens in rounds [¢,t + t,,] for t € [R];
(3) if v sends in round ¢ then v is idle during rounds ¢’ >t for t € [R];

(4) the terminus never communicates.

Achieving property (1)

Consider an optimal schedule S*. We first show how to modify S* to an R-round schedule
S} that solves TOKEN COMPUTATION on K y«(gy and satisfies property (1). We use our
combining insight here. Suppose that (1) does not hold for S*; i.e., a node v sends a token
ay to node u at time ¢t and v has at least one other token, say as, at time . We modify S* as
follows. At time ¢, node v combines a; and asy into a token which it then performs operations
on (i.e., computes and sends) as it does to as in the original schedule. Moreover, node u
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pretends that it receives token a; at time t + t,,: any round in which S* has u compute
on or communicate a1, v now simply does nothing; nodes that were meant to receive a,
do the same. It is easy to see that by repeatedly applying the above procedure to every
node when it sends when it has more than one token, we can reduce the number of tokens
every node has whenever it sends to at most one. The total runtime of this schedule is no
greater than that of S*, namely R, because t. < t,,. Moreover, it clearly still solves TOKEN
COMPUTATION on Ky« (g). Call the schedule S7.

Achieving properties (1) and (2)

Now, we show how to modify S} into S7_, such that properties (1) and (2) both hold. Again,
ST_5 is of length R and solves TOKEN COMPUTATION on Ky« (gy. We use our shortcutting
insight here. Suppose that (2) does not hold for S7; i.e., there exists a v that receives a
token a; from node u while sending another token as to node u’. We say that node u is
bothering node v in round ¢ if node u communicates a token a; to v in round ¢, and node v
communicates a token ag to node v’ € V'\ {v,u} in round [¢,t + t,,]. Say any such pair is a
bothersome pair. Furthermore, given a pair of nodes (u,v) and round ¢ such that node w is
bothering node v in round ¢, let the resolution of (u,v) in round ¢ be the modification in
which u sends its token directly to the node u’ to which v sends its token. Note that each
resolution does not increase the length of the optimal schedule because, by the definition of
bothering, this will only serve as a shortcut; v’ will receive a token from u at the latest in
the same round it would have received a token from v in the original schedule, and nodes u’
and v can pretend that they received tokens from v and u, respectively. However, it may
now be the case that node u ends up bothering node u’. We now show how to repeatedly
apply resolutions to modify S} into a schedule Sj_, in which no node bothers another in
any round t.

Consider the graph B;(S7) where the vertices are the nodes in G and there exists a
directed edge (u,v) if node u is bothering node v in round ¢ in schedule S§. First, consider
cycles in Bi(ST). Note that, for any time ¢ in which B.(S7) has a cycle, we can create a
schedule S in which no nodes in any cycle in B;(S;) send their tokens in round ¢; rather,
they remain idle this round and pretend they received the token they would have received
under S7. Clearly, this does not increase the length of the optimal schedule and removes all
cycles in round ¢. Furthermore, this does not violate property (1) because fewer nodes send
tokens in round ¢, and no new nodes send tokens in round ¢.

Therefore, it suffices to consider an acyclic, directed graph Bt(gl). Now, for each round

t, we repeatedly apply resolutions until no node bothers any other node during that round.

Note that for every ¢, each node can only be bothering at most one other node because
nodes can only send one message at a time. This fact, coupled with the fact that Bt(S'l) is
acyclic, means that B;(S;) is a DAG where nodes have out-degree 1. It is not hard to see
that repeatedly applying resolutions to a node v which bothers another node will decrease
the number of edges in By (51) by 1. Furthermore, because there are n total nodes in the
network, the number of resolutions needed for any node v at time ¢ is at most n.

Furthermore, repeatedly applying resolutions to Bt(Sl) for times t =1,..., R in order
results in a schedule S7_, with no bothersome pairs at any time ¢ and that still satisfies
property (1), and so schedule S;_, satisfies properties (1) and (2). Since each resolution did
not increase the length of the schedule we also have that S7_, is of length R. Lastly, S7_o
clearly still solves TOKEN COMPUTATION on Ky« (g)-
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Achieving properties (1) - (3)

Now, we show how to modify S7_, into S7_5; which satisfies properties (1), (2), and (3).
We use our shortcutting insight here as well as some new ideas. Given S;_,, we show by
induction over k from 0 to R — t,,, where R is the length of an optimal schedule, that we
can modify S}_, such that if a node finishes communicating in round R — k (i.e., begins
communicating in round R — k — t,,), it remains idle in rounds ¢’ € (R — k, R] in the modified
optimal schedule. The base case of k = 0 is trivial: If a node communicates in round R — t,,,
it must remain idle in round R because the entire schedule is of length R.

Suppose there exists a node v that finishes communicating in round t = R — k but is not
idle in some round ¢ > R — k in S7_,; furthermore, let round ¢’ be the first round after ¢
in which node v is not idle. By property (1), node v must have sent its only token away in
round ¢, and therefore node v must have received at least one other token after round ¢ but
before round #’. We now case on the type of action node v performs in round ¢'.

If node v communicates in round ¢, it must send a token it received after time ¢ but
before round ¢'. Furthermore, as this is the first round after ¢ in which v is not idle, v
cannot have performed any computation on this token, and by the inductive hypothesis,
v must remain idle from round ¢’ + ¢,, on. Therefore, v receives a token a, from some
node u and then forwards this token to node v’ at time ¢’. One can modify this schedule
such that u sends a, directly to u’ instead of sending to v.

If node v computes in round #’, consider the actions of node v after round ¢ + t.. Either
v eventually performs a communication after some number of computations, after which
point it is idle by the inductive hypothesis, or v only ever performs computations from
time ¢’ on.

In round ¢', v must combine two tokens it received after time ¢ +t,, by property (1). Note
that two distinct nodes must have sent the two tokens to v because, by the inductive
hypothesis, each node that sends after round ¢ remains idle for the remainder of the
schedule. Therefore, the nodes u; and us that sent the two tokens to v must have been
active at times t|,t, > t, where t; < t5, after which they remain idle for the rest of the
schedule. Call the tuple (v,u1,us) a switchable triple. We can modify the schedule to
make v idle at round ¢’ by picking the node that first sent to v and treating it as v while
the original v stays idle for the remainder of the schedule. In particular, we can modify
S7_o such that, without loss of generality, us sends its token to u; and w; performs the
computation that v originally performed in S7_,. Note that this now ensures that v will
be idle in round ¢’ and does not increase the length of the schedule, as u; takes on the
role of v. Furthermore, node u;’s new actions do not violate the inductive hypothesis:
Either u; only ever performs computations after time ¢’, or it eventually communicates
and thereafter remains idle.

We can repeat this process for all nodes that are not idle after performing a communication
in order to produce a schedule S}_5 in which property (3) is satisfied.

