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Spin and eccentricity evolution in triple systems: From the Lidov-Kozai
interaction to the final merger of the inner binary
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We study the spin and eccentricity evolution of black-hole (BH) binaries that are perturbed by tertiary
masses and experience the Lidov-Kozai (LK) excitation. We focus on three aspects. First, we study the
spin-orbit alignment of the inner binary following the approach outlined by Antonini et al. [Mon. Not. R.
Astron. Soc. 480, .58 (2018)] and Liu and Lai [Astrophys. J. 863, 68 (2018)], yet allowing the spins to
have random initial orientations. We confirm the existence of a dynamical attractor that drives the spin-orbit
angle at the end of the LK evolution to a value given by the initial angle between the spin and the outer
orbital angular momentum (instead of to a specific value of the effective spin). Second, we follow the
(inner) binary’s evolution further to the merger to study the final spin-spin alignment. We generalize the
effective potential theory to include orbital eccentricity, which allows us to efficiently evolve the system in
the early inspiral stages. We further find that the spin-spin and spin-orbit alignments are correlated and the
correlation is determined by the initial spin-orbit angle. For systems with the spin vectors initially in the
orbital plane, the final spins strongly disfavor an aligned configuration and could thus lead to a greater
value of the GW recoil than a uniform spin-spin alignment would predict. Lastly, we study the maximum
eccentricity excitation that can be achieved during the LK process, including the effects of gravitational-
wave radiation. We find that when the tertiary mass is a supermassive BH and the inner binary is massive,
then even with the maximum LK excitation, the residual eccentricity is typically less than 0.1 when the
binary’s orbital frequency reaches 10 Hz, and a decihertz detector would be necessary to follow such a

system’s orbital evolution.

DOI: 10.1103/PhysRevD.102.123009

I. INTRODUCTION

It has been suggested that a significant amount of binary
black-hole (BH) mergers detectable by Advanced LIGO
(aLIGO; [1]) and Advanced Virgo (aVirgo; [2]) may
happen in galactic nuclei [3-5] or in surrounding gas disks
[6-8]. The recent announcement by the Zwicky Transient
Facility [9] further strengthens this possibility. In Ref. [9],
the authors report a plausible electromagnetic counterpart
to a candidate binary BH merger in the accretion disk of an
active galactic nucleus, associating it with al.LIGO/aVirgo’s
gravitational-wave (GW) event GW190521 [10,11].

The deep gravitational potential well in a galactic
nucleus enables the possibility of finding mergers involving
second-generation (or even higher generation) BHs, i.e.,
BHs that are themselves products of previous merger events
[12—14]. Such a high-generation BH may be produced by
frequent stellar interactions thanks to the dense stellar
environment [15]. Alternative, if there are gas disks around
the SMBH, then migration traps may form and cause
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massive objects to accumulate and collide with each other
[16]. A high-generation BH may be massive, potentially
exceeding the upper mass gap set by pair-instability
supernovae [17]. Moreover, such a BH likely possesses
significant spin angular momentum, inherited from the
residual orbital angular momentum (AM) of its progenitor
binary [18-22]. This is in contrast to BHs born from stellar
evolution, in which case small spins are expected [22,23].
Ref. [9] suggests that the GW190521 event may have a
total mass of ~100 M and at least one component is
significantly spinning,' two characteristics consistent with
BHs with dynamical origins as expected in galactic nuclei.

'During the preparation of this work, the LIGO parameter
estimation on the GW190521 event was not ready and therefore
parameters suggested Ref. [9] were used. LIGO later reported a
more massive binary with component masses of (M, M,) =
(85 My,66 M) and both components may have potentially
significant spin. More importantly, there is a potentially signifi-
cant spin component in the orbital plane [10,11]. These param-
eters further strengthens the possibility of a dynamical origin of
the system.

© 2020 American Physical Society
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Meanwhile, as a supermassive BH (SMBH) typically
resides in the galactic nucleus [24], binaries in the nucleus
might be further perturbed by the SMBH via, e.g., the
Lidov-Kozai (LK) mechanism [25,26]. In this picture, the
SMBH acts as a tertiary perturber that causes the inner
binary to oscillate in its orbital inclination and eccentricity.
As the pericenter separation decreases with increasing
eccentricity, the GW radiation becomes increasingly more
efficient. This allows the binaries to merge more quickly
and on timescales shorter than, e.g., the age of the Universe
or other survival timescales set by local environments.

In fact, the LK mechanism has been considered to be an
important channel producing the mergers of binary BHs
and belongs to the family of dynamical formation channels
(see, e.g., Ref. [27] for a review of different formation
scenarios). Different authors have investigated this problem
in different context, ranging from galactic nuclei (e.g.,
[4,5,28-31]), to dense stellar clusters (e.g., [32,33]), to
isolated field stars (e.g., [34—41]).

While most of the references above focus on the merger
window (i.e., the parameter space of initial conditions that
could lead to successful LK-induced mergers) and the event
rates, a few authors [34,35,39] suggest another interesting
aspect of the LK mechanism, namely, its effect on the
evolution of the spin vectors in the inner binary. More
specifically, Refs. [34,35,39] all report a dynamical attractor
that drives each component’s spin into the orbital plane at the
end of the LK evolution. Consequently, the effective
spin parameter [the mass-weighted sum of the component
spins along the direction of the orbital AM; see Eq. (44)]
of the inner binary is attracted toward zero. However,
Refs. [34,35,39] assumed a special initial condition where
the spin vectors are aligned with the inner orbit AM vector.
This is a reasonable assumption to make for triple systems in
the field, where such an alignment might be expected from
stellar evolution [42,43]. It is unclear, however, whether
such a condition still holds for binaries formed near an
SMBH whose components are more likely to have dynami-
cal origins. This motivates us to study, under more generic
initial conditions, how the LK process affects the evolution
of the inner binary’s spin-orbit alignment. This is particu-
larly relevant to GW190521, as significant spin may be
expected [9-11], and would improve our understanding of a
more generic class of mergers driven by the LK mechanism.

In addition to the spin-orbit alignment, the spin-spin
alignment is also of particular interest in this study. Previous
studies suggest that the post-Newtonian (PN) spin evolution
may play a significant role in shaping the final distribution of
this angle (e.g., Refs. [44-51]). While this is not a leading-
order post-Newtonian (PN) effect in the inspiral stage, the
spin-spin alignment nonetheless affects the GW radiation
during the final merger-ringdown stage, and plays a crucial
role in determining the GW recoil (also known as the GW
kick; [45,46,52]). Properly modeling this final stage is
particularly important for a system like GW190521, which

is both intrinsically massive and appearing more massive in
the detector frame due to the large cosmological redshift,
because the signal information content captured in the LIGO
band is dominated by the merger-ringdown stage [53]. This
is in contrast to the majority of previous LIGO detections,
which typically appear with a detector-frame total mass of
< 100 M, where the signal-to-noise is dominated by the
inspiral stage.

Consequently, in this study, we also investigate the evolu-
tion of the spin-spin alignment. Particularly, how different
initial conditions such as orbital eccentricity and the initial
spin-orbit alignment affect the final orientation of the spin
vectors. Since in the final evolution stages, the binary
effectively decouples from the tertiary perturber, the LK
process simply serves as a way of providing the initial
condition. Thus, our result has broader applications to other
formation channels, provided one properly substitutes in the
initial conditions suitable for the formation channel of interest.

The eccentricity is yet another interesting aspect that we
explore in this study, as it usually bears unique signatures of
a binary’s formation channel [33,54-63], and it is antici-
pated to be detectable by future space-based GW observa-
tories in the millihertz and decihertz bands such as LISA
[64], TianQin [65], and TianGO [66]. This motivates
investigating the limiting eccentricity that can be excited
by the LK mechanism and the observational consequences
for future space-based and ground GW detectors.

The rest of the paper is organized as follows. In Sec. IT A
we outline the basic formalism of the problem. In the
remainder of Sec. II, we apply the formalism to studying
the spin evolution during the LK evolution. Our approach is
similar to Ref. [35] but with a key extension in the form of
sampling the initial spins isotropically. In Sec. III we
further evolve the systems after the LK excitation, which
specify the binary initial conditions, and follow the binary’s
evolution onward to the final merger. This is done by first
generalizing the precession-averaged evolution for circular
orbits proposed by Ref. [67] to allow for orbital eccentricity
in Sec. I A. We study the final spin distributions in
Sec. III C and its relation to GW kicks in Sec. III D. We
then consider the limiting eccentricity excitation by the LK
mechanism in Sec. I'V. Lastly, we summarize our results in
Sec. V. Throughout this paper we use geometrical units
with G =c¢ = 1.

II. EVOLUTION OF THE SPIN-ORBIT
ALIGNMENT DURING THE LIDOV-KOZAI
OSCILLATION

In this section we study the dynamics of an inner binary
(consisting of masses M; and M, with M| > M, in an orbit
with semimajor axis «;) perturbed by a tertiary mass M,
that is in an outer orbit with semimajor axis a, via the
Lidov-Kozai (LK) oscillation.

Our focus is to examine how the spin vectors of the inner
binary evolve with respect to the inner orbital AM.
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Specifically, we want to examine if the attraction toward
Yett = 0 reported in Refs. [34,35,39] still holds if we
randomize the initial spin orientation. According to
Ref. [35], the attraction is most significant for triple
systems that experience multiple ‘“clean” LK cycles. In
other words, the interaction is dominated by the quadrupole
interaction potential. The octupole effects are naturally
small when the tertiary mass is an SMBH, because the
condition a, > a; is required in order for the triple to be
dynamically stable [4,68]. Consequently, we truncate the
LK interaction at the quadrupole order in this work.

Given the complications of the environment near an
SMBH, we do not attempt to make any predictions on the
LK-induced event rates in this study.

In Sec. IIA we review the basic formalism of the
standard LK problem and in Sec. IIB we provide some
analytical solutions under the simplifications that the
interaction is truncated at the quadrupole order and the
GW decay is neglected. Additional corrections due to an
SMBH are discussed in Sec. II C. We present our numerical
simulations in Sec. II D. Our study in this Section closely
follows Ref. [35] (see also Refs. [34,39]), with a key
modification, namely, that we allow the initial orientations
of the spin vectors to be drawn isotropically, rather than
fixing them along the direction of the AM of the inner orbit.
As evident in Sec. II D, this has a significant consequence
on the final distribution of y-.

A. Formalism

We start our discussion here by presenting the key
equations of the “standard” LK interactions. Corrections
due to an SMBH are discussed in Sec. II C.

The secular evolution of the inner orbit can be specified
by 4 vectors, L;, €;, S;, and S,, corresponding to the
orbital AM of the inner orbit, the eccentricity vector,2 and
the spin vectors associated with masses M, and M,,
respectively. These vectors are further specified by a set
of ordinary differential equations as

dL;  dL; dL; dL; dL; W
de; de; de; de; de; de;
i — i ﬁ + ﬁ + i + i , (2)
das das das
1,2 _ 1,2 + 1,2 ’ (3)

where in the subscripts we have used “LK,” “GR,” “GW,”
“dS,” and “LT” to respectively stand for the Lidov-Kozai
(LK) interaction, the (conservative) general-relativistic

’It has a direction pointing from the apocenter to the pericenter
and its amplitude is equal to the eccentricity. This is equivalent to
the Laplace-Runge-Lenz vector divided by Mu?.

apsidal precession, the (dissipative) GW radiation, the de
Sitter, and the Lense-Thirring precessions. When coupled
to the outer orbit via the LK mechanism, the above set of
equations gives the complete description of the system’s
dynamics. Next, we examine each of these terms more
closely.

