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We study the spin and eccentricity evolution of black-hole (BH) binaries that are perturbed by tertiary
masses and experience the Lidov-Kozai (LK) excitation. We focus on three aspects. First, we study the
spin-orbit alignment of the inner binary following the approach outlined by Antonini et al. [Mon. Not. R.
Astron. Soc. 480, L58 (2018)] and Liu and Lai [Astrophys. J. 863, 68 (2018)], yet allowing the spins to
have random initial orientations. We confirm the existence of a dynamical attractor that drives the spin-orbit
angle at the end of the LK evolution to a value given by the initial angle between the spin and the outer
orbital angular momentum (instead of to a specific value of the effective spin). Second, we follow the
(inner) binary’s evolution further to the merger to study the final spin-spin alignment. We generalize the
effective potential theory to include orbital eccentricity, which allows us to efficiently evolve the system in
the early inspiral stages. We further find that the spin-spin and spin-orbit alignments are correlated and the
correlation is determined by the initial spin-orbit angle. For systems with the spin vectors initially in the
orbital plane, the final spins strongly disfavor an aligned configuration and could thus lead to a greater
value of the GW recoil than a uniform spin-spin alignment would predict. Lastly, we study the maximum
eccentricity excitation that can be achieved during the LK process, including the effects of gravitational-
wave radiation. We find that when the tertiary mass is a supermassive BH and the inner binary is massive,
then even with the maximum LK excitation, the residual eccentricity is typically less than 0.1 when the
binary’s orbital frequency reaches 10 Hz, and a decihertz detector would be necessary to follow such a
system’s orbital evolution.
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I. INTRODUCTION

It has been suggested that a significant amount of binary
black-hole (BH) mergers detectable by Advanced LIGO
(aLIGO; [1]) and Advanced Virgo (aVirgo; [2]) may
happen in galactic nuclei [3–5] or in surrounding gas disks
[6–8]. The recent announcement by the Zwicky Transient
Facility [9] further strengthens this possibility. In Ref. [9],
the authors report a plausible electromagnetic counterpart
to a candidate binary BH merger in the accretion disk of an
active galactic nucleus, associating it with aLIGO/aVirgo’s
gravitational-wave (GW) event GW190521 [10,11].
The deep gravitational potential well in a galactic

nucleus enables the possibility of finding mergers involving
second-generation (or even higher generation) BHs, i.e.,
BHs that are themselves products of previous merger events
[12–14]. Such a high-generation BH may be produced by
frequent stellar interactions thanks to the dense stellar
environment [15]. Alternative, if there are gas disks around
the SMBH, then migration traps may form and cause

massive objects to accumulate and collide with each other
[16]. A high-generation BH may be massive, potentially
exceeding the upper mass gap set by pair-instability
supernovae [17]. Moreover, such a BH likely possesses
significant spin angular momentum, inherited from the
residual orbital angular momentum (AM) of its progenitor
binary [18–22]. This is in contrast to BHs born from stellar
evolution, in which case small spins are expected [22,23].
Ref. [9] suggests that the GW190521 event may have a
total mass of ∼100 M⊙ and at least one component is
significantly spinning,1 two characteristics consistent with
BHs with dynamical origins as expected in galactic nuclei.

*hangyu@caltech.edu

1During the preparation of this work, the LIGO parameter
estimation on the GW190521 event was not ready and therefore
parameters suggested Ref. [9] were used. LIGO later reported a
more massive binary with component masses of ðM1;M2Þ ¼ð85 M⊙; 66 M⊙Þ and both components may have potentially
significant spin. More importantly, there is a potentially signifi-
cant spin component in the orbital plane [10,11]. These param-
eters further strengthens the possibility of a dynamical origin of
the system.

PHYSICAL REVIEW D 102, 123009 (2020)

2470-0010=2020=102(12)=123009(28) 123009-1 © 2020 American Physical Society

https://orcid.org/0000-0002-6011-6190
https://orcid.org/0000-0002-4645-453X
https://orcid.org/0000-0003-2300-893X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.123009&domain=pdf&date_stamp=2020-12-07
https://doi.org/10.1093/mnrasl/sly126
https://doi.org/10.1093/mnrasl/sly126
https://doi.org/10.3847/1538-4357/aad09f
https://doi.org/10.1103/PhysRevD.102.123009
https://doi.org/10.1103/PhysRevD.102.123009
https://doi.org/10.1103/PhysRevD.102.123009
https://doi.org/10.1103/PhysRevD.102.123009


Meanwhile, as a supermassive BH (SMBH) typically
resides in the galactic nucleus [24], binaries in the nucleus
might be further perturbed by the SMBH via, e.g., the
Lidov-Kozai (LK) mechanism [25,26]. In this picture, the
SMBH acts as a tertiary perturber that causes the inner
binary to oscillate in its orbital inclination and eccentricity.
As the pericenter separation decreases with increasing
eccentricity, the GW radiation becomes increasingly more
efficient. This allows the binaries to merge more quickly
and on timescales shorter than, e.g., the age of the Universe
or other survival timescales set by local environments.
In fact, the LK mechanism has been considered to be an

important channel producing the mergers of binary BHs
and belongs to the family of dynamical formation channels
(see, e.g., Ref. [27] for a review of different formation
scenarios). Different authors have investigated this problem
in different context, ranging from galactic nuclei (e.g.,
[4,5,28–31]), to dense stellar clusters (e.g., [32,33]), to
isolated field stars (e.g., [34–41]).
While most of the references above focus on the merger

window (i.e., the parameter space of initial conditions that
could lead to successful LK-induced mergers) and the event
rates, a few authors [34,35,39] suggest another interesting
aspect of the LK mechanism, namely, its effect on the
evolution of the spin vectors in the inner binary. More
specifically, Refs. [34,35,39] all report a dynamical attractor
that drives each component’s spin into the orbital plane at the
end of the LK evolution. Consequently, the effective
spin parameter [the mass-weighted sum of the component
spins along the direction of the orbital AM; see Eq. (44)]
of the inner binary is attracted toward zero. However,
Refs. [34,35,39] assumed a special initial condition where
the spin vectors are aligned with the inner orbit AM vector.
This is a reasonable assumption tomake for triple systems in
the field, where such an alignment might be expected from
stellar evolution [42,43]. It is unclear, however, whether
such a condition still holds for binaries formed near an
SMBH whose components are more likely to have dynami-
cal origins. This motivates us to study, under more generic
initial conditions, how the LK process affects the evolution
of the inner binary’s spin-orbit alignment. This is particu-
larly relevant to GW190521, as significant spin may be
expected [9–11], and would improve our understanding of a
more generic class of mergers driven by the LKmechanism.
In addition to the spin-orbit alignment, the spin-spin

alignment is also of particular interest in this study. Previous
studies suggest that the post-Newtonian (PN) spin evolution
may play a significant role in shaping the final distribution of
this angle (e.g., Refs. [44–51]). While this is not a leading-
order post-Newtonian (PN) effect in the inspiral stage, the
spin-spin alignment nonetheless affects the GW radiation
during the final merger-ringdown stage, and plays a crucial
role in determining the GW recoil (also known as the GW
kick; [45,46,52]). Properly modeling this final stage is
particularly important for a system like GW190521, which

