Optimally Resilient Codes for List-Decoding
from Insertions and Deletions

Venkatesan Guruswami*
venkatg@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT

We give a complete answer to the following basic question: “What
is the maximal fraction of deletions or insertions tolerable by g-ary
list-decodable codes with non-vanishing information rate?”

This question has been open even for binary codes, including
the restriction to the binary insertion-only setting, where the best-
known result was that a y < 0.707 fraction of insertions is tolerable
by some binary code family.

For any desired ¢ > 0, we construct a family of binary codes
of positive rate which can be efficiently list-decoded from any
combination of y fraction of insertions and ¢ fraction of deletions
as long as y + 26 < 1 — ¢. On the other hand, for any y,§ with
y + 28 = 1 list-decoding is impossible. Our result thus precisely
characterizes the feasibility region of binary list-decodable codes
for insertions and deletions.

We further generalize our result to codes over any finite alphabet
of size gq. Surprisingly, our work reveals that the feasibility region
for ¢ > 2is not the natural generalization of the binary bound above.
We provide tight upper and lower bounds that precisely pin down
the feasibility region, which turns out to have a (g — 1)-piece-wise
linear boundary whose g corner-points lie on a quadratic curve.

The main technical work in our results is proving the existence
of code families of sufficiently large size with good list-decoding
properties for any combination of §, y within the claimed feasi-
bility region. We achieve this via an intricate analysis of codes
introduced by [Bukh, Ma; SIAM J. Discrete Math; 2014]. Finally, we
give a simple yet powerful concatenation scheme for list-decodable
insertion-deletion codes which transforms any such (non-efficient)
code family (with vanishing information rate) into an efficiently
decodable code family with constant rate.

CCS CONCEPTS
» Mathematics of computing — Coding theory.
*Supported in part by NSF grant CCF-1814603.

Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-
1910588, NSF CAREER award CCF-1750808 and a Sloan Research Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384262

Bernhard Haeupler'
haeupler@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

524

Amirbehshad Shahrasbi’

shahrasbi@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

KEYWORDS

Coding for Insertions and Deletions, List Decoding, Error Resilience

ACM Reference Format:

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi.
2020. Optimally Resilient Codes for List-Decoding from Insertions and
Deletions. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC ’20), June 22-26, 2020, Chicago, IL, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384262

1 INTRODUCTION

Error correcting codes have the ability to efficiently correct large
fractions of errors while maintaining a large communication rate.
The fundamental trade-offs between these two conflicting desider-
ata have been intensely studied in information and coding theory.
Algorithmic coding theory has further studied what trade-offs can
be achieved efficiently, i.e., with polynomial time encoding and
decoding procedures.

This paper studies insdel codes, i.e., error correcting codes with
a large minimum edit distance, which can correct synchronization
errors such as insertions and deletions. While codes for Hamming
errors and the Hamming metric are quite well understood, ins-
del codes have largely resisted such progress but have attracted
a lot of attention recently [3, 5, 7-9, 12, 14, 16-19, 21, 25, 26]. A
striking example of a basic question that is open in the context of
synchronization errors is the determination of the maximal frac-
tion of deletions or insertions a unique- or list-decodable binary
code with non-vanishing rate can tolerate. That is, we do not even
know at what fraction of errors the rate/distance tradeoff for ins-
del codes hits zero rate. These basic and intriguing questions are
open even if one just asks about the existence of codes, irrespective
of computational considerations, and even when restricted to the
insertion-only setting.

In this paper we fully answer these questions for list-decodable
binary codes and more generally for codes over any alphabet of a
fixed size q. Our results are efficient and work for any combination
of insertions and deletions from which list decoding is information-
theoretically feasible at all.

1.1 Prior Results and Related Works

The study of codes for insertions and deletions has a long history
and goes back to studies of Levenshtein[24] in the 60s. We refer to
the surveys by Sloan [31], Mercier et al. [28] and Mitzenmacher [29]
for a more extensive background, and focus here on works related to
the main thrust of this paper, namely the maximal tolerable fraction
of worst-cast deletions or insertions for unique- and list-decodable
code families with non-vanishing rate. We stress that our focus is

STOC 20, June 22-26, 2020, Chicago, IL, USA

on worst-case patterns of insdel errors subject to bounds on the
fraction of insertions and the fraction of deletions allowed. There
is also a rich body of work on tackling random insdel errors, which
is not the focus of this work.

Unique Decoding. Let us first review the situation for unique de-
coding, where the decoder must determine the original transmitted
codeword. For unique decoding of binary codes, the maximal tol-
erable fraction of deletions is easily seen to be at most % because
otherwise either all zeros or all ones in a transmitted codeword
can be deleted. (For g-ary codes, this fraction becomes 1 — 1/q.)
On the other hand, for a long time the best (existential) possibility
results for unique-decodable binary codes stemmed from analyzing
random binary codes.

In the Hamming setting, random codes often achieve the best
known parameters and trade-offs, and a lot of effort then goes into
finding efficient constructions and decoding algorithms for codes
that attempt to come close to the random constructions. However,
the edit distance is combinatorially intricate and even analyzing
the expected edit distance of two random strings, which is the first
step in analyzing random codes, is highly non-trivial.

Lueker [27], improving upon earlier results by Dancik and Pa-
terson [10, 11], proved that the expected fractional length of the
longest common subsequence between two random strings lies
between 0.788071 and 0.826280 (the exact value is still unknown).
Using this, one can show that a random binary code of positive rate
can tolerate between 0.23 and 0.18 fraction of deletions or inser-
tions. Edit distance of random g-ary strings were studied by Kiwi,
Loebl, and Matousek[23], leading to positive rate random codes
by Guruswami and Wang [14] that correct 1 — 6(\/%7) fraction of

deletions for asymptotically large g. Because random codes do not
have efficient decoding and encoding procedures these results were
purely existential. Computationally efficient binary codes of non-
vanishing rate tolerating some small unspecified constant fraction
of insertions and deletions were given by Schulman and Zucker-
man [30]. Guruswami and Wang [14] gave binary codes that could
correct a small constant fraction of deletions with rate approaching
1, and this was later extended to handle insertions as well [12].

In the regime of low-rate and large fraction of deletions, Bukh
and Guruswami [4] gave a g-ary code construction that could tol-
erate up to a g—: fraction of deletions, which is % for binary codes.
Note that this beats the performance of random codes. Together

with Hastad [5] they later improved the deletion fraction to 1— 7 +2\/§

or V2 — 1 = 0.414 for binary codes. This remains the best known
result for unique-decodable codes and determining whether there
exist binary codes capable of correcting a fraction of deletions
approaching % remains a fascinating open question.

List decoding. The situation for list-decodable codes over small
alphabets is equally intriguing. In list-decoding, one relaxes the
decoding requirement from having to output the codeword that was
sent to having to produce a (polynomially) small list of codewords
which includes the correct one. The trivial limit of 1/2 fraction
deletions for unique-decoding binary codes applies equally well for
list-decoding. In their paper, Guruswami and Wang [14] showed
that this limit can be approached by efficiently list-decodable binary

525

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi

codes. Similarly, g-ary codes list-decodable from a deletion fraction
approaching the optimal 1 — 1/q bound can be constructed.

However, the situation was not well understood when insertions
are also allowed. It had already been observed by Levenshtein [24]
that (at least existentially) insertions and deletions are equally hard
to correct for unique-decoding, in that if a code can correct ¢ dele-
tions then it can also correct any combination of ¢ insertions and
deletions. This turns out to be not true for list-decoding. This was
demonstrated pointedly in [20], where it is shown that arbitrary
large y = O(1) fractions of insertions (possibly exceeding 1) can be
tolerated by list-decodable codes over sufficiently large constant
alphabets (see Theorem 2.1), whereas the fraction of deletions § is
clearly bounded by 1. Indeed, the fraction of insertions y does not
even factor into the rate of these list-decodable insertion-deletion
codes—this rate can approach the optimal bound of 1 — § where §
is the deletion fraction. The result in [20], however, applies only
to sufficiently large constant alphabet sizes, and it does not shed
any light on the list-decodability of binary (or any fixed alphabet)
insdel codes.

Considering a combination of insertions and deletions, the fol-
lowing bound is not hard to establish.

ProposITION 1.1. For any integer q and any 8,y > 0 with 1_% +

q
121 there is no family of constant rate codes of length n which
are list-decodable from n deletions and yn insertions.

For the case of insertion-only binary codes, the above limits the
maximum fraction of insertions to 100%, which is twice as large as
the best possible deletion fraction of 1/2.

Turning to existence/constructions of list-decodable codes for
insertions, recall that the codes of Bukh, Guruswami, Hastad (BGH)
could unique-decode (and thus also list-decode) a fraction of 0.414
insertions (indeed any combination of insertions and deletions to-
taling 0.414 fraction). Wachter-Zeh [32] recently put forward a
Johnson-type bound for insdel codes. The classical Johnson bound
works in the Hamming metric, and connects unique-decoding to
list-decoding (for Hamming errors) by showing that any unique-
decodable code must also be list-decodable from an even larger
fraction of corruptions. One intriguing implication of Wachter-
Zeh’s Johnson bound for insdel codes is that any unique-decodable
insdel code which tolerates a % fraction of deletions (or insertions)
would automatically also have to be (existentially) list-decodable
from a 100% fraction of insertions. Therefore, even if one is inter-
ested in unique-decoding, e.g., closing the above-mentioned gap
between V2 — 1 and %, this establishes the search for maximally
list-decodable binary codes from insertions as a good and indeed
necessary step towards this goal. On the other hand, proving any
non-trivial impossibility result bounding the maximal fraction of
insertions of list-decodable binary codes away from 100% would
directly imply an impossibility result for unique-decoding binary
codes from a deletion fraction approaching %

Follow-up work by Hayashi and Yasunaga [22] corrected some
subtle but crucial bugs in [32] and reproved a corrected Johnson
Bound for insdel codes. They furthermore showed that the BGH
codes [5] could be list-decoded from a fraction = 0.707 of insertions.
Lastly, via a concatenation scheme used in [12, 14] they furthermore
made these codes efficient. A recent work of Liu, Tjuawinata, and

Optimally Resilient Codes for List-Decoding from Insertions and Deletions

Xing [26] also provides efficiently list-decodable insertion-deletion
codes and derives a Zyablov-type bound. In summary, for the binary
insertion-only setting, the largest fraction of insertions that we
knew to be list-decodable (even non-constructively) was ~ 0.707.