We start with the LK interaction, which together with the
Keplerian motion of the inner and outer orbit (i.e., all the
Newtonian parts), can be jointly described by a
Hamiltonian (see, e.g., Ref. [69]; see also Ref. [70] for a
more recent review) of the form

M= splbP 4 guoliol =2 MO g
i o
Here, r, = ri#; and r, = r,#, are the inner and outer
orbital separations, respectively, while the hats denote unit
vectors. We have also defined y; =M M,/M, and
Uo = MM5/ (M, + Mj3), the reduced masses of the inner
and outer orbits, respectively, where M, = M + M, is the
total mass of the inner orbit. For conciseness, we some-
times drop the subscript “i” for quantities describing the
inner orbit. To avoid any confusion, quantities related to the
outer orbit retain the subscript “o” throughout this paper.
The quantity ®;x describes the tidal potential of the
tertiary mass expanded around the center of mass of the
inner orbit and it is given by

M (1)
v

Dpg = —MMyM3»
=2

/
ri A
X H_lpl(ri'ro)’ (5)
o

where in the second line, P; is the Legendre polynomial of
degree [. Note that the octupole term is significantly
suppressed when M5 is an SMBH as dynamical stability
[4,68] requires r,/r; < 1 (the system we focus on in
Sec. II D has a,/a; ~ 107*, about 100 — 10% times smaller
than what is allowed for triples in the field with M5 ~ M ).
More importantly, as our goal is to study the spin attractor
under “clean” LK interactions [35], we focus solely on the
leading order quadrupole (I = 2) term.

To efficiently evolve the system, one typically uses the
orbital-averaged (i.e., the secular) version of the interaction
potential @; . Specifically, one may average over both the
inner and outer orbits (i.e., the double-averaged, or DA,
approximation), which leads to

B yM3a2
(PN 1=2 “8a(1—e”

+15¢2(2-L)Y. (6)

[1-6e2—3(1—¢?)(L-L,)?

where L, and e, are the orbital angular momentum and
eccentricity vectors of the outer orbit, and they can be
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jointly evolved with the inner orbit’s quantities to solve for
the dynamics of the hierarchical triple system. Due to the
LK interaction, the inner eccentricity and mutual orbital
inclination oscillates at a characteristic rate € ¢, given by

M a 3 IM
Qg = =3 (7> _3,l (7)
aO

M, Vi-é2 a

When the inner orbit’s eccentricity e is near its maximum
with e ~ 1, the eccentricity varies on a timescale 7 g given
by 71

M, <a0\/TQZ)3 a(1-&) ®

TLK = 7,
M3 a Mt

If this timescale is longer than the period of the outer orbit,
we are safely in the DA regime. Otherwise, one should only
average over the inner orbit (the single-averaged, or SA,
approximation), leading to

,uM3a2
4r3

—15(e - #,)?). 9)

(Pr)li— = [—1 4 6e* +3(1 —e?)(L-7,)?

Once the Hamiltonian is specified, one can easily obtain
the equations of motions for both the inner and outer orbits.
The explicit forms are provided in Appendix A (See also
Ref. [72] for the DA case and Ref. [35] for the SA case).

As the LK oscillation excites a large eccentricity in the
inner orbit, it greatly reduces the instantaneous GW decay
timescale 7, defined by

5 4 1= 2\7/2
TgWEi:*a2 (735)374' (10)
|Cl| 64/,tMt (1+ﬂ€ —I—%e)

Hence, an initially widely separated system may be able to
merge in a reasonable amount of time due to GW radiation
when (1 — e?) < 1. As pointed out by Ref. [35] (see also
Ref. [36]), the total LK-induced merger time can be
approximated by

Tm :Tgwlez()(1 _erznax)37 (11)

where e, 1s the maximum eccentricity reached during the
LK cycle [which is further explored in Eq. (26) and
Sec. IV].

To incorporate the GW decay, we have

dL|  3242M° (1+3%)
dt |gw (1-¢%)?

=-S5 L, (12)

3For future convenience, we do not define Tk as 1/Qk.
Instead, we define 7;x = V1 — e?/Q k.

de

o 304uM?E (1 + 3% e?)
dt

5w (-t P

GW

Note that the above equations preserve the relation that

L =pu\/Ma(l-eé?). (14)

In addition to the dissipative decay, GR also induces a
conservative apsidal precession as

de
EGR :QGRXE, (15)
where
3M ~
Qr = — QL. 16
GR d(l — 62) orb ( )

with Qg = V/M,/a’.

In order to study the evolution of spin orientation, we
further incorporate the de Sitter (1.5 PN) and Lense-
Thirring (2 PN) precessions according to Ref. [73], as
well as the quadrupole-monopole interaction according to
Ref. [74]

das

=@ e reg xS (1)
and similarly for S,. These also induce backreactions on the
orbit (denoted with a subscript “br”) as

dL S N
= = (95151.1)“ + O, + Quri
dS+LT+QM
+le\l/1),br + Qgﬁ’[),br> x L (18)
de s N
Z = (Q((iS],l))r + QN + Qurir
dS+LT+QM

O, 0 e (19

The different Q’s are given by

3(My+u/3) , » _ (4+3My/M,)L -
Q) === = L (0
ds 2(1(1 _ 62) ‘orb 2613(1 _ 62)3/2 ( )
o =% 8 3180 (1)
LT 203(1 _ 62)3/2 2 2 ’
s My o e e
Qo = L2083 80, (22
QM 2a3(1 _ 62)3/2 M, [Sl 3( Sl) }7 ( )
S{(A+3My/MY) o e s
o), = SO (5, 3180 (@23)

2a3(1 — €)%/
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0. ___ 355
LTbr = 2a%(1 = e*)32L
x {(L-8))8,+ (L-5,)S,
+08,-8,-5(L-8)(L 8L} (24)
Q(SI) _ 3S2 M2
'QM,br ( 3/2L M1

—e?)
X {2@ )81+ [1-5(L-8)L} (25
Quantities with a superscript of (S,) can be obtained from

those with (S;) by switching subscripts (1 <> 2).

B. Analytical approximations to conservative systems

The above set of differential equations describe the
dynamics of the triple system and can be solved numeri-
cally. Nonetheless, it is also instructive to consider the
analytical solutions of the system under certain approx-
imations. Specifically, if one ignores the GW decay and
truncates the interaction potential at the quadrupole order
[Eq. (5)], then the maximum eccentricity of the inner orbit
emax €an be obtained as a function of the initial (which we
define as the moment when the system is nearly circular)
inclination I® (i.e., the angle between L; and L) as

[32,72,75]
3 . 1 9
% [egr JASRE <3 + 4épr cos 10 + fﬁ) Jimin
€br
+5( cos 1 TS )| TerR= 0, (26)
where ji, = /1 — €%, and
M, M a./1 —e? 3
_3 A A S 27
€GR = ( > <M3> < a ) ( )
Lle—0 M 1/2
| U LpyeY
L, (M + M3) a,(1 - e5)

The limiting eccentricity &y, = max {en[I(V]} is
obtained when

CEbr 4
cos 11(111)1_2<5-1121m_1>’ (29)
with ji, = /1 — &%, by solving
3 ~ ~ €2r 4 ~
g]lim(]lim +1) [—3 +% (5 Jiim — 1)] +egr = 0. (30)

Under the limit that the backreaction factor e, << 1 and
1 —¢é < 1, we can simplify the equation as

M 4/ a \-8
1 — &y ~1.9%x 107 :
i x <150 Mo> (3 AU)
" My \2[(a,\/1-e2\° (1)
10° Mg 0.06 pc )’

and the limiting merger timescale associated with &, is
given by [Eq. (11)]

%m,lim ~23 % 101 yr

M, N/ u \-'/ a \-2
% (100 Mo> (25 M®> (3 AU)
-6 2 18
y M, as\/1—¢€; . (32)
10° M 0.06 pc

We show a few representative curves of the maximum
eccentricity under the conservative approximation, and the
corresponding merger timescale calculated according to
Eq. (11) in Fig. 1. Here we assume the triple system has
masses of (M, M,, M) = (55,45,10°) My. We denote
the initial semimajor axes of the inner and outer orbits as

ai(o) and a,, respectively, and use three different line styles
to represent three sets of separations (we use dashed,

solid, and dotted lines for [a\”, a,] = {30 AU, 0.6 pc},
{3 AU, 0.06 pc}, {0.3 AU,6 x 107 pc}, respectively).
Lastly, we use the color grey (olive) to represent systems
that are in the DA (SA) regime. Note that the maximum

eccentricity varies with respect to ai(o)

even if we keep the

ratio a / a, a constant.

Note that the derivation so far is for a conservative
system only, and we use a tilde symbol to denote the
associated quantities. We revisit the limiting eccentricity in
Sec. IV to take into account the effect of GW radiation.

C. Effects associated with an SMBH

In addition to the “standard” LK equations presented in
Sec. I A, there are additional corrections that may be
important when the tertiary perturber is an SMBH [4]. In
this section, we discuss these effects.

One of the most significant effects associated with an
SMBH is that L, and e, may experience a 1.5-PN
precession around S; (the spin vector of M3) as’

dL,
dt S3L0

= QS3LOS3 X L, (33)

“This is in analog to how L; precesses around S; (and S,). See
Eq. (23). Note that whereas L;/S; > 1, we have L,/S; ~5 x
107 if S5 ~ M3, and consequently, the precession of S5 around
L, [analog of Eq. (20)] can be safely ignored.
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[0, a,] = (3,0.06)
e Osp,=45° il [ai(o), a,] =(0.3,6 x 107%)

103 : AL
—— DA regime
SA regime
84 86 88 90 92 94 96
TO[°]
FIG. 1. Top panel: the maximum eccentricity that can be

excited during the LK oscillation as a function of the initial
inclination /(¥ under the conservative (i.e., no GW radiation),
quadrupole approximation [Eq. (26)]. Bottom panel: the corre-
sponding merger timescale [Eq. (11)]. Here we have focused on a
system with (M, M,, M3) = (55,45,10°) M, and three differ-
ent sets of [ai(o), a,| (indicated by different line styles). We have
fixed the eccentricity of the outer orbit to be e, = 0 for the cases.
Also shown in the dots are the results obtained from numerical
simulations including SMBH corrections (blue for 85, ; = 5°and
orange for Og ; = 45°, where 6 ; 1is the inclination of L, with
respect to S3). The pile-up of eccentricity at 1 — e, ~ 10~* and
the merger time at 7,, ~ 3 x 10 yr are explained in Sec. IV.

de,

E = QS;L0 [33 - 3(io : 33)i0} X €, (34)
SiL,

where the precession rate is given by

_ S3(4+3M,/M;)
2a3(1 = e3)**

S M, \-!
~37x 1073 [ 2 ) (23—
<10 (757

M 1/2 -3/2
x ‘ a . (35)
100 M, 3 AU

Note that in the second line we measure €2g,; in terms of
LK precession rate, Q; x [Eq. (7)], to compare the relative
importance of the two effects. As we focus on inner binaries
that are less compact than those studied in Ref. [4], this
effect is less significant in our case.

Similarly, S5 also causes L;, S, and S, to precess around
it [in analog to Eq. (21)] as

QSSLO

dL;
dt |5,

=Qg 1[853 -3(L, - S3)L) x L. (36)

The equations for S; and S, can be easily obtained by
replacing L by S(5). The three vectors precess at the same
rate,

S, 1

Qs =557 =5 .1
ST 2ad(1— 23 4T

(37)

Therefore, this effect does not directly alter the angle
between S, and L;.

