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ABSTRACT

We give a complete answer to the following basic question: łWhat

is the maximal fraction of deletions or insertions tolerable by 𝑞-ary

list-decodable codes with non-vanishing information rate?ž

This question has been open even for binary codes, including

the restriction to the binary insertion-only setting, where the best-

known result was that a 𝛾 ≤ 0.707 fraction of insertions is tolerable

by some binary code family.

For any desired 𝜀 > 0, we construct a family of binary codes

of positive rate which can be efficiently list-decoded from any

combination of 𝛾 fraction of insertions and 𝛿 fraction of deletions

as long as 𝛾 + 2𝛿 ≤ 1 − 𝜀. On the other hand, for any 𝛾, 𝛿 with

𝛾 + 2𝛿 = 1 list-decoding is impossible. Our result thus precisely

characterizes the feasibility region of binary list-decodable codes

for insertions and deletions.

We further generalize our result to codes over any finite alphabet

of size 𝑞. Surprisingly, our work reveals that the feasibility region

for𝑞 > 2 is not the natural generalization of the binary bound above.

We provide tight upper and lower bounds that precisely pin down

the feasibility region, which turns out to have a (𝑞 − 1)-piece-wise
linear boundary whose 𝑞 corner-points lie on a quadratic curve.

The main technical work in our results is proving the existence

of code families of sufficiently large size with good list-decoding

properties for any combination of 𝛿,𝛾 within the claimed feasi-

bility region. We achieve this via an intricate analysis of codes

introduced by [Bukh, Ma; SIAM J. Discrete Math; 2014]. Finally, we

give a simple yet powerful concatenation scheme for list-decodable

insertion-deletion codes which transforms any such (non-efficient)

code family (with vanishing information rate) into an efficiently

decodable code family with constant rate.
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1 INTRODUCTION

Error correcting codes have the ability to efficiently correct large

fractions of errors while maintaining a large communication rate.

The fundamental trade-offs between these two conflicting desider-

ata have been intensely studied in information and coding theory.

Algorithmic coding theory has further studied what trade-offs can

be achieved efficiently, i.e., with polynomial time encoding and

decoding procedures.

This paper studies insdel codes, i.e., error correcting codes with

a large minimum edit distance, which can correct synchronization

errors such as insertions and deletions. While codes for Hamming

errors and the Hamming metric are quite well understood, ins-

del codes have largely resisted such progress but have attracted

a lot of attention recently [3, 5, 7ś9, 12, 14, 16ś19, 21, 25, 26]. A

striking example of a basic question that is open in the context of

synchronization errors is the determination of the maximal frac-

tion of deletions or insertions a unique- or list-decodable binary

code with non-vanishing rate can tolerate. That is, we do not even

know at what fraction of errors the rate/distance tradeoff for ins-

del codes hits zero rate. These basic and intriguing questions are

open even if one just asks about the existence of codes, irrespective

of computational considerations, and even when restricted to the

insertion-only setting.

In this paper we fully answer these questions for list-decodable

binary codes and more generally for codes over any alphabet of a

fixed size 𝑞. Our results are efficient and work for any combination

of insertions and deletions from which list decoding is information-

theoretically feasible at all.

1.1 Prior Results and Related Works

The study of codes for insertions and deletions has a long history

and goes back to studies of Levenshtein[24] in the 60s. We refer to

the surveys by Sloan [31], Mercier et al. [28] andMitzenmacher [29]

for a more extensive background, and focus here onworks related to

the main thrust of this paper, namely the maximal tolerable fraction

of worst-cast deletions or insertions for unique- and list-decodable

code families with non-vanishing rate. We stress that our focus is
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on worst-case patterns of insdel errors subject to bounds on the

fraction of insertions and the fraction of deletions allowed. There

is also a rich body of work on tackling random insdel errors, which

is not the focus of this work.

Unique Decoding. Let us first review the situation for unique de-

coding, where the decoder must determine the original transmitted

codeword. For unique decoding of binary codes, the maximal tol-

erable fraction of deletions is easily seen to be at most 1
2 because

otherwise either all zeros or all ones in a transmitted codeword

can be deleted. (For 𝑞-ary codes, this fraction becomes 1 − 1/𝑞.)
On the other hand, for a long time the best (existential) possibility

results for unique-decodable binary codes stemmed from analyzing

random binary codes.

In the Hamming setting, random codes often achieve the best

known parameters and trade-offs, and a lot of effort then goes into

finding efficient constructions and decoding algorithms for codes

that attempt to come close to the random constructions. However,

the edit distance is combinatorially intricate and even analyzing

the expected edit distance of two random strings, which is the first

step in analyzing random codes, is highly non-trivial.

Lueker [27], improving upon earlier results by Dančík and Pa-

terson [10, 11], proved that the expected fractional length of the

longest common subsequence between two random strings lies

between 0.788071 and 0.826280 (the exact value is still unknown).

Using this, one can show that a random binary code of positive rate

can tolerate between 0.23 and 0.18 fraction of deletions or inser-

tions. Edit distance of random 𝑞-ary strings were studied by Kiwi,

Loebl, and Matous̃ek[23], leading to positive rate random codes

by Guruswami and Wang [14] that correct 1 − Θ( 1√
𝑞
) fraction of

deletions for asymptotically large 𝑞. Because random codes do not

have efficient decoding and encoding procedures these results were

purely existential. Computationally efficient binary codes of non-

vanishing rate tolerating some small unspecified constant fraction

of insertions and deletions were given by Schulman and Zucker-

man [30]. Guruswami and Wang [14] gave binary codes that could

correct a small constant fraction of deletions with rate approaching

1, and this was later extended to handle insertions as well [12].

In the regime of low-rate and large fraction of deletions, Bukh

and Guruswami [4] gave a 𝑞-ary code construction that could tol-

erate up to a
𝑞−1
𝑞+1 fraction of deletions, which is 1

3 for binary codes.

Note that this beats the performance of random codes. Together

with Håstad [5] they later improved the deletion fraction to 1− 2
𝑞+√𝑞

or
√
2 − 1 ≈ 0.414 for binary codes. This remains the best known

result for unique-decodable codes and determining whether there

exist binary codes capable of correcting a fraction of deletions

approaching 1
2 remains a fascinating open question.

List decoding. The situation for list-decodable codes over small

alphabets is equally intriguing. In list-decoding, one relaxes the

decoding requirement from having to output the codeword that was

sent to having to produce a (polynomially) small list of codewords

which includes the correct one. The trivial limit of 1/2 fraction

deletions for unique-decoding binary codes applies equally well for

list-decoding. In their paper, Guruswami and Wang [14] showed

that this limit can be approached by efficiently list-decodable binary

codes. Similarly, 𝑞-ary codes list-decodable from a deletion fraction

approaching the optimal 1 − 1/𝑞 bound can be constructed.

However, the situation was not well understood when insertions

are also allowed. It had already been observed by Levenshtein [24]

that (at least existentially) insertions and deletions are equally hard

to correct for unique-decoding, in that if a code can correct 𝑡 dele-

tions then it can also correct any combination of 𝑡 insertions and

deletions. This turns out to be not true for list-decoding. This was

demonstrated pointedly in [20], where it is shown that arbitrary

large 𝛾 = 𝑂 (1) fractions of insertions (possibly exceeding 1) can be

tolerated by list-decodable codes over sufficiently large constant

alphabets (see Theorem 2.1), whereas the fraction of deletions 𝛿 is

clearly bounded by 1. Indeed, the fraction of insertions 𝛾 does not

even factor into the rate of these list-decodable insertion-deletion

codesÐthis rate can approach the optimal bound of 1 − 𝛿 where 𝛿

is the deletion fraction. The result in [20], however, applies only

to sufficiently large constant alphabet sizes, and it does not shed

any light on the list-decodability of binary (or any fixed alphabet)

insdel codes.

Considering a combination of insertions and deletions, the fol-

lowing bound is not hard to establish.

Proposition 1.1. For any integer 𝑞 and any 𝛿,𝛾 ≥ 0 with 𝛿
1− 1

𝑞

+
𝛾

𝑞−1 ≥ 1 there is no family of constant rate codes of length 𝑛 which

are list-decodable from 𝛿𝑛 deletions and 𝛾𝑛 insertions.

For the case of insertion-only binary codes, the above limits the

maximum fraction of insertions to 100%, which is twice as large as

the best possible deletion fraction of 1/2.
Turning to existence/constructions of list-decodable codes for

insertions, recall that the codes of Bukh, Guruswami, Håstad (BGH)

could unique-decode (and thus also list-decode) a fraction of 0.414

insertions (indeed any combination of insertions and deletions to-

taling 0.414 fraction). Wachter-Zeh [32] recently put forward a

Johnson-type bound for insdel codes. The classical Johnson bound

works in the Hamming metric, and connects unique-decoding to

list-decoding (for Hamming errors) by showing that any unique-

decodable code must also be list-decodable from an even larger

fraction of corruptions. One intriguing implication of Wachter-

Zeh’s Johnson bound for insdel codes is that any unique-decodable

insdel code which tolerates a 1
2 fraction of deletions (or insertions)

would automatically also have to be (existentially) list-decodable

from a 100% fraction of insertions. Therefore, even if one is inter-

ested in unique-decoding, e.g., closing the above-mentioned gap

between
√
2 − 1 and 1

2 , this establishes the search for maximally

list-decodable binary codes from insertions as a good and indeed

necessary step towards this goal. On the other hand, proving any

non-trivial impossibility result bounding the maximal fraction of

insertions of list-decodable binary codes away from 100% would

directly imply an impossibility result for unique-decoding binary

codes from a deletion fraction approaching 1
2 .

Follow-up work by Hayashi and Yasunaga [22] corrected some

subtle but crucial bugs in [32] and reproved a corrected Johnson

Bound for insdel codes. They furthermore showed that the BGH

codes [5] could be list-decoded from a fraction ≈ 0.707 of insertions.

Lastly, via a concatenation scheme used in [12, 14] they furthermore

made these codes efficient. A recent work of Liu, Tjuawinata, and

525



Optimally Resilient Codes for List-Decoding from Insertions and Deletions STOC ’20, June 22–26, 2020, Chicago, IL, USA

Xing [26] also provides efficiently list-decodable insertion-deletion

codes and derives a Zyablov-type bound. In summary, for the binary

insertion-only setting, the largest fraction of insertions that we

knew to be list-decodable (even non-constructively) was ≈ 0.707.