is both intrinsically massive and appearing more massive in
the detector frame due to the large cosmological redshift,
because the signal information content captured in the LIGO
band is dominated by the merger-ringdown stage [53]. This
is in contrast to the majority of previous LIGO detections,
which typically appear with a detector-frame total mass of
< 100 M⊙, where the signal-to-noise is dominated by the
inspiral stage.
Consequently, in this study, we also investigate the evolu-

tion of the spin-spin alignment. Particularly, how different
initial conditions such as orbital eccentricity and the initial
spin-orbit alignment affect the final orientation of the spin
vectors. Since in the final evolution stages, the binary
effectively decouples from the tertiary perturber, the LK
process simply serves as a way of providing the initial
condition. Thus, our result has broader applications to other
formation channels, provided one properly substitutes in the
initial conditions suitable for the formation channel of interest.
The eccentricity is yet another interesting aspect that we

explore in this study, as it usually bears unique signatures of
a binary’s formation channel [33,54–63], and it is antici-
pated to be detectable by future space-based GW observa-
tories in the millihertz and decihertz bands such as LISA
[64], TianQin [65], and TianGO [66]. This motivates
investigating the limiting eccentricity that can be excited
by the LK mechanism and the observational consequences
for future space-based and ground GW detectors.
The rest of the paper is organized as follows. In Sec. II A

we outline the basic formalism of the problem. In the
remainder of Sec. II, we apply the formalism to studying
the spin evolution during the LK evolution. Our approach is
similar to Ref. [35] but with a key extension in the form of
sampling the initial spins isotropically. In Sec. III we
further evolve the systems after the LK excitation, which
specify the binary initial conditions, and follow the binary’s
evolution onward to the final merger. This is done by first
generalizing the precession-averaged evolution for circular
orbits proposed by Ref. [67] to allow for orbital eccentricity
in Sec. III A. We study the final spin distributions in
Sec. III C and its relation to GW kicks in Sec. III D. We
then consider the limiting eccentricity excitation by the LK
mechanism in Sec. IV. Lastly, we summarize our results in
Sec. V. Throughout this paper we use geometrical units
with G ¼ c ¼ 1.

II. EVOLUTION OF THE SPIN-ORBIT
ALIGNMENT DURING THE LIDOV-KOZAI

OSCILLATION

In this section we study the dynamics of an inner binary
(consisting of massesM1 andM2 withM1 ≥ M2 in an orbit
with semimajor axis ai) perturbed by a tertiary mass M3

that is in an outer orbit with semimajor axis ao via the
Lidov-Kozai (LK) oscillation.
Our focus is to examine how the spin vectors of the inner

binary evolve with respect to the inner orbital AM.
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Specifically, we want to examine if the attraction toward
χeff ¼ 0 reported in Refs. [34,35,39] still holds if we
randomize the initial spin orientation. According to
Ref. [35], the attraction is most significant for triple
systems that experience multiple “clean” LK cycles. In
other words, the interaction is dominated by the quadrupole
interaction potential. The octupole effects are naturally
small when the tertiary mass is an SMBH, because the
condition ao ≫ ai is required in order for the triple to be
dynamically stable [4,68]. Consequently, we truncate the
LK interaction at the quadrupole order in this work.
Given the complications of the environment near an

SMBH, we do not attempt to make any predictions on the
LK-induced event rates in this study.
In Sec. II A we review the basic formalism of the

standard LK problem and in Sec. II B we provide some
analytical solutions under the simplifications that the
interaction is truncated at the quadrupole order and the
GW decay is neglected. Additional corrections due to an
SMBH are discussed in Sec. II C. We present our numerical
simulations in Sec. II D. Our study in this Section closely
follows Ref. [35] (see also Refs. [34,39]), with a key
modification, namely, that we allow the initial orientations
of the spin vectors to be drawn isotropically, rather than
fixing them along the direction of the AM of the inner orbit.
As evident in Sec. II D, this has a significant consequence
on the final distribution of χeff .

A. Formalism

We start our discussion here by presenting the key
equations of the “standard” LK interactions. Corrections
due to an SMBH are discussed in Sec. II C.
The secular evolution of the inner orbit can be specified

by 4 vectors, Li, ei, S1, and S2, corresponding to the
orbital AM of the inner orbit, the eccentricity vector,2 and
the spin vectors associated with masses M1 and M2,
respectively. These vectors are further specified by a set
of ordinary differential equations as

dLi

dt
¼ dLi

dt

����
LK

þ dLi

dt

����
GW

þ dLi

dt

����
dS

þ dLi

dt

����
LT
; ð1Þ

dei
dt

¼ dei
dt

����
LK

þ dei
dt

����
GR

þ dei
dt

����
GW

þ dei
dt

����
dS

þ dei
dt

����
LT
; ð2Þ

dS1;2
dt

¼ dS1;2
dt

����
dS

þ dS1;2
dt

����
LT
; ð3Þ

where in the subscripts we have used “LK,” “GR,” “GW,”
“dS,” and “LT” to respectively stand for the Lidov-Kozai
(LK) interaction, the (conservative) general-relativistic

apsidal precession, the (dissipative) GW radiation, the de
Sitter, and the Lense-Thirring precessions. When coupled
to the outer orbit via the LK mechanism, the above set of
equations gives the complete description of the system’s
dynamics. Next, we examine each of these terms more
closely.
We start with the LK interaction, which together with the

Keplerian motion of the inner and outer orbit (i.e., all the
Newtonian parts), can be jointly described by a
Hamiltonian (see, e.g., Ref. [69]; see also Ref. [70] for a
more recent review) of the form

H ¼ 1

2
μij_rij2 þ

1

2
μoj_roj2 −

M1M2

ri
−
MtM3

ro
þΦLK: ð4Þ

Here, ri ¼ rir̂i and ro ¼ ror̂o are the inner and outer
orbital separations, respectively, while the hats denote unit
vectors. We have also defined μi ¼ M1M2=Mt and
μo ¼ MtM3=ðMt þM3Þ, the reduced masses of the inner
and outer orbits, respectively, where Mt ¼ M1 þM2 is the
total mass of the inner orbit. For conciseness, we some-
times drop the subscript “i” for quantities describing the
inner orbit. To avoid any confusion, quantities related to the
outer orbit retain the subscript “o” throughout this paper.
The quantity ΦLK describes the tidal potential of the

tertiary mass expanded around the center of mass of the
inner orbit and it is given by

ΦLK ¼ −M1M2M3

X
l¼2

Ml−1
1 þ ð−1ÞlMl−1

2

Ml
t

×
rli
rlþ1
o

Plðr̂i · r̂oÞ; ð5Þ

where in the second line, Pl is the Legendre polynomial of
degree l. Note that the octupole term is significantly
suppressed when M3 is an SMBH as dynamical stability
[4,68] requires ro=ri ≪ 1 (the system we focus on in
Sec. II D has ao=ai ≃ 10−4, about 100 − 103 times smaller
than what is allowed for triples in the field withM3 ∼M1).
More importantly, as our goal is to study the spin attractor
under “clean” LK interactions [35], we focus solely on the
leading order quadrupole (l ¼ 2) term.
To efficiently evolve the system, one typically uses the

orbital-averaged (i.e., the secular) version of the interaction
potential ΦLK. Specifically, one may average over both the
inner and outer orbits (i.e., the double-averaged, or DA,
approximation), which leads to