Nevertheless, the combination of the above two effects
introduces extra variations on the directions of L, and L;
relative to each other, which enables a greater eccentricity
excitation at a given initial inclination I(®) and typically
broadens the LK merger window. Similar effects can also
be generated by a nonspherical mass distribution of the
ambient star cluster [30,31], or in the context of field stars,
by a quadruple system [40,76].

We demonstrate the significance of this effect numerically
in Fig. 1 with the dot markers. When the angle between S5 and
L,, 0y, , is small (blue dots with 6 ; = 5°; the azimuthal
angle between the two vectors is set randomly), the eccen-
tricity and merger time matches well the analytical approxi-
mation [Eq. (26)].5 Indeed, if L, is parallel to S5, Eq. (33)
vanishes while Eq. (36) reduces to an extra precession of L;
around L, without providing additional changes in the
nutation. On the other hand, when the misalignment is
significant (orange dots with 65 ; = 45°), we see more
scattering of the numerical results. A greater eccentricity
allows a binary to merge in a smaller number of LK cycles. It
is thus expected to degrade the dynamical attractor, which we
examine in more detail in Sec. I D.

Additionally, both §; (and S,) and L; experience de-
Sitter (or a de-Sitter-like) precession around L, [in analog
to Eq. (20)].

ds, .
— :QLOSILO XSI, (38)
dt LS,
dL; .
! = QL L-LO X Li’ (39)
dt|, g, o

where the precession rates are

The numerically found merger times are slightly shorter than
Eq. (11) as Eq. (11) is only a semianalytical approximation that
captures the key scalings. Also note that the eccentricity piles up
at 1 — e~ 107 and does not reach the limiting values
computed in Eq. (31), similarly for the merger time. This is
explained in Sec. IV when we take into account the GW radiation.
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3(Ms +p,/3) M
Q5 =Q . = (3702) _33’
2a4(1 —e3) ag

My \'?[a,(1—e5)]"?
=0.12Q
H <109 Mo> 0.06 pc

M 1/2 -3/2
x t 2 . (40)
150 My) \3 AU

Note that this effect does not directly affect the angle
between S, and L;, which is the focus of our study here.
Thus, despite that €; ; > Qg ; , it is subdominant com-
pared to the extra precessions around S;.

D. Numerical simulations

Having outlined the set of equations we evolve and their
approximate, analytical solutions, we now examine the full
numerical evolution of a population of triple systems
undergoing the LK excitation. Here we directly integrate
the differential equations outlined in Sec. II A and
Appendix A using an explicit Runge-Kutta method of
order 5(4) [77]. We developed our own code in PYTHON
using standard NumPy [78] and sciPy [79] packages and
optimized using Numba [80].°

Motivated by Ref. [9], we consider a relatively massive
inner binary with masses (M, M,) = (55 My,45 M)

and initial separation ai(o) =3 AU. The tertiary perturber
is assumed to be an SMBH of mass M3 = 10° M with
separation a, = 0.06 pc. The outer orbitis further assumed to
be circular. Additionally, we assume the two BHs of the inner
binaries each have significant spins, i.e., y; =y, = 0.7,

where
X2=75 - (41)

When Lense-Thirring precessions around S5 are included
(Sec. 11C), we fix S3=M3 or y3 =1 to maximize its
potential consequences. We remind the reader that we are
focused on studying the spin distribution under the LK
interaction, similar to the study of Refs. [34,35,39], but with
akey difference in that we allow the initial direction of the spin
vectors to be isotropic and random (independent of the inner
orbital plane’s orientation), as one may expect if the binary
has a dynamical origin as suggested by Refs. [9-11]. We do
not attempt to make any predictions on the event rate in
this study.

To get a population, we uniformly sample the initial
inclination of the inner orbit 1(0), Here, the initial instant is
defined when the inner orbit is nearly circular with

¢”) = 1073, The value of 1) then determines the merger

®The code is available from the corresponding author on
reasonable requests.

timescale z,,, [see, Eqs. (11) and (26)]. Although a natural
choice is to only retain systems with 7, < 10 Gyr (the
approximate age of the Universe), we note that an inner
binary in a dense stellar environment like a galactic nucleus
may not be able to survive for such a time. For example, the
binary may evaporate due to dynamical interactions with
environmental stars on a timescale [81]

S\ -l
Ty = 1 x 107 yr M, i
100 My ) \3 AU

O m, -l Px -l
X 9
350 kms~!' / \ 10 M, 107 Mg pc™

(42)

where o, and p, are the local velocity dispersion and stellar
mass density, and m, is the mass of a typical object in the
local environment. Another potentially limiting timescale is
the two-body relaxation timescale [82],

53108 yr( %)
R (350 km s_1>

m, \-! p -1
. 43
(i) () - @

We point interested readers to Ref. [28] and references
therein for detailed discussions on different timescales that
may be relevant. Here we simply choose a merger window
of 7,, < 10% yr for systems evolved using the DA equa-
tions. Despite seeming somewhat arbitrary, our choice is
justified, as once 7,,, > (afew) x %m,limj the distribution is
insensitive to .

To compare the effect of orbital averaging, we evolve the
triple system using both the DA and SA equations. For the
DA systems, we select systems that have z,, < 10% yr as
argued above. As the SA equations are more computa-
tionally expensive, we consider only those with 7, < 3 x
107 yr (see Fig. 1). In total, we simulate 2000 (1800) DA
(SA) systems.

We terminate the three-body interaction when the inner

semimajor axis shrinks by a factor of 10, a¢; = ai(o) /10. At
this point, 7y g > 7,,, and the inner binary is well decoupled
from the tertiary perturber. In the remainder of this section,
we focus on examining the properties of the inner binary
after decoupling from the third body. The properties of the
binary once it enters the LIGO band are studied in detail in
Sec. III.

We examine two cases. First, we examine results
obtained under the “clean” LK without various SMBH
effects as described in Sec. II C (this also corresponds to the
case where L, is parallel to S3). The second is with SMBH

"In fact, 7., should be compared to the minimum of 7,,, j;,, and
Ty lims €€ Sec. IV and Eq. (69).
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corrections, using the DA approximation. In the second
case, we focus on two representative values of g ; , a small
value of fs,; = 5°and a larger value of 0g,; = 45°, while
the azimuthal angle between L, and S; is sampled
uniformly.

To summarize, in our numerical simulations we fix the
masses of the triple to (M, M,, M3) = (55,45,10°) M,
the spin magnitude of each component to (yy,y,) =
(0.7,0.7), and the initial separations to (ai(o), a,) = (3 AU,
0.06 pc). The quantities we randomize are the orientation
of §; and S, (isotropically), as well as the initial inclination
of the inner orbit with respect to the outer one, /(*) (uniform
in angle). When considering corrections due to effects
associated with the central SMBH, we fix S5 = M% and
consider two representative angles between L, and Sj
(05,1, = 5° or 45°). We further select only systems with
7, < 108 yr (3 x 107 yr) to be evolved using the DA (SA)
equations until a; = ai(O) /10 = 0.3 AU. In total we simu-
late 2000 (1800) realizations with the DA (SA) equations.
The focus of our study here is to understand how the LK
excitation affects the inner orbit’s spin-orbit alignment and
the distribution of the effective spin, y.;, defined as

My, -L+Myy, L

(44)
M, + M,

Xeff =

In the top panel of Fig. 2 we present a scatter plot of y.
as a function of the merger time.® We use grey (olive) dots
to represent systems evolved using the DA (SA) equations.
With randomized initial spin directions, we do not see y
attracted toward 0O, even for systems that experience
multiple “clean” LK cycles with merger times greater than
5 x 10* yr and without being perturbed by various SMBH
effects. Rather, the effective spin has a distribution con-
sistent with that expected from an isotropic spin direction,
as shown in the lower panel of Fig. 2.

Nevertheless, there still exists a dynamical attractor of
the spin orientation. This is illustrated in Fig. 3 where we
present a sample evolution track of the inner binary under
multiple LK cycles (without SMBH effects). From the top
to bottom, we show, respectively, the semimajor axis, the
eccentricity, and the spin-orbit alignment of the inner orbit,
931 oL We see that at the end of the LK evolution, the

angles between the spin vectors and the inner orbital
angular momentum, &g, , 7, converge to fixed values, which

¥Note that in the top panel, there is a cluster of points piled up
at the vertical line of 7,, ~ 2.5 x 10°. This is ~100 times longer
than the limiting merger time one would expect for a conservative
system as shown in Eq. (32). This is due to the fact that the
limiting eccentricity can be smaller than the prediction of Eq. (31)
if the inner orbit decays rapidly due to GW radiation. This is
discussed further in Sec. IV.

1.0f DA
SA
__ 0.5f
=
éé 0.0
~
=
—0.5(
-1.0t ‘ ‘ ] ‘
104 105 10° 107
Merger Time [yr]
1.0f
20.8| ! L
Z | |
s 0.6f I |
£ - |
< 0.4f | I
2 DA |
& !_ SA I
0.2 | SMBH Effects I
| Isotropic Spin
-1.0 ~0.5 0.0 0.5 1.0

Xeff / maX|Xeff|

FIG. 2. Top panel: effective spin y.s distribution as a function
of the LK induced merger time 7,,. The grey and olive dots
represent systems evolved with the DA and SA equations,
respectively. SMBH effects are ignored in this case. Bottom
panel: the distribution of the effective spins for systems that
experience multiple LK cycles before the eventual merger (i.e.,
with 7, = 5 x 10° yrs). For reference, the cyan trace corresponds
to the initial distribution of y.; with isotropically oriented spins.
Lastly, the orange trace corresponds to the distribution of y ¢ with
SMBH effects incorporated for g, = 45° Note that in both
panels we express the effective spin as y.; normalized by the
maximum effective spin allowed in the simulations, namely,
max |y.r| = 0.7. To generate the distribution, we use 1605 DA
runs, 1112 SA runs, and 1287 runs including the SMBH effects
after the cut 7,, > 5 x 10% yrs cut.

~

correspond to the angles between the initial spin vectors
and the AM of the outer orbit, 92?37) L,
In fact, this attraction holds generically as shown in Fig. 4.

In the top panel of Fig. 4 we show, as a function of merger
time, the ratio of | cos f , | at the end of the LK evolution to

the initial value of |cos H(S?)L| Note, in the figure we
have added a small value of 0.01 to the denominator to
avoid numerical singularities. Whereas those that merge in
essentially a single LK cycle (z,, ~2.5 x 10 yr) present
a large scattering for the value of this ratio, systems with
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a; [AU]

a/lal
1/Qrx

103}
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Time [kyr]

FIG. 3. A representative case of an inner binary’s evolution
during the LK induced oscillations with (M, M,, M3) =

(55.45.10°) Mg, a\” =3 AU, a, = 0.06 pc and 1) = 88.7°.
From the top to bottom, we show the semi-major axis g;, the
eccentricity e;, the spin-orbit alignment €g; of the inner orbit, and
the comparison of the GW decay timescale and the inverse of LK
frequency [Egs. (10) and (7)] respectively. In the third panel, the
dotted lines correspond to the initial angles between the spin

vectors and the outer orbit’s orbital angular momentum L.

Tm 2 5 x 10 yr (i.e., experiencing multiple LK cycles)
concentrate around a value of unity. Although we limit
the presentation to Sy, this same relation holds true for the
orientation of S,. Further, if we cast cos f ; as a function of

sin G(S?)Lo, then a clear bifurcation pattern appears, as shown

in the bottom panel of Fig. 4.