1.2 Our Results

We close the above gap and show binary codes which can be list-

decoded from a fraction 1 − 𝜀 fraction of insertions, for any desired

constant 𝜀 > 0. In fact, we give a single family of codes that are list-

decodable from any mixed combination of 𝛾 fraction of insertions

and 𝛿 fraction of deletions, as long as 2𝛿 + 𝛾 ≤ 1 − 𝜀.

Theorem 1.2. For any 𝜀 ∈ (0, 1) and sufficiently large 𝑛, there

exists a constant rate family of efficient binary codes that are 𝐿-list

decodable from any 𝛿𝑛 deletions and 𝛾𝑛 insertions in poly(𝑛) time

as long as 𝛾 + 2𝛿 ≤ 1 − 𝜀 where 𝑛 denotes the block length of the

code, 𝐿 = 𝑂𝜀 (exp(exp(exp(log∗ 𝑛)))), and the code achieves a rate
of exp

(
− 1
𝜀10

log2 1
𝜀

)
.

Since the computationally efficient codes from Theorem 1.2

match the bounds from Proposition 1.1 for every 𝛿,𝛾 , this nails

down the entire feasibility region for list-decodability from in-

sertions and deletions for the binary case. We stress that while

we get constructive results, even the existence of inefficiently list-

decodable codes, that too just for the insertion-only setting, was

not known prior to this work.

In the above result, the rather weird looking bound on the list-

size is inherited from results on list-decoding from a huge number

insertions over larger alphabets [20], which in turn is inherited from

the list-size bounds for the list-recoverable algebraic-geometric

code constructions in [15].

We use similar construction techniques to obtain codes with pos-

itive rate over any arbitrary alphabet size 𝑞 that are list-decodable

from any fraction of insertions and deletions under which list-

decoding is possible. We thus precisely identify the feasibility re-

gion for any alphabet size, together with an efficient construction.

Again, recall that the existence of such codes was not known earlier,

even for the insertion-only case.

Theorem 1.3. For any positive integer 𝑞 ≥ 2, define 𝐹𝑞 as the

concave polygon defined over vertices
(
𝑖 (𝑖−1)

𝑞 ,
𝑞−𝑖
𝑞

)
for 𝑖 = 1, · · · , 𝑞

and (0, 0). (An illustration for 𝑞 = 5 is presented in Fig. 1). 𝐹𝑞 does

not include the border except the two segments [(0, 0), (𝑞 − 1, 0)) and
[(0, 0), (0, 1 − 1/𝑞)). Then, for any 𝜀 > 0 and sufficiently large𝑛, there

exists a family of𝑞-ary codes that, as long as (𝛾, 𝛿) ∈ (1−𝜀)𝐹𝑞 , are effi-

ciently 𝐿-list decodable from any 𝛿𝑛 deletions and 𝛾𝑛 insertions where

𝑛 denotes the block length of the code, 𝐿 = 𝑂 (exp(exp(exp(log∗ 𝑛)))),
and the code achieves a positive rate of exp

(
− 1
𝜀10

log2 1
𝜀

)
.

We further show in Section 5 that for any pair of positive real

numbers (𝛾, 𝛿) ∉ 𝐹𝑞 , there exists no infinite family of 𝑞-ary codes

with rate bounded away from zero that can be list decoded from a

𝛿-fraction of deletions plus a 𝛾-fraction of insertions.

1.3 Our Techniques

We achieve these results using two ingredients, each interesting in

its own right. The first is a simple new concatenation scheme for

Figure 1: Feasibility region for 𝑞 = 5.

list-decodable insdel codes which can be used to boost the rate of

insdel codes. The second component, which constitutes the bulk

of this work, is a technically intricate proof of the list-decoding

properties of the Bukh-Ma codes [6] which have good (edit) distance

properties but a tiny sub-constant rate. We note that these codes

were the inner codes in the łclean construction" in the BGH work

on codes unique-decodable from a 1/3 insdel fraction [5]. This

was driven by a property of these codes called the span, which

is a stronger form of edit distance that applies at all scales. The

Bukh-Ma codes were also used by Guruswami and Li [13] in their

existence proof of codes of positive rate for correcting a fraction

of oblivious deletions approaching 1. In this work, the non-trivial

list-decodability property of the Bukh-Ma codes drives our result.

1.3.1 Concatenating List-Decodable Insdel Codes. Our first ingre-

dient is a simple but powerful framework for constructing list-

decodable insertion-deletion codes via code concatenation. Recall

that code concatenation which composes the encoding of an outer

code 𝐶out with an inner code 𝐶in whose size equals the alphabet

size of 𝐶out.

In our approach, the outer code 𝐶out is chosen to be a list-

decodable insdel code 𝐶out over an alphabet that is some large

function of 1/𝜀, but which has constant rate and is capable of toler-

ating a huge number of insertions. The inner code 𝐶in is chosen to

be a list-decodable insdel code over a fixed alphabet of the desired

size 𝑞, which has non-trivial list decoding properties for the desired

fraction 𝛿,𝛾 of deletions and insertions.

We show that even if 𝐶in has an essentially arbitrarily bad sub-

constant rate and is not efficient, the resulting 𝑞-ary insdel code

does have constant rate, and can also be efficiently list decoded

from the same fraction of insertions and deletions as 𝐶in. For the

problem considered in this paper, this framework essentially pro-

vides efficiency of codes for free. More importantly, it reduces the

problem of finding good constant-rate insdel codes over a fixed al-

phabet to finding a family of good list-decodable insdel codes with

an arbitrarily large number of codewords, and a list-size bounded by

some fixed function of 1/𝜀.
Our decoding procedure for concatenated list-decodable insdel

codes is considerably simpler than similar schemes introduced in

earlier works [5, 12, 14, 30]. Of course, the encoding is simply given

by the standard concatenation procedure. The decoding is done

by (i) list-decoding shifted intervals of the received string using

the inner code 𝐶in, (ii) creating a single string from the symbols in

these lists, and (iii) using the list-decoding algorithm of the outer
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code on this string (viewed as a version of the outer codeword with

some number of deletions and insertions).

The main driving force behind why this simplistic sounding

approach actually works is a judicious choice of the outer code

𝐶out. Specifically, we use the codes due to Haeupler, Shahrasbi, and

Sudan [20] which can tolerate a very large number of insertions.

This means that the many extra symbols coming from the list-

decodings of the inner code 𝐶in and the choice of overlapping

intervals does not disrupt the decoding of the outer code.

1.4 Analyzing the Properties of Bukh-Ma Codes

The main technical challenge that remains is to construct or prove

the existence of arbitrarily large binary codes with optimal list

decoding properties for any 𝛾, 𝛿 (and 𝑞). For this we turn to a simple

family of codes introduced by Bukh and Ma [6], which consist of

strings (0𝑟 1𝑟 ) 𝑛𝑟 which oscillate between 0’s and 1’s with different

frequencies. (Below we will refer to 𝑟 as the period, and 1/𝑟 should
be thought of as the frequency of alternation.)

A simple argument shows that the edit distance between any two

such strings with sufficiently different periods is maximal, result-

ing in a tolerable fraction of edit errors of 1
2 for unique decoding.

The Johnson bound of [22, 32] implies that this code must also

be list-decodable from a full fraction 100% of insertions. There-

fore, using these codes as the inner codes in the above-mentioned

concatenation scheme resolves the list-decoding question for the

insertion-only setting. (The deletion-only setting is oddly easier

as just random inner codes suffice, and was already resolved in

[14].) This also raises hope that the Bukh-Ma codes might have

good list-decoding properties for other 𝛾, 𝛿 as well. Fortunately, this

turns out to be true, though establishing this involves an intricate

analysis that constitutes the bulk of the technical work in this paper.

Theorem 1.4. For any 𝜀 > 0 and sufficiently large 𝑛, let 𝐶𝑛,𝜀 be

the following Bukh-Ma code:

𝐶𝑛,𝜀 =

{
(
0𝑟 1𝑟

) 𝑛
2𝑟

���𝑟 =
(
1

𝜀4

)𝑘
, 𝑘 < log1/𝜀4 𝑛

}

.

For any 𝛿,𝛾 ≥ 0 where 𝛾 + 2𝛿 < 1 − 𝜀, 𝐶𝑛,𝜀 is list-decodable from
any 𝛿𝑛 deletions and 𝛾𝑛 insertions with 𝑂 (𝜀−3) list size.

In order to prove Theorem 1.4 we first introduce a new correla-

tion measure which expresses how close a string is to any given

frequency (or Bukh-Ma codeword) if one allows for both insertions

and deletions each weighted appropriately. Using this we want to

show that it is impossible to have a single string 𝑣 which is more

than 𝜀-correlated with more than Θ𝜀 (1) frequencies.
Intuitively, one might expect that each correlation can be (frac-

tionally) attributed to a (disjoint) part of 𝑣 which would result in

the maximum number of 𝜀-close frequencies to be at most 1/𝜀. This,
however, turned out to be false. Instead, we use a proof technique

which is somewhat reminiscent of the one used to establish the

polarization of the martingale of entropies in the analysis of polar

codes [1, 2].

In more detail, we think of recursively sub-sampling smaller

and smaller nested substrings of 𝑣 , and analyze the expectation

and variance of the bias between the fraction of 0’s and 1’s in

these substrings. More precisely, we order the run lengths 𝑟1, 𝑟2, . . .

that are 𝜀-correlated with 𝑣 in decreasing order and first sample a

substring 𝑣1 with 𝑟1 ≫ |𝑣1 | ≫ 𝑟2 from 𝑣 . While the expected zero-

one bias in 𝑣1 is the same as in 𝑣 , we show that the variance of this

bias is an increasing function in the correlation with (0𝑟11𝑟1 )
𝑛
2𝑟1 .

Intuitively, 𝑣1 cannot be too uniform on an scale of length 𝑙 if it is

correlated with 𝑟1.

Put differently, in expectation the sampled substring 𝑣1 will land

in a part of 𝑣 which is either (slightly) correlated to one of the

long stretches of zeros in 𝑣 or in a part which is correlated with a

long stretch of ones in 𝑣 , resulting in at least some variance in the

bias of 𝑣1. Because the scales 𝑟2, 𝑟3, . . . are so much smaller than 𝑣1,

this sub-sampling of 𝑣1 furthermore preserves the correlation with

these scales intact, at least in expectation.