1.2 Our Results

We close the above gap and show binary codes which can be list-
decoded from a fraction 1 — ¢ fraction of insertions, for any desired
constant ¢ > 0. In fact, we give a single family of codes that are list-
decodable from any mixed combination of y fraction of insertions
and 9 fraction of deletions, as longas 26 +y < 1 —e.

THEOREM 1.2. For any ¢ € (0,1) and sufficiently large n, there
exists a constant rate family of efficient binary codes that are L-list
decodable from any n deletions and yn insertions in poly(n) time
as long as y + 26 < 1 — ¢ where n denotes the block length of the
code, L = O, (exp(exp(exp(log* n)))), and the code achieves a rate

of exp (—E% log? % .

Since the computationally efficient codes from Theorem 1.2
match the bounds from Proposition 1.1 for every 4, y, this nails
down the entire feasibility region for list-decodability from in-
sertions and deletions for the binary case. We stress that while
we get constructive results, even the existence of inefficiently list-
decodable codes, that too just for the insertion-only setting, was
not known prior to this work.

In the above result, the rather weird looking bound on the list-
size is inherited from results on list-decoding from a huge number
insertions over larger alphabets [20], which in turn is inherited from
the list-size bounds for the list-recoverable algebraic-geometric
code constructions in [15].

We use similar construction techniques to obtain codes with pos-
itive rate over any arbitrary alphabet size q that are list-decodable
from any fraction of insertions and deletions under which list-
decoding is possible. We thus precisely identify the feasibility re-
gion for any alphabet size, together with an efficient construction.
Again, recall that the existence of such codes was not known earlier,
even for the insertion-only case.

THEOREM 1.3. For any positive integer q > 2, define Fy as the

concave polygon defined over vertices (% %) fori=1,---,q
and (0,0). (An illustration for q = 5 is presented in Fig. 1). Fq does
not include the border except the two segments [(0,0), (¢ — 1,0)) and
[(0,0), (0,1 —1/q)). Then, forany e > 0 and sufficiently large n, there
exists a family of g-ary codes that, as long as (y, 8) € (1—¢)Fy, are effi-
ciently L-list decodable from any én deletions and yn insertions where

n denotes the block length of the code, L = O(exp(exp(exp(log™ n)))),

and the code achieves a positive rate of exp —E% log? % .

We further show in Section 5 that for any pair of positive real
numbers (y, §) ¢ Fg, there exists no infinite family of g-ary codes
with rate bounded away from zero that can be list decoded from a
d-fraction of deletions plus a y-fraction of insertions.

1.3 Our Techniques

We achieve these results using two ingredients, each interesting in
its own right. The first is a simple new concatenation scheme for

526

STOC 20, June 22-26, 2020, Chicago, IL, USA

0.8¢ 4

Deletion (4)
o 1)
ES)
T T
@
/
/
L

25 3
Insertions (v)

Figure 1: Feasibility region for g = 5.

list-decodable insdel codes which can be used to boost the rate of
insdel codes. The second component, which constitutes the bulk
of this work, is a technically intricate proof of the list-decoding
properties of the Bukh-Ma codes [6] which have good (edit) distance
properties but a tiny sub-constant rate. We note that these codes
were the inner codes in the “clean construction” in the BGH work
on codes unique-decodable from a 1/3 insdel fraction [5]. This
was driven by a property of these codes called the span, which
is a stronger form of edit distance that applies at all scales. The
Bukh-Ma codes were also used by Guruswami and Li [13] in their
existence proof of codes of positive rate for correcting a fraction
of oblivious deletions approaching 1. In this work, the non-trivial
list-decodability property of the Bukh-Ma codes drives our result.

1.3.1 Concatenating List-Decodable Insdel Codes. Our first ingre-
dient is a simple but powerful framework for constructing list-
decodable insertion-deletion codes via code concatenation. Recall
that code concatenation which composes the encoding of an outer
code Coyt with an inner code Cj, whose size equals the alphabet
size of Cout.

In our approach, the outer code Coyt is chosen to be a list-
decodable insdel code Coyt over an alphabet that is some large
function of 1/¢, but which has constant rate and is capable of toler-
ating a huge number of insertions. The inner code Cj, is chosen to
be a list-decodable insdel code over a fixed alphabet of the desired
size g, which has non-trivial list decoding properties for the desired
fraction &, y of deletions and insertions.

We show that even if Cj, has an essentially arbitrarily bad sub-
constant rate and is not efficient, the resulting g-ary insdel code
does have constant rate, and can also be efficiently list decoded
from the same fraction of insertions and deletions as Cj,. For the
problem considered in this paper, this framework essentially pro-
vides efficiency of codes for free. More importantly, it reduces the
problem of finding good constant-rate insdel codes over a fixed al-
phabet to finding a family of good list-decodable insdel codes with
an arbitrarily large number of codewords, and a list-size bounded by
some fixed function of 1/e.

Our decoding procedure for concatenated list-decodable insdel
codes is considerably simpler than similar schemes introduced in
earlier works [5, 12, 14, 30]. Of course, the encoding is simply given
by the standard concatenation procedure. The decoding is done
by (i) list-decoding shifted intervals of the received string using
the inner code Cjy, (ii) creating a single string from the symbols in
these lists, and (iii) using the list-decoding algorithm of the outer

STOC 20, June 22-26, 2020, Chicago, IL, USA

code on this string (viewed as a version of the outer codeword with
some number of deletions and insertions).

The main driving force behind why this simplistic sounding
approach actually works is a judicious choice of the outer code
Cout- Specifically, we use the codes due to Haeupler, Shahrasbi, and
Sudan [20] which can tolerate a very large number of insertions.
This means that the many extra symbols coming from the list-
decodings of the inner code Cj, and the choice of overlapping
intervals does not disrupt the decoding of the outer code.

1.4 Analyzing the Properties of Bukh-Ma Codes

The main technical challenge that remains is to construct or prove
the existence of arbitrarily large binary codes with optimal list
decoding properties for any y, § (and g). For this we turn to a simple
family of codes introduced by Bukh and Ma [6], which consist of
strings (0" 17) 7 which oscillate between 0’s and 1’s with different
frequencies. (Below we will refer to r as the period, and 1/r should
be thought of as the frequency of alternation.)

A simple argument shows that the edit distance between any two
such strings with sufficiently different periods is maximal, result-
ing in a tolerable fraction of edit errors of % for unique decoding.
The Johnson bound of [22, 32] implies that this code must also
be list-decodable from a full fraction 100% of insertions. There-
fore, using these codes as the inner codes in the above-mentioned
concatenation scheme resolves the list-decoding question for the
insertion-only setting. (The deletion-only setting is oddly easier
as just random inner codes suffice, and was already resolved in
[14].) This also raises hope that the Bukh-Ma codes might have
good list-decoding properties for other y, § as well. Fortunately, this
turns out to be true, though establishing this involves an intricate
analysis that constitutes the bulk of the technical work in this paper.

THEOREM 1.4. For any e > 0 and sufficiently large n, let Cp, o be
the following Bukh-Ma code:

k
n 1
Cre=13(0"1")2r r=(—=| k<l .
n,e {() |r (84) < 0g1/€4 n}

For any 8,y > 0 wherey + 26 < 1 — ¢, Cp ¢ is list-decodable from
any 8n deletions and yn insertions with O(¢™3) list size.

In order to prove Theorem 1.4 we first introduce a new correla-
tion measure which expresses how close a string is to any given
frequency (or Bukh-Ma codeword) if one allows for both insertions
and deletions each weighted appropriately. Using this we want to
show that it is impossible to have a single string v which is more
than e-correlated with more than ©,(1) frequencies.

Intuitively, one might expect that each correlation can be (frac-
tionally) attributed to a (disjoint) part of v which would result in
the maximum number of e-close frequencies to be at most 1/¢. This,
however, turned out to be false. Instead, we use a proof technique
which is somewhat reminiscent of the one used to establish the
polarization of the martingale of entropies in the analysis of polar
codes [1, 2].

In more detail, we think of recursively sub-sampling smaller
and smaller nested substrings of v, and analyze the expectation
and variance of the bias between the fraction of 0’s and 1’s in
these substrings. More precisely, we order the run lengths r1, rp, . ..

527

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi

that are e-correlated with v in decreasing order and first sample a
substring v; with r{ > |01| > ry from v. While the expected zero-
one bias in v7 is the same as in v, we show that the variance of t}}lis
bias is an increasing function in the correlation with (0™1"1) 21,
Intuitively, v1 cannot be too uniform on an scale of length [if it is
correlated with ry.

Put differently, in expectation the sampled substring v; will land
in a part of v which is either (slightly) correlated to one of the
long stretches of zeros in v or in a part which is correlated with a
long stretch of ones in v, resulting in at least some variance in the
bias of v1. Because the scales ro, r3, . .. are so much smaller than vy,
this sub-sampling of v; furthermore preserves the correlation with
these scales intact, at least in expectation.

Next we sample a substring vy with rz > |vz| > r3 within o;.
Again, the bias in vy stays the same as the one in v; in expectation
but the sub-sampling introduces even more variance given that
o1 is still non-trivially correlated with the string with period r;.
The evolution of the bias of the strings v1, vy, . . . produced by this
nested sampling procedure can now be seen as a martingale with
the same expectation but an ever increasing variance. Given that
the bias is bounded in magnitude by 1, the increase in variance
cannot continue indefinitely. This limits the number of frequencies
a string v can be non-trivially correlated with, which is exactly
what we were after.

Our generalization to larger g-ary alphabets follows the same
high level blueprint, but is technically even more delicate. Recall
that in the non-binary case, there are (q — 1) different linear trade-
offs between 8, y depending on the exact regime they lie in.

2 PRELIMINARIES
2.1 List-Decodable Insertion-Deletion Codes

The following list-decodable insertion-deletion codes from [20] will
be used as the outer code in our constructions.