10f DA
SA

|cos€SIL|/[|cos0§?)Lo| + 0.01]

1k
e
0.1} _ ] ‘ ] ‘
104 105 10° 107
Merger Time [yr]
1.07 T G semmemey Y
e ﬂ}’_”“m;.g?-‘&:;x Lo
i o ™
b ¥
0.5] e
.,
= L
& \
2 0.0
Q
[}
—-0.5(
_1.0-‘ S '?T'“'M*’”\’Q%T’ AgehTY | | |
0.0 0.2 0.4 0.6 0.8 1.0

sinf b(’?}Zo

FIG. 4. Top panel: the ratio between the spin-orbit alignment at
the end of the LK oscillation, | cos 6, |, and the initial alignment
between spin and the outer orbit’s angular momentum,
| cos Qg?)LO . The two quantities are nearly equal for systems
experiencing multiple LK oscillations. Bottom panel: here we
focus on only those systems with 7, > 5 x 103 yrs, which are
those with multiple LK oscillations, displaying a clear relation-
ship between the final angle between S, and the binary angular
momentum L versus the initial angle between S; and the outer
angular momentum L.

Qualitatively, this may be understood by generalizing the
argument given in Ref. [35] (see their sec. IV 3).
Specifically, in a frame that rotates together with L around
L, (indicated by a subscript “rot”), the evolution of §; may
be approximated as

as
d_tl|rotzgeff X Slv (45)
where
Qi = 9((115) + Qqark- (46)

The vector Qg x is further given by
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3L-Lo(1 +4e?)

QstdLK = 4TLK Lo- (47)

One may argue that the angle between S; and Q. is an
adiabatic invariant if |Q| is slow varying. Initially
|1 x| > |Q(<115)| when the inner binary is widely sepa-
rated, but as the orbit decays, at the end of the LK cycle the
opposite is true |Qqq x| < |les>|. This then implies that

Os,1 =~ Q(SO)L . (48)

10

Note, however, that the argument does not explain why we

0 S .
can also have 05 ; ~ 7 — Ggl)L from numerical simulations,
o

hence a more rigorous understanding of the process is
needed in a future study.

From this, we now see that the attraction to y.; ~ 0 for
systems experiencing multiple “clean” LK cycles as
reported in Refs. [34,35,39] is a consequence of their
choice of initial conditions. The aforementioned studies
focus on systems whose spin vectors are initially aligned

with the inner AM vector, Hgollo = 1. In order for the

inner binary to be excited to a large enough eccentricity that
it merges within 10 Gyr, the inner AM vector is further
required to have an initial inclination of I®) ~ /2 with
respect to the outer orbit. The bottom panel of Fig. 4
illustrates that such systems with sin/(® ~1 lead to
cosfs ; ~0 and consequently y.; ~0 at the end of the
LK interaction.

While an initial alignment between S; and L may be
expected for field triples (which are the focus of
Refs. [34,35,39]), it is unclear if this assumption holds
for binaries in galactic nuclei. If the spin vectors do not
have a preferred direction initially,9 then the LK evolution
does not lead to a preferred value of y. (relative to the
isotropic spin distribution) in general.

We conclude this section by briefly examining the effects
due to an SMBH [4]. As argued in Sec. II C, we expect the
effect to be mild corrections to the “standard” LK inter-
actions for the set of parameters we focus on. This is
demonstrated in Fig. 5, where we compare the distributions

of |cosfs ;| and |cos6(s?)Lo| with and without SMBH

effects. Indeed, we see good agreement overall between
the different datasets. When the L, — S5 misalignment is
significant (the orange trace with 0g,; = 45°), there is a
slight hint of the attractor being degraded, as more systems
experience more extreme eccentricity excitation and merge

*We note that our isotropic spin prior may be an over-
simplification to the problem, as other dynamical processes,
such as gas torques in the disk of an active galactic nucleus (see,
e.g., Refs. [6-9]), could also affect the initial spin orientation.
Here we ignore these gaseous effects, leaving this to future
studies.

InE JJ
e

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Probability Density

Standard LK
—_— SMBH, 953L0 =5°
SMBH; 0g,;, =45°

e
[y

cosfg, 1|
oo
0810 [cosfs, 0| +0.01

FIG. 5. The distribution of the ratio between | cos 6, | at the
end of the LK evolution and | cos 9(5(1))Lo| initially. The grey trace
corresponds the “standard” LK (or s,; = 0), consistent with the
grey dots in the upper panel of Fig. 4. The blue and orange traces
show the distributions when SMBH effects are included at two
representative values: fg; =5° and 45° respectively. The
azimuthal angle between L, and S5 is randomly sampled and
all data points are presented, including those merging in a single
LK cycle.

in fewer LK cycles (see also Fig. 1). Nevertheless, since the
distribution of y. is already consistent with that obtained
from an isotropic spin distribution, due to the initial
condition we have assumed on the spins, we do not expect
SMBH effects to change this result. This is confirmed
through the results presented in the bottom panel of Fig. 2.
This conclusion should be further strengthened for binaries
that are more compact and closer to an SMBH, where its
effects are more significant, as Ref. [4] showed that for a
nearly fixed initial spin orientation, the final y. distribu-
tion tends to be more broad than the isotropic-spin case.

II1. SPIN-SPIN EVOLUTION FOR BINARIES WITH
ARBITRARY ORBITAL ECCENTRICITY

In this section, we take those binaries that have undergone
LK oscillations (those we studied in Sec. II) as the initial
conditions and continue evolving the inner binaries until
merger, with the goal of studying the final orientation of the
spin vectors. A quantity we are particularly interested in is
the angle between two spin vectors, 6 5,. While this angle is
a subdominant effect in the inspiral GW waveform, it
nonetheless plays a significant role in determining the final
merger-ringdown waveform and the GW kick the system
receives at the merger (see, e.g., Refs. [45,46,50,52]).

Note that at this point all binaries have a separation of

a; = ai(o) /10 = 0.3 AU, which is the criterion for termi-
nating the three-body LK evolution. At this point, the tidal
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FIG. 6. The distribution of the product & k7, [Egs. (7) and
(10)] at the end of the LK evolution g; = afo) /10 of our
simulations. For the majority of the systems, we have € x7,,, <
1 satisfied and therefore the inner binary is effectively decoupled
from the tertiary perturber.

torque for the tertiary mass to perturb is much smaller
compared to the initial value. Moreover, the inner binary
inspirals with an increasingly shorter timescale. As we
show in Fig. 6 (see also the bottom panel of Fig. 3), for the
majority of our simulations we have g7, <1, and
consequently, the inner binary has is decoupled from the
perturber and the LK interaction terms can be safely
disregarded."’

Nonetheless, a new computational challenge appears.
Note that both the de Sitter precession and the Lense-
Thirring precession are of lower PN orders than the 2.5 PN
GW-driven decay. In fact, we have

TewQus x a¥/(1 — &2)%/2. (49)

One may further show that (1 —e?)~2(1—-¢)x1/a
when (1 —e) < 1, a condition that is typically true at
the end of the LK evolution. Consequently we have

Owe acknowledge that there are about 15% of the systems
shown in Fig. 6 that do not meet the Q;g7,, <1 condition
because they experience a weak LK excitation and merges in
more than 107 years [cf. Eq. (42)]. We do not evolve the triple
system further because that would make the majority of the
systems run into the computationally expensive regime caused by
the fast de Sitter precession of the inner spins. Nonetheless, one
can show Qg 7,, & a® when (1 —e) < 1 and by a~0.1 AU =~
10° M, all the systems will satisfy Q; x7,,, < 1. Moreover, the LK
evolution only provides initial conditions for the subsequent
binary evolution but will not affect any relations between various
spin alignments which are the focus of Sec. III. With or without
the Q; 74y, o a® when (1 — e) > 1 systems, we find the spins are
consistent with an isotropic distribution at the end of the LK
evolution.

a’l if (1-e) <1,

TngdS & { (50)

a? ife< 1.

Therefore, the precession phase is largely dominant at the
time when the binary has e ~ 0.5. This typically occurs at
a=~3x 1073 AU for the binaries we consider here. A
brute-force approach at evolving the set of differential
equations outlined in Sec. Il A requires a large number of
precession cycles be resolved, making this approach
prohibitively expensive computationally. Therefore, if we
want to explore how the initial conditions affect the final
spin orientation, a more efficient way of evolving the
system is desired.

To do so, we rely on the effective potential description
and the precession-averaged orbital evolution proposed by
Ref. [67]. The derivation of Ref. [67] is for circular orbits
only, whereas the binaries considered here that merge via
the LK mechanism (as well as other dynamical channels)
typically have a large eccentricities. In the following
Sec. III A we generalize the effective potential theory to
binaries with arbitrary eccentricity. Additionally, we pro-
vide a prescription for evolving an eccentric system in a
precession-averaged way. We apply this generalized theory
to evolve our binaries from 0.3 AU to 300M, ~3 x
10~* AU in Sec. Il B. As the binary further evolves, the
precession timescale can become greater than the decay
timescale and it cannot be treated in the averaged manner.
In consideration of this, we evolve the full equations from
300 M, until merger (which we define as a =6 M|,
corresponding to the inner-most stable circular orbit, or
ISCO, of a Schwarzschild BH with mass M,). The final spin
distribution is studied in details in Sec. III C. Finally, in
Sec. III D, we demonstrate how the spin distribution affects
the magnitude of the GW kick a binary receives at merger.

Before proceeding, we remind the reader that at this
stage the inner binary has well decoupled from the tertiary
perturber, and the LK interaction merely provides the initial
conditions for the binary evolution. Therefore, in addition
to studying the marginalized distributions, we also examine
binaries obtained from specific slices of initial conditions.
As long as a formation channel (not restricted to the LK
mechanism) allows for the same slice of initial conditions,
our conclusions apply generically.

A. Effective spin potential and
precession-averaged evolution

We review here the effective potential theory proposed
by Ref. [67] and generalize to orbits with arbitrary
eccentricity, so that the theory can be applied to eccentric
binaries that dynamical formation channels (including the
LK oscillation we study here) typically produce.

To proceed, we note that the key foundation of the
derivation in Ref. [67] is that the effective spin parameter
Yot [Eq. (44)] is preserved to at least the 2.5 PN order.
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In fact, this is true even for eccentric orbits (see, e.g.,
Ref. [74]). This, together with some geometrical relations,
allows us to express the angles between different vectors as

cosé’uzﬂ—i_zl;i_sz, (51)
cos s 1 — . _lq)s1 :Jz _ LLz -s2 26]1]‘1%);eft:| )
0305 =1 —qq)sz :_ 7 LLz _ s 2;14?;&} . (53)

cosfg 5, = SZ%FSZS% (54)

cos AD — cos g, 5, — cos g | cos HSZL, (55)

sin GS]L sin GSZL

where in the above equations J = |L + S| is the magnitude
of the total angular momentum of the binary and S =
IS| + S| is the magnitude of total spin. We use 0;; to
represent the angle between L and J and A® the angle
between S, and S, in the orbital plane. Since the angles are
based on geometrical relations between different vectors,
they hold independent of the orbital eccentricity, as long as
one uses the proper J and L for eccentric orbits.