First, notice that these modifications do not change the length of S7_5: in the first case v/
can still pretend that it receives a,, at time ¢’ +t,, even though it now receives it in an earlier
round and in the second case us takes on the role of v at the expense of no additional round
overhead. Also, it is easy to see that S7_5 still solves TOKEN COMPUTATION on Ky« (g).-

We now argue that the above modifications preserve (1) and (2). First, notice that the
modifications we do for the first case do not change when any nodes send and so (1) is
satisfied. In the second case, because we switch the roles of nodes, we may potentially add a
send for a node. However, note that we only require a node u; to perform an additional send
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when it is part of a switchable triple (v, u1,u2), and u; takes on the role of v in the original
schedule from time ¢’ on. However, because S}_,, satisfies (1), u was about to send its only
token away and therefore only had one token upon receipt of the token from wy. Therefore,
because u; performs the actions that v performs in S7_, from time ¢’ on, and because at
time t', both u; and v have exactly two tokens, (1) is still satisfied by S7_5. Next, we argue
that (3) is a strictly stronger condition than (2). In particular, we show that since S7_;
satisfies (3) it also satisfies (2). Suppose for the sake of contradiction that ST_5 satisfies (3)
but not (2). Since (2) is not satisfied there must exist some node v that sends in some round
t to, say node u, but receives a token in some round in [¢,¢ + t,,]. By (3) it then follows that
v is idle in all rounds after ¢. However, u also receives a token in round ¢ + ¢,,,. Therefore, in
round t + t,,, two distinct nodes have tokens, one of which is idle in all rounds after ¢ + ¢,,;
this contradicts the fact that S7_s; solves TOKEN COMPUTATION. Thus, S7_; must also
satisfy (2)

Achieving properties (1) - (4)

It is straightforward to see that S7_5 also satisfies property (4). Indeed, by property (3),
if the terminus ever sends in round ¢ < R — t., then the terminus must remain idle during
rounds ¢’ > ¢, meaning it must be idle in round R — ¢, which contradicts the fact that in
this round the terminus performs a computation. Therefore, ST_, = S7_5 satisfies properties
(1) - (4), and we know that there exists an optimal schedule in which v; is always either
computing or idle.

Achieving the final property

We now argue that we can modify S}_, into another optimal schedule S* such that every
computation done at the terminus v; involves a token that contains the original singleton
token that started at the terminus. Suppose that in S7_,, v; performs computation that
does not involve a,,. Take the first instance in which v, combines tokens a; and ag, neither
of which contains a,,, in round ¢. Because this is the first computation that does not involve
a token containing a,,, both a; and a2 must have been communicated to the terminus in
round ¢t — t,, at the latest.

Consider the earliest time ¢’ > ¢ in which v; computes a token @y, that contains all of
ai, az, and a,,. We now show how to modify S7_, into S’ such that v; computes a token
al, .., at time ' that contains all of a1, az, and a,, and is at least the size of acoms by having
nodes swap roles in the schedule between times ¢ and ¢'. Furthermore, because the rest of the
schedule remains the same after time ¢, this implies that S’ uses at most as many rounds as
Si_,, and therefore that S’ uses at most R rounds.

The modification is as follows. At time ¢, instead of having v; combine tokens a; and as,

have v; combine one of them (without loss of generality, a;) with the token containing a., .

Now, continue executing S7_, but substitute as for the token containing a,, from round ¢
on; this is a valid substitution because v; possesses as at time ¢. In round #’, v; computes a
token al,,., = Gcomp; the difference from the previous schedule is that the new schedule has
one fewer violation of property (4), i.e., one fewer round in which it computes on two tokens,
neither of which contains a,, .

We repeat this process for every step in which the terminus does not compute on the
token containing a,,, resulting in a schedule S* in which the terminus is always combining
a communicated token with a token containing its own singleton token. Note that these
modifications do not affect properties (1) - (4) because this does not affect the sending
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actions of any node, and therefore S* still satisfies properties (1) - (4). It easily follows,
then, that S* solves TOKEN COMPUTATION on K+ in R rounds. Thus, S* is a schedule
of length R that solves TOKEN COMPUTATION on K- (g) in which every computation the
terminus v; does is on two tokens, one of which contains a,,, and, by (4), the terminus v,
never communicates. |

Having shown that the schedule corresponding to N*(R) can be modified to satisfy a
nice structure when ¢, < t,,, we can conclude our recursive bound on N*(R).

» Lemma 7. When t, < t,, for R € Z{ it holds that N*(R) = N*(R—t.)+ N*(R—t.—tm).

Proof. Suppose R > t. + t,,. We begin by applying Lemma 15 to show that N*(R) <
N*(R—t.) + N*(R—t.—tn). Let v; be the terminus of the schedule S* using R rounds
as given in Lemma 15. By Lemma 15, in all rounds after round t,, of S* it holds that v; is
either computing on a token that contains a,, or busy because it did such a computation.
Notice that it follows that every token produced by a computation at v; contains a,,.

Now consider the last token produced by our schedule. Call this token a. By definition of
the terminus, a must be produced by a computation performed by v;, combining two tokens,
say a; and ag, in round R — t. at the latest. Since every computation that v; does combines
two tokens, one of which contains a,,, without loss of generality let a; contain a,,.

We now bound the size of a1 and as. Since a1 exists in round R — ¢, we know that it is of
size at most N*(R — t.). Now consider ay. Since every token produced by a computation at
v, contains a,, and ay does not contain a,, it follows that as must either be a singleton token
that originates at a node other than v, or as was produced by a computation at another
node. Either way, as must have been sent to v, who then performed a computation on as in
round R — t. at the latest. It follows that as exists in round R — t. — t,,,, and so as is of size
no more than N*(R —t. — t,,).

Since the size of a just is the size of a; plus the size of as, we conclude that a is of size
no more than N*(R —t.) + N*(R — t. — t,,). Since, S* solves TOKEN COMPUTATION on
a complete graph of size N*(R), we have that a is of size N*(R) and so we conclude that
N*(R) < N*(R—t.)+ N*(R—t. —ty,) for R > t. + t,, when t. < t,.

Lastly, since N*(R) > N*(R —t.) + N*(R —t. — t,,) for R > t. +t,, by Lemma 5, we
conclude that N*(R) = N*(R —t.) + N*(R — t. — t;,) for R > t. + t,, when t. <t,. <

E Proof of Theorem 8

As a warmup for our hardness of approximation result, and to introduce some of the
techniques, we begin with a proof that the decision version of TOKEN COMPUTATION is
NP-complete in Appendix E.1. We then prove the hardness of approximation result in
Appendix E.2.

E.1 NP-Completeness (Warmup)

An instance of the decision version of TOKEN COMPUTATION is given by an instance of
ToOKEN COMPUTATION and a candidate £. An algorithm must decide if there exists a schedule
that solves TOKEN COMPUTATION in at most ¢ rounds.

We reduce from k-dominating set.

» Definition 16 (k-dominating set). An instance of k-dominating set consists of a graph
G = (V, E); the decision problem is to decide whether there exists k C 'V where |k| = k such
that for all v € V' \ k there exists v € k such that (v,v) € E.
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(a) G. (b) ¥(G, 1).

Figure 7 An example of ¥ for a given graph G and t,, = 1. Nodes and edges added by ¥ are
dashed and in blue. Notice that || = A +t, =3+ 1=4.

Recall that k-dominating set is NP-complete.
» Lemma 17 (Garey and Johnson [15]). k-dominating set is NP-complete.

Given an instance of k-dominating set, we would like to transform G into another
graph G’ in polynomial time such that G has a k-dominating set iff there exists a TOKEN
COMPUTATION schedule of some particular length for G’ for some values of t. and t,,.

We begin by describing the intuition behind the transformation we use, which we call
V. Any schedule on graph G in which every node only performs a single communication
and which aggregates all tokens down to at most k tokens corresponds to a k-dominating
set of GG; in particular, those nodes that do computation form a k-dominating set of G. If
we had a schedule of length < 2t,, which aggregated all tokens down to k tokens, then we
could recover a k-dominating set from our schedule. However, our problem aggregates down
to only a single token, not k tokens. Our crucial insight, here, is that by structuring our
graph such that a single node, a, must perform a great deal of computation, @ must be the
terminus of any short schedule. The fact that a must be the terminus and do a great deal of
computation, in turn, forces any short schedule to aggregate all tokens in G down to at most
k tokens at some point, giving us a k-dominating set.