Next we sample a substring 𝑣2 with 𝑟2 ≫ |𝑣2 | ≫ 𝑟3 within 𝑣1.

Again, the bias in 𝑣2 stays the same as the one in 𝑣1 in expectation

but the sub-sampling introduces even more variance given that

𝑣1 is still non-trivially correlated with the string with period 𝑟2.

The evolution of the bias of the strings 𝑣1, 𝑣2, . . . produced by this

nested sampling procedure can now be seen as a martingale with

the same expectation but an ever increasing variance. Given that

the bias is bounded in magnitude by 1, the increase in variance

cannot continue indefinitely. This limits the number of frequencies

a string 𝑣 can be non-trivially correlated with, which is exactly

what we were after.

Our generalization to larger 𝑞-ary alphabets follows the same

high level blueprint, but is technically even more delicate. Recall

that in the non-binary case, there are (𝑞 − 1) different linear trade-
offs between 𝛿,𝛾 depending on the exact regime they lie in.

2 PRELIMINARIES

2.1 List-Decodable Insertion-Deletion Codes

The following list-decodable insertion-deletion codes from [20] will

be used as the outer code in our constructions.

Theorem 2.1 (Theorem 1.1 from [20]). For every 𝛿, 𝜀 ∈ (0, 1) and
constant 𝛾 > 0, there exist a family of list-decodable insdel codes that

can protect against 𝛿-fraction of deletions and 𝛾-fraction of insertions

and achieves a rate of 1 − 𝛿 − 𝜀 or more over an alphabet of size
(
𝛾+1
𝜀2

)𝑂
(
𝛾+1
𝜀3

)

= 𝑂𝛾,𝜀 (1). These codes are list-decodable with lists of

size 𝐿𝜀,𝛾 (𝑛) = exp (exp (exp (log∗ 𝑛))), and have polynomial time

encoding and decoding complexities.

2.2 Strings, Insertions, Deletions, and Distances

In this section we provide preliminary definitions on strings, edit

operations, and related notions.

Definition 2.2 (Count and Bias). Wedefine count𝑎 (𝑤) = |{𝑖 |𝑤 [𝑖] =
𝑎}| as the number of appearances of symbol 𝑎 in string𝑤 . The bias

of a binary string𝑤 is the normalized difference between the appear-

ances of zeros and ones in 𝑤 , i.e., bias(𝑤) = count1 (𝑤)−count0 (𝑤)
|𝑤 | .

With this definition, count0 (𝑤) = 1−bias(𝑤)
2 |𝑤 | and count1 (𝑤) =

1+bias(𝑤)
2 |𝑤 |.

Definition 2.3 (Matching). A matching𝑀 of size 𝑘 between two

strings 𝑆 and 𝑆 ′ is defined to be two sequences of 𝑘 integer positions

0 < 𝑖1 < . . . < 𝑖𝑘 ≤ |𝑆 | and 0 < 𝑖 ′1 < . . . < 𝑖 ′
𝑘
≤ |𝑆 ′ | for which
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𝑆 [𝑖 𝑗 ] = 𝑆 ′[𝑖 ′𝑗 ] for all 𝑗 ≤ 𝑘 . The subsequence induced by a matching

𝑀 is simply 𝑆 [𝑖1], . . . , 𝑆 [𝑖𝑘 ]. Every common subsequence between

𝑆 and 𝑆 ′ implicitly corresponds to a matching and we use the two

interchangeably.

Definition 2.4 (Advantage of a Matching). Let𝑀 be a matching

between two binary strings 𝑎 and 𝑏. The advantage of the matching

𝑀 is defined as adv𝑀 =
3 |𝑀 |− |𝑎 |− |𝑏 |

|𝑎 | .

Definition 2.5 (Advantage). For a given pair of strings 𝑎 and 𝑏,

the advantage of 𝑎 to 𝑏 is defined as the advantage of the matching

𝑀 that corresponds to the largest common subsequence between

them, i.e., adv(𝑎, 𝑏) = adv𝑀=LCS(𝑎,𝑏) . It is easy to verify that the

longest common subsequence 𝑀 maximizes the advantage among

all matchings from 𝑎 to 𝑏.

We now make the following remark that justifies the notion of

advantage as defined above. Note that any matching between two

strings 𝑎 and 𝑏 implies a set of insertions and deletions to convert

𝑏 to 𝑎 which is, to delete all unmatched symbols in 𝑏 and insert all

unmatched symbols in 𝑎 within the remaining symbols.

Remark 2.6. Consider strings 𝑎 and 𝑏 and matching 𝑀 between

them. Think of 𝑎 as a distorted version of 𝑏 and let 𝛿𝑀 and 𝛾𝑀 repre-

sent the fraction of deletions and insertions needed to convert 𝑏 to 𝑎 as

suggested by𝑀 , i.e., 𝛿𝑀 =
Number of unmatched symbols in 𝑏

|𝑏 | =
|𝑏 |− |𝑀 |
|𝑏 | ,

and𝛾𝑀 =
Number of unmatched symbols in 𝑎

|𝑏 | =
|𝑎 |− |𝑀 |
|𝑏 | . The adv𝑀 func-

tion tracks the value of |𝑏 | (1 − 2𝛿𝑀 − 𝛾𝑀 ) normalized by |𝑎 | rather
than |𝑏 |.

adv𝑀 (𝑎, 𝑏) =
3|𝑀 | − |𝑎 | − |𝑏 |

|𝑎 |

=
3|𝑏 | (1 − 𝛿𝑀 ) − |𝑏 | (1 − 𝛿𝑀 + 𝛾𝑀 ) − |𝑏 |

|𝑎 | =
|𝑏 |
|𝑎 | · (1 − 2𝛿𝑀 − 𝛾𝑀 )

We will make use of this unnatural normalization later on.

We now extend the definition of advantage to the case where

the second argument is an infinite string.

Definition 2.7 (Infinite Advantage). For a finite string 𝑎 and in-

finite string 𝑏, the advantage of 𝑎 to 𝑏 is defined as the minimum

advantage that 𝑎 has over all substrings of 𝑏.

adv(𝑎, 𝑏) = min
𝑏′=𝑏 [𝑖, 𝑗 ]

adv(𝑎, 𝑏 ′) .

We now define a family of binary strings called Alternating

Strings.

Definition 2.8 (Alternating Strings). For any positive integer 𝑟 , we

define the infinite alternating string of run-length 𝑟 as𝐴𝑟 = (0𝑟 1𝑟 )∞
and denote its prefix of length 𝑙 with 𝐴𝑟,𝑙 = 𝐴𝑟 [1, 𝑙].

We finish the preliminaries by the following lemma stating some

properties of the notions defined through this section.

Lemma 2.9. The following properties hold true:

• For any pair of binary strings 𝑆1, 𝑆2 where adv(𝑆1, 𝑆2) > 0,

lengths of 𝑆1 and 𝑆2 are within a factor of two of each other,

i.e, min( |𝑆1 |, |𝑆2 |) ≥ max( |𝑆1 |, |𝑆2 |)
2 .

• For any binary string 𝑆 and integer 𝑟 , adv(𝑆,𝐴𝑟 ) ≥ − 1
2

Proof. For the first part, let 𝑀 = LCS(𝑆1, 𝑆2). We have that

adv(𝑆1, 𝑆2) ≥ 0⇒ 3|𝑀 | ≥ |𝑆1 |+|𝑆2 |, which, as |𝑀 | ≤ min( |𝑆1 |, |𝑆2 |),
implies that min( |𝑆1 |, |𝑆2 |) ≥ max( |𝑆1 |, |𝑆2 |)

2 .

For the second part, let 𝑛 = |𝑆 | and assume that 𝑏 ∈ {0, 1} is the
most frequent bit in 𝑆 and there are𝑚 occurrences of 𝑏 in 𝑆 . Take a

substring 𝑆 ′ in 𝐴𝑟 as the smallest string that starts at the beginning

of a 𝑏𝑟 block and contains the same number of 𝑏s as 𝑆 . The size

of 𝑆 ′ is no more than 2𝑚 and the longest common subsequence

between 𝑆 and 𝑆 ′ is at least𝑚. Therefore, adv(𝑆,𝐴𝑟 ) ≥ adv(𝑆, 𝑆 ′) ≥
3 |𝑀 |− |𝑆 |− |𝑆′ |

|𝑆 | ≥ 3𝑚−2𝑚−2𝑚
𝑛 ≥ −𝑚𝑛 ≥ −

1
2 . □

3 PROOF OF THEOREM 1.4: LIST-DECODING
FOR BUKH-MA CODES

To prove this theorem, we assume for the sake of contradiction

that there exists a string 𝑣 and 𝑘 >
1200
𝜀3

members of 𝐶𝑛,𝜀 like

𝐴𝑟1,𝑛, 𝐴𝑟2,𝑛, · · · , 𝐴𝑟𝑘 ,𝑛 , so that each𝐴𝑟𝑖 ,𝑛 can be converted to 𝑣 with

𝐼𝑖 insertions and𝐷𝑖 deletionswhere 𝐼𝑖+2𝐷𝑖 ≤ 𝑛(1−𝜀). We define the

indices in a way that 𝑟1 > 𝑟2 > · · · > 𝑟𝑘 . Given the definition of𝐶𝑛,𝜀 ,

𝑟𝑖 ≥ 𝑟𝑖+1
𝜀4

. We first show that, for 𝑖 = 1, 2, · · · , 𝑘 , adv(𝑣, 𝐴𝑟𝑖 ,𝑛) ≥ 𝜀
2 .

Lemma 3.1. For any 1 ≤ 𝑖 ≤ 𝑘 , adv(𝑣, 𝐴𝑟𝑖 ,𝑛) ≥ 𝜀
2 .

Proof. Let𝑀𝑖 denotes the matching that corresponds to the set

of 𝐼𝑖 insertions and 𝐷𝑖 deletions that convert 𝐴𝑟𝑖 ,𝑛 to 𝑣 .

𝐼𝑖 + 2𝐷𝑖 ≤ 𝑛(1 − 𝜀) ⇒ 𝑛 − 𝐼𝑖 − 2𝐷𝑖 ≥ 𝑛𝜀 ⇒ 1 − 𝛾𝑖 − 2𝛿𝑖 ≥ 𝜀

Note that according to Remark 2.6, adv(𝑣, 𝐴𝑟𝑖 ,𝑛) = 𝑛
|𝑣 | · (1−𝛾𝑖 −2𝛿𝑖 ).