THEOREM 2.1 (THEOREM 1.1 FROM [20]). Foreveryd, e € (0,1) and
constant y > 0, there exist a family of list-decodable insdel codes that
can protect against 5-fraction of deletions and y-fraction of insertions
and achieves a rate of 1 — 8 — ¢ or more over an alphabet of size

o
(Yg—tl) (<) = Oy,¢ (1). These codes are list-decodable with lists of
size Lgy,(n) = exp (exp (exp (log™ n))), and have polynomial time
encoding and decoding complexities.

2.2 Strings, Insertions, Deletions, and Distances

In this section we provide preliminary definitions on strings, edit
operations, and related notions.

Definition 2.2 (Count and Bias). We define count,(w) = |{i|lw[i]
a}| as the number of appearances of symbol a in string w. The bias

of a binary string w is the normalized difference between the appear-
count; (w)—county (w)

] [w] ’
With this definition, county(w) = Mhﬂ and count;(w) =
1+bias(w) |

—|wl|.

ances of zeros and ones in w, i.e., bias(w) =

Definition 2.3 (Matching). A matching M of size k between two
strings S and S’ is defined to be two sequences of k integer positions
0<ip<...<ip<|Sland 0 <if < ... <i; < |S'| for which

Optimally Resilient Codes for List-Decoding from Insertions and Deletions

S[ij]
M is simply S[i1], ..., S[ix]. Every common subsequence between
S and S’ implicitly corresponds to a matching and we use the two
interchangeably.

=9 [i}] forall j < k. The subsequence induced by a matching

Definition 2.4 (Advantage of a Matching). Let M be a matching
between two binary strings a and b. The advantage of the matching

M is defined as advy; = W

Definition 2.5 (Advantage). For a given pair of strings a and b,
the advantage of a to b is defined as the advantage of the matching
M that corresponds to the largest common subsequence between
them, ie., adv(a,b) = advpi1cs(qp)- It is easy to verify that the
longest common subsequence M maximizes the advantage among
all matchings from a to b.

We now make the following remark that justifies the notion of
advantage as defined above. Note that any matching between two
strings a and b implies a set of insertions and deletions to convert
b to a which is, to delete all unmatched symbols in b and insert all
unmatched symbols in a within the remaining symbols.

REMARK 2.6. Consider strings a and b and matching M between
them. Think of a as a distorted version of b and let §p; and ypr repre-

sent the fraction of deletions and insertions needed to convert b to a as

suggested by M, i.e., Sp1 = Number ofunmatbclhed symbols in b |b||_|‘]m

|a|| ‘lMl The advyy func-
tion tracks the value of|b|(1 — 28p — ym) normalized by |a| rather
than |b|.

Number of unmatched symbols in a

andyy =

a1l =1
_ 31611 = 1) — 1BI(1 = Sp + yan) = Ib] _ |b
L R R L e v

We will make use of this unnatural normalization later on.

We now extend the definition of advantage to the case where
the second argument is an infinite string.

Definition 2.7 (Infinite Advantage). For a finite string a and in-
finite string b, the advantage of a to b is defined as the minimum
advantage that a has over all substrings of b.

adv(a,b) =

min adv(a,b’).
b'=b[ij]

We now define a family of binary strings called Alternating
Strings.

Definition 2.8 (Alternating Strings). For any positive integer r, we
define the infinite alternating string of run-length r as A, = (0"17)*
and denote its prefix of length [with A,; = A, [1,1].

We finish the preliminaries by the following lemma stating some
properties of the notions defined through this section.

LEMMA 2.9. The following properties hold true:
e For any pair of binary strings S1, Sz where adv(S1,S2) > 0,
lengths of S1 and Sy are within a factor of two of each other,
ie, min(|S;], [Sy]) > ZXUSILIS2)

e For any binary string S and integer r, adv(S, A,) > —%

528

STOC 20, June 22-26, 2020, Chicago, IL, USA

Proor. For the first part, let M = LCS(S1,S2). We have that
adv(S1,S2) = 0 = 3|M| > |S1]|+|S2|, which, as |M| < min(|S1], |S2]),
implies that min(|S], [S2|) > w

For the second part, let n = |S| and assume that b € {0, 1} is the
most frequent bit in S and there are m occurrences of b in S. Take a
substring S’ in A, as the smallest string that starts at the beginning
of a b" block and contains the same number of bs as S. The size
of §’ is no more than 2m and the longest common subsequence

between S and S’ is at least m. Therefore, adv(S, A;) > adv(S,S’) >
3IM|=1S]=15"] 3m—-2m—2m -m 1
IS 2T 2w 2T o

3 PROOF OF THEOREM 1.4: LIST-DECODING
FOR BUKH-MA CODES

To prove this theorem, we assume for the sake of contradiction
that there exists a string 0 and k > 129 members of Cy,, like
ArnAryns o 5 Argns S0 that each Ay, , can be converted to v with
I; insertions and D; deletions where I;+2D; < n(1—¢). We define the
indices in a way thatry > ry > -+ > ri. Given the definition of Cy, ¢,
ri > r;—zl We first show that, fori = 1,2,--- ,k, adv(v, Ay, n) > g

LEMMA 3.1. Forany1 < i<k, adv(v, Ay n) = §.

Proor. Let M; denotes the matching that corresponds to the set
of I; insertions and D; deletions that convert A, , to v.

L+2D;j<n(l-¢)=>n-L—-2Dj>2ne=1-y;—20; 2 ¢

Note that according to Remark 2.6, adv(v, Ay, n) = | -(1—yi—26;).
Thus, adv(v, Ay,) > |”|£ > £. The last step follows from the first
item of Lemma 2.9. m]

Having Lemma 3.1, we are ready to prove Theorem 1.4. We
start with defining a couple of sequences of random variables via
random sampling of nested substrings of v. We split the string v
into substrings of size l; = r1£?, pick one uniformly at random and
denote it by v1. We define random variable A; = adv(v1, Ar,) and
random variable By = bias(v1). Similarly, we split v1 into substrings
oflength I = ry e and pick vz uniformly at random and define Ay =
adv(vz, Ay,) and By = bias(v2). Continuing this procedure, one can

obtain the two sequences of random variables Ay, Ag, - - - , Ag and
Bi1, By, -+, Br.. We will prove the following.
LEmMmA 3.2. The following hold for Ay, - - - , Ay and By, -+, By:

(1) E[B]

Proor. Note that one can think of v; as a substring of v that is
obtained by splitting v into substrings of length /; and choosing one
uniformly at random. Let U denote the set of all such substrings.

= bias(v), (2)E[A;] = §

We have that
count; (0) — countg(d)
E[B;] = bias(d) =
1B U;,un (|U|Z ;
county (v) — countg(v)

= bias(v).

Ul - L

A similar argument proves the second item. Take the matching
M; between v and A, ,, that achieves the advantage adv(v, Ay,),
i.e, the largest matching between v and Ay, ,,. Take some 9 € U; 9 is
mapped to some substring in A, ,, under M;. We call that substring
of 9, the projection of 0 under M; and denote it by 6 — M;. We also

STOC 20, June 22-26, 2020, Chicago, IL, USA

Uy

4 4 4 ’ 4
i / P R A \ \
M; «— ' ro , S0 \ \
1 1 T, /) 2 R \ \
i 1 - =y ~ M’
Are (000,011, 5,11,00, 10, 0,0,1,1,1,1]

Figure 2: Partitioning substrings of length /;,; into three sets
Uo, U1, Ue

represent the subset of M; that appears between ¢ and 6 — M; with
M;[d].

For ad € U, we define a(0) as the value for advantage that is
yielded by the matching M;[d] between ¢ and ¢ — M;. In other
w Given the definitions of advan-
tage and infinite advantage, we have that a(d) < adv(d,6 — M;) <
adv(d, Ay,). This can be used to prove the second item as follows:

3 ﬁ Cadv(8,Ay,) = ﬁ S ()

words, a(d) =

E[A;]

oeU oeU
_ 1y Ml =l i
0] 24 o]
1
= N BIM[8]] - [8] - |6 — M;
T ZU< IMi[61]] - [6] = 16 — Mil)
€
= W (3IMi] = [o] = |Ar, nl) = adv(o, Ar,n) 2 3
where the last step follows from Lemma 3.1. O
LEMMA 3.3. Forthe sequence By, By, - - -, By, we have Var(Bjy1) >

Var(B;) + tog, V1<i<k.

ProoF. To analyze the relation of Var(B;) and Var(B;41), we use
the law of total variance and condition the variance of B;4+1 on v;,
i.e., the substring chosen in the ith step of the stochastic process,
from which we sub sample vj1.

Var(Bi+1) Var (E[Bis1vi]) + E [Var(Bis1v:)]
Var (B;) +E [Var(Bi+1]0)]

1
Equation (1) comes from the fact that the average bias of substrings
of length l;41 in v; is equal to the bias of v;. Having this, we see
that it suffices to show that B [Var(Biy1|0;)] = ¢3/1200. We remind
the reader that v;41 is obtained by splitting v; into substrings of
length ;41 r,-+1£2 and choosing one at random. We denote the
set of such substrings by U. Also, there is a matching M; between
v; and A,,,, with advantage ¢ or more. Any substring of length
liy1 is mapped to some substring in A, ,, i.e., its projection of the
substring under M;. Note there are three different possibilities for
such projection. It is either an all zeros string, an all one string, or a
string that contains both zeros and ones. We partition U into three
sets Uy, Uy, and U, based on which case the projection belongs to.
(See Fig. 2)

We partition the sample space into three events Ey, E, and E,
based on whether v;.1 belongs to Uy, Ui, or U, respectively. We
also define the random variable T over {0, 1, e} that indicates which

529

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi

one of Ey, Eq, or E, happens. Once again, we use the law of total
variance to bound E [Var(Bj;1|v;)].