Formally, W is as follows. U takes as input a graph G and a value for ¢,, and outputs
G' = (V/,E’). G’ has G as a sub-graph and in addition has auxiliary node a where a is
connected to all v € V; a is also connected to dangling nodes d € 3, where |3| = A+t,,, along

with a special dangling node d*.° Thus, G’ = (V U {a,d*} U B, EU{(a,v') : v' € V'\ {a}}).

See Figure 7.
We now prove that the optimal TOKEN COMPUTATION schedule on G’ = ¥(G, t,,) can
be upper bounded as a function of the size of the minimum dominating set of G.

» Lemma 18. The optimal TOKEN COMPUTATION schedule on G' = U(G, t,,) is of length
at most 2t,, + A+ k* for t. =1, where k* is the minimum dominating set of G.

Proof. We know by definition of £* that there is a dominating set of size k* on G. Call this
set k and let ¢ : V — k map any given v € V' to a unique node in x that dominates it. We
argue that it must be the case that TOKEN COMPUTATION requires at most 2¢,, + t.(A + k*)
rounds on G’ for t. = 1. Roughly, we solve TOKEN COMPUTATION by first aggregating at s
and then aggregating at a.

In more detail, in stage 1 of the schedule, every d € 3 sends to a, every node v € V sends
to o(v) and a sends to d*. This takes t,, rounds. In stage 2, each node does the following
in parallel. Node d* computes and sends its single token to a. Each v € k computes until

9 A is the max degree of G.
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it has a single token and sends the result to a. Node a combines all tokens from 8 U {d*}.
Node d* takes 1 + t,, rounds to do this. Each v € x takes at most A + ¢, rounds to do this.
Node a takes A + t,,, rounds to do this since a will receive d*’s token after ¢,, + 1 rounds
(and A > 1 without loss of generality). Thus, stage 2, when done in parallel, takes A + ¢,
rounds. At this point @ has k* 4+ 1 tokens and no other node in G’ has a token. In stage 3, a
computes until it has only a single token, which takes k* rounds.

In total the number of rounds used by this schedule is t,,, + A + t,,, + k* = 2t,,, + A + k*.
Thus, the total number of rounds used by the optimal TOKEN COMPUTATION schedule on
G’ is at most 2t,, + A + k*. <

Next, we show that any valid TOKEN COMPUTATION schedule on G’ = ¥(G, t,,) that has
at most two serialized sends corresponds to a dominating set of size bounded by the length
of the schedule.

» Lemma 19. Given G’ = ¥(G,t,,) and a TOKEN COMPUTATION schedule S for G’ where
IS]| < 3tm, te =1, k ={v:v € G, v sends to a in S} is a dominating set of G of size
|S| — 2t — A.

Proof. Roughly, we argue that ¢ must be the terminus of S and must perform at most
|S| — 2t,,, — A computations on tokens from G, each of which is the aggregation of a node’s
token and some of its neighbors’ tokens. We begin by arguing that a must be the terminus.

First, we prove that no d € f U {d*} is the terminus of S. Suppose for the sake of
contradiction that some d € B U {d*} is the terminus. Since our schedule takes fewer than
3t,, rounds, we know that every node sends a token that is not just the singleton token with
which it starts at most once. Thus, a sends tokens that are not just the singleton token that
it starts with at most once. Since |8 U {d*}\ {d}| = A +t,, and a is the only node connected
to these nodes, we know that every singleton token that originates in U {d*} \ {d} must
travel through a. Moreover, since a sends tokens that are not just the singleton token that
it starts with at most once, ¢ must send all such tokens as a single token. It follows that
a must perform at least A + t,,, computations, but then our entire schedule takes at least
tm + A+t + t, = 3t + A > 3t, rounds — a contradiction to our assumption that our
schedule takes less than 3t,, rounds.

We now argue that no v € G is the terminus. Suppose for the sake of contradiction
that some v € V is the terminus. Again, we know that a sends tokens that are not just
the singleton token that it starts with at most once. Thus, every token in 8 U {d*} must
travel through a, meaning that a must perform A +t¢,, + 1 computations. It follows that the
schedule takes t,, + A + t,, + t,, + 1 > 3t,, rounds, a contradiction to our assumption that
the schedule takes < 3t,, rounds.

Thus, since no d € fU {d*} and no v € G is the terminus, we know that a must be the
terminus.

We now argue that a sends a token in the first round and this is the only time that a
sends (i.e., the only thing that a sends is the singleton token that it starts with, which it
sends immediately). Assume for the sake of contradiction that a sends a token that it did
not start with. It must have taken at least ¢,,, rounds for this token to arrive at a and at
least an additional ¢,, rounds for a to send a token containing it. Moreover, since a is the
terminus, a token containing this token must eventually return to a and so an additional t,,
rounds are required. Thus, at least 3t,, rounds are required if a sends a token other than
that with which it starts, a contradiction to the fact that our schedule takes < 3t,, rounds.
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Thus, since a is the terminus, our schedule solves TOKEN COMPUTATION in fewer than
3t,, rounds, and no computations occur in the first ¢,, rounds, a does at most |S| — t,,
computations. Since a never sends any token aside from its singleton token, and a is the only
node to which g U {d*} are connected, we know that a must combine all tokens of nodes in
B U{d*}, where a must take A + t,,, rounds to do so. Thus, since a takes A + ¢, rounds to
aggregate tokens from S U {d*} and it performs at most |S| — t,, computations in total, a
must receive at most |S| — 2¢,, — A tokens from G. It follows that |k| < |S| — 2t, — A.

Since each token sent by a node in k to a must be sent at the latest in round |S| — t,,
and since |S| < 3t,,, we have that every token sent by a node in x is formed in fewer than
2t,, rounds. It follows that each such token is formed by tokens that travel at most 1 hop in
G. Since every node in G must eventually aggregate its tokens at a, it follows that every
node in G is adjacent to a node in k. Thus & is a dominating set of G, and as shown before
|k] < |S]| — 2t — A. <

Having shown that the optimal TOKEN COMPUTATION schedule of G' = ¥(G, t,,) is closely
related to the size of the minimum dominating set, we prove that TOKEN COMPUTATION is
NP-complete.

» Theorem 20. The decision version of TOKEN COMPUTATION is NP-complete.

Proof. The problem is clearly in NP. To show hardness, we reduce from k-dominating set.
Specifically, we give a polynomial-time Karp reduction from k-dominating set to the decision
version of TOKEN COMPUTATION.

Our reduction is as follows. First, run (G, t,,) for t,, = A+ k + 1 to get back G’.
Next, return a decision version instance of TOKEN COMPUTATION given by graph G’ with
tm=A+k+1,t.=1and { = 2t,, + A+ k. We now argue that G’ has a schedule of length
¢ iff G has a k-dominating set.

Suppose that G has a k-dominating set. We know that & > k*, where k* is the minimum

dominating of G, and so by Lemma 18 we know that G’ has a schedule of length at most

2t + A+ E* <2t + A+ k.

Suppose that G’ has a TOKEN COMPUTATION schedule S of length at most 2t,, + A + k.

Notice that by our choice of t,,, we have that |S| = 2t,, + A + k < 3t,, and so by

Lemma 19 we know that x = {v: v € G, v sends to a in S} is a dominating set of G of

size |S| — 2t,,, — A. Since |S| < 2t,, + A + k we conclude that |k| = |S| — 2t,, — A < k.