⟪ΦLK⟫jl¼2¼
μM3a2

8a3oð1−eoÞ3=2
½1−6e2−3ð1−e2ÞðL̂ · L̂oÞ2

þ15e2ðê · L̂oÞ2�; ð6Þ

where Lo and eo are the orbital angular momentum and
eccentricity vectors of the outer orbit, and they can be

2It has a direction pointing from the apocenter to the pericenter
and its amplitude is equal to the eccentricity. This is equivalent to
the Laplace-Runge-Lenz vector divided by Mμ2.
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jointly evolved with the inner orbit’s quantities to solve for
the dynamics of the hierarchical triple system. Due to the
LK interaction, the inner eccentricity and mutual orbital
inclination oscillates at a characteristic rate ΩLK, given by

ΩLK ¼ M3

Mt

�
a

ao
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p �
3

ffiffiffiffiffiffi
Mt

a3

r
: ð7Þ

When the inner orbit’s eccentricity e is near its maximum
with e ≃ 1, the eccentricity varies on a timescale τLK given
by [71]3

τLK ¼ Mt

M3

�
ao

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p
a

�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3ð1 − e2Þ

Mt

s
: ð8Þ

If this timescale is longer than the period of the outer orbit,
we are safely in the DA regime. Otherwise, one should only
average over the inner orbit (the single-averaged, or SA,
approximation), leading to

hΦLKijl¼2 ¼
μM3a2

4r3o
½−1þ 6e2 þ 3ð1 − e2ÞðL̂ · r̂oÞ2

− 15ðê · r̂oÞ2�: ð9Þ

Once the Hamiltonian is specified, one can easily obtain
the equations of motions for both the inner and outer orbits.
The explicit forms are provided in Appendix A (See also
Ref. [72] for the DA case and Ref. [35] for the SA case).
As the LK oscillation excites a large eccentricity in the

inner orbit, it greatly reduces the instantaneous GW decay
timescale τgw, defined by

τgw ≡ a
j _aj ¼

5

64

a4

μM2
t

ð1 − e2Þ7=2
ð1þ 73

24
e2 þ 37

96
e4Þ : ð10Þ

Hence, an initially widely separated system may be able to
merge in a reasonable amount of time due to GW radiation
when ð1 − e2Þ ≪ 1. As pointed out by Ref. [35] (see also
Ref. [36]), the total LK-induced merger time can be
approximated by

τm ¼ τgwje¼0ð1 − e2maxÞ3; ð11Þ

where emax is the maximum eccentricity reached during the
LK cycle [which is further explored in Eq. (26) and
Sec. IV].
To incorporate the GW decay, we have

dL
dt

����
GW

¼ −
32

5

μ2M5=2
t

a7=2
ð1þ 7

8
e2Þ

ð1 − e2Þ2 L̂; ð12Þ

de
dt

����
GW

¼ −
304

15

μM2
t

a4
ð1þ 121

304
e2Þ

ð1 − e2Þ5=2 e: ð13Þ

Note that the above equations preserve the relation that

L ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mtað1 − e2Þ

q
: ð14Þ

In addition to the dissipative decay, GR also induces a
conservative apsidal precession as

de
dt

����
GR

¼ ΩGR × e; ð15Þ

where

ΩGR ¼ 3Mt

að1 − e2ÞΩorbL̂; ð16Þ

with Ωorb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mt=a3

p
.

In order to study the evolution of spin orientation, we
further incorporate the de Sitter (1.5 PN) and Lense-
Thirring (2 PN) precessions according to Ref. [73], as
well as the quadrupole-monopole interaction according to
Ref. [74]

dS1
dt

¼ ðΩðS1Þ
dS þΩðS1Þ

LT þΩðS1Þ
QM Þ × S1; ð17Þ

and similarly for S2. These also induce backreactions on the
orbit (denoted with a subscript “br”) as

dL
dt

����
dSþLTþQM

¼
�
ΩðS1Þ

dS;br þΩðS2Þ
dS;br þΩLT;br

þΩðS1Þ
QM;br þΩðS2Þ

QM;br

�
× L ð18Þ

de
dt

����
dSþLTþQM

¼
�
ΩðS1Þ

dS;br þΩðS2Þ
dS;br þΩLT;br

þΩðS1Þ
QM;br þΩðS2Þ

QM;br

�
× e: ð19Þ

The different Ω’s are given by

ΩðS1Þ
dS ¼ 3ðM2 þ μ=3Þ

2að1 − e2Þ ΩorbL̂ ¼ ð4þ 3M2=M1ÞL
2a3ð1 − e2Þ3=2 L̂; ð20Þ

ΩðS1Þ
LT ¼ S2

2a3ð1 − e2Þ3=2 ½Ŝ2 − 3ðL̂ · Ŝ2ÞL̂�; ð21Þ

ΩðS1Þ
QM ¼ S1

2a3ð1 − e2Þ3=2
M2

M1

½Ŝ1 − 3ðL̂ · Ŝ1ÞL̂�; ð22Þ

ΩðS1Þ
dS;br ¼

S1ð4þ 3M2=M1Þ
2a3ð1 − e2Þ3=2 ½Ŝ1 − 3ðL̂ · Ŝ1ÞL̂�; ð23Þ3For future convenience, we do not define τLK as 1=ΩLK.

Instead, we define τLK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
=ΩLK.
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ΩLT;br ¼ −
3S1S2

2a3ð1 − e2Þ3=2L
× fðL̂ · Ŝ1ÞŜ2 þ ðL̂ · Ŝ2ÞŜ1
þ ½Ŝ1 · Ŝ2 − 5ðL̂ · Ŝ1ÞðL̂ · Ŝ2Þ�L̂g; ð24Þ

ΩðS1Þ
QM;br ¼ −

3S21
4a3ð1 − e2Þ3=2L

M2

M1

× f2ðL̂ · Ŝ1ÞŜ1 þ ½1 − 5ðL̂ · Ŝ1Þ2�L̂g ð25Þ

Quantities with a superscript of (S2) can be obtained from
those with (S1) by switching subscripts ð1 ↔ 2Þ.

