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ABSTRACT

Recent materials advances have enabled researchers to envision and develop highly efficient, partially
transparent photovoltaic (PV) prototypes, exposing a potentially large and untapped market for solar
energy: building integrated (BI) solar powered windows. In this perspective, we assess the case for
market deployment of BIPV windows, specifically intended for commercial U.S. high-rise buildings.
Research and development on solar powered windows has been predicated on the hypothesis that
sunlight-to-electrical power conversion efficiency (PCE) and device cost per unit area are the key figures
of merit that might drive market adoption. Here we investigate the market landscape and desirability for
solar powered windows by identifying and evaluating the customer needs for the commercial high-rise
building window market. In the course of this assessment, we performed 150 interviews with experts
across the value chain for commercial windows. We found that the market forces are complicated by a
misalignment of incentives between the end users of BIPV windows and the key decision makers for
building projects that could incorporate this technology. Our assessment leads us to frame new figures of
merit for BIPV windows that address the underlying needs of prospective customers as well as technical
metrics for energy generation. We finally discuss one possible direction for BIPV window technology in
which photovoltaics are integrated with switchable windows. Here, the integrated PV converts visible
and infrared light transmission into useable electricity enabling standalone, self-powered active win-
dows that can potentially address market needs for smart windows, thereby enabling a pathway for BIPV
window deployment.

© 2020 Elsevier Ltd. All rights reserved.

1. Building-integrated photovoltaic energy

In the past two decades, global solar photovoltaic (PV) capacity
has grown more than 600-fold [1]. One driver for this market
growth stems from the more than 99.9% cost decrease in crystalline
Si (¢-Si) PV cells since 1980 [2]—where c-Si cells currently comprise
approximately 93% of total installed PV [3]. During this same time
frame, record c-Si cell power conversion efficiency (PCE), a second
driver for this specified market growth, has doubled from 13% to
26.1% [4]. As a result of these rapid reductions in cell and module
cost per Watt, approximately 57% of the costs in 2019 for utility-
scale PV systems come from soft costs (e.g. installation labor,
sales tax, overhead) and balance of systems (BoS) costs [5].
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With this shift in PV system economics, new application areas
and market opportunities are being explored. Building integrated
PV (BIPV) technology enables traditional building materials (e.g.,
walls, windows, roof shingles) to be equipped with PV power
generation capability—where PV BoS and soft costs can be mini-
mized or even absorbed into the construction costs of a building.
Shown in Fig. 1a, the number of U.S. high-rise buildings (>125 ft in
height) continues to increase every year, as indicated in blue, with
over 3,000 new projects developed since 1980 [6]. While U.S. PV
capacity in this same time frame has grown at a near exponential
rate, reaching over 70 GW of installed systems by the end of 2019
(Fig. 1a, red), BIPV installations have significantly lagged their
utility c-Si counterparts, with less than 0.50 MW capacity in 2019
(Fig. 1a, green).

Buildings alone are responsible for approximately 28% of global
CO; emissions in the US, and when building-related construction is
also considered, that number jumps to over 40% [8]. Given limited
rooftop areas of most urban high-rise buildings, typical commercial
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Fig. 1. (a) A comparison of the number of U.S. high-rise developments since 1980 (left y-axis, blue) against the total installed U.S. PV capacity (right y-axis, red) in gigawatts (GW)
and the total installed U.S. BIPV capacity (far right y-axis, green) in megawatts (MW). (b) An estimate for the amount of CO, emissions in megatons (MTon) resulting from U.S. high-
rise buildings with respect to varying total amount of BIPV integration. Here we assume energy production of a BIPV module operating at 5% power conversion efficiency at a
temperate, sunny climate comparable to Los Angeles, CA [5,6,47—50]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

rooftop PV installations cannot economically offset electricity de-
mands of the building [9]. And while utility-scale solar PV offers
off-site generation to urban centers, up to 10% of generated PV
electricity can be lost due to electric power transmission losses [10].
It is thus interesting to consider how direct integration of PV
components into the building facade (i.e., curtain wall and win-
dows) can enable a reduction in installation and systems costs [11],
while also providing on-site electricity and mitigating building-
related CO, emissions, shown in Fig. 1b.