Thus, adv(𝑣, 𝐴𝑟𝑖 ,𝑛) ≥ 𝑛
|𝑣 | 𝜀 ≥

𝜀
2 . The last step follows from the first

item of Lemma 2.9. □

Having Lemma 3.1, we are ready to prove Theorem 1.4. We

start with defining a couple of sequences of random variables via

random sampling of nested substrings of 𝑣 . We split the string 𝑣

into substrings of size 𝑙1 = 𝑟1𝜀
2, pick one uniformly at random and

denote it by 𝑣1. We define random variable 𝐴1 = adv(𝑣1, 𝐴𝑟1 ) and
random variable 𝐵1 = bias(𝑣1). Similarly, we split 𝑣1 into substrings

of length 𝑙2 = 𝑟2𝜀
2 and pick 𝑣2 uniformly at random and define𝐴2 =

adv(𝑣2, 𝐴𝑟2 ) and 𝐵2 = bias(𝑣2). Continuing this procedure, one can
obtain the two sequences of random variables 𝐴1, 𝐴2, · · · , 𝐴𝑘 and

𝐵1, 𝐵2, · · · , 𝐵𝑘 . We will prove the following.

Lemma 3.2. The following hold for 𝐴1, · · · , 𝐴𝑘 and 𝐵1, · · · , 𝐵𝑘 :
(1) E[𝐵𝑖 ] = bias(𝑣), (2) E[𝐴𝑖 ] ≥ 𝜀

2 .

Proof. Note that one can think of 𝑣𝑖 as a substring of 𝑣 that is

obtained by splitting 𝑣 into substrings of length 𝑙𝑖 and choosing one

uniformly at random. Let 𝑈 denote the set of all such substrings.

We have that

E[𝐵𝑖 ] =

∑

𝑣∈𝑈

1

|𝑈 | · bias(𝑣) =
1

|𝑈 |
∑

𝑣∈𝑈

count1 (𝑣) − count0 (𝑣)
𝑙𝑖

=
count1 (𝑣) − count0 (𝑣)

|𝑈 | · 𝑙𝑖
= bias(𝑣) .

A similar argument proves the second item. Take the matching

𝑀𝑖 between 𝑣 and 𝐴𝑟𝑖 ,𝑛 that achieves the advantage adv(𝑣, 𝐴𝑟𝑖 ,𝑛),
i.e., the largest matching between 𝑣 and𝐴𝑟𝑖 ,𝑛 . Take some 𝑣 ∈ 𝑈 ; 𝑣 is

mapped to some substring in𝐴𝑟𝑖 ,𝑛 under𝑀𝑖 . We call that substring

of 𝑣 , the projection of 𝑣 under𝑀𝑖 and denote it by 𝑣 → 𝑀𝑖 . We also
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(2) We have that 𝑆 = ¤⋃8/𝜀
𝑖=1𝑆𝑖 . By the Pigeonhole principle, for

some 𝑖∗ ∈ [1, 8/𝜀], |𝑆𝑖∗ | ≥ 3𝜀2

32 𝑛out.

Our decoding algorithm consists of 8/𝜀 rounds each consisting

of two phases of inner and outer decoding. During the first phase

of each round 𝑖 = 1, 2, · · · , 8/𝜀, the algorithm uses the decoder of

the inner code on 𝑥 ′ to construct a string𝑇𝑖 over alphabet Σout and
then, in the second phase, uses the decoder of the outer code on

input 𝑇𝑖 to obtain a list 𝐿𝑖𝑠𝑡𝑖 of size 𝐿out. In the end, the decoding

algorithm outputs the union of all such lists
⋃

𝑖 𝐿𝑖𝑠𝑡𝑖 .

Algorithm 1 Decoder of the Concatenated Code

1: procedure Concat’d-Dec(𝑥 ′, 𝜀, 𝑛in, 𝑛out,DecCin ,DecCout )

2: Output← ∅
3: for 𝑖 ∈

{
1, 2, · · · , 8𝜀

}
do ⊲ Round 𝑖

4: 𝑤 ←
⌊
𝑛in (2−𝜀/4−3𝜀 (𝑖−1)/16)

𝑛in𝜀/16

⌋
+ 1

5: 𝑇𝑖 ← empty string

6: for 𝑗 ∈
{
1, 2, · · · , |𝑥 ′ |

𝑛in𝜀/16 −𝑤
}
do ⊲ Phase I

7: 𝐿𝑖𝑠𝑡 ← DecCin
(
𝑥 ′

[𝑛in𝜀
16 · 𝑗,

𝑛in𝜀
16 · ( 𝑗 +𝑤)

] )

8: Pad symbols of Σout corresponding to the elements

of 𝐿𝑖𝑠𝑡 to the right of 𝑇𝑖 .

9: Output← Output ∪ DecCout (𝑇𝑖 ) ⊲ Phase II

10: return Output

Description of Phase I (Inner Decoding). We now proceed to the

description of the first phase in each round 𝑖 ∈ {1, 2, · · · , 8/𝜀}. In
the construction of 𝑇𝑖 , we aim for correctly decoding the blocks in

𝑆𝑖 . As mentioned above, all such blocks appear in 𝑥 ′ in a substring

of length 𝑛in ·
(
2 − 𝜀

4 −
3𝜀
16 · (𝑖 − 1)

)
or less.

Having this observation, we run the deocoder of the inner code

on substrings of 𝑥 ′ of form 𝑥 ′
[𝑛in𝜀
16 · 𝑗,

𝑛in𝜀
16 · ( 𝑗 +𝑤)

]
for all 𝑗 =

1, 2, · · · , |𝑥 ′ |
𝑛in𝜀/16 − 𝑤 where 𝑤 =

⌊
𝑛in (2−𝜀/4−3𝜀 (𝑖−1)/16)

𝑛in𝜀/16

⌋
+ 1. One

can think of such substrings as a window of size𝑤 · 𝑛in𝜀
16 that slides

in 𝑛in𝜀
16 increments.

Note that each block 𝐵 in 𝑆𝑖 appears within such window and

is far from it by, say, 𝐷𝐵 deletions and no more than 𝑛in
(
1 − 𝜀

4

)
−

2𝐷𝐵 + 𝑛in𝜀
16 insertions where the additional 𝑛in𝜀

16 term in insertion

count comes from the extra symbols around the block in the fixed

sized window. As long as the fraction of insertions plus twice the

fraction of deletions that are needed to convert a block of 𝑆𝑖 into

its corresponding window does not exceed 1 − 𝜀in, the output of
the inner code’s decoder for input 𝑥 ′

[𝑛in𝜀
16 · 𝑗,

𝑛in𝜀
16 · ( 𝑗 +𝑤)

]
will

contain the block 𝐵 of 𝑆𝑖 . So, we choose 𝜀in such that

𝑛in

(
1 − 𝜀

4

)
− 2𝐷𝐵 +

𝑛in𝜀

16
+ 2𝐷𝐵 ≤ 𝑛in (1 − 𝜀in) (11)

⇔ 𝑛in (1 − 3𝜀/16) ≤ 𝑛in (1 − 𝜀in) ⇔ 𝜀in ≤
3

16
𝜀

Now, each element in the output list corresponds to some code-

word of the inner code and, therefore, some symbol in Σout. For

each run of the decoder of the inner code, we take the correspond-

ing symbols of Σout and write them back-to-back in arbitrary order.

Then, we append all such strings in the increasing order of 𝑗 to

obtain 𝑇𝑖 .

Description of Phase II (Outer Decoding). Note that the length

of 𝑇𝑖 is at most
|𝑥 ′ |

𝑛in𝜀/16𝐿in ≤
2𝑛in𝑛out

𝑛in𝜀/16 𝐿in = 𝑛out · 32𝜀 𝐿in. Further, 𝑇𝑖
contains symbols corresponding to all blocks of 𝑆𝑖 as a subsequence

(i.e., in the order of appearance) except possibly the ones that appear

in the same run of the inner decoder together. Since the fraction

of deletions happening to each block in 𝑆𝑖 is less than
1
2 and the

size of the inner decoding sliding window is no more than 2𝑛in,

the number of blocks of 𝑆𝑖 that can appear in the same window

in the first phase is at most 4. This gives that 𝑇𝑖 has a common

subsequence of size at least
|𝑆𝑖 |
4 with the codeword of the outer

code.

Wementioned earlier that for some 𝑖∗, |𝑆𝑖∗ | ≥ 3𝜀2

32 𝑛out. Therefore,

for such 𝑖∗, 𝑇𝑖∗ is different from 𝑥 by up to a 1 − 3𝜀2

128 fraction of

deletions and 32
𝜀 𝐿in fraction of insertions. Therefore, by taking

𝛿out = 1 − 3𝜀2

128 , 𝛾out =
32
𝜀 𝐿in = 𝑂

(
1
𝜀4

)
, and using each 𝑇𝑖 as an

input to the decoder of the outer code in the second phase, 𝑥 will

certainly appear in the outer output list for some 𝑇𝑖 . (Specifically,

for 𝑖 = 𝑖∗.)

4.3 Remaining Parameters

As shown in Section 4.2, we need a list-decodable code as outer

code that can list-decode from 𝛿out = 1 − 3𝜀2

128 fraction of deletions

and 𝛾out =
32
𝜀 𝐿in = 𝑂

(
1
𝜀4

)
fraction of insertions. To obtain such

codes we use Theorem 2.1 with parameters 𝛾 =
32
𝜀 𝐿in and 𝜖 =

3𝜀2

256 .

This implies that the rate of the outer code is 𝑟out =
3𝜀2

256 = 𝑂 (𝜀2),
it is 𝐿out = 𝑂𝜀 (exp(exp(exp(log∗ 𝑛)))) list-decodable, and can be

defined over an alphabet size of |Σout | = 𝑒
𝑂

(
1

𝜀10
log 1

𝜀8

)

.

Consequently, |C𝑖𝑛 | = log |Σout | = 𝑂
(

1
𝜀10

log 1
𝜀

)
. Note that in

Theorem 1.4, the block length of the inner code can be chosen

independently of its list size as the list size only depends on 𝜀in.

This is a crucial quality in our construction since in our analysis

𝜀in and 𝐿in are fixed first and then |𝐶in | is chosen depending on the

properties of the outer code.