E [Var(Bi+1loi)] = BEo, [Varr(E [Bisloi, T1)
+Er [Var(Bis1]o;, T)] |

Ey, [Varr (E [Bit1vi, T) |

v

@

Note that the term Varr (E [Bijt1|vi, T]) refers to variance of a 3-
valued random variable that takes the value Ey, [Bjt1|v;, T = t] with
probability Pr{T = t|v;} for ¢t € {0, 1, e}. We use three important
facts about this distribution to bound its variance from below.
First, Pr{T = elv;} < 2¢2. To see this, note that the run length

li+1

of Ay, is rip1 = L and the length of the projection of v; in
Ay, under the matching that yields the optimal adv(v;, A;,) is no

more than 2|o;| = 2I; (See Lemma 2.9). Therefore, |Ue| < rz,_ill and

consequently no more that a le’//% = 2¢2 fraction of strings in U
might be mapped to a substring of A,,,, that crosses the border of

some 0"i*1 and 171 intervals.

Secondly, for any j € {0,1}, Pr{T = jlo;} > adv(vnd

Vi+1)_852
This can be showed as follows. Let Ml.j represent the subset of pairs
of M; with one end in U; for j € {0,1, e} and v; — M; represent
the substring of A,,,, where v; is projected under M;. Note that

= o) = Ul WG M M
PeT = Jlo} = o1 = T 2 ol 2 momr
adv(vi,Ay,, ;)-8

3

>

Assume for

contradiction that Pr{T = j|v;} <
adv(03,A,,,,)—8¢*
1

for some j. Then,
|Ml.j| < |o; — M| , which since |Ml.j| <
for j* € {0,1} and |M]| < 2e%|0; — M;], gives that |M;| < |o; —
adv(v;,Ay;,,)-8 adv(vi,A,, 1))
- 1 4 ’

[oi—M;|
2

Mil(%+2£2+ = lo; — M,~|(%+

However, advyg, = —3‘M"|‘_z)|f""|_|p|
[M;| = |pl (% +) . This contradiction implies that Pr{T =
. adv(0;,A,,, ;)-8
jloiy 2 ————.

The third and final important ingredient is provided by the fol-
lowing lemma that we prove later on.

= 2|M;| - Ip| = |viladvy, =
advay;
)

LemMA 3.4. The following holds true:

adv(vi, Ay,,,) — 5%

E[Bit+1l0;, T = 0] =B [Biy1lo;, T =1] | > 3

To summarize, the above three properties imply that we have a
three-valued random variable where the probability for one value
is minuscule and there is at least [adv(v;, Ay,,,) — 5¢2] /3 difference
between the other two values each occurring with adequately large
probabilities. This is enough for us to bound below the variance
of such random variable. The following straightforward lemma
abstracts this.

LEMMA 3.5. Let X be a random variable that can take values ay,
ai, and ay wherePr{X = a;} > & fori € {0,1}. Then, we have that

Var(X) > %(ao —a1)?.
Applying Lemma 3.5 to our random variable gives that:

(adv(v, Ar,,,) — 8¢2) (adv(vi, Ary,,) — 5@32)2
144

Varr (E [Bij10i, T1) 2

Optimally Resilient Codes for List-Decoding from Insertions and Deletions

Note the right hand side of this inequality is negative when adv(v;, A,,,) <

8¢2. Therefore, we define function g(x) as a function that takes value
Q2 (v E g2
of % when x > 8¢% and zero otherwise. Note that g is

a convex function. We have that
Varr (E [Bis10i, T]) 2 g(adv(vi, Ay,) (3

Plugging (3) into (2) gives that

E [Var(Bi1|0i)] = By, [Varg(E [Bis1loi, T])]
> By [g(adv(vi, Ar,,,))]
> g(By, |adv(vi, Ar,,)]) = 9(E[Ai]) (4)
> g(e/2) = £3/1152 + o(¢®) (5)

where (4) follows from the Jensen inequality and (5) follows from
Lemma 3.2 and the fact that g is an increasing function. Note that the
right hand side is at least 1355 for sufficiently small e. This completes
the proof of Lemma 3.3 (With the exception of Lemma 3.4). O

With Lemma 3.3 proved, one can easily prove Theorem 1.4.

Proof of Theorem 1.4. Since Var(Bj;1) > Var(B;) + €3/1200,

_ 3
we have that Var(Br) > Var(B;) + (k — 1)%30 (klz(l)z)g LIf
k > 1290 the above inequality implies that Var(Bg) > 1 which
&
is impossible since By takes value in [—1, 1]. This contradiction

implies that the list size k < %. O

>

We now proceed to the proof of Lemma 3.4.

3.1 Proof of Lemma 3.4

Consider v; and the matching that yields the optimal advantage
from v; to Ay,,,, denoted by M;. We denote the substring of A,
that is identified by the projection of v; under M; as p = v; — M;.
To simplify the analysis, we perform a series of transformations
on v;, Mj, and p that does not decrease advyy, except by a small
quantity. Fig. 3 depicts the steps of this transformation described
below.

(1) First, we delete all substrings of U,—i.e., substrings of length
I; in v; whose projection contain both 0s and 1s—from v;.

(2) We reorder the substrings of length [;11 in v; by shifting all
Up substrings together and all U; substrings together. We
accordingly shift the projections of these strings in p to the
similar order. This was, the remainder of M; from step 1 will
be preserved as a valid matching between reordered strings.

(3) At this point, string p consists of a stretch of zeros followed
by a stretch of ones. If the length of two stretches are not
equal, we add adequate zeros or ones to the smaller stretch
to make p have the form of 0717,

To track the changes in advyy, during this transformation, we
track how |M;|, |v;| and |p| change throughout the three steps
mentioned above.

In the first step, a total of up to |Ue|li+1 elements are removed
from v; and M;. Note that since the run length of A, is ris1, there
]

it
Iple? < 26%|vi].

The second step preserves |M;|, |v;| and |p].

< Il _

can only be < 5

substrings in U,. Therefore, |U,|li+1

530

STOC 20, June 22-26, 2020, Chicago, IL, USA

v [1 2|3 |a|s|e|7]s k-1 k]
I II J e , e ,,’ \\ "
Mz‘_" / . i / ,'/ Pas \ \
1 1 1 ’ ’ VA 2 A 1
J L I Loyl o Y—

Ay (00400101, 101,00,10, 0,0,1,1,,1]

1 1
[1zlx4sm7g ol)
’ ’ ’ ’ s

M 1) o0 0,0,1,1,,1]
[1 2 7 8 4 5 k-1 k]
/ / ’, / / . \ \
’ ’ ’ 4
H h A A [

[0,0,0,0,0,0,0,0,0,0,---,0,0 1,1,1,1,1,1,1,1,1,1,---,1,1 | 1,1
Padding extra 1’s to make 0*1¢

Figure 3: Three steps of transformation in Lemma 3.4.

Finally, since p is a substring of A;,,,, the third step increases
|p| only by up to ri41. Note the run length of the A, s and conse-
quently ;415 are different by a multiplicative factor of at least Elq

_ lialoi] _

by the definition of the code C. Therefore, riy; = 1,5421 = gl
li i
il < 2y

3IM|-1p|-loi
o

Overall, the value of the advy;, = I can be affected

by a maximum of (3 — 1) X 2¢%|v;| + £2|v;| = 5¢%|0;| decrease in
the numerator and £2|v;| decrease in the denominator. Therefore,
the eventual advantage does not drop below advy, — 5¢2. Let us
denote the transformed versions of v;, p, and M; by 3;, p, and M;
respectively. We have shown that

adei > advy, — 562,

(6)

Further, let 3; = (6?, 61.1) so that 5? and zil.l respectively correspond
to the part of 3; that is mapped to 0’ and 1/ under M;. Consider the
matching between ¢; and p that connects as many zeros as possible
between the 6? and 0’ and as many ones as possible between the
zil.l to 17 portion of p. Clearly, the size of M; cannot exceed the size
of this matching and therefore,

3 [min{t, counto(ﬁ?)} + min{¢, countl(ﬁg)}] — |a;| — 2t

]

adei <

™)
Note that as long as t < counto(z??) ort< countl(ﬁl.l), increasing
t in the right hand side term does not make it smaller. Therefore,

the inequality (7) holds for ¢ = maxje{o,l}{countj(zi{)}. Without
loss of generality, assume that counto(ﬁ?) < countl(z?il) and set

STOC 20, June 22-26, 2020, Chicago, IL, USA

t = county (51.1). Then we have the following.
3c0unto(5?) + countl(ﬁl.l) — |oil
]

=0
|o;| +

adei <

1-bias(2?) 1+bias(a})
3 2 2

l;1 = (1371 + I} 1)
= advy, < b

]
= 2advyy [6:] < 3(1 - bias(a}))|5] |
+ (1 + bias(a}))la} | — 2(|?| + |3}])

= 2advy, [6:] < [1-3bias(a})] [57| - [1 - bias(s})] |7; |

®)

We claim that the above inequality leads to the fact that |bias(d }) -
bias(z‘z?)l > advyy, /3. Assume for contradiction that this is not the
case. Therefore, replacing the term bias(z??) with bias(ﬁ}) in (8)
does not change the value of the right hand side by any more than
|0;] - adv ;.. Same holds true with replacing the term bias(ﬁ}) with

bias(z‘z?) in (8). This implies that, with b* = max{bias(zi?), bias(ziil)},
we have that advy [0;] < (1-3b%) - |6?| -(1-0b% |z7l.1| and, there-
fore,

(1-b%)15}| < (1-3b") |39 ©)

On the other hand, we assumed earlier (without loss of generality)
that count (zi?) < count; (51.1). Therefore,

(1 - bias(a?)) 189 < (1 + bias(ﬁ})) 151

= (1-b")18%] < (1+b%) 15} (10)
Note that since [b*| < 1, (1—b*)2 > (1+b%)(1 - 3b*) = 138 <
i:g* . Multiplying the two sides of this inequality to the sides of

(10) gives that (1 —3b*) |6?| < (1+b%) |z§l.1| which contradicts (9).
Therefore, we must have |bias(6i1) - bias(zi?)l > advy; /3. Note
that bias(z?{) =E [Bit1|vi, T = j] since bias(ﬁlj) is the average bias
of all strings in U;. Therefore, combining with (6), we have that

adv(v;, Ay,,,) — 562
————. O

E [Bi+1|0i, T = 0] —=E [Bjy1]0;, T = 1] 3

>

4 PROOF OF THEOREM 1.2: CONCATENATED
INSDEL CODES

We recall that the concatenation of an inner insdel code Cj;, over an
alphabet of size |2, | and an outer insdel code, Cout, over an alphabet
of size |Zout] = |Cin| as a code over alphabet X, is obtained by
taking each codeword x € Cout, encoding each symbol of x with
Cin, and appending the encoded strings together to obtain each
codeword of the concatenated code.