While BIPV installations currently occupy less than 0.001% of the
overall solar market share, as shown in Fig. 1a, active research and
commercialization efforts are underway to develop integrable BIPV
technology [12—17]. Given the historical trends for utility-scale PV,
BIPV researchers commonly assume that the most influential fig-
ures of merit for increased market adoption are those related to on-
site electricity generation and, consequently, avoided use of grid
electricity. Thus, figures of merit have often considered technical
performance factors, such as power conversion efficiency (PCE) and
cost per unit area. However, as has been suggested in previous
reports, BIPV must also incorporate non-technical factors (e.g.,
aesthetics, business models) when evaluating the marketability of a
new technology [18—21]. In this perspective, we evaluate whether
the currently assumed BIPV figures of merit are the most influential
factors to assess market deployment of this technology. We limit
the scope of our analysis to BIPV power-generating window tech-
nology intended for commercial, high-rise building applications
within the US. We first discuss current electricity-generating
window technologies, both under research and commercially
available. We then evaluate the glass and window markets, iden-
tifying customer segments and decision makers. The outcome of
this analysis provides a challenge to the BIPV research community
to redefine the key figures of merit to include metrics that take into
account customer segment needs as well as technical performance.
Finally, we provide an outlook for a BIPV window design that may
address these new figures of merit, which combine both market
and technical factors.

2. A survey of electricity-generating window technology

Unlike conventional utility PV modules, BIPV window applica-
tions must respond to aesthetic requirements (e.g., color, average
visible light transparency (AVT), image clarity) in addition to power
production. Consequently, a variety of power-generating window
technologies have been developed over the past several decades to
address these features. Despite a myriad of BIPV window concepts,
each share at least one operating characteristic: one or more

surface(s) of the insulated glass unit (IGU) window absorbs a
portion of incident sunlight for electrical power conversion. Given
that a portion of visible light must pass through the window to
reach the building occupant, a reduced spectrum of light is useable
for power conversion in BIPV windows. As a result of this reduced
amount of useable light, the power production of the device is
limited, creating a trade-off between window AVT and PCE [16].
Fig. 2a depicts PV power generation by light absorption and
electron-hole pair generation at the inside surface of the exterior
glass pane (S2).

While BIPV windows share a common feature of incident sun-
light to electrical power conversion in semi-transparent modules,
the underlying PV technology varies widely, as shown in Fig. 2b—e.
Among others, organic PV (OPV) [14,22], luminescent solar
concentrator PV (LSC-PV) [9], thin-film PV [14,23], and perovskite
PV [14] all enable partial light absorption and have been researched
for power-generating window applications. Fig. 2b—e illustrate
typical components found for thin film structures for each of these
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Fig. 2. An overview of various technologies and their respective structures for a BIPV
window IGU. (a) An illustration of the structure for a double paned IGU with the front
pane layer containing the PV technology resulting in a photogenerated exciton (h*,e ™).
(b), (c), (d), and (e) Renderings of four commonly-employed BIPV window devices
including organic PV, LSC-PV, thin-film PV, and perovskite PV structures, respectively.
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PV technologies. As shown, each design includes at least one glass
surface serving as either the front or back pane. OPV and perovskite
PV include electron and hole transport layers encasing the organic/
perovskite material, respectively. Recent advances in these devices
exhibit PCEs beyond 8% and 10% under 1-sun illumination at over
25% AVT for OPVs and perovskite devices, respectively [14]. For the
case of thin-film PV technology (e.g., thin films of a-Si), PCEs can
surpass 5% at more than 30% AVT [17]. Finally, LSC-PV prototypes
demonstrate recent milestones such as beyond 2% PCE at more than
44% AVT for large-area (100 cm?) module sizes [24].

Despite decades of device research and product development,
the amount of installed BIPV (e.g., BIPV windows) technology has
not experienced the same growth, or even the same trend, as its
utility PV counterpart (Fig. 1a). Moreover, research into how to
further integrate BIPV windows into the commercial buildings
market remains an active area of study in both academia and in-
dustry [18—21]. One possible reason is that BIPV window modules
have not yet achieved sufficiently high PCE and annualized energy
production in order to meaningfully offset building electrical loads.
Yet, despite advances in PV efficiency and durability, BIPV window
adoption remains limited in this commercial, high-rise market. This
could indicate that conversion efficiency is not the sole driving
factor for widespread BIPV window adoption. A second possibility
is that the customers’ needs and associated value propositions for
the BIPV market are significantly different from those of the utility-
scale PV market, such that the same norms do not apply. If such is
the case, then PCE and AVT alone may not be sufficient to meet
customer needs for BIPV adoption.