As the decoder of the outer code is used 8
𝜀 times in the de-

coding of the concatenated code, the list size of the concatenated

code will be 𝐿 =
8
𝜀 · 𝐿out = 𝑂𝜀 (exp(exp(exp(log∗ 𝑛)))). The rate

of the concatenated code is 𝑟 = 𝑟out𝑟in = 𝑂
(
𝜀2 · log log |Cin |𝑛in

)
=

𝑒
−𝑂

(
1

𝜀10
log2 1

𝜀

)

.

Finally, since the outer code is efficient and the inner code is ex-

plicit and can be decoded by brute-force in𝑂𝜀 (1) time, the encoding

and decoding procedures run in polynomial time. This concludes

the proof of Theorem 1.2.

5 EXTENSION TO LARGER ALPHABETS

In this section we extend the results presented so far to 𝑞-ary al-

phabets where 𝑞 > 2.

5.1 Feasibility Region: Upper Bound

For an alphabet of size 𝑞, no positive-rate family of deletion codes

can protect against 1 − 1
𝑞 fraction of errors since, with that many

deletions, an adversary can simply delete all but the most frequent
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Figure 5: Infeasible points inside the conjectured feasibility

region. (Illustrated for 𝑞 = 5)

symbol of any codeword. Similarly, for insertion codes, it is not pos-

sible to achieve resilience against𝑞−1 fraction of errors as adversary
would be able to turn any codeword 𝑥 ∈ 𝑞𝑛 to (1, 2, · · · , 𝑞)𝑛 .

The findings of the previous sections on binary alphabets might

suggest that the feasibility region for list-decoding is the region

mapped out by these two points, i.e., 𝛿
1− 1

𝑞

+ 𝛾
𝑞−1 < 1. However, this

conjecture turns out to be false. The following theorem provides a

family of counterexamples.

Theorem 5.1. For any alphabet size 𝑞 and any 𝑖 = 1, 2, · · · , 𝑞,
no positive-rate 𝑞-ary infinite family of insertion-deletion codes can

list-decode from 𝛿 =
𝑞−𝑖
𝑞 fraction of deletions and 𝛾 =

𝑖 (𝑖−1)
𝑞 fraction

of insertions.

Proof. Take a codeword 𝑥 ∈ [𝑞]𝑛 . With 𝛿𝑛 =
𝑞−𝑖
𝑞 · 𝑛 deletions,

the adversary can delete the 𝑞 − 𝑖 least frequent symbols to turn

𝑥 into 𝑥 ′ ∈ Σ
𝑛 (1−𝛿)
𝑑

for some Σ𝑑 = {𝜎1, · · · , 𝜎𝑖 } ⊆ [𝑞]. Then,
with 𝛾𝑛 = 𝑛(1 − 𝛿) (𝑖 − 1) = 𝑛

𝑖 (𝑖−1)
𝑞 insertions, it can turn 𝑥 ′ into

[𝜎1, 𝜎2, · · · , 𝜎𝑖 ]𝑛 (1−𝛿) . Such adversary only allows 𝑂 (1) amount of

information to pass to the receiver. Hence, no such family of codes

can yield a positive rate. □

Note that all points (𝛾, 𝛿) =
(
𝑖 (𝑖−1)

𝑞 ,
𝑞−𝑖
𝑞

)
are located on a second

degree curve inside the conjectured feasibility region 𝛿
1− 1

𝑞

+ 𝛾
𝑞−1 < 1

(see Fig. 5). In the extended version of this paper, we use a simple

time-sharing argument to show that the actual feasibility region is

a subset of the polygon outlined by these points.

Theorem 5.2. For any positive integer 𝑞 > 2, define 𝐹𝑞 as the

concave polygon defined over vertices
(
𝑖 (𝑖−1)

𝑞 ,
𝑞−𝑖
𝑞

)
for 𝑖 = 1, · · · , 𝑞

and (0, 0). (see Fig. 1). 𝐹𝑞 does not include the border except the two

segments [(0, 0), (𝑞 − 1, 0)) and
[
(0, 0),

(
0, 1 − 1

𝑞

))
. Then, for any

pair of positive real numbers (𝛾, 𝛿) ∉ 𝐹𝑞 , there exists no infinite family

of 𝑞-ary codes with positive rate that can correct from 𝛿 fraction of

deletions and 𝛾 fraction of insertions.

5.2 Feasibility Region: Exact Characterization

Finally, wewill show that the feasibility region is indeed equal to the

region 𝐹𝑞 described in Theorem 5.2. The proof closely follows the

steps taken for the binary case but is significantly more technical.

We first formally define 𝑞-ary Bukh-Ma codes and show they are

Figure 6: In the feasibility region for 𝑞 = 5, the line passing

through (1.2, 0.4) and (1.8, 0.3) (indicatedwith red dotted line)

is characterized as 𝛾 + 6𝛿 ≤ 3.6. (Corresponding to 𝑖 = 3 in

Eq. (12))

list-decodable as long as the error rate lies in 𝐹𝑞 and then use the

concatenation in Section 4 to obtain Theorem 1.3.

Theorem 5.3. For any integer 𝑞 ≥ 2, 𝜀 > 0, and sufficiently large

𝑛, let 𝐶
𝑞
𝑛,𝜀 be the following Bukh-Ma code:

𝐶
𝑞
𝑛,𝜀 =

{
(
0𝑟 1𝑟 · · ·𝑞𝑟

) 𝑛
𝑞𝑟

���𝑟 =
(
1

𝜀4

)𝑘
, 𝑘 < log1/𝜀4 𝑛

}

.

For any (𝛾, 𝛿) ∈ (1 − 𝜀)𝐹𝑞 it holds that 𝐶
𝑞
𝑛,𝜀 is list decodable from

any 𝛿𝑛 deletions and 𝛾𝑛 insertions with a list size of 𝑂
(
𝑞5

𝜀2

)
.

We remark that in the case of 𝑞 = 2, Theorem 5.3 improves over

Theorem 1.4 in terms of the dependence of the list size on 𝜀.

5.2.1 Proof Sketch for Theorem 5.3. To prove Theorem 5.3, we

show that Bukh-Ma codes are list-decodable as long as the error

rate (𝛾, 𝛿) lies beneath the line that connects a pair of consecutive

non-zero vertices of 𝐹𝑞 .

In other words, for pairs
(
𝑖 (𝑖−1)

𝑞 ,
𝑞−𝑖
𝑞

)
and

(
𝑖 (𝑖+1)

𝑞 ,
𝑞−𝑖−1

𝑞

)
we

consider the line passing through them (see Fig. 6), i.e.,

𝛾 + (2𝑖)𝛿 =
(2𝑞 − 1)𝑖 − 𝑖2

𝑞
, 𝑖 = 1, · · · , 𝑞 − 1 (12)

and show that as long as 𝛾 + (2𝑧)𝛿 ≤ (1 − 𝜀) (2𝑞−1)𝑧−𝑧
2

𝑞 for some

𝑧 ∈ {1, · · · , 𝑞 − 1}, Bukh-Ma codes are list-decodable. Note that the

union of such areas is equal to (1 − 𝜀)𝐹𝑞 .
The analysis for each line follows the arguments for the binary

case. Namely, we assume that 𝑘 codewords can be converted to

some center string 𝑣 via (𝛾, 𝛿) fraction of errors. Then, using an

appropriate advantage notion and considering some coupled statis-

tic processes obtained by sampling substrings, we show that 𝑘 is

bounded above by some 𝑂𝑞 (poly(1/𝜀)).
The only major difference is that the notion of bias cannot be

directly used for 𝑞-ary alphabets. In this general case, instead of

keeping track of the variance of the bias, we keep track of the sum

of the variances of the frequency of the occurrence of each symbol.

We show that this quantity increases by some constant after each

substring sampling (analogous to Lemma 3.3) by showing that a

positive advantage requires that the frequency of occurrence of at

least one of the symbols to be 𝜀-different for two different values of

the random variable 𝑇 (analogous to Lemma 3.4). The rest of this

533



Optimally Resilient Codes for List-Decoding from Insertions and Deletions STOC ’20, June 22–26, 2020, Chicago, IL, USA

section contains more formal description of generalized notions

and proofs for generalized 𝑞-ary claims.

5.3 Generalized Notation and Preliminaries

To prove Theorem 5.3, we need to generalize some of the notions

and respective preliminary lemmas for the binary case. We start

with defining 𝑖th order advantage.

Definition 5.4 (𝑖th order 𝑞-ary advantage of matching𝑀). For a

pair of positive integers 𝑖 < 𝑞, a pair of 𝑞-ary strings 𝑎 and 𝑏, and a

matching𝑀 between 𝑎 and 𝑏, we define 𝑖th order 𝑞-ary advantage

of 𝑎 to 𝑏 as follows: adv
𝑞,𝑖
𝑀
(𝑎, 𝑏) =

(2𝑖+1) |𝑀 |− |𝑎 |− 𝑖+𝑖2
𝑞 · |𝑏 |

|𝑎 | .

Note that the notion of advantage utilized for the binary case is

obtained for 𝑞 = 2 and 𝑖 = 1 in the above definition. The notions of

𝑖th order advantage between two strings (that is independent of a

specific matching, i.e., adv𝑞,𝑖 (𝑎, 𝑏)) and infinite 𝑖th order advantage

are defined in a similar manner to the binary case.

Remark 5.5. In the same spirit as of the binary case, adv
𝑞,𝑖
𝑀
(𝑎, 𝑏)

is simply the value of |𝑏 |
( (2𝑞−1)𝑖−𝑖2

𝑞 − (2𝑖)𝛿𝑀 − 𝛾𝑀
)
normalized by

the length of 𝑎.

Lemma 5.6. If for strings 𝑎 and 𝑏, adv𝑞,𝑖 (𝑎, 𝑏) ≥ 0, then |𝑎 | and
|𝑏 | are within a 𝑞 factor of each other.

The proof of this lemma is similar to the binary case and can be

found in the extended version of this argument.

Definition 5.7 (𝑞-ary Alternating Strings). For any positive integer

𝑟 , we define the infinite 𝑞-ary alternating string of run-length 𝑟

as 𝐴
𝑞
𝑟 = (1𝑟 2𝑟 · · ·𝑞𝑟 )∞ and denote its prefix of length 𝑙 by 𝐴

𝑞

𝑟,𝑙
=

𝐴
𝑞
𝑟 [1, 𝑙].

5.4 Proof of Theorem 5.3

As mentioned before, Theorem 5.3 can be restated as follows.