In this section, we will show that, concatenating an inner code
Cin from Theorem 1.4 that can Lj,-list decode from any y fraction of
insertions and § fraction deletions when 25 +y < 1 — ¢, along with
an appropriately chosen outer code Coyt from Theorem 2.1, one can
obtain an infinite family of constant-rate insertion-deletion codes
that are efficiently list-decodable from any y fraction of insertions

and ¢ fraction of deletions aslong as 25 +y < 1 —¢fore = 1_56&“.

4.1 Construction of the Concatenated Code

We start by fixing some notation. Let Coyt be able to Loyt-list de-
code from Sqyt fraction of deletions and yout fraction of insertions.

531

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi

6out' Yout Zoui: |Cin|

€ €in Lin
Figure 4: The order of determining parameters in the proof
of Theorem 1.2.

Further, let us indicate the block sizes of Coyt and Cj,, with ngyt and
nin = [og [Soutl.

To construct our concatenated codes, we utilize Theorem 2.1
to obtain an efficient family of codes Coyut over alphabet 2oyt of
size Oy . Sout (1) that is Loyt-list decodable from any Syt fraction of
deletions and yoyt fraction of insertions for appropriate parameters
Jout and yout that we determine later. We then concatenate any
code in Cout with an instance of the binary list-decodable codes
from Theorem 1.4, Cy, with parameter nj, = [log|Zout|] and a
properly chosen ¢&,. We will determine appropriate values for all
these parameters given ¢ when describing the decoding procedure
in Section 4.2. Fig. 4 shows the order of determining all parameters.
We remark that the following two properties for the utilized inner
and outer codes are critical to this order of fixing parameters:

(1) The alphabet size of the family of codes used as the outer
code only depends on oyt and yout and is independent of
the outer block size ngy;. (See Theorem 2.1)

(2) The list size of the family of codes used as the inner code,
Lin, merely depends on parameter ¢j, in Theorem 1.4 and is
independent of the size of the code or its block length, i.e.,
[Cin| or nijp.

4.2 Decoding Procedure and Parameters

We now analyze the resulting family of codes and choose the un-
determined parameters along the way of describing the decoding
procedure. A pseudo-code of the decoding procedure is available
in Algorithm 1. Let C be a binary code with block length n that is
obtained from the above-mentioned concatenation. Take the code-
word x € C and split it into blocks of length nj,. Note that each
such block corresponds to the encoding of some symbol in Zoy¢
under Cj,. Let x’ be a string obtained by applying ny insertions
and nd deletions into x where n = njynoyt and y + 26 < 1 — &. For
each block of x, we define the error count to be the total number of
insertions that have occurred in that block plus twice the number
of deleted symbols in it. Clearly, the average value of error count
among all blocks is njy (y + 20) < niy(1 — €). By a simple averaging,
at least (1 - 11_%;4
count of nj, (1 — %) or less. Let us call the set of all such blocks S.
Further, we partition S into smaller sets based on the number of
deletions occurring in the blocks of S. Let S; € S be the subset of
blocks in S for which the number of deletions is in [nj, - 15 - (i =
1),nin - 5 -i) fori=1,2,--- ,8/¢l. The following hold true:

Nout = % - nout of those blocks have an error

(1) All blocks in S; suffer from at least njy - 1z - (i — 1) deletions.
- 1))
insertions. Therefore, they all appear as substrings of length

3
mn (2= -3

Further, they can suffer from up to njy, - (1 -£- f—g .

(i— 1)) or less in x’.

INote that the fraction of deletions cannot exceed % assuming nin (y+28) < nin (1-¢).

Optimally Resilient Codes for List-Decoding from Insertions and Deletions

(2) We have that S = U S, By the Pigeonhole principle, for
€ [1,8/e], |Si] 2

Our decoding algorithm consists of 8/¢ rounds each consisting
of two phases of inner and outer decoding. During the first phase
of eachroundi =1,2,---,8/¢, the algorithm uses the decoder of
the inner code on x’ to construct a string T; over alphabet oyt and
then, in the second phase, uses the decoder of the outer code on
input T; to obtain a list List; of size Loyt. In the end, the decoding
algorithm outputs the union of all such lists | J; List;.

some i* 32 nout

Algorithm 1 Decoder of the Concatenated Code

1: procedure CONCAT’ D-DEC(X, €, nin, Nout, Decg, , Decc,)

2 Output « 0

3 forie {1 2,- 8} do > Round i
nin (2—¢/4-3¢(i-1) /16)

4: W — {—nme/l(: J

5: T; < empty string

6: for j € {l, 2,0, nirll);l/llé — w} do > Phase I

7: List — Decg,, (x’ [- j, M5 . (j+w)])

8: Pad symbols of 2oyt corresponding to the elements
of List to the right of T;.

9 Output « Output U Decc, , (T;) > Phase II

return Output

Description of Phase I (Inner Decoding). We now proceed to the
description of the first phase in each round i € {1,2,---,8/¢}. In
the construction of T;, we aim for correctly decoding the blocks in
S;. As mentioned above, all such blocks appear in x’ in a substring

of length nyy, - (2 -4- % -(i- l)) or less.
Having this observation, we run the deocoder of the inner code

on substrings of x” of form x’ [”‘“g j, Zing (j+w)] forall j =

J! 16
Lo... ¥l MJH,OM
nl‘rég that slides

> nine/16 w where w = \‘ nine/16

can think of such substrings as a window of size w -
2% increments.
Note that each block B in S; appears within such window and

is far from it by, say, Dp deletions and no more than nm (1 — ﬁ) -

in

6
count comes from the extra symbols around the block in the fixed

sized window. As long as the fraction of insertions plus twice the
fraction of deletions that are needed to convert a block of S; into
its corresponding window does not exceed 1 — ¢, the output of
the inner code’s decoder for input x’ ["‘“‘g J, nl“ég G+ w)] will
contain the block B of S;. So, we choose ¢, such that

£
Nin (1 - Z)

nin (1 — 3¢/16) < nip (1

(11)

=4

) & < 3
e & 2
mn m 16

Now, each element in the output list corresponds to some code-
word of the inner code and, therefore, some symbol in Xy;. For
each run of the decoder of the inner code, we take the correspond-
ing symbols of Xyt and write them back-to-back in arbitrary order.
Then, we append all such strings in the increasing order of j to
obtain T;.

532

STOC 20, June 22-26, 2020, Chicago, IL, USA

Description of Phase II (Outer Decoding). Note that the length

of T; is at most p” IE /‘1 cLin < znn“‘g';‘i‘g‘L Lm Further, T;
contains symbols corresponding to all blocks of S; as a subsequence
(i.e., in the order of appearance) except possibly the ones that appear
in the same run of the inner decoder together. Since the fraction
of deletions happening to each block in S; is less than % and the
size of the inner decoding sliding window is no more than 2ny,,
the number of blocks of S; that can appear in the same window

in the first phase is at most 4. This gives that T; has a common
|5 |

in = Mout *

subsequence of size at least with the codeword of the outer

code.
We mentioned earlier that for some i*, |S;<| > 32 nout Therefore,
for such i*, T;+ is different from x by up toa 1 — m fraction of

deletions and 32Lin fraction of insertions. Therefore, by taking
Sout = 1 — 128’ Yout = —Lm =0 (5_14)’ and using each T; as an
input to the decoder of the outer code in the second phase, x will

certainly appear in the outer output list for some T;. (Specifically,
for i = i*.)

4.3 Remaining Parameters

As shown in Section 4.2, we need a list-decodable code as outer

2
code that can list-decode from Souy = 1 — % fraction of deletions

and yout = 35 Ln=0 () fraction of insertions. To obtain such

3%
256"

This implies that the rate of the outer code is rout = % = 0(e?),
it is Lout = O (exp(exp(exp(log* n)))) list-decodable, and can be

O(r% log E%)

codes we use Theorem 2.1 with parameters y = ?zLin and € =

defined over an alphabet size of |Zout| =€
log %) Note that in

Theorem 1.4, the block length of the inner code can be chosen
independently of its list size as the list size only depends on ¢jy,.
This is a crucial quality in our construction since in our analysis
&in and Ly, are fixed first and then |Cj, | is chosen depending on the
properties of the outer code.

As the decoder of the outer code is used % times in the de-
coding of the concatenated code, the list size of the concatenated
code will be L = % = O¢(exp(exp(exp(log” n)))). The rate
2 loglogICin|) —

Nin

Consequently, [Cin| = log|Zout| = O (E%

: Lout

of the concatenated code is r = routrin = O (8

~0{r loe”
Finally, since the outer code is efficient and the inner code is ex-
plicit and can be decoded by brute-force in O, (1) time, the encoding

and decoding procedures run in polynomial time. This concludes
the proof of Theorem 1.2.

5 EXTENSION TO LARGER ALPHABETS

In this section we extend the results presented so far to g-ary al-
phabets where g > 2.

5.1 Feasibility Region: Upper Bound

For an alphabet of size g, no positive-rate family of deletion codes
can protect against 1 — £ fraction of errors since, with that many
deletions, an adversary can simply delete all but the most frequent

STOC 20, June 22-26, 2020, Chicago, IL, USA

0.8¢:

Deletion (4)
o o
- o

0.2

0

0 0.5 1

25 3
Insertions ()

Figure 5: Infeasible points inside the conjectured feasibility
region. (Illustrated for q = 5)

symbol of any codeword. Similarly, for insertion codes, it is not pos-
sible to achieve resilience against g—1 fraction of errors as adversary
would be able to turn any codeword x € ¢ to (1,2,---,¢)".