The effective potential is also a geometrical relation. It
describes, for a given set (J,L) together with constants
(M, q, 81,85, xeit), the allowed range of the total spin
magnitude S can take. Specifically, the range is determined
by solving the equation ye;™(S4)|; ; = Xefr» Where

1
Z§f(5)|J_L = W{i(l - qz)A1A2A3A4
+ (P =L - $)[$*(1 +q)°
— (ST =531 -]}, (56)

with

Ay =/J? = (L-9)?
Az = \V §* — (51 - 52)2,

The roots S, then defines the allowed range of S
as S_ <85S,

Within this range, the total spin magnitude varies at a rate
(see Appendix B for derivation)

Ay = /(L +8)*-J2,

Ay =/ (S + 8,)* — S2.

ﬁz_wné(l_ez)m ME\? 815,
dt 2q L) MS

M2
X [1 - %] sinfg, ; sinfg,; sin AD,  (57)

where n = M, M,/M?. Note that when e = 0, this reduces
to Eq. (8) in Ref. [67]. Also, note that dS/dt is specified in
terms of (J,L,e,S) and there is no explicit time depend-
ence. Additionally, we define a precession timescale,
Tpre» S

S, dS
J,L,e)=2 . 58
el Le) =2 [ (58)

We now have all the ingredients to perform the pre-
cession-averaged evolution. Note that dJ/dt o< L and for
the amplitudes we can write dJ/dt=J-dJ/dt and
dL/dt = L - dJ/dt. Thus, we have dJ = cos 6, ;dL. Over
a time Az with 7. < Ar < 7w, we write the precession-
averaged evolution of J in terms of L as

dJ 2 [S+cosf,dS
— ) =— _—. 59
<dL> TpreL |dS/dt| ( )

Note that this is formally the same as Eq. (10) in Ref. [67],
except the precession rate dS/dt now also depends on the
eccentricity [Eq. (57)]. The right-hand side of Eq. (59) is
now fully specified in terms of (/, L, e).

Similarly, we cast the precession-averaged eccentricity
evolution in terms of L by simply dividing (the scalar
version of) Egs. (13) and (12) and substitute a in terms of
(L, e) using Eq. (14), leading to

de\ _19el+ge (60)
dL/ 6L 1+%e* "

This completes the set of precession-averaged equations.

In Fig. 7 we compare the precession-averaged evolution
of J (blue-solid trace) and the full numerical result (grey
traces; it contains ~10% precession cycles in the range
shown). Also shown in the blue dashed traces are the upper
and lower envelopes of dJ/dL evaluated at cos 6;5(S+).
Note that in Fig. 7 the x-axis corresponding to the
eccentricity of the system is inverted so that left to right
corresponds to a decaying orbital separation and an
increasing orbital frequency. From Fig. 7, we see that
the averaged evolution matches well with the full numerical
result.

We summarize the procedure for performing the pre-
cession-averaged evolution as follows. Given a set of initial
conditions for (J,L,e), together with a set of constant
parameters (M, g, S, Sa, ¥eir ), One can obtain the averaged
orbital evolution in terms of L by solving {(dJ/dL),
(de/dL)} using Egs. (59) and (60). While in this process
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FIG. 7. The evolution of the total angular momentum of the
inner binary J = |L + S|, with respect to the its orbital angular L,
as a function of the orbital eccentricity. Note that we have
inverted the bottom-x-axis so that the system evolves, naturally,
toward smaller values of e.

we lose track of the exact value of S, we nevertheless know
its probability density function for each system with
(J,L,e) given by

2 1
Tore |dS/dt|

p(S|J,L,e) = (61)

To get the distribution of an ensemble, we simply sum the
distribution for each system together and then perform an
average

p(S) = (S Lee), (62)

where N is the number of systems in the ensemble.'’ The
probability density of any function f of S (and (J, L, ¢)) is
described as

p(S|J,L,e)
|df/as|

plf(S)IJ. L. e] = (63)

This allows us to, e.g., compute the distribution of different
angles as shown in Eqgs. (51)—(55).

In the following Section (Sec. I1I B) we apply this techni-
que to evolve systems from the end of the LK oscillation to
a = 300 M, and study the resulting distributions.

”Here, each realization of our simulation has the same weight.
However, an extension that allows for different weights is
straightforward to implement in this framework.

B. Evolving to a=300 M,

Among all the systems we obtain from the LK evolution,
we focus specifically on those with |y.¢| < 0.1 for the
remainder of this paper (about 500 DA systems and 450 SA
systems after the cut). The reasons for this restriction are as
follows. First, while we have shown the LK mechanism
does not provide an attractor to y.;; = 0 once the initial spin
orientation is randomized, a small y.; is nonetheless
geometrically favorable for isotropic spin orientations
(see Fig. 2). Furthermore, spins in the orbital plane (for
which y.~0 is a necessary condition) is one of the
conditions required to produce a particularly strong GW
recoil (see, e.g., Ref. [83]). To further explore this con-
figuration, we also consider a set of systems where we

require not only [y.s| < 0.1, but also 9(5(1))2 1, = 7/2 initially

(including 1200 DA and 1200 SA runs in total). As the LK

. . a0 .
interaction favors g, ; =~ GSI,ZLO = /2, this means each

individual spin will mostly lie in the orbital plane at the end
of the LK cycles.

In Fig. 8 we show the distributions of (5,65 ;.05 s,) in
the (top, middle, bottom) panel, for the dataset where only
l¥err| < 0.11is required (each individual spin vector does not
necessarily lie in the orbital plane for this case). Here the
solid-grey and solid-olive traces are the distributions at the
end of the LK interaction (which we defined as
a =0.3 AU) for those evolved numerically using the
DA and SA equations. The dashed-cyan curves are the
probability densities reconstructed using each individual
system’s (J,L,e) at a = 0.3 AU according to Egs. (61)
and (63), summed together using Eq. (62). To get the
dashed-purple traces, we first evolve the (/,e) of each
system as a function of L, using the precession-averaged
method outlined in the previous Section, from 0.3 AU to
300 M, ~3 x 10~* AU, and then reconstruct the proba-
bility density. Figure 8 shows that the reconstructed
distribution matches well with the numerical results.
Furthermore, for this dataset, we do not observe a signifi-
cant change in the distribution from 0.3 AU to 300 M,.
Note that in the bottom panel it appears that the spins prefer
to be antialigned. This is, however, a simple geometrical
effect rather than a dynamical consequence of evolution.
Intuitively, if S, is an angle of a above the orbital plane, S,
needs to be at least a below the orbital (for ¢ ~ 1) in order
to meet the y.; ~ 0 requirement. Thus the two vectors need
to be at least 2a apart, which explains why a large spin-spin
angle is seemingly preferred.

Figure 9 shows more interesting results for the evolution
of the dataset where we further restrict each spin to initially
lie in the orbital plane. The traces of this figure retain the
same definitions as those in Fig. 8. As one would expect,
initially 0 , peaks at 7/2 and g, g, is essentially a uniform
distribution. Figure 9 shows that, as the system evolves, the
distribution of 0 ; broadens and 6g 5, begins to disfavor
smaller values, indicating the spin-spin interaction affects
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FIG. 8. From top to bottom, the probability densities of the total

spin magnitude S, the spin-orbit angle 6g,, and the spin-
spin angle g 5,. The solid traces are the distributions based
on our numerical simulation at the end of the LK evolution
(a = 0.3 AU). Here we focus on those systems with |y.¢| < 0.1,
which includes about 500 (450) DA (SA) systems after the
cut. The dashed traces are reconstructed probability densities
based on {J,L,e} and the effective potential of S. The cyan
traces are evaluated at a = 0.3 AU and the purple traces at
a =300 M, (with (J,e) evolved first using the precession-
averaged method).

the distribution. In fact, the dynamical effects are increas-
ingly important as the inspiral continues, which we study in
detail in the following section.

C. Final distribution of the spin-spin alignment

The precession-averaged description provides an effi-
cient way to evolve the binary when the separation is wide
and we have 7. < 7,,. As the orbit decays further, the
separation in timescales is less well satisfied. In addition,
the precession averaging ignores the spin-orbit resonances
[50,51,67], which might become significant at small
separations. As a result, from 300 M, to 6 M, we evolve
the full set of precession equations outlined in Sec. IT A.

Note that as we average over precession, we do not keep
track the exact value of S anyone. To do the full precession-
resolved evolution, we need to first reconstruct the initial
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FIG. 9. Similar to Fig. 8, but in addition to |y.| < 0.1, we
further require that H(S?z L, = 7/2 initially. This initial condition

means that at the end of the LK evolution (¢ = 0.3 AU), the spins
vectors are approximately in the orbital plane with 0, oL = /2.
We specifically evolve 1200 DA and 1200 SA systems to increase
the sample size here. Note that as the systems evolve from 0.3 AU
to 300 M, the distribution of g ; broadens and 8 5, begins to

disfavor smaller valued angles.

conditions at 300 M, from the averaged evolution results.
This is accomplished by first randomly choosing a set
(J, L, e) from the numerical data at 300 M, and sampling S
according to Eq. (61). Once § is determined, we obtain the
angles between different vectors according to Eqs. (51)—
(55), allowing us to construct the necessary vectors.

A representative evolution track from 300 M, to 6 M, is
shown in Fig. 10. In this figure, we plot different quantities
as functions of the GW frequency, which is simply f,, =
2f . as the eccentricity has effectively decayed away. in
Fig. 10, from top to bottom, respectively, we show the

">The orientation of the eccentricity vector is set by requiring
e-L = 0. The initial angle between e and S affects only the
evolution of &, not any other quantities, therefore it can be set
randomly.

At 300 M, the median eccentricity of systems in our
simulation is e = 0.008, and at 6 M, all of the systems have
e < 0.01. See also Figs. 17 and 18.
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FIG. 10. An example of a binary evolution from 300 M, to
6 M, as a function of the GW frequency f,(=2f as the
system has circularized). The top panel shows the evolution of
various angles in degrees and the middle panel shows the cosine
of the angles. Note that (cos@s,, + K cosfss,) (purple line)
stays approximately constant until a time near the merger. In the
bottom panel we compare the GW decay timescale 7,,, and the
precession timescale 7.

angles between different vectors, their cosines, and the
relevant timescales. Note that the precession timescale 7,
[Eq. (58)] can become comparable or even greater than the
orbital decay timescale 7, [Eq. (10)], indicating the
necessity of performing a precession-resolved evolution
in the last stages of the inspiral (see also Appendix C to
remove the bias that would be induced on p(S) when
Tow < Tpre)- In the remainder of this section, we focus in
detail on the dynamics of the spin orientations.

We first focus on the distributions of different angles
0,1, 05,1, and Og g, at 6 M, showm in Fig. 11. There, the
orange contours (including 8000 realizations) correspond
to the distribution with initial conditions drawn according
to Fig. 8. In other words, the orange contours represent the
systems starting from an isotropic spin distribution and
then with the condition |y s < 0.1] imposed. Additionally,
we show for comparison, grey contours (including 5000

realizations) corresponding to the distribution obtained
from the initial condition given by Fig. 9, where we further
restrict the spins to be initially in the orbital plane (by
setting «9;?)% = ng)Lo = /2 as the initial condition for the
LK evolution).

At first glance, the orange contours appear to be similar
to the initial conditions shown in Fig. 8. Furthermore, we
do not find a significant dependence of 6, 5, on the merger
time as shown in Fig. 12 [see also Eq. (11). Note that the
merger time is closely related to the maximum eccentricity
excited by the LK mechanism].