3. Commercial glass and window market

In order to assess how BIPV window technology could enter into
the commercial glass and window market, we must first develop a
comprehensive understanding of the value chain for a traditional
window — a double-paned IGU — from cradle (i.e., initial
manufacturing) to end-use (i.e., use in a commercial high-rise
building). While the building load electrical generation for BIPV
windows is applicable for all building sizes, in this paper we spe-
cifically address a subsegment of the commercial market, consid-
ering only large-scale (>100,000 ft%), high-rise buildings [25]. Such
large-scale high-rises typically exhibit larger window-to-wall ratios
than other commercial building market subsegments [26]. We
traced this IGU cradle-to-end-use value chain (see figure S2 in the
Supporting Information) by conducting nearly 150 in-person in-
terviews across the commercial building value chain during the fall
of 2019. We categorize these 150 interviews as: 37% within the
glass and IGU manufacturing chain; 15% from IGU suppliers and
distributors; 28% from real estate developers, architects, engineers,
and contractors (general and sub-); 12% from city and building
regulators; and 8% from building occupants and end-users.

The cradle-to-end-use value chain of a double-pane IGU de-
scribes how solar powered windows would be transferred from
BIPV window manufacturers, to window suppliers and distributors,
to large-area building developers, and eventually to the end-
users—either as the building owners or occupants, as shown in
Fig. 3. We can subcategorize roles of the various parties within this
value chain as the direct economic buyer(s) of BIPV window coating
technologies; decision maker(s) who determine whether or not to
adopt a particular IGU product; influencer(s) that can sway buyers
or decision makers; and saboteur(s) that can impede or prevent
BIPV window technology from entering into the market.

From our collected data, we can identify a singular economic
buyer within the first stage of the value chain—BIPV window
manufacturing. We also find that key decision makers, BIPV win-
dow influencers, and emerging window technology saboteurs all
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Fig. 3. A conceptualization of the value chain for a commercial building IGU. (left) Five
major categories of product development from window cradle to end-use. (right)
Subcategorization of roles within these five categories, explicitly showing the product
flow between subsequent customers in the chain. For such a BIPV technology, the
primary economic buyer for this setup lies in the initial window manufacturing pro-
cess, between the glass manufacturer and IGU assembler. The key decision maker to
adopt BIPV window products for a building owned by the real estate developer, as is
common, lies in the third stage with the real estate developer itself. Here we show that
the end-user and primary beneficiary of PCE or low cost per area units lies at the very
top of the pyramid, thereby not substantially influencing either the economic buyer or
key decision maker.

occupy distinct roles within the third stage of the value chain,
building development. In contrast, none of these roles (e.g., eco-
nomic buyer, key decision maker, influencer) exists within the end-
use stages (e.g., ownership or occupancy) for such a BIPV window
process flow. Fig. 3 depicts the five stages of the BIPV window value
chain, highlighting the key roles spanning from cradle-to-end-use,
and specifies how each role relates to one another with respect to
product flow.

Within the value chain, we identify specific needs for each of the
major roles that impact market adoption for BIPV window
technology—influencers, key decision makers, and economic
buyers. Influencers (in this case architects) are motivated to create
aesthetically attractive building designs to increase project acqui-
sition. As such, BIPV windows need to meet the aesthetic needs
(material, color, clarity, flexibility) of architects. The key decision
makers (here commercial real estate developers) are motivated by
an increased return on investment (ROI) to turn a greater profit
[27]. For a real estate developer, the primary purpose for a window
simplifies to increasing the availability of natural daylight, allowing
unobstructed views, and enabling comfort through temperature
control, all in order to attain higher building occupancy rates and
therefore heightened ROIs. Finally, the economic buyers (IGU
manufacturers) are incentivized to maintain the status quo; i.e., to
produce windows whose production costs and installation pro-
cedures and costs do not disrupt the current practice of window
production and installation. Therefore, electrically connected win-
dows, which incur additional installation costs, are intrinsically at
odds with the economic buyers’ primary need.

While electricity generated by BIPV windows may appear to be
the most obvious added value for high-rise buildings, this value is
only appreciable to the end-user (building occupant or owner), who
occupies the top stage of a value chain pyramid and accordingly has
no significant decision making role in the value chain. Moreover,
the real estate developer’s greatest need (i.e., increased ROI) doesn’t
necessarily align with that of the building occupant’s or end-user’s.
From nearly 150 qualitative interviews, large-scale building de-
velopers most commonly rely upon higher degrees of comfort,
increased views, or other “soft” values to attract more tenants.
While lower utilities costs may attract a certain number of tenants,
our interviews show currently most developers rely upon other
methods (e.g., soft values) to achieve increased ROI.
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4. Re-defining the figure of merit