Lastly, notice that our reduction, ¥, runs in polynomial time since it adds at most a
polynomial number of vertices and edges to G. Thus, we conclude that k-dominating is
polynomial-time reducible to the decision version of TOKEN COMPUTATION, and therefore
the decision version of TOKEN COMPUTATION is NP-complete. <

E.2 Hardness of Approximation

We now show that unless P = NP there exists no polynomial-time algorithm that approximates
ToKEN COMPUTATION multiplicatively better than 1.5.
Recall that k-dominating set is Q(logn) hard to approximate.

» Lemma 21 (Dinur and Steurer [11]). Unless P = NP every polynomial-time algorithm
approzimates minimum dominating set at best within a (1 — o(1))(logn) multiplicative factor.

We prove hardness of approximation by using a (1.5 — €) algorithm for TOKEN COMPUTA-
TION to approximate minimum dominating set with a polynomial-time algorithm better than
O(logn). Similar to our proof of NP-completeness, given input graph G whose minimum
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dominating set we would like to approximate, we would like to transform G into another
graph G’ such that a (1.5 — €)-approximate TOKEN COMPUTATION schedule for G’ allows us
to recover an approximately minimum dominating set.

One may hope to simply apply the transformation ¥ from the preceding section to do so.
However, it is not hard to see that the approximation factor on the minimum dominating set
recovered in this way has dependence on A, the maximum degree of G. If A is significantly
larger than the minimum dominating set of G, we cannot hope that this will yield a good
approximation to minimum dominating set. For this reason, before applying ¥ to G, we
duplicate G a total of A/ e times to create graph G, ; this keeps A unchanged but increases
the size of the minimum dominating set.'® By applying ¥ to G, instead of G to get back
G!, we are able to free our approximation factor from a dependence on A. Lastly, we show
that we can efficiently recover an approximate minimum dominating set for G from an
approximate TOKEN COMPUTATION schedule for G7, using our polynomial-time algorithm
DSFROMSCHEDULE. Our full algorithm is given by MDSAPX.

We first describe the algorithm — DSFROMSCHEDULE — we use to recover a minimum
dominating set for G given a TOKEN COMPUTATION schedule for G, = U(Gy, t,n). We
denote copy ¢ of G as G;.

Algorithm 3 DSFROMSCHEDULE.

Input: G/, = U(Ga,tm); a valid TOKEN COMPUTATION schedule for G, S, of length
< 3t €
Output: A dominating set for G of size |S| — 2¢,, — A
K+ 0
for i € [2] do
ki +— {veV;:v e G, sends to a in S}
K+~ Ku {Kl}

return argmin, cx |#;]

» Lemma 22. Given G, = ¥(G,,tm) and a valid TOKEN COMPUTATION schedule S for
G!, where |S| < 3tm, te =1 and € € (0,1], DSFROMSCHEDULE outputs in polynomial time a
dominating set of G of size % (|S| — 2t — A).M

Proof. Polynomial runtime is trivial, so we focus on the size guarantee. By Lemma 19 we
know that k = {v: v € G,, v sends to a in S} is a dominating set of G, of size |S|—2t,,, — A.
Moreover, notice that x; = x N G;, and so it follows that x; is a dominating set of G;, or
equivalently G because G is just a copy of G. Thus we have that argmin, [#;] will return
a dominating set of G.

We now prove that arg min,, ¢ |#;| is small. Since each r; is disjoint we have Zf:/lg |ki| =
|k| < |S| — 2t — A. Thus, by an averaging argument we have that there must be some

ki such that [r;| < X (IS| —2t,, —A). Tt follows that min,,ex |wi| < X (|S] — 2t — A),

meaning the x; that our algorithm returns is not only a dominating set of G but of size at
most < (|S] —2t, — A). <

10Since the max degree of G and G, are the same, throughout this section A will be used to refer to both
the max degree of G and the max degree of G.

M Gince this lemma allows for € € (0, 1], it may appear that we will be able to achieve an arbitrarily good
approximation for minimum dominating set. In fact, it might even seems as though we can produce
a dominating set of size smaller than the minimum dominating set by simply letting € be arbitrarily
small. However, this is not the case. Intuitively, the smaller € is, the larger G is and so the longer any
feasible schedule S must be. Thus, decreases in € are balanced out by increases in |S| with respect to
the size of our dominating set, < (|S| — 2tm — A).
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Lastly, we combine ¥ with DSFROMSCHEDULE to get MDSAPX, our algorithm for
approximating minimum dominating set. Roughly, MDSAPX constructs G/, by applying ¥
to Gq, uses a (1.5 — €) approximation to TOKEN COMPUTATION to get a schedule to G/, and
then uses DSFROMSCHEDULE to extract a minimum dominating set for G from this schedule.
MDSAPX will carefully choose a t,, that is large enough so that the schedule produced by
the (1.5 — €) approximation for TOKEN COMPUTATION is of length < 3t,, but also small
enough so that the produced schedule can be used to recover a small dominating set.

Algorithm 4 MDSAPX.

Input: Graph G; (1.5 — ¢) TOKEN COMPUTATION approximation algorithm A
Output: An O(1/¢)-approximation for the minimum dominating set of G
D+ 0
for k € [n] do
G+ U G
tm<—§(A+’%)+1; te 1
Gl U (Gu,tm)
S, A (G’w %,tm,tc)
if |S;| < 3t,, then
Kkj, <~ DSFROMSCHEDULE(G 4, S, €)
D+ DU {H]%}

return argmin, cp |x|.

» Lemma 23. Given graph G and a (1.5 — €)-approximation algorithm for TOKEN COM-
PUTATION, A, MDSAPX outputs in poly (n, %) time a dominating set of G of size O (%),

where k* is the size of the minimum dominating set of G.

Proof. By Lemma 22 we know that any set x; € D is a dominating set of G of size at most
% (1S;] = 2t — A). Thus, it suffices to show that D contains at least one dominating set of
G, Ky, such that Sy, is small. We do so now.

Let k* be the size of the minimum dominating set of G. We know that k* < n and so
in some iteration of MDSAPX we will have k = k*. Moreover, the minimum dominating
set of G in this iteration just is AT’“* since G, is j}lSt % copies of G. Consider this
iteration. Let S* be the optimal schedule for G., when k = k*. By Lemma 18 we know that
|S*| < 2t + A+ ’“*TA. We now leverage the fact that that we chose t,, to be large enough
so that |S*| < 3t,,. In particular, combining the fact that |S*| < 2t,,, + A + k*TA with the
fact that A is a (1.5 — €) approximation we have that

| Sk

< (1.5 —)|57]

€

<(15—¢) (Ztm ot A)

*A

€

=3ty —2€ty, + (1.5 —€)e(ty, — 1) (By t, dfn.)
= 3t,, — €(0.54 €)t,, — (1.5 —¢€)
< 3ty (1)
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Thus, since |Sk+| < 3t,, we know that ki« € D. Lastly, we argue that |kg-| = O (%), thereby

showing that argmin, cp ||, the returned dominating set of our algorithm, is O (%)

We now leverage the fact that we chose t,, to be small enough to give us a small
dominating set. Applying Lemma 22 we have that

|figee | < i (|1Ske| = 2tm — A) (By Lemma 22)
< i(tm —A) (By Equation (1))
:Z(I(A-l—kA)—Fl—A) (By tm, din.)

€ €

Thus, we conclude that MDSAPX produces an O (%) minimum dominating set of G.