Nevertheless, if we instead focus on specific slices of
data, specified by a small range of values of the in-plane
spin components y, = y sinfg, .,"* then certain evolu-
tionary effects become clearer, as shown in Fig. 13 (see
also, e.g., Ref. [44]). In Fig. 13, we compare the angle
distributions at 6 M, (solid-grey) and at 300 M, (dashed-
olive) for different values of y,, evaluated at 300 M,. While
the olive traces are consistent with the distribution one
would get by starting from an isotropic spin distribution
restricted to a particular range of y.; and y,, the grey
traces are nonetheless the results of dynamical interactions.
Specifically, we see that for y, > 0.695, the final spin
vectors disfavor to be aligned, which is also demonstrated
by the grey contoured dataset in Fig. 11. Similarly, Fig. 11
shows that the spin-orbit angle s, is also affected by
these interactions. While the grey dataset has 6, , ; peaking

at /2 initially, spins out of the orbital plane are favored at
merger. More specifically, the more massive component
slightly favors g, < x/2 while the less massive one
favors Og,, > n/2.

A closely related observation is the significant correla-
tion between 6, ; and 0 5, shown by the grey contours in
Fig. 11. In fact, this correlation exists not only for those
systems with y;, ~ 0.7, or 65, ~ z/2 initially at 300 M,
but for different values of y;, generically, as indicated
in Fig. 14.

In the top panel of Fig. 14, we show a scatter plot of &g g,
and 0y, ;. The points are colored according to the value of
X1p at 300 M. Note that each set scatters around a line
corresponding to

C=cosby, + Kcosbs s, = Const, (64)

1
where'

“Unlike et Which is conserved through the evolution, the in-
plane spin component y;(), is a time-dependent quantity. As
such, we explicitly state the time at which it is evaluated
whenever referring to y;(2)p-

"“Here we have assumed q # 1 which is the case for our
simulations. The analog expression for ¢ = 1 is given in Appx. D,
Eq. (D6).
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FIG. 11. The distribution of spin-orbit and spin-spin alignment at a separation @ = 6 M,. The olive contours represent all the systems
with |y.| < 0.1 after the LK evolution (the initial conditions are shown in Fig. 8; including 8000 realizations in total). The grey contours
further restricts the set to include only those that satisfy y;, ~ y,, ~ 0.7 at the end of the LK evolution (initial conditions from Fig. 9;
including 5000 realizations). Note that for the grey contours, the final spin vectors tend with g, s, disfavors strongly the aligned state,
and it peaks at around 80°. The grey contours also show clear correlations between different angles. While the correlation between 6,
and Og,; is simply a consequence of y.¢ =~ 0, the interesting correlation between &g, ;, and 0 g, is explained by the nearly conserved
quantity of Eq. (64).

K= S (65) The above relation is a direct consequence of the fact that

T (1-gq)L° J? and L? are constants at 2 PN. Specifically, one may first

express cosfg ; and cosfg,s, in terms of (J, L, S) using

Here, K has a well-defined value at 6 M, as e < 1072, and  Eqs. (52) and (54), and then find a linear combination of
evaluates to K|,_g », = 1.3. them that eliminates S2, the only variable at 2 PN. It turns
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FIG. 12. Top panel: scattering plot of the final angle between
spin vectors f ¢, as a function of the merger time. Bottom panel:
distribution of &g, g, for data with 7, > 10® yr (grey) and with
7, < 10° yr (olive). Both plots indicate that there is no significant
correlation between the spin-spin angle and the merger time.

out that Eq. (64) is exactly the appropriate linear combi-
nation. Hence, this relation explains the observed correla-
tion. In fact, even when we take into account the 2.5 PN
dynamics (including the decay of J and L; see Appendix D
for a detailed discussion, including the special case where
g = 1), the quantity C still stays approximately as a
constant until the final merger.

The constant nature of C is also demonstrated numeri-
cally in the middle panel of Fig. 10, where we show
Egs. (64) in the purple trace. While both cosfg ; (grey
trace) and cos g, g, (olive trace) are oscillatory, the purple
trace remains very well a constant until the last precession
cycle (fgw 23 Hz). Close to the final merger, our
assumption of Eq. (D11) breaks down, which explains
the deviation of C away from its constant value.

Nevertheless, this is sufficient to explain why the top
panel of Fig. 14 show a clear dependence on the initial
value of y;, (which determines sin 6g, ; and hence cos 6 ;).
It also explains why in the bottom panel of Fig. 14, the
purple dots demonstrate a clear positive correlation
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FIG. 13. The distribution of 6y, at 6 M (solid-grey traces)

and at 300 M, (dashed-olive traces). The top panel shows the
distribution marginalized over y, and the bottom three panels
show the distribution corresponding to a narrow range of y,
(evaluated at 300 M,).

between C = cos s ; + K cos by, at 6 M and the initial
value of cos g ; at 300 Mt.16

D. Kick velocity distribution

The angle between the two spin vectors 6 5, as well as
its projection onto the orbital plane A® plays a significant
role in determining the final merger product. Here we
consider one aspect of the merger that is influenced by
spins, namely, the distribution of the GW kick velocity vy.

It has been shown that the maximum recoil velocity
scales as (see, e.g., Ref. [52])

max[vk,z] & |)(2p cos AD — q)(1p|’ (66)

where the subscript z indicates that the kick is along the
direction of the orbital AM. This means an antialigned spin

16They are not equal to each other because of the deviation
shown in the middle panel of Fig. 10.
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FIG. 14.  Top panel: a scatter plot of cos 0,5, vs cos O, ; at the
ISCO. The points are from the olive samples in Fig. 11. We color
the points according to the initial values of y, at 300 M,. Each
group follows a correlation given by Eq. (64) (solid lines).
Bottom panel: various quantities at 6 M, as a function of the
cosine of the initial (¢ = 300 M) spin-orbit angle cos 0, ; . Note
that the quantity C [Eq. (64)] at 6 M, shows a clear positive
correlation with respect to the initial value of cos &g, ;.

configuration (which is preferred from our spin evolution)
could lead to a greater kick than the aligned case.

To further demonstrate this point, we compute the
recoil distributions for two different spin configurations.
One is from our evolutionary model. Specifically, we
take the olive samples from Fig. 11, and further selecting
those systems satisfying (;(%p +)(%p)2 > (0.68ata =6 M,.
As shown in the second row of Fig. 13, this set prefers a
large angle between the two spins and strongly disfavors
an aligned configuration. In terms of the in-plane angle
A®, only 10% of the systems have A® < 90° after
applying the y, > 0.68 cut. The second set we consider
is those systems with y. =0 and yy2), = x112) = 0.7,
and with a uniform distribution on A®. The spins are
specified at 6 M, with a randomized orbital phase and the
final recoil velocity is obtained from a GW surrogate
model [84,85].
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Uniform
0.0000], I I ‘ . 1
(0} 500 1000 1500 2000 2500
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FIG. 15. Distribution of the GW kick velocity vy. The grey trace

is obtained from samples in Fig. 11 (i.e., following binary
evolution), restricted to those systems with (7, +x3,)"/* >
0.68 at 6 M,. For comparison, the olive trace is the kick velocity
distribution for systems with the same y. ~ 0 and y, ~ 0.7, but
with a uniform distribution of A® at 6 M,. While both distri-
butions are broad and consistent with the 200 kms~' value
suggested by Ref. [9], the evolutionary model favors a “stronger”
kick (peaking at around 1800 kms~') than the model with a
uniform A® prior.

The result of the above procedure is shown in Fig. 15. In
this figure, the grey trace corresponds to our evolutionary
models and the olive trace corresponds to the reference
model with uniform A®. Whereas the model with uniform
A® peaks at v, ~ 250 km s~!, the evolutionary model peaks
at a much higher kick velocity of v, ~ 1800 kms~'. On the
other hand, the evolutionary model still has a non-negligible
likelihood to find a small kick velocity like the 200 kms™!
value suggested by Ref. [9].

Lastly, we conclude this section by reemphasizing that
whereas we focus on systems experiencing a significant LK
evolution initially, the final distribution of spin-spin angle
0s,s, holds in a more generic context. This is because the
orbit has essentially circularized at 300 M, and the final
spin-spin alignment shows no obvious dependence on the
eccentricity excitation (Fig. 12). The LK evolution simply
provides an initial distribution of y.¢ and y (), However,
if certain values of y. and y (), are known (e.g., from the
inspiral waveform), we can produce a relevant posterior
distribution, as in Fig. 15, by restricting the systems to
those consistent with the provided .+ and y(z), values.

IV. LIMITING ECCENTRICITY OBTAINED
DURING THE LK OSCILLATION

Having discussed the final spin distributions extensively
in the previous section, we now return to our discussions on
the LK evolution, with a specific focus on the maximum
achievable eccentricity. Here, we revisit the discussion in
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Sec. I B, now also including the affects of dissipative GW
radiation. In this section we also examine the detectability
of the orbital eccentricity by ground and space-based GW
detectors.

Note that in Sec. IIB (which follows closely
Refs. [35,72,75]), we consider the limiting eccentricity
for conservative systems, denoting the associated quantities
with a tilde. An interesting feature of the results is that
1 — &;;,, depends sensitively on the semi-major axes of both
the inner and outer orbits [see Eq. (31)].

However, such an eccentricity is not achieved instanta-
neously, but instead occurs over a timescale characterized
by 71 x [Eq. (8)]. At the same time, the eccentricity also
significantly reduce the orbital decay timescale t,,
[Eq. (10)]. Therefore, the inner binary’s eccentricity can
accumulate only if 71 g < 7gy,.

In fact, this timescale argument allows us to obtain the
limiting eccentricity in a dissipative system by solving the
equation17 (see also, e.g., Ref. [33])

Tgw(elim) = TLK(elim)' (67)
In the limit e}, ~ 1, the above equation simplifies to

1 — ey ~9.1x107°

0) \ ~11/6
5 p 1/3 M, 5/6 af ) /
25 M, 100 M, 3 AU

() D) e

0.06 pc

The corresponding merger timescale is now obtainable by
plugging Eq. (68) to Eq. (11), leading to

im =~ 2.5 x 103 L .
Fmlim & 23 X yr<100 MQ) <3 AU)

M, \-! 1-e2\°
x (g GV " %) (69)
10° Mg 0.06 pc

Therefore, the limiting value of (1 — ey;,) is now given by
the maximum of Eq. (68) and Eq. (31). Similarly, the
merger timescale is given by the maximum of Eq. (69)
and Eq. (32).

We numerically verify this result in Fig. 16 using both
the DA and SA LK equations (for the SA equations, we
consider 6 different initial phases of the outer orbit, each
differing by x/3). The initial inclination between the inner
and outer orbit is fixed at the value given by Eq. (29). The
crosses are the maximum eccentricity obtained

”During the initial eccentricity excitation phase, the inner
orbit’s semimajor changes little and can be well approximated by

its initial value ai(o) .
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FIG. 16. Limiting eccentricity achievable as a function of g,

(left) and a, (right). The limiting eccentricity during the LK
process, including GW radiation, obtained numerically (crosses)
are in good agreement with the analytical expressions [solid-grey
and dash-olive traces, corresponding respectively to Egs. (68) and
(31)]. Also shown as dots (pluses) are the eccentricity when the
orbital frequency f.y, satisfies 2f,, = 3 mHz (2f,, = 10 Hz).
The triple system has masses (M, M,, M3) = (55,45,10°) M,
and in the left (right) plot we have fixed a, = 0.06 pc

(ai<0> = 3 AU). The shaded region denotes the space in which
the triple system is dynamically unstable.

numerically, the dotted-olive trace is the prediction for a
conservative system, and the solid-grey trace corresponds
to systems including GW-driven decay using Eq. (67).
Figure 16 confirms that the timescale argument is in good
agreement with the numerical results."®

The limiting merger time, Eq. (69), explains why in the
scatter plot of Fig. 2 we see points piled up at a vertical line
corresponding to 2.5 x 103 yr (such piling up is also seen
in, e.g., Fig. 3 of Ref. [35] and is explained by exactly the
same reasoning). While some values of the initial inclina-

tion 7 can give more extreme eccentricity excitation
when the system is conservative [Eq. (31)], once the GW
decay is taken into account, the eccentricity is then limited

'8A caveat is that if the limiting values are set by Egs. (31) and
(32), corresponding to the cases in which the GW decay rate is
always slower than the LK oscillation rate, then the use of SA
equations and/or the inclusion of other effects (such as those
associated with an SMBH; Sec. I C) could exceed the bounds
given by these equations. Also, for triples in the field with
comparable masses, the octuple-order effects may also play a
significant role. See examples from Refs. [4,35,41], etc.. None-
theless, when the limiting values are set by the dissipative ones,
Eq. (68) and (69), then from the piling-up of points in, e.g.,
Figs. 1 and 2 we see that our result should still apply both when
the SA approximations is used (top panel of Fig. 2) and when
SMBH effects are incorporated (Fig. 1).
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FIG. 17. Maximum eccentricity when the inner binary enters
the LIGO band (2f 4, = 10 Hz) for a triple with (M|, M,, M3) =
(55,45,10°) My going through the LK process.

to Eq. (68). Consequently, all systems with /(°) in this range
have the same merger time given by Eq. (69).