B. Analytical approximations to conservative systems

The above set of differential equations describe the
dynamics of the triple system and can be solved numeri-
cally. Nonetheless, it is also instructive to consider the
analytical solutions of the system under certain approx-
imations. Specifically, if one ignores the GW decay and
truncates the interaction potential at the quadrupole order
[Eq. (5)], then the maximum eccentricity of the inner orbit
emax can be obtained as a function of the initial (which we
define as the moment when the system is nearly circular)
inclination Ið0Þ (i.e., the angle between Li and Lo) as
[32,72,75]

3ðjmin þ 1Þ
8jmin

�
ϵ2brj

4
min −

�
3þ 4ϵbr cos Ið0Þ þ

9

4
ϵ2br

�
j2min

þ5

�
cos Ið0Þ þ ϵbr

2

�	
þ ϵGR ¼ 0; ð26Þ

where jmin ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2max

p
and

ϵGR ¼ 3

�
Mt

a

��
Mt

M3

��
ao

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p
a

�3

; ð27Þ

ϵbr ¼
Lðe ¼ 0Þ

Lo
¼ μ

μo

�
Mt

ðMt þM3Þ
a

aoð1 − e2oÞ
	
1=2

: ð28Þ

The limiting eccentricity ẽlim ¼ max femax½Ið0Þ�g is
obtained when

cos Ið0Þlim ¼ ϵbr
2

�
4

5
j̃2lim − 1

�
; ð29Þ

with j̃lim ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ẽ2lim

p
, by solving

3

8
j̃limðj̃lim þ 1Þ

�
−3þ ϵ2br

4

�
4

5
j̃2lim − 1

�	
þ ϵGR ¼ 0: ð30Þ

Under the limit that the backreaction factor ϵbr ≪ 1 and
1 − ẽ ≪ 1, we can simplify the equation as

1 − ẽlim ≃ 1.9 × 10−5
�

Mt

150 M⊙

�
4
�

a
3 AU

�
−8

×

�
M3

109 M⊙

�
−2
�
ao

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p
0.06 pc

�6

; ð31Þ

and the limiting merger timescale associated with ẽlim is
given by [Eq. (11)]

τ̃m;lim ≃ 2.3 × 101 yr

×

�
Mt

100 M⊙

�
10
�

μ

25 M⊙

�
−1
�

a
3 AU

�
−20

×

�
M3

109 M⊙

�
−6
�
ao

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p
0.06 pc

�18

: ð32Þ

We show a few representative curves of the maximum
eccentricity under the conservative approximation, and the
corresponding merger timescale calculated according to
Eq. (11) in Fig. 1. Here we assume the triple system has
masses of ðM1;M2;M3Þ ¼ ð55; 45; 109Þ M⊙. We denote
the initial semimajor axes of the inner and outer orbits as

að0Þi and ao, respectively, and use three different line styles
to represent three sets of separations (we use dashed,

solid, and dotted lines for ½að0Þi ; ao� ¼ f30 AU; 0.6 pcg,
f3 AU; 0.06 pcg, f0.3 AU; 6 × 10−3 pcg, respectively).
Lastly, we use the color grey (olive) to represent systems
that are in the DA (SA) regime. Note that the maximum

eccentricity varies with respect to að0Þi even if we keep the

ratio að0Þi =ao a constant.
Note that the derivation so far is for a conservative

system only, and we use a tilde symbol to denote the
associated quantities. We revisit the limiting eccentricity in
Sec. IV to take into account the effect of GW radiation.

C. Effects associated with an SMBH

In addition to the “standard” LK equations presented in
Sec. II A, there are additional corrections that may be
important when the tertiary perturber is an SMBH [4]. In
this section, we discuss these effects.
One of the most significant effects associated with an

SMBH is that Lo and eo may experience a 1.5-PN
precession around S3 (the spin vector of M3) as

4

dLo

dt

����
S3Lo

¼ ΩS3Lo
Ŝ3 × Lo; ð33Þ

4This is in analog to how Li precesses around S1 (and S2). See
Eq. (23). Note that whereas Li=S1 ≫ 1, we have Lo=S3 ≃ 5 ×
10−4 if S3 ≃M2

3, and consequently, the precession of S3 around
Lo [analog of Eq. (20)] can be safely ignored.
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deo
dt

����
S3Lo

¼ ΩS3Lo
½Ŝ3 − 3ðL̂o · Ŝ3ÞL̂o� × eo; ð34Þ

where the precession rate is given by

ΩS3Lo
¼ S3ð4þ 3Mt=M3Þ

2a3oð1 − e2oÞ3=2
;

≃ 3.7 × 10−3ΩLK

�
S3
M2

3

��
M3

109 M⊙

�
−1

×

�
Mt

100 M⊙

�
1=2

�
a

3 AU

�
−3=2

: ð35Þ

Note that in the second line we measure ΩS3Lo
in terms of

LK precession rate, ΩLK [Eq. (7)], to compare the relative
importance of the two effects. As we focus on inner binaries
that are less compact than those studied in Ref. [4], this
effect is less significant in our case.
Similarly, S3 also causes L1, S1, and S2 to precess around

it [in analog to Eq. (21)] as

dLi

dt

����
S3Li

¼ ΩS3Li
½Ŝ3 − 3ðL̂o · Ŝ3ÞL̂o� × Li: ð36Þ

The equations for S1 and S2 can be easily obtained by
replacing L by S1ð2Þ. The three vectors precess at the same
rate,

ΩS3Li
¼ S3

2a3oð1 − e2oÞ3=2
≃
1

4
ΩS3Lo

: ð37Þ

Therefore, this effect does not directly alter the angle
between S1 and Li.
Nevertheless, the combination of the above two effects

introduces extra variations on the directions of Lo and Li
relative to each other, which enables a greater eccentricity
excitation at a given initial inclination Ið0Þ and typically
broadens the LK merger window. Similar effects can also
be generated by a nonspherical mass distribution of the
ambient star cluster [30,31], or in the context of field stars,
by a quadruple system [40,76].
We demonstrate the significance of this effect numerically

in Fig. 1with the dotmarkers.When the angle betweenS3 and
Lo, θS3Lo

, is small (blue dots with θS3Lo
¼ 5°; the azimuthal

angle between the two vectors is set randomly), the eccen-
tricity and merger time matches well the analytical approxi-
mation [Eq. (26)].5 Indeed, if Lo is parallel to S3, Eq. (33)
vanishes while Eq. (36) reduces to an extra precession of Li
around Lo without providing additional changes in the
nutation. On the other hand, when the misalignment is
significant (orange dots with θS3Lo

¼ 45°), we see more
scattering of the numerical results. A greater eccentricity
allows a binary to merge in a smaller number of LK cycles. It
is thus expected to degrade the dynamical attractor, which we
examine in more detail in Sec. II D.
Additionally, both S1 (and S2) and Li experience de-

Sitter (or a de-Sitter-like) precession around Lo [in analog
to Eq. (20)].

dS1
dt

����
LoS1

¼ ΩLoS1L̂o × S1; ð38Þ

dLi

dt

����
LoLi

¼ ΩLoLi
L̂o × Li; ð39Þ

where the precession rates are

FIG. 1. Top panel: the maximum eccentricity that can be
excited during the LK oscillation as a function of the initial
inclination Ið0Þ under the conservative (i.e., no GW radiation),
quadrupole approximation [Eq. (26)]. Bottom panel: the corre-
sponding merger timescale [Eq. (11)]. Here we have focused on a
system with ðM1;M2;M3Þ ¼ ð55; 45; 109Þ M⊙ and three differ-

ent sets of ½að0Þi ; ao� (indicated by different line styles). We have
fixed the eccentricity of the outer orbit to be eo ¼ 0 for the cases.
Also shown in the dots are the results obtained from numerical
simulations including SMBH corrections (blue for θS3Lo

¼ 5° and
orange for θS3Lo

¼ 45°, where θS3Lo
is the inclination of Lo with

respect to S3). The pile-up of eccentricity at 1 − emax ≃ 10−4 and
the merger time at τm ≃ 3 × 103 yr are explained in Sec. IV.