Lastly, we argue a polynomial in n and 1/e runtime of MDSAPX. First we argue that
each iteration requires polynomial time. Constructing G, takes polynomial time since the
algorithm need only create % = poly (n, %) copies of G. Running ¥ also requires polynomial
time since it simply adds polynomially many nodes to G. A is polynomial by assumption
and DSFROMSCHEDULE is polynomial by Lemma 22. Thus, each iteration takes polynomial

time and since MDSAPX has n iterations, MDSAPX takes polynomial time in n and 1/e. <

Given that MDSAPX demonstrates an efficient approximation for minimum dominating
set given a polynomial-time (1.5 — €) approximation for TOKEN COMPUTATION, we conclude
our hardness of approximation.

» Theorem 8. TOKEN COMPUTATION cannot be approximated by a polynomial-time algorithm
within (1.5 —€) for e > m unless P = NP.

Proof. Assume for the sake of contradiction that P = NP and there existed a polynomial-
time algorithm A that approximated TOKEN COMPUTATION within (1.5 — €) for e = m.
It follows by Lemma 23 that MDSAPX when run with A is a o(logn)-approximation for
minimum dominating set. However, this contradicts Lemma 21, and so we conclude that

TOKEN COMPUTATION cannot be approximated within (1.5 —€) for e > o(% <
gn)

F Omitted Lemmas of the Proof of Theorem 9

F.1 Proof of Lemma 11

The goal of this section is to prove Lemma 11, which states the properties of GETDIRECTED-
PatHs. To this end we will begin by rigorously defining the LP we use for GETDIRECTED-
PATHS and establishing its relevant properties. We then formally define GETDIRECTEDPATHS,
establish the properties of its subroutines and then prove Lemma 11.

F.1.1 Our Flow LP

The flow LP we use for GETDIRECTEDPATHS can be thought of as flow on a graph G
“time-expanded” by the maximum length that a token in the optimal schedule travels. Given
any schedule we define the distance that singleton token a travels as the number of times
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Figure 8 An illustration of non-zero flows for a feasible solution for PathsFlowLP(3) for graph G.
Nodes a, d, and g are in W, and f,, is colored by w. For this feasible solution, z = 2.

any token containing a is sent in said schedule. Let L* be the furthest distance a singleton
token travels in the optimal schedule. Given a guess for L*, namely f/, we define a graph
G; with vertices {v, : v € V,r € [L]} and edges {e = (u,,v,.11) : (u,v) € E,r € [L —1]}.
We have a flow type for each w € W, where W = {v : v has at least 1 token}, which uses
{w": w' € W Aw' # w} as sinks. Correspondingly, we have a flow variable, f., (2, yr+1) for
every r € [I: —1], w € W and (z,y) € E. The objective function of the LP is to minimize
the maximum vertex congestion, given by variable z. Let z(f/) be the objective value of our
LP given our guess L. Formally, our LP is given in PathSFlowLP(ﬁ), where I'(v) gives the

neighbors of v in G. See Figure 8 for an illustration of a feasible solution to this LP.

s )
min z s.t. (PathsFlowLP(L))
“Conserve flow across rounds”

Y fe@one) = Y fulwnzii) VweW,zgWrell—1] (2)
z' €l (x) z' el (x)

“Every w € W is a source for f,, and not a sink for f,,”

Z Z fw(wmx/wrl)* Z fw(l’lm’wr+1) >1 YweW (3)

re[L—1] La'€T(w) z' €l (w)
“w-flow ends at w' € W s.t. w' # w”

S fulwpul) =1 Vo o (4)

w' €W w'#w uel(w')

“z is the vertex congestion”

ZZZ Z Z fw('ULfUTJrl) Yo o (5)

w vel(v) re[D—1]

“Non-negative flow”

fw(:cT‘7y7‘+1)20 Vaﬂ%%TﬂUEW (6)

F.1.2 Proof of the Key Property of our LP

The key property of our LP is that it has an optimal vertex congestion comparable to OPT.
In particular, we can produce a feasible solution for our LP of cost 20PT by routing tokens
along the paths taken in the optimal schedule.
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» Lemma 24. min(t.,t,,) - 2(2L*) < 20PT.

The remainder of this section is a proof of Lemma 24. Consider a W as in Section 4.2.1
where W < {v : v has at least 1 token} and the optimal schedule that solves TOKEN
COMPUTATION in time OPT.

We will prove Lemma 24 by showing that, by sending flow along paths taken by certain
tokens in the optimal schedule, we can provide a feasible solution to PathsFlowLP(ﬁ)
with value commensurate with OPT. For this reason we now formally define these paths,
OpTPATHS(W). Roughly, these are the paths taken by tokens containing singleton tokens
that originate in W. Formally, these paths are as follows. Recall that a,, is the singleton
token with which node w starts in the optimal schedule. Notice that in any given round of
the optimal schedule exactly one token contains a,,. As such, order every round in which a
token containing a,, is received by a node in ascending order as ro(w),r1(w) ... where we
think of w as receiving a,, in the first round. Correspondingly, let v;(w) be the vertex that
receives a token containing a,, in round 7;(w); that is (vi(w),ve(w),...) is the path “traced
out” by a,, in the optimal schedule. For token a, let C(a) := {a, : w' € W A dl, € a} stand
for all singleton tokens contained by token a that originated at a w’ € W. Say that token
a is active if |C(a)| is odd. Let vg, (w) be the first vertex in (vy(w),va(w),...) where an
active token containing a,, is combined with another active token. Correspondingly, let c(w)
be the first round in which an active token containing a,, is combined with another active
token. Say that a singleton token a,, is pending in round r if r < ¢(w). We note the following
behavior of pending singleton tokens.

» Lemma 25. In every round of the optimal schedule, if a token is active then it contains
exactly one pending singleton token and if a token is inactive then it contains no pending
singleton tokens.

Proof. We prove this by induction over the rounds of the optimal schedule. As a base case,
we note that in the first round of the optimal schedule a token is active iff it is a singleton
node and every singleton node is pending. Now consider an arbitrary round i and assume
that our claim holds in previous rounds. Consider an arbitrary token a. If a is not computed
on by a node in this round then by our inductive hypothesis we have that it contains exactly
one pending singleton token if it is active and no pending singleton tokens if it is not active.
If a is active and combined with an inactive token, by our inductive hypothesis, the resulting
token contains exactly one pending singleton token. Lastly, if a is active and combined with
another active token by our inductive hypothesis these contain pending singletons a,, and
a,, respectively such that ¢(w) = c(u) = ¢; it follows that the resulting token is inactive and
contains no pending singleton tokens. This completes our induction. |

This behavior allows us to pair off vertices in W based on how their singleton tokens are
combined.!?

» Lemma 26. For each w € W there exists a unique v € W such that v # w and
v, (W) =wvp, (u) and c(w) = c(u).

Proof. Consider the round in which a token containing a,,, say a, is combined with an active
token, say b, at vertex v, (w). Recall that this round is notated c(w). By Lemma 25 we
know that a and b contain exactly one pending singleton token, say a,, and a, respectively.

12%Without loss of generality we assume that |WW| is even here; if not, we can simply drop one element
from W each time we construct OPTPATHS(WV).
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(g) Round 7.