Theorem 5.8 (Restatement of Theorem 5.3). For any integer

𝑞 ≥ 2, 𝜀 > 0, sufficiently large 𝑛, and any 𝑧 ∈ {1, 2, · · · , 𝑞 − 1},
the Bukh-Ma code 𝐶𝑛

𝑛,𝜀 from Theorem 5.3 is list decodable from any

𝛿𝑛 deletions and 𝛾𝑛 insertions with a list size 𝑂
(
𝑞5/𝜀2

)
as long as

𝛾 + (2𝑧)𝛿 ≤ (1 − 𝜀) (2𝑞−1)𝑧−𝑧
2

𝑞 .

To prove this restated version, once again, we follow the steps

taken for the proof of Theorem 1.4 and assume for the sake of

contradiction that there exists a string 𝑣 and𝑘 = Ω

(
𝑞5

𝜀2

)
members of

𝐶
𝑞
𝑛,𝜀 like 𝐴

𝑞
𝑟1,𝑛, 𝐴

𝑞
𝑟2,𝑛, · · · , 𝐴

𝑞
𝑟𝑘 ,𝑛 , so that each 𝐴

𝑞
𝑟𝑖 ,𝑛 can be converted

to 𝑣 with 𝐼𝑖 insertions and 𝐷𝑖 deletions where 𝐼𝑖 + (2𝑧)𝐷𝑖 ≤ (1 −
𝜀) (2𝑞−1)𝑧−𝑧

2

𝑞 ·𝑛. We define the indices in a way that 𝑟1 > 𝑟2 > · · · >
𝑟𝑘 . Given the definition of 𝐶

𝑞
𝑛,𝜀 , 𝑟𝑖 ≥ 𝑟𝑖+1

𝜀4
.

Given Remark 5.5 and Lemma 5.6, an argument similar to the

one presented in Lemma 3.1 shows that for all these codewords,

adv𝑞,𝑧 (𝑣, 𝐴𝑞
𝑟𝑖 ,𝑛) ≥

𝜀
𝑞 .

We define the following stochastic processes similar to the binary

case. We split the string 𝑣 into substrings of size 𝑙1 = 𝑟1𝜀
2, pick one

uniformly at random and denote it by 𝑣1. We define random variable

𝐴1 = adv𝑞,𝑧 (𝑣1, 𝐴𝑞
𝑟1 ) and random variables 𝐹

𝑝
1 for 𝑝 = 1, 2, · · · , 𝑞 as

the frequency of the occurrence of symbol 𝑝 in 𝑣1. In other words,

𝐹
𝑝
1 =

count𝑝 (𝑣1)
|𝑣1 | . We continue this process for 𝑗 = 2, 3, · · · , 𝑘 by

splitting each 𝑣 𝑗−1 into substrings of length 𝑙 𝑗 = 𝑟 𝑗𝜀
2, picking 𝑣 𝑗

uniformly at random, and defining 𝐴 𝑗 = adv𝑞,𝑧 (𝑣 𝑗 , 𝐴𝑞
𝑟 𝑗 ) and 𝐹

𝑝
𝑗 =

count𝑝 (𝑣𝑗 )
|𝑣𝑗 | for all 𝑝 ∈ {1, 2, · · · , 𝑞}. We then define the sequence

of real numbers 𝑓1, 𝑓2, · · · , 𝑓𝑘 as follows: 𝑓𝑖 =
∑𝑞
𝑝=1 Var(𝐹

𝑝
𝑖 ). This

series of real numbers will play the role of Var(𝐵𝑖 ) in the binary

case.

Lemma 5.9. The following hold for𝐴1, · · · , 𝐴𝑘 and 𝐹
𝑝
1 , · · · , 𝐹

𝑝

𝑘
for

all 𝑝 ∈ {1, 2, · · · , 𝑞}: (1) E[𝐹𝑝𝑖 ] = 𝐹
𝑝
𝑖−1, and (2) E[𝐴𝑖 ] ≥ 𝜀

𝑞 .

Proof. Since 𝑣𝑖 is a substring of 𝑣𝑖−1 chosen uniformly at ran-

dom, the overall frequency of symbol 𝑝 is equal to the average

frequency of its occurrence in each substrings. The second item

can be derived as in Lemma 3.2. □

The next lemma mimics Lemma 3.3 for the binary case.

Lemma 5.10. For the sequence 𝑓1, 𝑓2, · · · , 𝑓𝑘 , we have that 𝑓𝑖+1 ≥
𝑓𝑖 + Ω(𝜀2/𝑞4) .

Using Lemma 5.10, Theorem 5.8 can be simply proved as follows.

Proof of Theorem 5.8. Note that each 𝑓𝑖 is the summation of

the variance of 𝑞 random variables that take values in [0, 1]. There-
fore, their value cannot exceed 𝑞. Since 𝑓𝑖+1 ≥ 𝑓𝑖 + Ω(𝜀2/𝑞4), the
total length of the series, 𝑘 , may not exceed 𝑂

(
𝑞5

𝜀2

)
. This implies

that the list size is 𝑂
(
𝑞5

𝜀2

)
. □

We now present the proof of Lemma 5.10.

Proof of Lemma 5.10. To relate 𝑓𝑖 and 𝑓𝑖+1, we utilize the law
of total variance as follows:

Var(𝐹𝑝𝑖+1) = Var
(
E[𝐹𝑝𝑖+1 |𝑣𝑖 ]

)
+ E

[
Var(𝐹𝑝𝑖+1 |𝑣𝑖 )

]

= Var
(
𝐹
𝑝
𝑖

)
+ E

[
Var(𝐹𝑝𝑖+1 |𝑣𝑖 )

]
(13)

Equation (13) comes from the fact that the average frequency

of symbol 𝑝 in substrings of length 𝑙𝑖+1 of 𝑣𝑖 is equal to the fre-

quency of 𝑝 in 𝑣𝑖 . Having this, we see that it suffices to show that

E

[
Var(𝐹𝑝𝑖+1 |𝑣𝑖 )

]
≥ Ω

(
𝜀2/𝑞4

)
. Similar to Lemma 3.3 we define 𝐸 𝑗

for 𝑗 = 1, 2, · · · , 𝑞 and 𝐸𝑒 respectively as the event that the projec-

tion of 𝑣𝑖+1 falls inside a 𝑗𝑟𝑖+1 in𝐴𝑟𝑖+1 or a string containing multiple

symbols. We also define the random variable𝑇 out of {𝑒, 1, 2, · · · , 𝑞}
that indicates which one of these events is realized. Once again, we

use the law of total variance to bound E
[
Var(𝐹𝑝𝑖+1 |𝑣𝑖 )

]
.

E

[
Var(𝐹𝑝𝑖+1 |𝑣𝑖 )

]
= E𝑣𝑖

[
Var𝑇

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇

] )

+ E𝑇
[
Var(𝐹𝑝𝑖+1 |𝑣𝑖 ,𝑇 )

] ]

≥ E𝑣𝑖
[
Var𝑇

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇

] )]
(14)
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Combining (13) and (14) gives

Var(𝐹𝑝𝑖+1) ≥ Var
(
𝐹
𝑝
𝑖

)
+ E𝑣𝑖

[
Var𝑇

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇

] )]

⇒
𝑞∑

𝑝=1

Var(𝐹𝑝𝑖+1) ≥
𝑞∑

𝑝=1

Var
(
𝐹
𝑝
𝑖

)
+

𝑞∑

𝑝=1

E𝑣𝑖

[
Var𝑇

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇

] )]

⇒ 𝑓𝑖+1 ≥ 𝑓𝑖 + E𝑣𝑖


𝑞∑

𝑝=1

Var𝑇

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇

] )
(15)

Note that the term Var𝑇 (E[𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇 ]) refers to the variance of a

(𝑞 + 1)-valued random variable that takes the value E𝑣𝑖 [𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇 =

𝑡] with probability Pr{𝑇 = 𝑡 |𝑣𝑖 } for 𝑡 ∈ {𝑒, 1, 2, · · · , 𝑞}. Once again,
we present a crucial lemma that bounds from below the sum of

variances of frequencies with respect to𝑇 assuming that the overall

advantage is large enough.

Lemma 5.11. For any realization of 𝑣𝑖 , the following holds true if

adv𝑞,𝑧 (𝑣𝑖 , 𝐴𝑟𝑖+1 ) ≥ 3𝑞𝜀2:

𝑞∑

𝑝=1

Var𝑇

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇

] )
≥

(
adv𝑞,𝑧 (𝑣𝑖 , 𝐴𝑟𝑖+1 ) − 3𝑞𝜀2

2𝑧 + 1

)2

We defer the proof of Lemma 5.11 to Section 5.6. Using Jensen

inequality, the fact that 𝑧 ≤ 𝑞, and Lemma 5.11 along with (15)

give that 𝑓𝑖+1 ≥ 𝑓𝑖 +E𝑣𝑖

[(
adv𝑞,𝑧 (𝑣𝑖 ,𝐴𝑟𝑖+1 )−3𝑞𝜀2

2𝑧+1

)2]

= 𝑓𝑖 +Ω
(
𝜀2

𝑞4

)
for

sufficiently small 𝜀 > 0. □

5.5 Proof of Theorem 1.3

To establish Theorem 1.3, we closely follow the concatenation

scheme presented in Section 4. In the following, we provide a high-

level description of the proof skipping the details mentioned in

Section 4 and highlighting the necessary extra steps.

The construction of the concatenated code is exactly as in Sec-

tion 4 with the exception that the inner code is defined over an

alphabet of size 𝑞. Note that if (𝛾, 𝛿) ∈ (1 − 𝜀)𝐹𝑞 , then (𝛾, 𝛿) lies
underneath one of the lines in the set of lines represented by (12).