5The numerically found merger times are slightly shorter than
Eq. (11) as Eq. (11) is only a semianalytical approximation that
captures the key scalings. Also note that the eccentricity piles up
at 1 − emax ≃ 10−4 and does not reach the limiting values
computed in Eq. (31), similarly for the merger time. This is
explained in Sec. IV when we take into account the GW radiation.
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ΩLoS1 ¼ ΩLoLi
¼ 3ðM3 þ μo=3Þ

2aoð1 − e2oÞ

ffiffiffiffiffiffiffi
M3

a3o

s
;

¼ 0.12ΩLK

�
M3

109 M⊙

�
1=2

�
aoð1 − e2oÞ
0.06 pc

	
1=2

×

�
Mt

150 M⊙

�
1=2

�
a

3 AU

�
−3=2

: ð40Þ

Note that this effect does not directly affect the angle
between S1 and Li, which is the focus of our study here.
Thus, despite that ΩLoLi

> ΩS3Lo
, it is subdominant com-

pared to the extra precessions around S3.

D. Numerical simulations

Having outlined the set of equations we evolve and their
approximate, analytical solutions, we now examine the full
numerical evolution of a population of triple systems
undergoing the LK excitation. Here we directly integrate
the differential equations outlined in Sec. II A and
Appendix A using an explicit Runge-Kutta method of
order 5(4) [77]. We developed our own code in PYTHON

using standard NumPy [78] and SciPy [79] packages and
optimized using Numba [80].6

Motivated by Ref. [9], we consider a relatively massive
inner binary with masses ðM1;M2Þ ¼ ð55 M⊙; 45 M⊙Þ
and initial separation að0Þi ¼ 3 AU. The tertiary perturber
is assumed to be an SMBH of mass M3 ¼ 109 M⊙ with
separationao ¼ 0.06 pc.The outer orbit is further assumed to
be circular. Additionally, we assume the two BHs of the inner
binaries each have significant spins, i.e., χ1 ¼ χ2 ¼ 0.7,
where

χ1;2 ≡ S1;2
M2

1;2
: ð41Þ

When Lense-Thirring precessions around S3 are included
(Sec. II C), we fix S3 ¼ M2

3 or χ3 ¼ 1 to maximize its
potential consequences. We remind the reader that we are
focused on studying the spin distribution under the LK
interaction, similar to the study of Refs. [34,35,39], but with
a keydifference in thatwe allow the initial directionof the spin
vectors to be isotropic and random (independent of the inner
orbital plane’s orientation), as one may expect if the binary
has a dynamical origin as suggested by Refs. [9–11]. We do
not attempt to make any predictions on the event rate in
this study.
To get a population, we uniformly sample the initial

inclination of the inner orbit Ið0Þ. Here, the initial instant is
defined when the inner orbit is nearly circular with

eð0Þi ¼ 10−3. The value of Ið0Þ then determines the merger

timescale τm [see, Eqs. (11) and (26)]. Although a natural
choice is to only retain systems with τm ≲ 10 Gyr (the
approximate age of the Universe), we note that an inner
binary in a dense stellar environment like a galactic nucleus
may not be able to survive for such a time. For example, the
binary may evaporate due to dynamical interactions with
environmental stars on a timescale [81]

τev ≃ 1 × 107 yr

�
Mt

100 M⊙

��
ai

3 AU

�
−1

×

�
σ⋆

350 km s−1

��
m⋆

10 M⊙

�
−1
�

ρ⋆
107 M⊙ pc−3

�
−1
;

ð42Þ

where σ⋆ and ρ⋆ are the local velocity dispersion and stellar
mass density, and m⋆ is the mass of a typical object in the
local environment. Another potentially limiting timescale is
the two-body relaxation timescale [82],

τ2b ≃ 5 × 108 yr

�
σ⋆

350 km s−1

�
3

×

�
m⋆

10 M⊙

�
−1
�

ρ

107 M⊙ pc−3

�
−1
: ð43Þ

We point interested readers to Ref. [28] and references
therein for detailed discussions on different timescales that
may be relevant. Here we simply choose a merger window
of τm < 108 yr for systems evolved using the DA equa-
tions. Despite seeming somewhat arbitrary, our choice is
justified, as once τm > ða fewÞ × τ̃m;lim,

7 the distribution is
insensitive to τm.
To compare the effect of orbital averaging, we evolve the

triple system using both the DA and SA equations. For the
DA systems, we select systems that have τm < 108 yr as
argued above. As the SA equations are more computa-
tionally expensive, we consider only those with τm < 3 ×
107 yr (see Fig. 1). In total, we simulate 2000 (1800) DA
(SA) systems.
We terminate the three-body interaction when the inner

semimajor axis shrinks by a factor of 10, ai ¼ að0Þi =10. At
this point, τLK ≫ τgw and the inner binary is well decoupled
from the tertiary perturber. In the remainder of this section,
we focus on examining the properties of the inner binary
after decoupling from the third body. The properties of the
binary once it enters the LIGO band are studied in detail in
Sec. III.
We examine two cases. First, we examine results

obtained under the “clean” LK without various SMBH
effects as described in Sec. II C (this also corresponds to the
case where Lo is parallel to S3). The second is with SMBH

6The code is available from the corresponding author on
reasonable requests.

7In fact, τm should be compared to the minimum of τ̃m;lim and
τm;lim; see Sec. IV and Eq. (69).
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corrections, using the DA approximation. In the second
case, we focus on two representative values of θS3Lo

, a small
value of θS3Lo

¼ 5° and a larger value of θS3Lo
¼ 45°, while

the azimuthal angle between Lo and S3 is sampled
uniformly.
To summarize, in our numerical simulations we fix the

masses of the triple to ðM1;M2;M3Þ ¼ ð55; 45; 109Þ M⊙,
the spin magnitude of each component to ðχ1; χ2Þ ¼
ð0.7; 0.7Þ, and the initial separations to ðað0Þi ; aoÞ ¼ ð3 AU;
0.06 pcÞ. The quantities we randomize are the orientation
of S1 and S2 (isotropically), as well as the initial inclination
of the inner orbit with respect to the outer one, Ið0Þ (uniform
in angle). When considering corrections due to effects
associated with the central SMBH, we fix S3 ¼ M2

3 and
consider two representative angles between Lo and S3
(θS3Lo

¼ 5° or 45°). We further select only systems with
τm < 108 yr (3 × 107 yr) to be evolved using the DA (SA)

equations until ai ¼ að0Þi =10 ¼ 0.3 AU. In total we simu-
late 2000 (1800) realizations with the DA (SA) equations.
The focus of our study here is to understand how the LK
excitation affects the inner orbit’s spin-orbit alignment and
the distribution of the effective spin, χeff , defined as