Note also that once the eccentricity reaches its limiting
value given by Eq. (67), the inner binary also effectively
decouples from the tertiary perturber, and its eccentricity
then decays monotonically according to Eq. (13). This
allows us to explore the eccentricity at a given frequency
(e.g., 2f o, = 10 Hz with f, the orbital frequency) over a
large range of parameter space.

One such example is shown in Fig. 17. In Fig. 17, we fix
the triple system to have masses (M, M,, Ms)=
(55,45,10°) M and vary the initial semimajor axes of
the inner and outer orbits. We first determine the expected

limiting eccentricity according to Eq. (68) can be achieved
(0)

through the LK process and then use [a; ', ey;, ] as the initial
condition for binary evolution. By solving the scalar
versions of Egs. (12) and (13) (as we do not need to
follow the spin here), we can then obtain the estimated
eccentricity when the inner binary enters the sensitivity
band of a ground-based detector (2f,4, = 10 Hz).

. . . . . 0) .
While the residual eccentricity increases as ai(  increases

and as a, decrease, it is unlikely to be more than 0.1 when
the binary enters LIGO’s sensitivity band,19 as to excite a
greater eccentricity the triple system would be in the
dynamically unstable regime [68]. Note that this result is
consistent with the pluses in Fig. 16, where we numerically
evolve the full set of equations governing the triple system.

Furthermore, it is easy to show that the eccentri-
city evolution with respect to the orbital frequency,

YDue to the caveat described in f.n. 18, we do not claim the
values as absolute upper limits on the residual eccentricities.
Nonetheless, they serve as decent approximations, as numerically
verified in Fig. 16.

de/df o, o e(1 — €?)/fom, is independent of the masses,
yet from Egs. (31) and (68) we see that a massive inner binary
disfavors extreme eccentricity through the LK mechanism
(which is the initial condition for the binary evolution). This
is also why we find smaller residual eccentricities than
previous studies that focused on lighter inner binaries (see,
e.g., Refs. [33,41]). Therefore, it is unlikely for the LK
mechanism to produce significant residual eccentricity for a
massive binary like GW190521 when it enters the LIGO
band. On the other hand, if we observe significant residual
eccentricity, it would suggest the binary is likely formed via
other dynamical channels (e.g., binary-single scattering
[86—88] or gravitational-braking [15,89,90]).

Consequently, a space-based GW detector is ideal for
studying the orbital eccentricity evolution at lower orbital
frequencies. This idea has been studied extensively in the
context of LISA (see, e.g., Ref. [58,60]). However, for
systems reaching the limiting value [Eq. (68)], the eccen-
tricity would be so high when 2f . is in LISA’s band that
the orbital energy is radiated away via high-order orbital
harmonics which LISA is insensitive to (see Ref. [91]).

To demonstrate this point, we follow the approach by
Ref. [18]. Specifically, we decompose the GW strain as a
sum of orbital harmonics as

W =S (o), (70)

k=1

where each harmonic oscillates at f, = kf 4, + 7 with y the
direction of the pericenter.zo Each harmonic has a character-
istic strain amplitude in the frequency domain, which is
given by

1 2E;

= —— — 1
hex(fr) D\ 7, (71)
where Ek is the GW power radiated at frequency f;. We
refer interested readers to Ref. [18] and references therein
for the details of this calculation, while here we focus solely
on the results.

In Fig. 18 we show the evolutionary trajectories of the
characteristic strain amplitudes for the first four orbital
harmonics (grey traces). Here the binary is assumed to have
(M, M,) = (55,45) M and is at a cosmological redshift
of z=0.44.7" We further assume the binary has initial
conditions of a(® =3 AU and 1 — ¢(©) = 107#, similar to
the limiting eccentricity of the main triple system consid-
ered in this paper (see Eq. (68). Note that different
harmonics reach the same frequency at different times,

A circular binary only emits via the k = 2 component, which
is why we typically use 2f, to indicate the frequency.
"This is consistent with the parameters of GW190521 as
reported in Ref. [9]. Note that the masses have been redshifted to
(1 4+ z)M,, in the detector frame.
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10-20,
10—21,
o
< 10722}
10723¢
10724; \
k=4
1073 107" 10*
Frequency [Hz]
FIG. 18. Characteristic strain as a function of frequency for

the first 4 orbital harmonics (k = 1-4) for a system with
a9 =3 AU, 1-¢® =104, and located at a cosmological
redshift z = 0.44 (corresponding to a luminosity distance D; ~
2.5 Gpc assuming cosmological parameters from the Planck
2015 results [93]). The three cyan curves, from left to right,
correspond to the sky-averaged sensitivities [i.e., \/5fS,(f)] of
LISA, TianGO, and Voyager, respectively. We use the (plus, dot,
cross) symbols to represent the instant that the binary is (1 week,
1 day, 1 hour) before the final merger.

as such, we use the (plus, dot, cross) markers to represent
timestamps of (1 week, 1 day, 1 hour) prior to the merger.
Also shown in the plot (cyan traces), from left to right, are
the sky-averaged sensitivity curves® of LISA [64], TianGO
[66], and LIGO-Voyager [92].

As discussed above, when the binary enters the band of a
ground-based detector (2f,4 = 10 Hz) only the k=2
harmonic has a significant amplitude, due to circulariza-
tion. In the case of a milli-Hz detector, e.g., LISA, there is a
potential loss of detection because when 2f ., is in the
millihertz band (corresponding to the instant marked by the
pluses), the GW is mostly carried away by the high-order
harmonics [94] that oscillate at frequencies above LISA’s
sensitivity band. However, a detector sensitive to the
decihertz band, e.g., the proposed TianGO mission [66]
(middle cyan trace), could detect the evolution of these
eccentric systems.

V. CONCLUSION AND DISCUSSIONS

In this paper we studied the spin and eccentricity
evolution in hierarchical triple systems via the LK mecha-
nism, and also followed the inner binary’s evolution further
toward the merger. To conclude our study, we first

“Specifically, we plot /575, (f), where S,(f) is the power
spectral density of the noise in each detector. The sky-averaged
signal-to-noise ratio (SNR) for each harmonic is then

SNR? = [dIn f{hZ,(f)/[5fS.(f)]}. See Ref. [18].

summarize our key results in Sec. VA, and discuss their
implications in Sec. V B.

A. Key results

(1) We confirmed the existence of a spin attractor for
systems that experience multiple “clean” LK cycles, as
reported by Ref. [35]. However, the attraction is not toward

Xeir = 0, but it is in fact demonstrated to be | cos &g, o =

| cos 9(5?32) L,| (see Fig. 4).

(2) We generalized the effective potential theory intro-
duced by Ref. [67] to allow for nonzero orbital eccentricity,
and provided a prescription to evolve such binaries in the
precession-averaged manner (Sec. III A). This allows us to
efficiently evolve a binary from its formation (typically
with large eccentricity if the binary is formed in the
dynamical channels, including the LK mechanism) to a
semimajor axis of few hundred M,.

(3) We found that the final alignment of the spin vectors
are essentially independent of the maximum eccentricity
excited by the LK interaction (Fig. 12). Instead, it depends
on the initial in-plane component of the spin (Fig. 13). For a
system with a large component spin initially lying in the
orbital plane, the spin evolution significantly disfavors
aligned final spins. This in fact should be true irrespective
of its formation channel (whose role is to provide a prior
distribution of y. and yy(2),)-

(4) We further reported an interesting correlation
between the spin-orbit and spin-spin alignments (Fig. 11
and 14). This can be further explained by the (nearly)
conserved quantities which we shown in Eq. (64) and
discussed in details in Appx. D. Such a correlation could be
incorporated in parameter estimation pipelines to help
extract more information from detected binaries.

(5) Since the GW kick depends on the final spin-spin
alignment, we found that the spin evolution may signifi-
cantly affect the distribution of the kick velocity (Fig. 15).

(6) We considered the limiting eccentricity that can be
achieved by the LK mechanism in the presence of GW
radiation and provided bounds derived from a timescale
argument [Eq. (67) and Fig. 16]. For binaries in the vicinity
of an SMBH, we showed that the residual eccentricity is
typically small (<0.1) when the binary enters a LIGO-like
ground-based detector’s band (Fig. 17) for two main
reasons: the triple stability requires the octuple effects to
be small (Sec. IT A), and inner binaries may be intrinsically
massive [Eqs. (31) and (68)]. Furthermore, in order to
capture the full orbital evolution, a decihertz detector would
be necessary (Fig. 18).

B. Discussion

In this study we made no attempt to predict the merger
rates, given the complicated dynamics in dense stellar
environments. Instead, we focused on studying the spin
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orientation at the end of the LK interaction. We further
restricted to the leading-order (quadrupole) interactions
which, according to Ref. [35], showed the cleanest attrac-
tion of the spin vectors. If further corrections are included
(see, e.g., Ref. [4]), it typically broadens the distribution of
the spin-orbit angle. Nonetheless, as the spin attraction is
toward the initial angle between the spin and the outer AM,
we do not expect high-order corrections to significantly
affect the distribution of y.g for an initially isotropic spin
distribution. On the other hand, if the spins have a preferred
initial orientation after takeing other astrophysical proc-
esses into account, we would then expect the LK process to
shape the distribution of .

While we started our discussion regarding the final spin
orientations in the context of LK interactions in Sec. III, we
also considered the orientations obtained from a specific slice
of (¥efr» ¥ 1p)- This allows our conclusions in that section to be
extended to a more generic context, which hold as long as a
formation channel allows for the same initial conditions.

Specifically, the correlation between the spin-orbit and
spin-spin alignments [Eq. (64)] is derived based on binary PN
dynamics. Such a correlation could be further used to
improve parameter estimation. For example, if we could
measure the angle between spin and orbit first with a space-
based detector in, e.g., the decihertz band (as demonstrated in
Ref. [66]), and then again with a ground-based detector at its
merger, then Eq. (64) and Fig. 14 indicate the final spin-spin
angle, 6g g, is no longer a free parameter to be inferred, but
can in fact be constrained by the evolution from the lower-
frequency measurement. With a better constrained g g, it
could further improve our prior on, e.g., the GW recoil
velocity. These ideas provide much to explored in future
studies.
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APPENDIX A: EXPLICIT EQUATIONS
OF MOTION

In this section we provide the explicit equations of
motion of the LK interaction for both the DA and SA

approximations. Consistent with the main text, here we
truncate to the quadrupole order. The octupole-order terms
are available in, e.g., Refs. [35,72] for DA and SA
approximations, respectively.