In other words, there exists some 𝑧 ∈ {1, 2, · · · , 𝑞 − 1} for which
𝛾 + (2𝑧)𝛿 ≤ (1 − 𝜀)

( (2𝑞−1)𝑧−𝑧2
𝑞

)
. Similar to Section 4, we define

the notion of error count for each block in the codewords of the

concatenated code as (𝐼 + 2𝑧 · 𝐷) · 𝑞

(2𝑞−1)𝑧−𝑧2 where 𝐷 and 𝐼 de-

note the number of deletions and insertions occurred in the block

respectively. As in Section 4 one can show that at least 3𝜀
4 · 𝑛out

of the blocks contain no more than
(
1 − 𝜀

4

)
𝑛in error count. We

denote the set of all such blocks by 𝑆 . Once again, we partition 𝑆

into subsets 𝑆1, 𝑆2, · · · depending on the number of deletions oc-

curred in the set. More precisely, we define 𝑆𝑖 ⊆ 𝑆 as the set of

blocks in 𝑆 that contain a number of deletions that is in the range[
𝑛in · 𝜀

16𝑞 · (𝑖 − 1), 𝑛in ·
𝜀
16𝑞 · 𝑖

)
for 𝑖 = 1, 2, · · · , 16𝑞/𝜀. Once again,

the following hold true:

(1) We have that 𝑆 = ¤⋃16𝑞/𝜀
𝑖=1 𝑆𝑖 . By the Pigeonhole principle, for

some 𝑖∗ ∈ [1, 16𝑞/𝜀], |𝑆𝑖∗ | ≥ 3𝜀2

64𝑞𝑛out.

(2) Take some 𝑖 ∈ {1, 2, · · · , 16𝑞/𝜀} and some block in 𝑆𝑖 . Say 𝐷

deletions have occurred in that block. Then, the total number of

insertions is at most (1−𝜀/4) (2𝑞−1)𝑧−𝑧
2

𝑞 𝑛in−2𝑧𝐷 . Therefore, the

total length of the block is 𝑛in−𝐷 (1−𝜀/4) (2𝑞−1)𝑧−𝑧
2

𝑞 𝑛in−2𝑧𝐷

= 𝑛in ·
[
1 +

(
1 − 𝜀

4

) (2𝑞 − 1)𝑧 − 𝑧2
𝑞

]
− (2𝑧 + 1)𝐷 (16)

which is no more than

𝑛in ·
[
1 +

(
1 − 𝜀

4

) (2𝑞 − 1)𝑧 − 𝑧2
𝑞

− 𝜀

16𝑞
(𝑖 − 1) (2𝑧 + 1)

]
(17)

Based on these observations, it is easy to verify that the de-

coding algorithm and analysis as presented in Section 4 and

Algorithm 1 work for the 𝑞-ary case with the following minor

modifications:

(a) Based on (17), the parameter𝑤 determining the length of the

window should be

𝑤 =



𝑛in ·
[
1 +

(
1 − 𝜀

4

) (2𝑞−1)𝑧−𝑧2
𝑞 − 𝜀

16𝑞 (𝑖 − 1) (2𝑧 + 1)
]

𝑛in𝜀/16



+ 1.

(18)

(b) As in (11), parameter 𝜀in has to be chosen such that the er-

ror count in decoding windows does not exceed 𝑛in (1 −
𝜀in). Note that the choice of shifting steps for the decod-

ing window from (18) may add up to 𝑛in𝜀
16 additional in-

sertions to the decoding window. Further, there is up to

𝑛in
𝜀
16𝑞 uncertainty in the total length of the block from

(16) since 𝐷 ∈
[
𝑛in · 𝜀

16𝑞 · (𝑖 − 1), 𝑛in ·
𝜀
16𝑞 · 𝑖

)
. This can also

add up to 𝑛in
𝜀
16𝑞 (2𝑧 + 1) ≤ 𝜀

8 insertions. Therefore, we

need 𝑛in (1 − 𝜀/4) + 𝑛in
( 𝜀
16 +

𝜀
8

)
· 𝑞

(2𝑞−1)𝑧−𝑧2 ≤ 𝑛in (1 − 𝜀in) .
Note that

𝑞

(2𝑞−1)𝑧−𝑧2 ≤
𝑞

2𝑞−2 ≤ 1. Hence, it suffuces that

1 − 𝜀
4 +

𝜀
8 +

𝜀
16 ≤ 1 − 𝜀in or equivalently, 𝜀in ≤ 𝜀

16 .

(c) Some modifications are necessary to the parameters of the

outer code. Notably, for alphabet size 𝑞, |𝑆𝑖∗ | ≥ 3𝜀2

64𝑞𝑛out and

the fraction of deletions can be as high as 1− 1
𝑞 . This requires

𝛿out = 1 − 3𝜀2

128𝑞2
.

(d) Finally, note the the value of 𝑧 is not know to the decoder.

So the decoder has to run the algorithm with modifications

mentioned above for all possible values of 𝑧 = 1, 2, · · · , 𝑞 − 1
and the output the union of all lists produced.

5.6 Proof of Lemma 5.11

We break down this proof into four steps. In the first step, similar

to Lemma 3.4, we modify 𝑣𝑖 and 𝐴𝑟𝑖+1,𝑛 into a simpler structure

without significantly changing the advantage. In the second step,

we provide an upper bound for the advantage in this modified

version that depends on the local frequencies of symbols, more

specifically, on what we refer to as E
[
𝐹
𝑗
𝑖+1 |𝑣𝑖 ,𝑇 = 𝑗

]
. In Step 3, we

show that these upper-bounds would yield a non-positive value on

the advantage if one replaces the local frequencies with the overall

frequency of symbols in 𝑣𝑖 , i.e., 𝐹
𝑗
𝑖 . In the fourth and last step, we

show that this means that the local frequencies have to significantly

deviate from global ones to attain the advantage achieved by 𝑀̄𝑖

(i.e., adv
𝑞,𝑧

𝑀̄𝑖
), so much that the lower-bound promised in the lemma’s

statement is achieved.
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Step 1. Modifying 𝑣𝑖 and 𝐴𝑟𝑖+1,𝑛 for the sake of simplicity: The

proof starts with modifying 𝑣𝑖 , 𝐴𝑟𝑖+1,𝑛 , and the advantage-yielding

matching𝑀𝑖 between them in a way that only slightly changes the

value of advantage taking steps identical to the one in Lemma 3.4.

Similar to Lemma 3.4, we denote the projection of 𝑣𝑖 under𝑀𝑖 by

𝑔 = 𝑣𝑖 → 𝑀𝑖 . (See Fig. 3 for a depiction of the steps in binary case.)

(1) First, we delete all substrings of𝑈𝑒śi.e., substrings of length

𝑙𝑖+1 in 𝑣𝑖 whose projection does not entirely fall into some

stretch of 𝑗𝑟𝑖+1śfrom 𝑣𝑖 .

(2) We reorder the substrings of length 𝑙𝑖+1 in 𝑣𝑖 by shifting all

𝑈 𝑗 substrings together and the projections in 𝑔 to preserve

the remainder of𝑀𝑖 from step 1.

(3) At this point, string 𝑔 consists of a stretch of symbol 1 fol-

lowed by a stretch of symbol 2, etc. If the length of all

stretches are not equal, we add adequate symbols to each

stretch to make 𝑔 have the form of 1𝑡2𝑡 · · ·𝑞𝑡 .
To track the changes in adv

𝑞,𝑧
𝑀𝑖

during this transformation, we

track how |𝑀𝑖 |, |𝑣𝑖 | and |𝑔| change throughout the three steps men-

tioned above.

In the first step, a total of up to |𝑈𝑒 |𝑙𝑖+1 elements are removed

from 𝑣𝑖 and𝑀𝑖 . Note that since the run length of 𝐴𝑟𝑖+1 is 𝑟𝑖+1, there

can only be
|𝑔 |
𝑟𝑖+1

substrings in 𝑈𝑒 . Therefore, |𝑈𝑒 |𝑙𝑖+1 ≤ |𝑔 |𝑙𝑖+1𝑟𝑖+1
=

|𝑔|𝜀2 ≤ 2𝜀2 |𝑣𝑖 |.
The second step preserves |𝑀𝑖 |, |𝑣𝑖 | and |𝑔|.
Finally, since 𝑔 is a substring of 𝐴𝑟𝑖+1 , the third step increases |𝑔|

only by up to 𝑞𝑟𝑖+1. Note the run length of the 𝐴𝑟𝑖+1s and conse-

quently 𝑙𝑖+1s are different by a multiplicative factor of at least 1
𝜀4

by

the definition of the code C. Therefore, 𝑞𝑟𝑖+1 =
𝑞𝑙𝑖+1
𝜀2

=
𝑞𝑙𝑖+1 |𝑣𝑖 |
𝜀2 |𝑣𝑖 | =

𝑞𝑙𝑖+1 |𝑣𝑖 |
𝜀2𝑙𝑖

≤ 𝜀2𝑞 |𝑣𝑖 |.

Overall, the value of the adv
𝑞,𝑧
𝑀𝑖

=
(2𝑧+1) |𝑀 |− |𝑣𝑖 |− 𝑧+𝑧2

𝑞 · |𝑔 |
|𝑣𝑖 | can be

affected by a maximum of 2𝑧 × 2𝜀2 |𝑣𝑖 | + 𝑞𝜀2 |𝑣𝑖 | = (2𝑧 + 𝑞)𝜀2 |𝑣𝑖 | ≤
3𝑞𝜀2 |𝑣𝑖 | decrease in the numerator and 𝜀2 |𝑣𝑖 | decrease in the de-

nominator. Therefore, the eventual advantage does not drop below

adv
𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2. Let us denote the transformed versions of 𝑣𝑖 , 𝑔, and

𝑀𝑖 by 𝑣𝑖 , 𝑔, and 𝑀̄𝑖 respectively. We have shown that

adv
𝑞,𝑧

𝑀̄𝑖
≥ adv

𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2 . (19)

Step 2. Bounding Above adv
𝑞,𝑧

𝑀̄𝑖
with 𝑓 ∗: Let 𝑣𝑖 = (𝑣1𝑖 , 𝑣

2
𝑖 , · · · , 𝑣

𝑞
𝑖 )

so that 𝑣
𝑗
𝑖 corresponds to the part of 𝑣𝑖 that is mapped to 𝑗𝑡 under

𝑀̄𝑖 . Further, let 𝑓
∗
𝑗 = E

[
𝐹
𝑗
𝑖+1 |𝑣𝑖 ,𝑇 = 𝑗

]
represent the frequency of

the occurrence of symbol 𝑗 in 𝑣
𝑗
𝑖 as a shorthand, i.e., 𝑓

∗
𝑗 =

count𝑗 (𝑣 𝑗𝑖 )
|𝑣 𝑗𝑖 |

and 𝑝 𝑗 be the relative length of 𝑣
𝑗
𝑖 , i.e., 𝑝 𝑗 =

|𝑣 𝑗𝑖 |
|𝑣𝑖 | . In this section,

we compute an upperbound for adv
𝑞,𝑧

𝑀̄𝑖
that depends on 𝑓 ∗𝑗 s. For

the sake of simplicity, from now on we assume, without loss of

generality, that count1 (𝑣1𝑖 ) ≥ count2 (𝑣2𝑖 ) ≥ · · · ≥ count𝑞 (𝑣𝑞𝑖 ) or
equivalently, 𝑓 ∗1 𝑝1 ≥ 𝑓 ∗2 𝑝2 ≥ · · · ≥ 𝑓 ∗𝑞 𝑝𝑞 .