χeff ¼
M1χ1 · L̂þM2χ2 · L̂

M1 þM2

: ð44Þ

In the top panel of Fig. 2 we present a scatter plot of χeff
as a function of the merger time.8 We use grey (olive) dots
to represent systems evolved using the DA (SA) equations.
With randomized initial spin directions, we do not see χeff
attracted toward 0, even for systems that experience
multiple “clean” LK cycles with merger times greater than
5 × 103 yr and without being perturbed by various SMBH
effects. Rather, the effective spin has a distribution con-
sistent with that expected from an isotropic spin direction,
as shown in the lower panel of Fig. 2.
Nevertheless, there still exists a dynamical attractor of

the spin orientation. This is illustrated in Fig. 3 where we
present a sample evolution track of the inner binary under
multiple LK cycles (without SMBH effects). From the top
to bottom, we show, respectively, the semimajor axis, the
eccentricity, and the spin-orbit alignment of the inner orbit,
θS1ð2ÞL. We see that at the end of the LK evolution, the
angles between the spin vectors and the inner orbital
angular momentum, θS1ð2ÞL, converge to fixed values, which

correspond to the angles between the initial spin vectors

and the AM of the outer orbit, θð0ÞS1ð2ÞLo
.

In fact, this attraction holds generically as shown in Fig. 4.
In the top panel of Fig. 4 we show, as a function of merger
time, the ratio of j cos θS1Lj at the end of the LK evolution to

the initial value of j cos θð0ÞS1Lo
j. Note, in the figure we

have added a small value of 0.01 to the denominator to
avoid numerical singularities. Whereas those that merge in
essentially a single LK cycle (τm ≃ 2.5 × 103 yr) present
a large scattering for the value of this ratio, systems with

FIG. 2. Top panel: effective spin χeff distribution as a function
of the LK induced merger time τm. The grey and olive dots
represent systems evolved with the DA and SA equations,
respectively. SMBH effects are ignored in this case. Bottom
panel: the distribution of the effective spins for systems that
experience multiple LK cycles before the eventual merger (i.e.,
with τm ≳ 5 × 103 yrs). For reference, the cyan trace corresponds
to the initial distribution of χeff with isotropically oriented spins.
Lastly, the orange trace corresponds to the distribution of χeff with
SMBH effects incorporated for θS3Lo

¼ 45°. Note that in both
panels we express the effective spin as χeff normalized by the
maximum effective spin allowed in the simulations, namely,
max jχeff j ¼ 0.7. To generate the distribution, we use 1605 DA
runs, 1112 SA runs, and 1287 runs including the SMBH effects
after the cut τm ≳ 5 × 103 yrs cut.

8Note that in the top panel, there is a cluster of points piled up
at the vertical line of τm ≃ 2.5 × 103. This is ∼100 times longer
than the limiting merger time one would expect for a conservative
system as shown in Eq. (32). This is due to the fact that the
limiting eccentricity can be smaller than the prediction of Eq. (31)
if the inner orbit decays rapidly due to GW radiation. This is
discussed further in Sec. IV.
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τm ≳ 5 × 103 yr (i.e., experiencing multiple LK cycles)
concentrate around a value of unity. Although we limit
the presentation to S1, this same relation holds true for the
orientation of S2. Further, if we cast cos θS1L as a function of

sin θð0ÞS1Lo
, then a clear bifurcation pattern appears, as shown

in the bottom panel of Fig. 4.

Qualitatively, this may be understood by generalizing the
argument given in Ref. [35] (see their sec. IV 3).
Specifically, in a frame that rotates together with L around
Lo (indicated by a subscript “rot”), the evolution of S1 may
be approximated as

dS1
dt

jrot ≃Ωeff × S1; ð45Þ

where

Ωeff ¼ Ωð1Þ
dS þΩstdLK: ð46Þ

The vector ΩstdLK is further given by

FIG. 3. A representative case of an inner binary’s evolution
during the LK induced oscillations with ðM1;M2;M3Þ ¼
ð55; 45; 109Þ M⊙, a

ð0Þ
i ¼ 3 AU, ao ¼ 0.06 pc and Ið0Þ ¼ 88.7°.

From the top to bottom, we show the semi-major axis ai, the
eccentricity ei, the spin-orbit alignment θSL of the inner orbit, and
the comparison of the GW decay timescale and the inverse of LK
frequency [Eqs. (10) and (7)] respectively. In the third panel, the
dotted lines correspond to the initial angles between the spin
vectors and the outer orbit’s orbital angular momentum Lo.

FIG. 4. Top panel: the ratio between the spin-orbit alignment at
the end of the LK oscillation, j cos θS1Lj, and the initial alignment
between spin and the outer orbit’s angular momentum,

j cos θð0ÞS1Lo
j. The two quantities are nearly equal for systems

experiencing multiple LK oscillations. Bottom panel: here we
focus on only those systems with τm ≥ 5 × 103 yrs, which are
those with multiple LK oscillations, displaying a clear relation-
ship between the final angle between S1 and the binary angular
momentum L versus the initial angle between S1 and the outer
angular momentum Lo.
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ΩstdLK ¼ 3L̂ · L̂oð1þ 4e2Þ
4τLK

L̂o: ð47Þ

One may argue that the angle between S1 and Ωeff is an
adiabatic invariant if jΩeff j is slow varying. Initially

jΩstdLKj ≫ jΩð1Þ
dS j when the inner binary is widely sepa-

rated, but as the orbit decays, at the end of the LK cycle the

opposite is true jΩstdLKj ≪ jΩð1Þ
dS j. This then implies that

θS1L ≃ θð0ÞS1Lo
: ð48Þ

Note, however, that the argument does not explain why we

can also have θS1L ≃ π − θð0ÞS1Lo
from numerical simulations,

hence a more rigorous understanding of the process is
needed in a future study.
From this, we now see that the attraction to χeff ≃ 0 for

systems experiencing multiple “clean” LK cycles as
reported in Refs. [34,35,39] is a consequence of their
choice of initial conditions. The aforementioned studies
focus on systems whose spin vectors are initially aligned

with the inner AM vector, θð0ÞS1Lo
¼ Ið0Þ. In order for the

inner binary to be excited to a large enough eccentricity that
it merges within 10 Gyr, the inner AM vector is further
required to have an initial inclination of Ið0Þ ≃ π=2 with
respect to the outer orbit. The bottom panel of Fig. 4
illustrates that such systems with sin Ið0Þ ≃ 1 lead to
cos θS1L ≃ 0 and consequently χeff ≃ 0 at the end of the
LK interaction.
While an initial alignment between S1 and L may be

expected for field triples (which are the focus of
Refs. [34,35,39]), it is unclear if this assumption holds
for binaries in galactic nuclei. If the spin vectors do not
have a preferred direction initially,9 then the LK evolution
does not lead to a preferred value of χeff (relative to the
isotropic spin distribution) in general.
We conclude this section by briefly examining the effects

due to an SMBH [4]. As argued in Sec. II C, we expect the
effect to be mild corrections to the “standard” LK inter-
actions for the set of parameters we focus on. This is
demonstrated in Fig. 5, where we compare the distributions

of j cos θS1Lj and j cos θð0ÞS1Lo
j with and without SMBH

effects. Indeed, we see good agreement overall between
the different datasets. When the Lo − S3 misalignment is
significant (the orange trace with θS3Lo

¼ 45°), there is a
slight hint of the attractor being degraded, as more systems
experience more extreme eccentricity excitation and merge

in fewer LK cycles (see also Fig. 1). Nevertheless, since the
distribution of χeff is already consistent with that obtained
from an isotropic spin distribution, due to the initial
condition we have assumed on the spins, we do not expect
SMBH effects to change this result. This is confirmed
through the results presented in the bottom panel of Fig. 2.
This conclusion should be further strengthened for binaries
that are more compact and closer to an SMBH, where its
effects are more significant, as Ref. [4] showed that for a
nearly fixed initial spin orientation, the final χeff distribu-
tion tends to be more broad than the isotropic-spin case.