To obtain the DA LK evolution, we integrate
(L.e,Ly,e,),
dL LQpa A
— = 1-e?)(L-L,)LxL
il = 0= L) x L,
_S(e 'i'o)e X IA‘O]’ (Al)
d P R
E —opaV1- (L Ly)e x L,
dt|
2L x&—5(e-L,)L x L], (A2)
dL LOpa C
Zof = ZEA () — )L Ly)E, x L
—5(e- L,)L, x e], (A3)
dey| L9,
dt |k  Ly\/1—e?

1 25 N
s B0

2
xeo},

3 M
QDA:—< :

a
4\M, +M2> (aox/l —e2

The SA LK evolutions are solved in terms of
(L,e,r,,dr,/dt),

where

>390rb, (AS5)

dL LQSA 2 AT A
— = —(1=e*)(L-?,)L x 7,
dr|ix m[ ( ) )
+5(e'i‘0>eX’A'0]’ (A6)
del  _ QoaV 1 —e[—(L-#,)e x 7,
dt|
—2L x&+5(e- 7, )L x 7, (A7)
d*r, 7 7
O — _d (2] =D, =32
=) -2 2 ()
x [=1 4 6€* +3(1 = e2)(L-#,) — 15(e - 7,)]
1—e? . . PN
+6 (L'ro)[L_(L'ro>r0]
(e"A'0> ~ o
_30—[8_(3"'0)"0}}’ (AS)

o
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where in the above equations we have defined

3 M3 a 3
Qr=-(—2)(L) A
SA 2<M] +M2> <ro> orbs ( 9)
o, = M1t Mo+ M) (A10)
rO
1M3 H a 2
Dy =-— (L) (L), All
) e
APPENDIX B: DERIVING dS/dt FOR
ECCENTRIC ORBITS
ds _1d(S-S) 1d(S;-S,)
dt 2§ dt S dt
L 1/dS, ds,
_§<W S, +5, W)’ (B1)

where we have used S = §; + S, and the magnitudes S,
S,, $2, 3 are constants. Now plugging in Egs. (17) and
(20)—(22) we have,

d
—(S,-S
dt(l 2)
= — 3 1_q2 l_MlMZ)(eff
2a3(1-€?)3? ¢ L
x 8- (S, xL)
:_§,16(1_€2)3/2 %tz 55152(1—612)
2 L M, q
M2y e\ N R
x <1 —’72%”)51'(52 x L), (B2)

where we have replace the semi-major axis a in terms
of (L,e).
Further note that geometrically we have

A A A

Sy - (8, x L) = sinfg ; sinfg,; sin AD, (B3)
with the angles given by Eqgs. (52), (53), and (55), and each
angle is a function of (J,L,S). Similarly, we can write
S;-L and S,-L in terms of cosfs,(J,L,S) and
cos s, (J,L,S).

APPENDIX C: BIAS IN THE SPIN
DISTRIBUTION WHEN 7, < 7pp..

In the main text we have used Eqgs. (61)-(63) to generate
the probability density functions of various quantities,
and as shown in Figs. 8 and 9, our method reproduces
well the distribution obtained from numerical simulations.

However, this method can only be applied when we have
Tore <K Tgy, and we demonstrate here the potential bias that
would be induced when the timescale requirement is not
satisfied.

Specifically, we can repeat the process we have used in
generating Fig. 8 for data at 6 M, (the olive data in Fig. 11).
The reconstructed probability of the total spin magnitude S
is shown in the olive trace in the bottom panel of Fig. 19. As
a comparison, the true distribution from the numerical data
is shown in the grey trace. Clearly, the reconstructed
probability is biased toward small S.

To examine things in more details, we also show the
instantaneous precession time which we define as
(S, +S,)/|dS/dt| and compare it with the GW decay
timescale in the top panel of Fig. 19. Here each grey trace is

! (S1+85)/|dS/dt|
102 X
><><
o X
2
2]
$ 10!
]
£
H
10°
. —— True Distribution
[ E 1
p(S) x 5] (7.1)]
& —
=
ol
L N
0.0 0.1 0.2 0.3 0.4 0.5

S/M¢

FIG. 19. Top panel: timescale comparison at the ISCO. Each
grey trace represents the allowed instantaneous precession time
based on the final J and L using the effective potential theory, and
the red cross is the true value we obtained in the simulation. The
purple-dotted line is the fifty times the GW decay timescale at
6 M,. Bottom panel: the true distribution of S at the 6 M, (grey-
solid trace). If we simply assign p(S|J,L)  1/|dS/dt(J,L)| as
we have done for Figs. 8 and 9, we would obtain a probability
density function described by the olive trace, which is signifi-
cantly biased relative to the true distribution.
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generated with a set of (J,L,e) and the full range of S
allowed by the effective potential, and each red cross is the
true value of S obtained from the evolution. While the
instantaneous precession time can be hundreds of times
longer than 7,,,, and according to Eq. (61) those locations
should be more likely to be sampled, we nonetheless see
that the majority of the realization actually happens in the
region where the precession time is less than 50z, (dotted-
purple line).

Consequently, we conclude that while the effective
potential theory is still valid at 6 M,, it cannot be used
to directly predict the likelihood that the condition 7, <
Tgy 18 nOt satisfied. To obtain a faithful distribution, a full
numerical simulation over a large ensemble would thus be
necessary.

APPENDIX D: UNDERSTANDING THE
CORRELATION BETWEEN cos g ; AND cos s s,

In this section we study the dynamical relations between
the spin-orbit angle 05 ; and the spin-spin angle 5 g,. The
goal is to better understand the correlations shown in,
e.g., Fig. 11, and the nearly constant quantities shown in the
middle panel of Fig. 10. Note that our derivations here do
not assume a circular orbit, but holds generically for
eccentric orbits as well.

We have”
d d . dL . . dS,
— =—(L =—- L — D1
dtCOSHSIL dt< S1) di S+ ar (D1)
leading to
ar’® 05, = 24°(1 = €?)3/?¢
MM N N .
x [1 —ITM]SI (8, xL). (D2
Meanwhile, from Eq. (B2) we have
d -3L(1-¢?%)
7,508 0s:5, = 203(1 = )%
MM A A R
x {1 —ITW]& (8, xL), (D3)
which has a similar form as d cos 6, /dt.
Therefore, we have
d S, d
(1—q>ECOSQSIL +I2ECOS6SISZ' (D4)

If we treat L as a constant first, we then have

“Note that if dL/dt =Q x L+ (dL/dr)L, then dL/dt =
(dL/d1)/L — L(dL/dt)/L = Q x L.

0.107
0.05}
U Y Vo e ROUPRRURR . SOUoE 1 b, VU 0 VPRV SHPRTH RV
<
=
-0.05 \
costg, 1,
-0.10{ cosfs,s,
coslg, 1, + Kcoslg, s,
-1.5 -1.0 -0.5 0.0 0.5 1.0

cost

FIG. 20. Effective
0.61M?%,0.20M?,0).

potentials at (J,L,S,e) = (0.65M2,

S
(1=g)cosby  + fzcos 05,5, = Const.  (D5)

This is also the relation we present in Eq. (64).

As we argued in the main text, the 2 PN relation can also
be derived from the effective potential and the fact that J>
and L? are constants at 2 PN. This is illustrated in Fig. 20
where we plot the contours between y.g and various cos 6
(see also Ref. [67] on how to generate such contours). As
Eq. (64) or (D5) eliminates S2, the only variable at 2 PN, it
corresponds to a line in the effective potential description.
Thus, once we fix the value of y.y, Eq. (64) has to a fixed
value (in contrast to cosfg; or cosfg g which can
oscillates between the two intercepts formed by its contour
and a given value of y.).

To incorporate dynamics at higher PN orders, it is
interesting to first examine the special case where g = 1.
From Eq. (D4) it is easy to see

cos g5, ~ Const. (wheng = 1). (D6)
The above equation holds at 2.5 PN order.

To obtain the more general 2.5 PN relation when
q # 1, it is easiest achieved by multiplying both sides of
Eq. (D4) by L and use Ld cos b, /dt = d(L cos 0, 1)/ dt—
cos Og ;dL/dt. If we further define

(1=¢q)LC= (1 —-g)Lcosbs, + Sycosbs5,, (D7)
we have
d dL
(1-4) 5 (LC) = (1 - q)coss, S (DS)
Consequently,
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(1 = q)[LC = (LC)©)] = (l—q)/coséleC;—I;dt. (DY)

For g # 1, we can drop the (1 — g) factor from both side.

We can further approximate C(¥) ~ cos H(S(]))L, this leads to

LC - / cos O, dL = LOCO ~ L cos 9<S(I)L (D10)
Note that while in the second approximation we have
compromised some accuracy, it nonetheless renders the
right-hand side as a well-defined constant because as
L — oo, cos ; — constant to a good approximation.

In fact, cos 6?5' ; remains a constant until 2 PN, and even
when it starts to vary significantly, it oscillates around its

initial value cos Hg?)L (see, e.g., Fig. 10). Therefore we can
approximate the integral as

dL
/cos QSILEdt:cos G(S(?)L[L -L9].  (D11)

Together with the approximation C(*) ~ cos 9(S?>L, we now
have (for g # 1)

C = cosby, + cos g,

AYS
(1-q)L

~ COS G(S?)L. (D12)

This means the quantity C can also be approximated as a
constant.
We can also write C in terms of (J,L) as

J2—L?— 87— 83— [q/(1 + q)lyexeMEL
201 - q)S,L

c= (D13)

If one uses the full expression of C we then have

Sy
D=A —=—A
oI gL
Jcos b rdL 0 LO
= i — cos qul)L 1— - = 0, (D14)
where

1.50f
1.25¢
1.00
. — LC— #oseglLdL
S 0.75] — LD
- fosGSlLdL —L- L(O)]cosé‘gl
0.501
0.257
0.00] == nn s N T
0.1 1 10
few [Hz]
FIG. 21. Various quantities to show the spin dynamics at

2.5 PN. The system is the same as the one shown in Fig. 10.

A, = [cosbs,  —cos 9(5(1))L]
0
A, = [cosOg g, — cos 9591)52} ~cos b s, .

Note that in practice cos Hg?)sz is not a well-defined quantity
at large orbital separations where spins precess faster than
the orbit decays. This introduces a fundamental uncertainty
of S,/(1 —g)L in the value of D.

In Fig. 21, we verify various relations we derived in this
section numerically. Specifically, the red trace corresponds
to the left-hand-side of Eq. (D10). In the purple trace, we
replace the LC term by its 2 PN counterpart L(cos fg,, +
KcosOss,) [see Eq. (64)] but still remove the secular
variation piece [ cos Os,1dL. As expected, the purple trace
shows more oscillations than the red one. The dashed-olive
trace is the difference between the left- and right-hand sides
of Eq. (D11), whose difference should equal to LD (grey
trace) according to Eq. (D14). There is a constant offset

between them because we have intentionally set cos 9(501)52 to

0 when evaluating D. Lastly, the pink-dotted trace corre-
sponds to the last term introduced in Eq. (D8), which is
needed to cancel the Lense-Thirring spin-spin coupling’s
back-reaction on the orbit. As can be seen from the plot, it
is indeed a small quantity oscillating around 0 and can thus
be ignored.
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