The findings of the previous sections on binary alphabets might
suggest that the feasibility region for list-decoding is the region

mapped out by these two points, i.e., S

1-1 " g-1

q
conjecture turns out to be false. The following theorem provides a
family of counterexamples.

< 1. However, this

THEOREM 5.1. For any alphabet size q and any i = 1,2,--- ,q,
no positive-rate g-ary infinite family of insertion-deletion codes can
list-decode from § = %i fraction of deletions and y = @ fraction
of insertions.

Proor. Take a codeword x € [¢]|". With én = oy deletions,
the adversary can delete the g — i least frequent symbols to turn
{o1,---,0i} € [q]. Then,

x into x” € 23(1_5) for some 34

withyn=n(1-90)(i—-1) = n%
[o1, 02, -+, 0:]"179) Such adversary only allows O(1) amount of
information to pass to the receiver. Hence, no such family of codes

can yield a positive rate. O

insertions, it can turn x” into

Note that all points (y, §) = (M %) are located on a second

q
degree curve inside the conjectured feasibility region I_Ll o<1
q

q-1
(see Fig. 5). In the extended version of this paper, we use a simple
time-sharing argument to show that the actual feasibility region is
a subset of the polygon outlined by these points.

THEOREM 5.2. For any positive integer ¢ > 2, define Fy as the
concave polygon defined over vertices (% %) fori=1,---,q
and (0,0). (see Fig. 1). Fq does not include the border except the two
segments [(0,0), (g —1,0)) and [(O, 0), (0, 1- é)) Then, for any

pair of positive real numbers (y, 8) € Fq, there exists no infinite family
of q-ary codes with positive rate that can correct from § fraction of
deletions and y fraction of insertions.

5.2 Feasibility Region: Exact Characterization

Finally, we will show that the feasibility region is indeed equal to the
region Fy described in Theorem 5.2. The proof closely follows the
steps taken for the binary case but is significantly more technical.
We first formally define g-ary Bukh-Ma codes and show they are

533

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi

0.8

Deletion (4)
o =4
S o

02

L L e
25 3
Insertions (v)

~ I

4.5 5

0 L I L I
0 0.5 1

Figure 6: In the feasibility region for g = 5, the line passing
through (1.2,0.4) and (1.8,0.3) (indicated with red dotted line)
is characterized as y + 66 < 3.6. (Corresponding to i = 3 in
Eq. (12))

list-decodable as long as the error rate lies in Fg and then use the
concatenation in Section 4 to obtain Theorem 1.3.

THEOREM 5.3. For any integer q > 2, € > 0, and sufficiently large
n, let CZ’E be the following Bukh-Ma code:

k
1
Cf{ez{(orlr., r:(£—4) ,k<10g1/£4 n}

For any (y,6) € (1 - ¢€)Fg it holds that CZ"g is list decodable from

n

q")ar

5
any n deletions and yn insertions with a list size of O (q_z)
&

We remark that in the case of ¢ = 2, Theorem 5.3 improves over
Theorem 1.4 in terms of the dependence of the list size on e.

5.2.1 Proof Sketch for Theorem 5.3. To prove Theorem 5.3, we
show that Bukh-Ma codes are list-decodable as long as the error
rate (y, 8) lies beneath the line that connects a pair of consecutive
non-zero vertices of Fy.

7

In other words, for pairs (ﬂ) and (M LH) we

q q q
consider the line passing through them (see Fig. 6), i.e.,
2q — 1)i — i
}/+(2i)5:w’ =1--,q-1 (12)
q
_ 2
and show that as long as y + (22) < (1 - 5)% for some

z € {1,---,q— 1}, Bukh-Ma codes are list-decodable. Note that the
union of such areas is equal to (1 —) Fy.

The analysis for each line follows the arguments for the binary
case. Namely, we assume that k codewords can be converted to
some center string v via (y, §) fraction of errors. Then, using an
appropriate advantage notion and considering some coupled statis-
tic processes obtained by sampling substrings, we show that k is
bounded above by some Oy (poly(1/e)).

The only major difference is that the notion of bias cannot be
directly used for g-ary alphabets. In this general case, instead of
keeping track of the variance of the bias, we keep track of the sum
of the variances of the frequency of the occurrence of each symbol.
We show that this quantity increases by some constant after each
substring sampling (analogous to Lemma 3.3) by showing that a
positive advantage requires that the frequency of occurrence of at
least one of the symbols to be e-different for two different values of
the random variable T (analogous to Lemma 3.4). The rest of this

Optimally Resilient Codes for List-Decoding from Insertions and Deletions

section contains more formal description of generalized notions
and proofs for generalized g-ary claims.

5.3 Generalized Notation and Preliminaries

To prove Theorem 5.3, we need to generalize some of the notions
and respective preliminary lemmas for the binary case. We start
with defining ith order advantage.

Definition 5.4 (ith order q-ary advantage of matching M). For a
pair of positive integers i < g, a pair of g-ary strings a and b, and a
matching M between a and b, we define ith order q ary advantage

(2i+1) | M|~ |a] - 2 Ib\
(a,b) =

la]

Note that the notion of advantage utilized for the binary case is
obtained for ¢ = 2 and i = 1 in the above definition. The notions of
ith order advantage between two strings (that is independent of a
specific matching, i.e., adv®i (a, b)) and infinite ith order advantage
are defined in a similar manner to the binary case.

of a to b as follows: adv

(a b)
(20)0p —)’M) normalized by

REMARK 5.5. In the same spirit as of the binary case, advl
is simply the value of |b| (M
the length of a.

LEMMA 5.6. If for strings a and b, adv®*(a, b) > 0, then |a| and
|b| are within a q factor of each other.

The proof of this lemma is similar to the binary case and can be
found in the extended version of this argument.

Definition 5.7 (q-ary Alternating Strings). For any positive integer
r, we define the infinite g-ary alternating string of run-length r
as Af = (172" -- - ¢")™ and denote its prefix of length [by Agl =

Al 1.

5.4 Proof of Theorem 5.3

As mentioned before, Theorem 5.3 can be restated as follows.
THEOREM 5.8 (RESTATEMENT OF THEOREM 5.3). For any integer

q = 2, ¢ > 0, sufficiently large n, and any z € {1,2,--- ,q — 1},

the Bukh-Ma code C}; , from Theorem 5.3 is list decodable from any

Sn deletions and yn insertions with a list size O (q°/¢2) as long as

_ 2

v+ (22)8 < (1-) BEUEE

To prove this restated version, once again, we follow the steps
taken for the proof of Theorem 1.4 and assume for the sake of

5
contradiction that there exists a string v and k = Q () members of
q q q

Chne like Af 1, Ar) py

to v with I; insertions and D; deletions where I; + (2z)D; <
£) (2q-1)z—2%
q

,A?k’n, so that each Ari’n can be converted
(1-

-n. We define the indices in a way thatry > ry > --- >

1. Given the definition of Cz’g, ri >
Given Remark 5.5 and Lemma 5.6, an argument similar to the
one presented in Lemma 3.1 shows that for all these codewords,
adv? (v, AL) > £.
We define the following stochastic processes similar to the binary
case. We split the string v into substrings of size [y = r; 2, pick one
uniformly at random and denote it by v1. We define random variable

Al = advq’z(vl,Agl) and random variables Ff forp=1,2,---

Ti+1
T -

,q as

534

STOC 20, June 22-26, 2020, Chicago, IL, USA

the frequency of the occurrence of symbol p in v;. In other words,
F‘f _ count, () k by

o1
splitting each vj_; into substrings of length [; = rjez, picking v;

. We continue this process for j = 2,3,---

uniformly at random, and defining A; = adv?? (v, Agj) and FJP =

county, (v;)
e
of real numbers fi, fa, - -

forall p € {1,2,-

-, fx as follows: f; = Zgzl Var(Ff). This
series of real numbers will play the role of Var(B;) in the binary
case.

-+, q}. We then define the sequence

LEMMA 5.9. The following holdforAl, o ApandFP ...

allp e {1,2,-+,q}: (DE[FF] = FY ,and (2) E[A] > £

Flf for
1 1

ProoF. Since v; is a substring of v;—; chosen uniformly at ran-
dom, the overall frequency of symbol p is equal to the average
frequency of its occurrence in each substrings. The second item
can be derived as in Lemma 3.2. O

The next lemma mimics Lemma 3.3 for the binary case.

LEMMA 5.10. For the sequence fi, fa, - - -
fi+Q(/qY).

Using Lemma 5.10, Theorem 5.8 can be simply proved as follows.

, fi» we have that fiz1 >

Proof of Theorem 5.8. Note that each f; is the summation of
the variance of ¢ random variables that take values in [0, 1]. There-
fore, their value cannot exceed q. Since fi+; > fi + Q(e2/q*), the

5
total length of the series, k, may not exceed O (Z—Z) This implies

5
that the list size is O (3—2)]

We now present the proof of Lemma 5.10.

Proof of Lemma 5.10. To relate f; and fi;1, we utilize the law
of total variance as follows:

Var(F Var (E[F£1|U,~]) +E [Var(Fp 1|ul)]

i+1)

= Var (Fp) +E [Var(F +1|U,)] (13)

Equation (13) comes from the fact that the average frequency
of symbol p in substrings of length l;41 of v; is equal to the fre-
quency of p in v;. Having this, we see that it suffices to show that
E [Var(F +1|v,)] > Q (¢2/¢*). Similar to Lemma 3.3 we define E;
for j =1,2,---,qand E, respectively as the event that the projec-
tion of v;41 falls inside a j"#*! in A,,, or a string containing multiple
symbols. We also define the random variable T out of {e, 1,2, - - - , g}
that indicates which one of these events is realized. Once again, we

use the law of total variance to bound E [Var(Ff_’F1 |vi)].
E [Var(FfiJu,-)] =By, [VarT (E [z+1|01’])
+Er [Var(}"ﬁ_1 lvi, T)]]

> Ey, [VarT (E [F;.Dﬂk)i, T])] (14)

STOC 20, June 22-26, 2020, Chicago, IL, USA

Combining (13) and (14) gives

Var(Fl.I:rl) > Var (Ff’) +Ey; [VarT (E [F£1|zz,-, T])]
q q q
= ZVar(Ffil) > Z Var (Flp) + Z Eq, [VarT (E [F£1|Ui, T])]
p=1 p=1 p=1

q
= finn 2 fi +Bo, |). Vary (B [FL, Jo0.T] (15)
p=1

Note that the term Vary (E[F 141105, T]) referstothe variance ofa
(g +1)-valued random variable that takes the value E,, [FP lon T =
t] with probability Pr{T = t|v;} for t € {e,1,2,-- -, q}. Once again,
we present a crucial lemma that bounds from below the sum of
variances of frequencies with respect to T assuming that the overall
advantage is large enough.