III. SPIN-SPIN EVOLUTION FOR BINARIES WITH
ARBITRARY ORBITAL ECCENTRICITY

In this section, we take those binaries that have undergone
LK oscillations (those we studied in Sec. II) as the initial
conditions and continue evolving the inner binaries until
merger, with the goal of studying the final orientation of the
spin vectors. A quantity we are particularly interested in is
the angle between two spin vectors, θS1S2 .While this angle is
a subdominant effect in the inspiral GW waveform, it
nonetheless plays a significant role in determining the final
merger-ringdown waveform and the GW kick the system
receives at the merger (see, e.g., Refs. [45,46,50,52]).
Note that at this point all binaries have a separation of

ai ¼ að0Þi =10 ¼ 0.3 AU, which is the criterion for termi-
nating the three-body LK evolution. At this point, the tidal

FIG. 5. The distribution of the ratio between j cos θS1Lj at the
end of the LK evolution and j cos θð0ÞS1Lo

j initially. The grey trace
corresponds the “standard” LK (or θS3Lo

¼ 0), consistent with the
grey dots in the upper panel of Fig. 4. The blue and orange traces
show the distributions when SMBH effects are included at two
representative values: θS3Lo

¼ 5° and 45°, respectively. The
azimuthal angle between Lo and S3 is randomly sampled and
all data points are presented, including those merging in a single
LK cycle.

9We note that our isotropic spin prior may be an over-
simplification to the problem, as other dynamical processes,
such as gas torques in the disk of an active galactic nucleus (see,
e.g., Refs. [6–9]), could also affect the initial spin orientation.
Here we ignore these gaseous effects, leaving this to future
studies.
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torque for the tertiary mass to perturb is much smaller
compared to the initial value. Moreover, the inner binary
inspirals with an increasingly shorter timescale. As we
show in Fig. 6 (see also the bottom panel of Fig. 3), for the
majority of our simulations we have ΩLKτgw < 1, and
consequently, the inner binary has is decoupled from the
perturber and the LK interaction terms can be safely
disregarded.10

Nonetheless, a new computational challenge appears.
Note that both the de Sitter precession and the Lense-
Thirring precession are of lower PN orders than the 2.5 PN
GW-driven decay. In fact, we have

τgwΩdS ∝ a3=2ð1 − e2Þ5=2: ð49Þ

One may further show that ð1 − e2Þ ≃ 2ð1 − eÞ ∝ 1=a
when ð1 − eÞ ≪ 1, a condition that is typically true at
the end of the LK evolution. Consequently we have

τgwΩdS ∝



a−1 if ð1 − eÞ ≪ 1;

a3=2 if e ≪ 1:
ð50Þ

Therefore, the precession phase is largely dominant at the
time when the binary has e ∼ 0.5. This typically occurs at
a ≃ 3 × 10−3 AU for the binaries we consider here. A
brute-force approach at evolving the set of differential
equations outlined in Sec. II A requires a large number of
precession cycles be resolved, making this approach
prohibitively expensive computationally. Therefore, if we
want to explore how the initial conditions affect the final
spin orientation, a more efficient way of evolving the
system is desired.
To do so, we rely on the effective potential description

and the precession-averaged orbital evolution proposed by
Ref. [67]. The derivation of Ref. [67] is for circular orbits
only, whereas the binaries considered here that merge via
the LK mechanism (as well as other dynamical channels)
typically have a large eccentricities. In the following
Sec. III A we generalize the effective potential theory to
binaries with arbitrary eccentricity. Additionally, we pro-
vide a prescription for evolving an eccentric system in a
precession-averaged way. We apply this generalized theory
to evolve our binaries from 0.3 AU to 300Mt ≃ 3 ×
10−4 AU in Sec. III B. As the binary further evolves, the
precession timescale can become greater than the decay
timescale and it cannot be treated in the averaged manner.
In consideration of this, we evolve the full equations from
300 Mt until merger (which we define as a ¼ 6 Mt,
corresponding to the inner-most stable circular orbit, or
ISCO, of a Schwarzschild BHwith massMt). The final spin
distribution is studied in details in Sec. III C. Finally, in
Sec. III D, we demonstrate how the spin distribution affects
the magnitude of the GW kick a binary receives at merger.
Before proceeding, we remind the reader that at this

stage the inner binary has well decoupled from the tertiary
perturber, and the LK interaction merely provides the initial
conditions for the binary evolution. Therefore, in addition
to studying the marginalized distributions, we also examine
binaries obtained from specific slices of initial conditions.
As long as a formation channel (not restricted to the LK
mechanism) allows for the same slice of initial conditions,
our conclusions apply generically.

A. Effective spin potential and
precession-averaged evolution

We review here the effective potential theory proposed
by Ref. [67] and generalize to orbits with arbitrary
eccentricity, so that the theory can be applied to eccentric
binaries that dynamical formation channels (including the
LK oscillation we study here) typically produce.
To proceed, we note that the key foundation of the

derivation in Ref. [67] is that the effective spin parameter
χeff [Eq. (44)] is preserved to at least the 2.5 PN order.

FIG. 6. The distribution of the product ΩLKτgw [Eqs. (7) and

(10)] at the end of the LK evolution ai ¼ að0Þi =10 of our
simulations. For the majority of the systems, we have ΩLKτgw <
1 satisfied and therefore the inner binary is effectively decoupled
from the tertiary perturber.

10We acknowledge that there are about 15% of the systems
shown in Fig. 6 that do not meet the ΩLKτgw < 1 condition
because they experience a weak LK excitation and merges in
more than 107 years [cf. Eq. (42)]. We do not evolve the triple
system further because that would make the majority of the
systems run into the computationally expensive regime caused by
the fast de Sitter precession of the inner spins. Nonetheless, one
can show ΩLKτgw ∝ a3 when ð1 − eÞ < 1 and by a ≃ 0.1 AU ≃
105Mt all the systems will satisfy ΩLKτgw < 1. Moreover, the LK
evolution only provides initial conditions for the subsequent
binary evolution but will not affect any relations between various
spin alignments which are the focus of Sec. III. With or without
theΩLKτgw ∝ a3 when ð1 − eÞ > 1 systems, we find the spins are
consistent with an isotropic distribution at the end of the LK
evolution.