As shown in this market analysis, there exists more than one
customer role, each of which are separated along the value chain.
The separation of roles (e.g., decision maker, economic buyer, and
end-user/beneficiary) suggests that the key figure of merit to spur
market adoption may not stem solely from power conversion effi-
ciency. Given the interview data, we find that the specific needs of
each role; 1) the key decision maker, 2) the economic buyer, and 3)
the end-users; must be addressed. Thus, BIPV windows must first
work to enable increases in building occupancy rates and in turn
ROIL. Second, BIPV windows must also feature designs that simplify
or eliminate the need for integration into the building electrical
infrastructure. Finally, while optimization for PV electrical perfor-
mance (e.g., PCE) are still considerations to meet end-user’s needs
(e.g., reduced utilities bills), our interviews suggest these factors are
less important to the key decision makers and economic buyers. As
has been concluded in related market studies [28], an inclusive
figure of merit to capture each of these three features of a BIPV
window (ROI impact, installation/integration, PCE) could enable
researchers to more efficiently develop technology deployable to
this market.

5. An outlook for BIPV window research and development

Given the disparity between the power-production capabilities
of current BIPV window concepts and the market needs (identified
through this interview process) of high-rise building developers
and IGU manufacturers in the United States, we identify several
strategies to enable BIPV window technology to meet such market
needs. One strategy, as has been discussed by previous studies
[28—31], involves an increase in policy and regulation of required
on-site PV production and energy efficiency of such building mar-
kets in order to create a demand for the key decision makers. As
introduced in the previous section, another such strategy could be
to align building developers’ current needs of increased ROI with
BIPV window technology. From interviews conducted throughout
this study, dynamic windows (e.g., electrochromic) represent one
such technology that provides the “soft” values needed for
increased occupancy rates. An example of how to introduce BIPV
window technologies could be to hybridize dynamically trans-
parent IGUs with PV power-generating components [32—41]. As
shown in Fig. 4a, a dynamic glazing window transmits visible and
infrared radiation (light and heat) when configured in its off (clear)
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state. However, when switched to the on (dark) state, such win-
dows reflect solar heat at the first glass surface (S1), thereby opti-
mizing the daylighting and heating within a commercial building.

To date, most commercially deployed active window technolo-
gies rely upon switching mechanisms driven by externally supplied
power from the building’s electric infrastructure [42]. The high
labor-related installation costs for replacing traditional IGUs with
externally-powered dynamic windows creates a limited market
size, in which dynamic windows would only be practical in new
building projects [43,44]. However, retrofitting projects far
outnumber those of new builds [6]. Fig. 4a shows a 3D rendering of
a dynamic, electrochromic double pane IGU coupled with trans-
parent BIPV technology in order to illustrate a self-powered tinting
window [36,41,43,44]. Given this design, the PV component ab-
sorbs a small portion of light, in both the on and off states, to enable
the power production needed for switching. This standalone self-
powered window unit would not incur any labor costs related to
integration into the building electrical infrastructure. Fig. 4b esti-
mates the impact that self-powered dynamic window technology
could have for U.S. high-rise CO, emissions if widely adopted. In
this figure, we assume an average energy savings of 10% when
replacing standard double-pane, low-E windows with dynamic
windows [45]. From this, we can expect a comparable decrease in
CO, emissions resulting from widespread adoption of self-powered
active windows as from on-site electricity generation by power-
generating BIPV windows (Fig. 1b), owing to decreased HVAC use
in buildings featuring self-powered dynamic window technology
[46]. The above suggests BIPV window technology has untapped
potential to transform energy use in high-rise commercial
buildings.

Despite its potential, total BIPV installation in the US lags far
behind conventional utility-scale PV. From the 150 interviews with
experts in the high-rise building value chain, we learned that the
market case for BIPV technology cannot be made by applying the
same figures of merit as are used for the utility-scale PV market.
Researchers investigating BIPV technology need to define appro-
priate figures of merit that can quantify the BIPV aesthetics,
enabled comfort values, and ease of installation. While such attri-
butes are less commonly considered or emphasized by the photo-
voltaics or broader renewable energy technology communities, in
comparison to technical merits, the emergence and market adop-
tion of innovative PV forms demands equally innovative and
evolving metrics for market evaluation.
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Fig. 4. (a) 3D rendering of a dynamic, double pane insulated glass unit (IGU) coupled with transparent BIPV window technology, conceptually illustrating the effect of self-powered
switching from the off, clear state to the on, dark state. (b) An estimate for the amount of CO, emissions in megatons (MTon) resulting from U.S. high-rise buildings with respect to
varying the total amount of BIPV-powered, dynamic IGU integration. Here we assume energy production of a BIPV module sufficient to operate the switching energy demands of the
dynamic component, geographically set to a temperate, sunny climate comparable to Los Angeles, CA [5,6,45,47—50].
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