Figure 9 An illustration of the optimal schedule and how OPTPATHS(W) is constructed from
it for a particular G. Active tokens are denoted by blue diamonds; inactive tokens are denoted by
white diamonds; a dotted red arrow from node u to node v means that u sends to v; a double-ended
blue arrow between two tokens a and b means that a and b are combined at the node; thick, dashed
green lines give a path and its reversal in OPTPATHS(WW) (for a total of 4 paths across all rounds)
where (vi(w),v2(w),...vr, (W) = v, (v),vr,—1(u),...,vi(u)) = P € OPTPATHS(W) drawn only in
round ¢(w). Furthermore, token a labeled with {v : a contains a,} and W = {1, 3,4, 6}.

Since both a and b are active in this round and b contains a,, we have c(u) = ¢(w). Moreover,
since both a and b are combined at the same vertex we have vy, (u) = v, (w). Lastly, notice
that this w is unique since by Lemma 25 there is exactly one singleton token, a,, contained
by b such that c(u) < c(w). <

Having paired off vertices in W, we can now define OpTPATHS(W). Fix a w and
let u be the vertex it is paired off with as in Lemma 26. We define OPTPATH(w) =
(v1(w), va(w),...vp, (w) = v, (u),vr,—1(u),...,v1(u)). Lastly, define OPTPATHS(W) =
Uwew OPTPATH(w). See Figure 9 for an illustration of how OPTPATHS(W) is constructed
from the optimal schedule.

The critical property of OPTPATHS(W) is that it has vertex congestion commensurate
with OPT as follows.

» Lemma 27. con(OpTPATHS(W)) < —29PT

— min(te,tm) "

Proof. Call a pair of directed paths in OPTPATHS(W) complementary if one path is
OpPTPATH(w) and the other OPTPATH(u) where u is to w as in Lemma 26. We argue
that each pair of complementary paths passing through a given vertex v uniquely account
for either t. or t,, rounds of v’s OPT rounds in the optimal schedule. Consider a pair of

complementary paths, P = (OPTPATH(w), OPTPATH(u)), passing through a given vertex wv.

This pair of paths pass through v because in some round, say rp, v sends a token containing
@, OT @, or v combines together tokens a and a’ containing a,, and a,, respectively. Say that
whichever of these operations accounts for P is responsible for P. Now suppose for the sake
of contradiction that this operation of v in round rp is responsible for another distinct pair
P’ of complementary paths, OPTPATH(w’) and OPTPATH(u’). Notice that ay,, @, a, and
a, are all pending in round rp. We case on whether v’s action is a communication or a
computation and show that v’s operation cannot be responsible for P’ in either case.
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Suppose that v is responsible for P and P’ because it performs a computation in rp. It
follows that v combines an active token a and another active token a’ where without loss
of generality a.,,a,, € a and a,,a, € a’. However, it then follows that a is active and
contains two pending singleton tokens, which contradicts Lemma 25.

Suppose that v is responsible for P and P’ because it performs a communication in rp

by sending token a. It follows that without loss of generality a.,, a,, € a. However, either

a is active or it is not. But by Lemma 25 if a is active it contains 1 pending singleton

token and if a is not active then it contains 0 pending singleton tokens. Thus, the fact

that v sends a token containing two pending singleton tokens contradicts Lemma 25.
Thus, it must be the case that v’s action in rp is uniquely responsible for P.

It follows that each computation and communication performed by v uniquely corresponds
to a pair of complementary paths (consisting of a pair of paths in OPTPATHS(W)) that
passes through v. Since v performs at most OPT/min(¢., t,,) operations in the optimal
schedule, it follows that there are at most OPT/ min(¢., t,,) pairs of complementary paths
in OpTPATHS(W) incident to v. Since each pair consists of two paths, there are at most
2-OPT/ min(t., t,,) paths in OPTPATHS(W) incident to v and so v has vertex congestion at
most 2-OPT/ min(t., t,,,) in OPTPATHS(W). Since v was arbitrary, this bound on congestion
holds for every vertex. <

We now use OPTPATHS(WW) to construct a feasible solution for PATHSFLOWLP (2L*).
We let f be this feasible solution. Intuitively, f simply sends flow along the paths of
OpTPATHS(W). More formally define f as follows. For w € W and its corresponding path
OPTPATH(w) = (v1(w), va(w), ...) We set fu,(vi,viy1) = 1. We set all other variables of f to
0 and let Z be the vertex congestion of OpPTPATHS(W).

» Lemma 28. (f, %) is a feasible solution for PATHSFLOWLP (2L*) where
zZ < 20PT/ min(tc,tm,).

Proof. We begin by noting that every path in OPTPATHS(W) is of length at most 2L*: for
each w € W, OPTPATH(w) is the concatenation of two paths, each of which is of length no
more than L*. Moreover, notice that for each w € W, the sink of OPTPATH(w) is a w’ € W
such that w’ # w.

We now argue that (f,Z) is a feasible solution for PATHSFLOWLP (2L*): each vertex v
with incoming w-flow that is not in W \ w sends out this unit of flow and so Equation (2) is
satisfied; since each OPTPATH(w) is of length at most 2L* and ends at a w’ € W we have
that every w € W is a source for f,, and not a sink for f,, satisfying Equation (3); for the
same reason, Equation (4) is satisfied; letting Z be the vertex congestion of OPTPATHS(WV)
clearly satisfies Equation (5); and flow is trivially non-zero.

Lastly, since f simply sends one unit of flow along each path in OpTPATHS(W), our
bound of Z < 20PT/ min(t., t,,) follows immediately from Lemma 27. <

We conclude that f demonstrates that our LP has value commensurate with OPT.
» Lemma 24. min(t.,t,,) - 2(2L*) < 20PT.

Proof. Since Lemma 28 shows that (f,%) is a feasible solution for PATHSFLOWLP (2L*)
with cost at most 20PT/ min(¢e, t,,), our claim immediately follows. <
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F.1.3 GetDirectedPaths Formally Defined

GETDIRECTEDPATHS solves our LP for different guesses of the longest path used by the
optimal, samples paths based on the LP solution for our best guess, and then directs these
paths. Formally, GETDIRECTEDPATHS is given in Algorithm 5, where £ := [2(n — 1) - (¢. +
D -t,,)/tm] is the range over which we search for L*.

Algorithm 5 GETDIRECTEDPATHS(G, W).

Input: W CV where w € W has a token
Output: Directed paths between nodes in W
L < argmin; [tm L+ min(te, ty,) - t(L)
fx + PaTHsFLowLP(L)

Pw < SAMPLELPPATHS(f;, L, W)

Py AsSIGNPATHS(Py, W)

return 75U

F.1.4 Sampling Paths from LP

Having shown that our LP has value commensurate with OPT and defined our algorithm
based on this LP, we now provide the algorithm which we use to sample paths from our LP
solution, SAMPLELPPATHS. This algorithm produces a single sample by taking a random
walk from each w € W where edges are taken with probability corresponding to their
LP value. It repeats this O(logn) times to produce O(logn) samples. It then takes the
sample with the most low congestion paths, discarding any high congestion paths in said
sample. In particular, SAMPLELPPATHS takes the sample P}, that maximizes |Q(Pj} )]
where Q(Piy) = {Py : Py € Pjy,con(P,,) < 10 - 2(L)log L} for an input L.

Algorithm 6 SAMPLELPPATHS(f).