LEMMA 5.11. For any realization of v;, the following holds true if
adv®(v;, Ar,,,) = 3qe*:
)2

9
Z Varr (E [Fﬁl v, T]) > (
p=1

We defer the proof of Lemma 5.11 to Section 5.6. Using Jensen
inequality, the fact that z < g, and Lemma 5.11 along with (15)

2
adv?® (v;,A,;,)-3qe?
Eiwhed iR
m}

adV* (v;, Ay,,,) — 3q€*
2z+1

give that fiy1 > fi+Eq,

sufficiently small ¢ > 0.

5.5 Proof of Theorem 1.3

To establish Theorem 1.3, we closely follow the concatenation
scheme presented in Section 4. In the following, we provide a high-
level description of the proof skipping the details mentioned in
Section 4 and highlighting the necessary extra steps.

The construction of the concatenated code is exactly as in Sec-
tion 4 with the exception that the inner code is defined over an
alphabet of size g. Note that if (y,) € (1 - €)Fg, then (y,6) lies
underneath one of the lines in the set of lines represented by (12).
In other words, there exists some z € {1,2,---,q — 1} for which
Y+ (22)6 < (1-¢) ((Zq;q)z—zz) . Similar to Section 4, we define
the notion of error count for each block in the codewords of the
concatenated code as (I +2z-D) - Wq)z_zz where D and I de-
note the number of deletions and insertions occurred in the block
respectively. As in Section 4 one can show that at least % - Nout
of the blocks contain no more than (1 - %) niy error count. We
denote the set of all such blocks by S. Once again, we partition S
into subsets S1, Sy, - - - depending on the number of deletions oc-
curred in the set. More precisely, we define S; C S as the set of
blocks in S that contain a number of deletions that is in the range

ﬁ~(i—1),nin~)forz—12
the following hold true:

T6g ,16g/¢. Once again,

Min -
(1) We have that S = Ulﬁq/gsl By the Pigeonhole principle, for

some i* € [1,16q/¢], |Si| = e4q"0ut
(2) Take some i € {1,2,---,16q/¢} and some block in S;. Say D
deletions have occurred in that block. Then, the total number of

535

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi

_ _ 52
insertions is at most (1—¢/4) % nin—2zD. Therefore, the

total length of the block is nj, —D(1—¢/4) an

o)

which is no more than
2q - 1)z -2°
1+(1_£)M_L
4 q 16q
Based on these observations, it is easy to verify that the de-
coding algorithm and analysis as presented in Section 4 and
Algorithm 1 work for the g-ary case with the following minor
modifications:
(a) Based on (17), the parameter w determining the length of the
window should be

nin.[1+(1_§)(2q+)z_zz_

—-2zD

(2q-1)z - 2°
q

] —(2z+1)D (16)

(i-1(2z+1) 17

1Gq(z -1(2z+1)

+ 1.

(18)

(b) Asin (11), parameter &, has to be chosen such that the er-
ror count in decoding windows does not exceed nj, (1 —
&in). Note that the choice of shifting steps for the decod-
ing window from (18) may add up to "‘“5 additional in-
sertions to the decoding window. Further there is up to
ninﬁ] uncertainty in the total length of the block from

ﬁ -(i—1),nj, - ﬁ] . i). This can also

add up to nin%(ZZ +1) < §{ insertions. Therefore, we

(16) since D € [nin .

need nj,(1- 5/4) +nin (£ +%)-
9 _9_

Note that 2q-1)7-7 < 292

1-5+£+ 5 <1-¢yorequivalently, g, < 5.

Some modiﬁcations are necessary to the parameters of the

(2qff)zfzz < nin(1 = &n)-

< 1. Hence, it suffuces that

outer code. Notably, for alphabet size q, |S;+| > %nout and

the fraction of deletions can be as high as 1 - é This requires

=1 3¢
5out =1 128q2'

Finally, note the the value of z is not know to the decoder.
So the decoder has to run the algorithm with modifications
mentioned above for all possible values of z =1,2,---,qg -1
and the output the union of all lists produced.

5.6 Proof of Lemma 5.11

We break down this proof into four steps. In the first step, similar
to Lemma 3.4, we modify v; and A,,,, » into a simpler structure
without significantly changing the advantage. In the second step,
we provide an upper bound for the advantage in this modified
version that depends on the local frequencies of symbols, more
specifically, on what we refer to as E [FI.JJr1 l0;, T = j]. In Step 3, we
show that these upper-bounds would yield a non-positive value on
the advantage if one replaces the local frequencies with the overall
frequency of symbols in v;, i.e., Fi] . In the fourth and last step, we
show that this means that the local frequencies have to significantly
deviate from global ones to attain the advantage achieved by M;
(ie., adv%’[z_), so much that the lower-bound promised in the lemma’s

1
statement is achieved.

Optimally Resilient Codes for List-Decoding from Insertions and Deletions

Step 1. Modifying v; and Ay, n for the sake of simplicity: The
proof starts with modifying v;, A,,, », and the advantage-yielding
matching M; between them in a way that only slightly changes the
value of advantage taking steps identical to the one in Lemma 3.4.
Similar to Lemma 3.4, we denote the projection of v; under M; by
g = v;j — M;. (See Fig. 3 for a depiction of the steps in binary case.)

(1) First, we delete all substrings of U,-i.e., substrings of length
li+1 in v; whose projection does not entirely fall into some
stretch of j"i*1 —from v;.

(2) We reorder the substrings of length l;+1 in v; by shifting all
Uj substrings together and the projections in g to preserve
the remainder of M; from step 1.

(3) At this point, string g consists of a stretch of symbol 1 fol-
lowed by a stretch of symbol 2, etc. If the length of all
stretches are not equal, we add adequate symbols to each
stretch to make g have the form of 1£2¢ - - - ¢*.

To track the changes in advg/’é during this transformation, we
track how |M;], |v;| and |g| change throughout the three steps men-
tioned above.

In the first step, a total of up to |Ue|lj+1 elements are removed
from v; and M;. Note that since the run length of A, is ris1, there
gl < gl _

Tir1 - Tin
lgle? < 26%|0;.

The second step preserves |M;|, |v;] and |g|.

Finally, since g is a substring of Ay, , the third step increases |g|

only by up to gri41. Note the run length of the A, ;s and conse-

can only be substrings in U,. Therefore, |Ug|li+1

Tit1
quently /;1s are different by a multiplicative factor of at least 8—14 by

the definition of the code C. Therefore, qrit1 = ql’“ = M =
e o |
Liv1vi]
4 gzlli <& qlvi|~
gz (22D M-l |22 |g]
Overall, the value of the adv = can be

[0
affected by a maximum of 2z X 252|vl| +qeloi] = (22 + @)é?|v;| <
3ge?|v;| decrease in the numerator and €?|v;| decrease in the de-
nominator. Therefore, the eventual advantage does not drop below
adv% — 3ge. Let us denote the transformed versions of v;, g, and

M; by 9;, g, and M; respectively. We have shown that

Z .z 2
adeZi > advz/[i — 3qe”. (19)
Step 2. Bounding Above adeZ with f*: Let g; = (171.1,6?, ... ,5?)

so that 6{ corresponds to the part of 3; that is mapped to j* under

M;. Further, let fj* =E [sz+1 l0;, T = j] represent the frequency of

. (5
the occurrence of symbol j in 5{ as a shorthand, i.e., f]* = %
19/ |
Tail
_ “ that depends on fJ s. For
the sake of simplicity, from now on we assume, without loss of
generality, that countl(ﬁg) > countg(ﬁiz) > 2 countq(ﬁg) or
equivalently, f'p1 > fy'p2 > -+ = fopq.

Consider the matching between ¢; and p that, for any j €
{1,2,---,q} matches as many js as possible from j’ to U . This
matchlng clearly yields the largest possible advantage between the

two that is an upperbound for the ade;IZ_. Similar to the binary case,

and p; be the relative length of o/ ;. ie, pj = In this section,

we compute an upperbound for adv® o

536

STOC 20, June 22-26, 2020, Chicago, IL, USA

we find a t that maximizes this advantage and use its advantage as
an upper-bound for ade/iIz'.