Consider the matching between 𝑣𝑖 and 𝑝 that, for any 𝑗 ∈
{1, 2, · · · , 𝑞} matches as many 𝑗s as possible from 𝑗𝑡 to 𝑣

𝑗
𝑖 . This

matching clearly yields the largest possible advantage between the

two that is an upperbound for the adv
𝑞,𝑧

𝑀̄𝑖
. Similar to the binary case,

we find a 𝑡 that maximizes this advantage and use its advantage as

an upper-bound for adv
𝑞,𝑧

𝑀̄𝑖
.

Let 𝑐 be so that 𝑓 ∗𝑐 |𝑣𝑐𝑖 | > 𝑡 ≥ 𝑓 ∗𝑐+1 |𝑣
𝑐+1
𝑖 | . Then, increasing 𝑡 by

one would increase the length of 𝑝 by 𝑞 and increases the size of the

matching by 𝑐 . To see the effect of this increment on the advantage,

note that the denominator does not change and the numerator

changes by 𝑐 (2𝑧 + 1) − 𝑧+𝑧2
𝑞 ·𝑞. This change in advantage is positive

as long as 𝑐 (2𝑧+1) − (𝑧+𝑧2) ≥ 0⇔ 𝑐 ≥ 𝑧+𝑧2
2𝑧+1 =

𝑧
2 +

(
1
4 −

1
4(2𝑧+1)

)
.

Note that the term 1
4 −

1
4(2𝑧+1) is always between

[
0, 14

]
. Hence,

incrementing 𝑡 increases the advantage as long as 𝑐 ≥ ⌊ 𝑧2 ⌋ + 1.
This means that the highest possible advantage is derived when

𝑡 = 𝑓 ∗𝑤 |𝑣𝑤𝑖 | for 𝑤 = ⌊ 𝑧2 ⌋ + 1. With this value for 𝑡 , the matching

contains 𝑓 ∗𝑗 |𝑣
𝑗
𝑖 | edges between 𝑗𝑡 and |𝑣 𝑗𝑖 | for all 𝑗 > 𝑤 and 𝑡 edges

between 𝑗𝑡 and |𝑣 𝑗𝑖 | for 𝑗 ≤ 𝑤 . Therefore, the size of this matching

is 𝑡𝑤 +∑𝑞
𝑗=𝑤+1 𝑓

∗
𝑗 |𝑣

𝑗
𝑖 |. This yields the following advantage

(2𝑧 + 1)
[
𝑡𝑤 +∑𝑞

𝑗=𝑤+1 𝑓
∗
𝑗 |𝑣

𝑗
𝑖 |

]
− |𝑣𝑖 | − 𝑧+𝑧2

𝑞 · 𝑞𝑡
|𝑣𝑖 |

= (2𝑧 + 1)

𝑓 ∗𝑤𝑝𝑤𝑤 +

𝑞∑

𝑗=𝑤+1
𝑓 ∗𝑗 𝑝 𝑗


− 1 − (𝑧 + 𝑧2) · 𝑓 ∗𝑤𝑝𝑤

=
[
(2𝑧 + 1)𝑤 − (𝑧 + 𝑧2)

]
· 𝑓 ∗𝑤𝑝𝑤 + (2𝑧 + 1)

𝑞∑

𝑗=𝑤+1
𝑓 ∗𝑗 𝑝 𝑗 − 1

We remind that this is an upper-bound on the adv
𝑞,𝑧

𝑀̄𝑖
. Next, we plug

in 𝑤 = ⌊ 𝑧2 ⌋ + 1 into this bound. Note that (2𝑧 + 1)𝑤 − (𝑧 + 𝑧2) =
𝑧 (2𝑤 − 𝑧) +𝑤 − 𝑧 which is equal to 3𝑧+2

2 if 𝑧 is even and 𝑧+1
2 if 𝑧 is

odd.

Therefore, we have the following set of upper-bounds on the

advantage

adv
𝑞,𝑧

𝑀̄𝑖
≤ 3𝑧 + 2

2
· 𝑓 ∗𝑤𝑝𝑤 + (2𝑧 + 1)

𝑞∑

𝑗=𝑤+1
𝑓 ∗𝑗 𝑝 𝑗 − 1, If 𝑧 is even (20)

adv
𝑞,𝑧

𝑀̄𝑖
≤ 𝑧 + 1

2
· 𝑓 ∗𝑤𝑝𝑤 + (2𝑧 + 1)

𝑞∑

𝑗=𝑤+1
𝑓 ∗𝑗 𝑝 𝑗 − 1, If 𝑧 is odd (21)

Step 3. Proving Non-positivity of the Bound from Step 3 for Unit

Sum Vectors: In this step, we show that the bounds (20) and (21) on

advantage that were presented in Step 2 are necessarily non-positive

for any vector (𝑓 ∗1 , · · · , 𝑓
∗
𝑞 ) with unit sum including the vector of

overall frequencies 𝑓 = (𝑓1, · · · , 𝑓𝑞) where 𝑓𝑗 =
count𝑗 (𝑣𝑖 )
|𝑣𝑖 | = 𝐹

𝑗
𝑖 . In

Step 4, we use this fact to show that 𝑓 ∗ needs to deviate noticeably

from 𝑓 which gives that the variance of frequencies with respect to

𝑇 is large enough, thus finishing the proof.

Proposition 5.12. Let (𝑝1, · · · , 𝑝𝑞) and (𝑓 ∗1 , · · · , 𝑓
∗
𝑞 ) be two pos-

itive real vectors with unit sum that satisfy 𝑓 ∗1 𝑝1 ≥ 𝑓 ∗2 𝑝2 ≥ · · · ≥
𝑓 ∗𝑞 𝑝𝑞 . Then, for all integers 1 ≤ 𝑧 < 𝑞, the following hold for

𝑤 = ⌊ 𝑧2 ⌋ + 1:
(1) If 𝑧 is even, 3𝑧+22 · 𝑓 ∗𝑤𝑝𝑤 + (2𝑧 + 1)

∑𝑞
𝑗=𝑤+1 𝑓

∗
𝑗 𝑝 𝑗 ≤ 1.

(2) If 𝑧 is odd, 𝑧+12 · 𝑓 ∗𝑤𝑝𝑤 + (2𝑧 + 1)
∑𝑞

𝑗=𝑤+1 𝑓
∗
𝑗 𝑝 𝑗 ≤ 1.
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The proof of Proposition 5.12 can be found in the extended

version of this article.

Step 4. Large Deviation of 𝑓 ∗s from 𝑓 s and Large Variance: Here

we finish the proof assuming 𝑧 is odd. The even case can be proved

in the same way. Note that Proposition 5.12 gives that for the overall

frequency vector 𝑓 which has a unit sum,

𝑧 + 1
2
· 𝑓𝑤𝑝𝑤 + (2𝑧 + 1)

𝑞∑

𝑗=𝑤+1
𝑓𝑗𝑝 𝑗 − 1 ≤ 0. (22)

However, (19) and (21) imply that for local frequency vector 𝑓 ∗

𝑧 + 1
2
· 𝑓 ∗𝑤𝑝𝑤 + (2𝑧 + 1)

𝑞∑

𝑗=𝑤+1
𝑓 ∗𝑗 𝑝 𝑗 − 1 ≥ adv

𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2 . (23)

Subtracting (22) from (23) gives that

𝑧 + 1
2
· 𝑝𝑤 (𝑓 ∗𝑤 − 𝑓𝑤) + (2𝑧 + 1)

𝑞∑

𝑗=𝑤+1
(𝑓 ∗𝑗 − 𝑓𝑗 )𝑝 𝑗 ≥ adv

𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2 .

⇒ 𝑧 + 1
2
· 𝑝𝑤 |𝑓 ∗𝑤 − 𝑓𝑤 | + (2𝑧 + 1)

𝑞∑

𝑗=𝑤+1
|𝑓 ∗𝑗 − 𝑓𝑗 |𝑝 𝑗 ≥ adv

𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2 .

⇒ (2𝑧 + 1)
𝑞∑

𝑗=𝑤

|𝑓 ∗𝑗 − 𝑓𝑗 |𝑝 𝑗 ≥ adv
𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2 .

⇒
𝑞∑

𝑗=𝑤

|𝑓 ∗𝑗 − 𝑓𝑗 |𝑝 𝑗 ≥
adv

𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2

2𝑧 + 1 .

This means that there exists some 𝑗0 for which |𝑓 ∗𝑗0 − 𝑓𝑗0 |𝑝 𝑗0 ≥
adv

𝑞,𝑧

𝑀𝑖
−3𝑞𝜀2

2𝑧+1 ⇒ (𝑓 ∗𝑗0 − 𝑓𝑗0 )2𝑝 𝑗0 ≥ (𝑓 ∗𝑗0 − 𝑓𝑗0 )2𝑝2𝑗0 ≥
(
adv

𝑞,𝑧

𝑀𝑖
−3𝑞𝜀2

2𝑧+1

)2
.

Note that
𝑞∑

𝑝=1

Var𝑇

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇

] )

=

𝑞∑

𝑝=1

𝑞∑

𝑗=1

(
E

[
𝐹
𝑝
𝑖+1 |𝑣𝑖 ,𝑇 = 𝑗

]
− 𝐹𝑝𝑖

)2
Pr{𝑇 = 𝑗 |𝑣𝑖 }

≥
(
E

[
𝐹
𝑗0
𝑖+1 |𝑣𝑖 ,𝑇 = 𝑗0

]
− 𝐹 𝑗0

𝑖

)2
Pr{𝑇 = 𝑗0 |𝑣𝑖 }

= (𝑓 ∗𝑗0 − 𝑓𝑗0 )2𝑝 𝑗0 ≥
(
adv

𝑞,𝑧
𝑀𝑖
− 3𝑞𝜀2

2𝑧 + 1

)2
.

□
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