Input: f, solution to PathsFlowLP(E); L, guess of L*; W C V
Output: Undirected paths between nodes in W
C«10
for sample i € O(logn) do
Py <0
for w € W do
v~ fo(w, v2)
P, + (w,v)
while v € W do
v fao(ipa Ve, 141)
v
Py,+=v
Pl Pi, U{Py}
C+ CUPy,
Ps < Q(arg maXpi ec 1Q(Pw)I)
return Py,

The properties of SAMPLELPPATHS are as follows.
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» Lemma 29. For any fized W C V, L and an optimal solution f* to PathsFlowLP(L),
SAMPLELPPATHS is a polynomial-time randomized algorithm that outputs a set of undirected
paths Pw such that P, € Pw is an undirected path with endpoints w,w’ € S where w # w’.
Also |Pw| > |W| w.h.p., con(Pw) < 2(L)-O(og L), and dil(Pw) < L.

Proof. Our proof consists of a series of union and Chernoff bounds over our samples. Consider
an arbitrary W C V. Define T,, for w € W as the (directed) subgraph of G'; containing arc
(v,u) € E; if for some r we have f;(x,y) > 0. Notice that T, is a weakly connected DAG
where w has no edges into it: T, does not contain any cycles since flow only moves from
Zy to yr41 for &,y € V; by our flow constraints T;, must be weakly connected and w, must
have no edges into it for any r. Moreover, notice that P,, is generated by a random walk on
T, starting at wy, where if the last vertex added to P, was v, then we add u to P, in step
r of the random walk with probability [ (v,, tr41).

We first argue that every P,, € Py has endpoints w,w’ € W for w # w’ and dil(Py) < L.
By construction, one endpoint of P, is w. Moreover, the other endpoint of P,, will necessarily
be a w’ € W such that v’ # w: by Equation (2) flow is conserved and by Equation (4) all
flow from w must end at a point w’ € W such that w’ # w; thus our random walk will
always eventually find such an w’. Moreover, notice that our random walk is of length at
most L since T, is of depth at most L. Thus, every P, is of length at most L, meaning
dil(Pw) < L.

Next, notice that, by the definition of Q, con(Pw) < z(L)-O(log L) by construction since
every element in Q(arg maxp: cc |Q(Piy)|) has O(z(L) - O(log L)) congestion.

Thus, it remains only to prove that |Py/| > %|W|. We begin by arguing that for a
fixed path P, in a fixed set of sampled paths, Pj;; we have con(P,) > z(ﬁ) -O(log L) with
probability at most % Consider a fixed path P, € P}, and fix an arbitrary v € P,. Now
let X, stand for the random variable indicating the number of times that path P, visits
vertex w. without loss of generality we know that P, contains no cycles (since if it did
we could just remove said cycles) and so X, is either 1 or 0. By a union bound over
rounds, then, we have E[Xo] <37, 37, e fiv (ur, vr41) - Pr(u taken in (r — 1)th step) <
Zuer(v) > fiv (urs vrgr).

Now note that the congestion of a single vertex under our solution is just con(v) =
> wew Xwo- It follows that

Efcon(v)] = > E[Xuy] < mgxz DY fiv(ur,vegn) < 2(L).

weWw w uel(v) T

Also notice that for a fixed v every X,,, is independent. Thus, we have by a Chernoff bound
that that

Pr(con(v) > z(L) - O(log L)) < Pr ( Z Xy > E [Z val -O(log ﬁ))

weW

A

= 7
< 3 (7)

for ¢ given by constants of our choosing. P, is of length at most L by construction. Thus,
by a union over v € P, and Equation (7) we have that
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Pr (con(Pw) > z(L) - O(log fj)) <
<

Thus, for a fixed path P,, € P, we know that this path has congestion at least z(L)-O(log L))
with probability at most §

We now argue at least one of our O(logn) samples is such that at least % of the paths in
the sample have congestion at most z(L)-O(log L)). Let Y;,, be the random variable that is 1
if P, € Pl is such that con(P,) > z(L) - O(log L)) and 0 otherwise. Notice that E[Vj,,] < 3

by the fact that a path has congestion at least z(L) - O(log L) with probability at most 3

Now let Z; = 3, cw Yiw stand for the number of paths in sample 7 with high congestion. By
linearity of expectation we have E[Z;] < |[W|i. By Markov’s inequality we have for a fixed i
that Pr(Z; > 2|W|) < Pr(Z; > 2E[Z;])|W]) < 5. Now consider the probability that every
sample i is such that more than 2 of the paths have congestion more than 2(L) - O(log L),
i.e. consider the probability that for all i we have Z; > |[W|2. We have

9 1 O(logn)
1

poly(n)’

A

Thus, with high probability there will be some sample, i, such that Z; < |W|% It follows that
with high probability maxp; cc |Q(Pi,)| > 1|W| and since Py = Q(arg maxp: cc Q(PH)I),
we conclude that with high probability Py > £[W/|.

<4

F.1.5 Directing Paths

Given the undirected paths that we sample from our LP, Py, we produce a set of directed
paths Py using ASSIGNPATHS, which works as follows. Define G’ as the directed supergraph

consisting of nodes W and directed edges E' = {(w,w’) : w' is an endpoint of P, € Py )}.

Let T (v) = {v': (v,v) € E'V (v,v') € E'} give the neighbors of v in G’. For each node
w € G’ with in-degree of at least two we do the following: if v has odd degree delete an
arbitrary neighbor of w from G’; arbitrarily pair off the neighbors of w; for each such pair
(w1, ws) add the directed path Py, o rev(P,,) to Py where rev(P,,) gives the result of
removing the last element of P, (namely, w) and reversing the direction of the path; remove
{w, w1, w2} from G’. Since we remove all vertices with in-degree of two or more and every
vertex has out-degree 1, the remaining graph trivially consists only of nodes with in-degree

at most 1 and out-degree at most 1. The remaining graph, therefore, is all cycles and paths.

For each cycle or path w,ws,ws, ... add the path corresponding to the edge from w; to
w;4+1 for odd 7 to 73U. We let U be all sources of paths in 73U and we let P, be the path in
ﬁU with source u.

The properties of ASSIGNPATHS are as follows.

» Lemma 30. Given W C V and Pw = {P, : w € W} where the endpoints of P, are
w,w € W for w # w', ASSIGNPATHS in polynomial-time returns directed paths Py where at
least 1/4 of the nodes in W are the source of a directed path in 7;U, each path in Py is of
length at most 2 - dil(Pw ) with congestion at most con(Pw) and each path in Py ends in a
unique sink in W.
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Proof. When we add paths to Py that go through vertices of in-degree at least two, for
every 4 vertices we remove we add at least one directed path to 73U that is at most double
the length of the longest a path in Py: in the worst case v has odd in-degree of 3 and we
add only a single path. When we do the same for our cycles and paths for every 3 vertices
we remove we add at least one directed path to Py. Notice that by construction we clearly
never reuse sinks in our directed paths. The bound on congestion and a polynomial runtime
are trivial. <

F.1.6 Proof of Lemma 11

Finally, we conclude with the proof of Lemma 11.

» Lemma 11. Given W C V, GETDIRECTEDPATHS is a randomized polynomial-time
algorithm that returns a set of directed paths, ’P} ={P,:ue U} forUCW, such that with
high probability at least 1/12 of nodes in W are sources of paths in ’PE each with a unique
sink in W. Moreover,

OPT OoPT

min(te, tm) tm

) and dil(Py) < sOPT.

tm

con(Py) < O (

Proof. The fact that GETDIRECTEDPATHS returns a set of directed paths, 7;[], such that
at least 1/12 of nodes in W are sources in a path with a sink in W follows directly from
Lemma 29 and Lemma 30.

We now give the stated bounds on congestion and dilation. First notice that 2L* € [¢].
Moreover, 20PT < 2(n — 1)(t. + D - t,,): the schedule that picks a pair of nodes, routes
one to the other then aggregates and repeats m — 1 times is always feasible and takes
(n—1)(te + D - t,y) rounds. Thus, 2L* < 29FT <¢.