Let ¢ be so that f*[of| > t > f* |65*!| . Then, increasing t by
one would increase the length of p by q and increases the size of the
matching by c. To see the effect of this increment on the advantage,
note that the denominator does not change and the numerator

changes by c(2z+1) — - q. This change in advantage is positive

as long as c(22+1)—(z+zz) >0@c> 22 =2 (1

1
2z+41 — 27 \a ™ 4(2z+1))
Note that the term 4—11 - m is always between [O, 4] Hence,

incrementing ¢ increases the advantage as long as ¢ > | %] + 1.
This means that the highest possible advantage is derived when
t = fulg] for w = [£] + 1. With this value for ¢, the matching

contains fj*|5{| edges between j! and |6lj| for all j > w and t edges
between j! and |5{ | for j < w. Therefore, the size of this matching

is tw + Z?:W 1 fJ* |ﬁ{ |. This yields the following advantage

(22 +1) [tw £33 fj*|a{|] — o] -

|3

+22
zqz -qt

q
2z +1) | fipww + Z fipi|=1-(z+2%) - fupw

J=w+l

q
[2z+ Dw = (z+2%)] - fispw+ (22+1) Z fipi-1

J=w+l

We remind that this is an upper-bound on the adv%’[z_. Next, we plug

inw = | £] + 1 into this bound. Note that (2z+ 1)w — (z + Z%) =
3242 q .zl
2 2

z(2w — z) + w — z which is equal to if z is even an if z is
odd.
Therefore, we have the following set of upper-bounds on the

advantage

3 2
adv q,L zZ+ fipw+ (2z+1) Z f]pj 1,If z is even (20)
Jj=w+l
advqiz_ z+1 fipw+ (2z+1) Z f]pj 1,Ifzisodd (21)

J=w+l

Step 3. Proving Non-positivity of the Bound from Step 3 for Unit
Sum Vectors: In this step, we show that the bounds (20) and (21) on
advantage that were presented in Step 2 are necessarily non-positive
for any vector (ff, - -, f') with unit sum including the vector of

,fq)wherefj = W :Fi].In
Step 4, we use this fact to show that f* needs to deviate noticeably

from f which gives that the variance of frequencies with respect to
T is large enough, thus finishing the proof.
. Jq) be two pos-

PRrOPOSITION 5.12. Let (p1,- -+, pg) and (fl*, e
itive real vectors with unit sum that satisfy f'p1 = fyp2 = -+ 2
fq*pq. Then, for all integers 1 < z < q, the following hold for
w= L%J +1:

(1) Ifziseven, 32 - fip, + (2z+) XL fipj < 1.
(2) Ifzisodd, ZL - fipsy + (22 +1) Z?:Wﬂ fipjs1

overall frequencies f = (fl e

3z+2
2

STOC 20, June 22-26, 2020, Chicago, IL, USA

The proof of Proposition 5.12 can be found in the extended
version of this article.

Step 4. Large Deviation of f*s from fs and Large Variance: Here
we finish the proof assuming z is odd. The even case can be proved
in the same way. Note that Proposition 5.12 gives that for the overall
frequency vector f which has a unit sum,

z+1
2

9
fopw+@z+1) Y fipj-1<0. (22)

Jj=w+l
However, (19) and (21) imply that for local frequency vector f*

z+1
2

9
Fupwt 2z+1) D fipj 12 adviy - 3% (23)

J=w+l

Subtracting (22) from (23) gives that

z+1
2

q
pwlfa =)+ 2z +1) D (Ff = fi)py = adviy - 3¢¢
Jj=w+l
z+1

=~ pulfy
J=w+l

q
= (2z+1) Z Ifj* - filpj = advzjé - 3ge.

j=w
9 adv®? — 3¢¢?
= M;
= *_ filp: > !
DI il 2 e

Jj=w

)

This means that there exists some jy for which | f]’z - f}o lpj, =

adv®? -3q¢? _ _
M; RYF V24,2
221 :>(Jz_f]o) p]oz(;;_f]o) PjOZ(

Note that

9
Z Varr (]E [Ffil v, T])
p=1

q9 q » » 2
=3 (E [Fi+1|vi,T=j] —Fi) Pr{T = jlo;}
»

=1

advg/’[’j—b‘qez
2z+1

=1
Jo ; jo) 2 ;
(B [F2y 1007 = o] = /) " Pr(T = joloi}

2
adv®® — 3¢¢?
ok FN2, . M;
= G = fi)"pin 2 2z+1

o
REFERENCES

[1] Erdal Arikan. 2008. Channel polarization: A method for constructing capacity-
achieving codes. In 2008 IEEE International Symposium on Information Theory.
IEEE, 1173-1177.

Jaroslaw Blasiok, Venkatesan Guruswami, Preetum Nakkiran, Atri Rudra, and
Madhu Sudan. 2018. General strong polarization. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing. 485-492.

[3] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. 2018. Effi-
cient Low-Redundancy Codes for Correcting Multiple Deletions. IEEE Trans.
Information Theory 64, 5 (2018), 3403-3410.

Boris Bukh and Venkatesan Guruswami. 2016. An improved bound on the fraction
of correctable deletions. In Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 1893-1901.

Boris Bukh, Venkatesan Guruswami, and Johan Hastad. 2017. An improved
bound on the fraction of correctable deletions. IEEE Transactions on Information
Theory 63, 1 (2017), 93-103.

(2]

[4

=

&

q
—ful+@z41) Y Iff - filp; = adviy - 3g¢%.

537

Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi

Boris Bukh and Jie Ma. 2014. Longest common subsequences in sets of words.
SIAM Journal on Discrete Mathematics 28, 4 (2014), 2042—-2049.

Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu.
2019. Synchronization strings: highly efficient deterministic constructions over
small alphabets. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. 2018. Deterministic document
exchange protocols, and almost optimal binary codes for edit errors. In Proceedings
of the Annual Symposium on Foundations of Computer Science (FOCS).

Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. 2019. Block Edit Errors
with Transpositions: Deterministic Document Exchange Protocols and Almost
Optimal Binary Codes. In International Colloquium on Automata, Languages, and
Programming (ICALP).

Vladimir Dan¢ik. 1994. Expected length of longest common subsequences. Ph.D.
Dissertation. University of Warwick.

Vlado Dancik and Mike Paterson. 1995. Upper bounds for the expected length of
a longest common subsequence of two binary sequences. Random Structures &
Algorithms 6, 4 (1995), 449-458.

Venkatesan Guruswami and Ray Li. 2016. Efficiently decodable insertion/deletion
codes for high-noise and high-rate regimes. In Information Theory (ISIT), 2016
IEEE International Symposium on. IEEE, 620-624.

Venkatesan Guruswami and Ray Li. 2018. Coding against deletions in oblivious
and online models. In Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms. 625-643.

Venkatesan Guruswami and Carol Wang. 2017. Deletion codes in the high-noise
and high-rate regimes. IEEE Transactions on Information Theory 63, 4 (2017),
1961-1970.

Venkatesan Guruswami and Chaoping Xing. 2013. List decoding Reed-Solomon,
Algebraic-Geometric, and Gabidulin subcodes up to the Singleton bound. In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing.
ACM, 843-852.

Bernhard Haeupler. 2019. Optimal document exchange and new codes for inser-
tions and deletions. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS). 334-347.

Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. 2019. Near-
linear time insertion-deletion codes and (1+¢)-approximating edit distance via
indexing. In Proceedings of the Annual Symposium on Theory of Computing (STOC).
697-708.

Bernhard Haeupler and Amirbehshad Shahrasbi. 2017. Synchronization Strings:
Codes for Insertions and Deletions Approaching the Singleton Bound. In Pro-
ceedings of the Annual Symposium on Theory of Computing (STOC). 33-46.
Bernhard Haeupler and Amirbehshad Shahrasbi. 2018. Synchronization Strings:
Explicit Constructions, Local Decoding, and Applications. In Proceedings of the
Annual Symposium on Theory of Computing (STOC). 841-854.

Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. 2018. Synchro-
nization Strings: List Decoding for Insertions and Deletions. In 45th International
Colloguium on Automata, Languages, and Programming (ICALP). 76:1-76:14.
Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. 2018. Synchro-
nization Strings: Channel Simulations and Interactive Coding for Insertions
and Deletions. In 45th International Colloquium on Automata, Languages, and
Programming (ICALP). 75:1-75:14.

Tomohiro Hayashi and Kenji Yasunaga. 2018. On the List Decodability of Inser-
tions and Deletions. In 2018 IEEE International Symposium on Information Theory
(ISIT). IEEE, 86-90.

Marcos Kiwi, Martin Loebl, and Jifi Matousek. 2005. Expected length of the
longest common subsequence for large alphabets. Advances in Mathematics 197,
2 (2005), 480-498.

Vladimir Levenshtein. 1965. Binary codes capable of correcting deletions, inser-
tions, and reversals. Doklady Akademii Nauk SSSR 163 4 (1965), 845-848.

Shu Liu, Ivan Tjuawinata, and Chaoping Xing. 2019. Explicit Constructions of
Two-Dimensional Reed-Solomon Codes in High Insertion and Deletion Noise
Regime. arXiv preprint arXiv:1909.03426 (2019).

Shu Liu, Ivan Tjuawinata, and Chaoping Xing. 2019. List Decoding of Insertion
and Deletion Codes. arXiv preprint arXiv:1906.09705 (2019).

George S Lueker. 2009. Improved bounds on the average length of longest
common subsequences. Journal of the ACM (JACM) 56, 3 (2009), 17.

Hugues Mercier, Vijay K Bhargava, and Vahid Tarokh. 2010. A survey of error-
correcting codes for channels with symbol synchronization errors. IEEE Commu-
nications Surveys & Tutorials 12, 1 (2010).

Michael Mitzenmacher. 2009. A survey of results for deletion channels and
related synchronization channels. Probability Surveys 6 (2009), 1-33.

Leonard J. Schulman and David Zuckerman. 1999. Asymptotically good codes cor-
recting insertions, deletions, and transpositions. IEEE transactions on information
theory 45, 7 (1999), 2552-2557.

Neil J. A Sloane. 2002. On single-deletion-correcting codes. Codes and designs 10
(2002), 273-291.

[32] Antonia Wachter-Zeh. 2018. List Decoding of Insertions and Deletions. [EEE
Trans. Information Theory 64, 9 (2018), 6297-6304.

[11

[12

[13

[16

(17

(18

=
o)

[20

[21

[22]

(23]

[24

[25]

[26]

[27

(28]

[29

[30

[31

	Abstract
	1 Introduction
	1.1 Prior Results and Related Works
	1.2 Our Results
	1.3 Our Techniques
	1.4 Analyzing the Properties of Bukh-Ma Codes

	2 Preliminaries
	2.1 List-Decodable Insertion-Deletion Codes
	2.2 Strings, Insertions, Deletions, and Distances

	3 Proof of Theorem 1.4: List-Decoding for Bukh-Ma Codes
	3.1 Proof of lem:polarization

	4 Proof of Theorem 1.2: Concatenated InsDel Codes
	4.1 Construction of the Concatenated Code
	4.2 Decoding Procedure and Parameters
	4.3 Remaining Parameters

	5 Extension to Larger Alphabets
	5.1 Feasibility Region: Upper Bound
	5.2 Feasibility Region: Exact Characterization
	5.3 Generalized Notation and Preliminaries
	5.4 Proof of thm:LowRateListDecQaryCodes
	5.5 Proof of thm:qaryMain
	5.6 Proof of lem:qAry-polarization

	References