Thus, by definition of L we know that

tm - L+ min(te, ) - t(L) < 2tp, - L™ + min(t., ty,) - 2(2L7)
< 2L* +20PT (By Lemma 24)
< 4OPT (By dfn. of L*)

It follows, then, that t,, - L < 40PT and so L < 4(2&. Similarly, we know that
min(te, ty) - 2(L) < 40PT and so z(L) < —20PT

min(fe,tm) °

Lastly, by Lemma 29 we know that dil(Py ) < L < 4?% and con(Pw) < ¢(L)-O(log L) <
0] (ﬁ - log OPT). By Lemma 30 we get that the same congestion bound holds for 7;U

min(te,tm) Tl
and dil(Py) < G-

A polynomial runtime comes from the fact that we solve at most (n — 1)(t. + D - t,,) =
poly(n) LPs and then sample at most (n — 1)(¢t. + D - t,,) edges O(logn) times to round the

chosen LP. <

F.2 Deferred Proofs of Section 4.2.2

» Lemma 12. Given a set of directed paths Py with some subset of endpoints of paths
in Py designated sources and the rest of the endpoints designated sinks, OPTROUTE is a
randomized polynomial-time algorithm that w.h.p. produces a TOKEN NETWORK schedule
that sends from all sources to sinks in O(con(Py) + dil(Py)).
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Proof. Given a set of paths Py, RothvoB [31] provides a polynomial-time algorithm that
produces a schedule that routes along all paths in O(cong(Py) + dil(Py) where cong(P) =
max Y pep 1(e € P)is the edge congestion. However, the algorithm of Rothvof8 [31] assumes
that in each round a vertex can send a token along each of its incident edges whereas we
assume that in each round a vertex can only forward a single token.

However, it is easy to use the algorithm of Rothvof [31] to produce an algorithm that
produces a TOKEN NETWORK routing schedule using O(con(Py) + dil(Py)) rounds which
assumes that vertices only send one token per round as we assume in the TOKEN NETWORK
model as follows. Let G be our input network with paths Py along which we would like to
route where we assume that vertices can only send one token per round. We will produce
another graph G’ on which to run the algorithm of Rothvof} [31]. For each node v € G add
nodes v; and v, to G’. Project each path P € Py into G’ to get P’ € 75(']/ as follows: if edge
(u,v) is in path P € Pg then add edge (u,,v;) and edge (v;,v,) to path P’ in G’. Notice
that con(Py) = conE(ﬁU/) and dil(Py) = 2dil(P;J/). Now run the algorithm of Rothvof [31]
on G’ with paths P, to get back some routing schedule S’.

Without loss of generality we can assume that S’ only has nodes in G’ send along a single
edge in each round: every v; is incident to a single outbound edge across all paths (namely
(vi,v,)) and so cannot send more than one token per round; every v, has a single incoming
edge and so receives at most one token per round which, without loss of generality, we can
assume v, sends as soon as it receives (it might be the case that v, collects some number of
tokens over several rounds and then sends them all out at once but we can always just have
v, forward these tokens as soon as they are received and have the recipients “pretend” that
they do not receive them until v, would have sent out many tokens at once).

Now generate a routing schedule for G as follows: if v, sends token a in round r of
S’ then v will send token a in round r of S. Since S only ever has vertices send one
token per round, it is easy to see by induction over rounds that S will successfully route
along all paths. Moreover, S takes as many rounds as S’ which by [31] we know takes
O(con(P},) + dil(P},)) = O(con(Py) + 2dil(Py)) = O(con(Py) + dil(Py)). Thus, we let
OPTROUTE be the algorithm that returns S. <

» Lemma 13. ROUTEPATHS,, is a polynomial-time algorithm that, given 751}, solves the
ROUTE AND COMPUTE Problem w.h.p. using O(t,,(con(Py) + dil(Py)) + t.) rounds.

Proof. By Lemma 12, OPTROUTE takes t,, (con(Py)+dil(Py)) rounds to route all sources to
sinks. All sources are combined with sinks in the following computation and so ROUTEPATHS,,,
successfully solves the ROUTE AND COMPUTE Problem since every source has its token
combined with another token. The polynomial runtime of the algorithm is trivial. <

» Lemma 14. ROUTEPATHS, is a polynomial-time algorithm that, given 77_[}, solves the
ROUTE AND COMPUTE Problem w.h.p. using O(t. - con(Py) + tm, - dil(Py)) rounds.

Proof. We argue that every source’s token ends at an asleep node with at least two tokens
and no more than con(P_{]) tokens. It follows that our computation at the end at least halves
the number of tokens.

First notice that if a vertex falls asleep then it will receive at most con(75:9) tokens by the
end of our algorithm since it is incident to at most this many paths. Moreover, notice that
every token will either end at a sink or a sleeping vertex and every sleeping vertex is asleep
because it has two or more tokens. It follows that every token is combined with at least one
other token and so our schedule at least halves the total number of tokens.
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The length of our schedule simply comes from noting that we have O(dil(Py) - tn,)
forwarding rounds followed by con(Py) - t. rounds of computation. Thus, we get a schedule
of total length O(t. - con(Ps) + t,, - dil(Ps)). A polynomial runtime is trivial. <

F.3 Proof of Theorem 9

» Theorem 9. SOLVETC is a polynomial-time algorithm that gives an O(logn - log
approzimation for TOKEN COMPUTATION with high probability.

OPT)

Proof. By Lemma 11 we know that the paths returned by GETDIRECTEDPATHS, Py are

such that con(Py) < O (% log OPT) and dil(Py) < % and the paths returned

have unique sinks and sources in W and there are at least |W|/12 paths w.h.p.
If t. > t,, then ROUTEPATHS,, is run which by Lemma 13 solves the ROUTE AND
COMPUTE Problem in O(t,, - con(Py) + ty, - dil(Py) + t.) rounds which is

ol OPT | OPT ,  8OPT

=EU0m mintt, t) 08 T, O T,
PT

-0 <OPT log Ot + tc)

If t. <t,, then ROUTEPATHS, is run to solve the ROUTE AND COMPUTE Problem which
by Lemma 14 takes O(t, - con(Py) + t,, - dil(Py)) rounds which is

40PT OPT S8OPT
< . 1 £ -
=0 ( min(to, 6y 8 4, T . )
=0 <OPT -log OPT>

Thus, in either case, the produced schedule takes at most O (OPT log ~— OPT | ¢ ) rounds

to solve the ROUTE AND COMPUTE Problem on at least |W|/12 paths in each iteration.
Since solving the ROUTE AND COMPUTE Problem reduces the total number of tokens by a
constant fraction on the paths over which it is solved, and we have at least |[W|/12 paths in
each iteration w.h.p., by a union bound, every iteration reduces the total number of tokens
by a constant fraction w.h.p. Thus, the concatenation of the O(logn) schedules produced,
each of length O(OPT - log - OPT 4 ¢.), is sufficient to reduce the total number of tokens to 1.

Thus, SOLVETC produces a schedule that solves the problem of TOKEN COMPUTATION
in O(OPT -logn log OPT 4 ¢..logn) rounds. However, notice that t.. -logn < OPT (since the
optimal schedule must perform at least logn serialized computations) and so the produced
schedule is of length O(OPT -lognlog <5 — OPT 4 ¢.logn) < O(OPT -lognlog OPT) Lastly, a
polynomial runtime is trivial given the polynomlal runtime of our subroutines. |
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