SPIN AND ECCENTRICITY EVOLUTION IN TRIPLE … PHYS. REV. D 102, 123009 (2020)

123009-11



In fact, this is true even for eccentric orbits (see, e.g.,
Ref. [74]). This, together with some geometrical relations,
allows us to express the angles between different vectors as

cos θLJ ¼
J2 þ L2 − S2

2JL
; ð51Þ

cos θS1L ¼ 1

2ð1 − qÞS1

�
J2 − L2 − S2

L
−
2qM2

t χeff
1þ q

	
; ð52Þ

cos θS2L ¼ q
2ð1 − qÞS2

�
−
J2 − L2 − S2

L
þ 2M2

t χeff
1þ q

	
; ð53Þ

cos θS1S2 ¼
S2 − S21 − S22

2S1S2
; ð54Þ

cosΔΦ ¼ cos θS1S2 − cos θS1L cos θS2L
sin θS1L sin θS2L

; ð55Þ

where in the above equations J ¼ jLþ Sj is the magnitude
of the total angular momentum of the binary and S ¼
jS1 þ S2j is the magnitude of total spin. We use θLJ to
represent the angle between L and J and ΔΦ the angle
between S1 and S2 in the orbital plane. Since the angles are
based on geometrical relations between different vectors,
they hold independent of the orbital eccentricity, as long as
one uses the proper J and L for eccentric orbits.
The effective potential is also a geometrical relation. It

describes, for a given set ðJ; LÞ together with constants
ðMt; q; S1; S2; χeffÞ, the allowed range of the total spin
magnitude S can take. Specifically, the range is determined
by solving the equation χeff

�ðS�ÞjJ;L ¼ χeff , where

χ�effðSÞjJ;L ¼ 1

4qM2
t S2L

f�ð1 − q2ÞA1A2A3A4

þ ðJ2 − L2 − S2Þ½S2ð1þ qÞ2
− ðS21 − S22Þð1 − q2Þ�g; ð56Þ

with

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − ðL − SÞ2

q
; A2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ SÞ2 − J2

q
;

A3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 − ðS1 − S2Þ2

q
; A4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1 þ S2Þ2 − S2

q
:

The roots S� then defines the allowed range of S
as S− ≤ S ≤ Sþ.
Within this range, the total spin magnitude varies at a rate

(see Appendix B for derivation)

dS
dt

¼ −
3ð1 − q2Þ

2q
η6ð1 − e2Þ3=2

�
M2

t

L

�
5 S1S2
MtS

×

�
1 −

ηM2
t χeff
L

	
sin θS1L sin θS2L sinΔΦ; ð57Þ

where η ¼ M1M2=M2
t . Note that when e ¼ 0, this reduces

to Eq. (8) in Ref. [67]. Also, note that dS=dt is specified in
terms of ðJ; L; e; SÞ and there is no explicit time depend-
ence. Additionally, we define a precession timescale,
τpre, as

τpreðJ; L; eÞ ¼ 2

Z
Sþ

S−

dS
jdS=dtj : ð58Þ

We now have all the ingredients to perform the pre-
cession-averaged evolution. Note that dJ=dt ∝ L and for
the amplitudes we can write dJ=dt ¼ Ĵ · dJ=dt and
dL=dt ¼ L̂ · dJ=dt. Thus, we have dJ ¼ cos θLJdL. Over
a time Δt with τpre ≪ Δt ≪ τGW, we write the precession-
averaged evolution of J in terms of L as�

dJ
dL

�
¼ 2

τpre

Z
Sþ

S−

cos θLJdS
jdS=dtj : ð59Þ

Note that this is formally the same as Eq. (10) in Ref. [67],
except the precession rate dS=dt now also depends on the
eccentricity [Eq. (57)]. The right-hand side of Eq. (59) is
now fully specified in terms of ðJ; L; eÞ.

Similarly, we cast the precession-averaged eccentricity
evolution in terms of L by simply dividing (the scalar
version of) Eqs. (13) and (12) and substitute a in terms of
ðL; eÞ using Eq. (14), leading to

�
de
dL

�
¼ 19

6

e
L

1þ 121
304

e2

1þ 7
8
e2

: ð60Þ

This completes the set of precession-averaged equations.
In Fig. 7 we compare the precession-averaged evolution

of J (blue-solid trace) and the full numerical result (grey
traces; it contains ∼104 precession cycles in the range
shown). Also shown in the blue dashed traces are the upper
and lower envelopes of dJ=dL evaluated at cos θLSðS∓Þ.
Note that in Fig. 7 the x-axis corresponding to the
eccentricity of the system is inverted so that left to right
corresponds to a decaying orbital separation and an
increasing orbital frequency. From Fig. 7, we see that
the averaged evolution matches well with the full numerical
result.
We summarize the procedure for performing the pre-

cession-averaged evolution as follows. Given a set of initial
conditions for ðJ; L; eÞ, together with a set of constant
parameters ðMt; q; S1; S2; χeffÞ, one can obtain the averaged
orbital evolution in terms of L by solving fhdJ=dLi;
hde=dLig using Eqs. (59) and (60). While in this process
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we lose track of the exact value of S, we nevertheless know
its probability density function for each system with
ðJ; L; eÞ given by

pðSjJ; L; eÞ ¼ 2

τpre

1

jdS=dtj : ð61Þ

To get the distribution of an ensemble, we simply sum the
distribution for each system together and then perform an
average

pðSÞ ¼ 1

N

X
pðSjJ; L; eÞ; ð62Þ

where N is the number of systems in the ensemble.11 The
probability density of any function f of S (and ðJ; L; eÞ) is
described as

p½fðSÞjJ; L; e� ¼ pðSjJ; L; eÞ
jdf=dSj : ð63Þ

This allows us to, e.g., compute the distribution of different
angles as shown in Eqs. (51)–(55).
In the following Section (Sec. III B) we apply this techni-

que to evolve systems from the end of the LK oscillation to
a ¼ 300 Mt and study the resulting distributions.

B. Evolving to a= 300 Mt

Among all the systems we obtain from the LK evolution,
we focus specifically on those with jχeff j < 0.1 for the
remainder of this paper (about 500 DA systems and 450 SA
systems after the cut). The reasons for this restriction are as
follows. First, while we have shown the LK mechanism
does not provide an attractor to χeff ¼ 0 once the initial spin
orientation is randomized, a small χeff is nonetheless
geometrically favorable for isotropic spin orientations
(see Fig. 2). Furthermore, spins in the orbital plane (for
which χeff ≃ 0 is a necessary condition) is one of the
conditions required to produce a particularly strong GW
recoil (see, e.g., Ref. [83]). To further explore this con-
figuration, we also consider a set of systems where we

require not only jχeff j < 0.1, but also θð0ÞS1;2Lo
¼ π=2 initially

(including 1200 DA and 1200 SA runs in total). As the LK

interaction favors θS1;2L ≃ θð0ÞS1;2Lo
¼ π=2, this means each

individual spin will mostly lie in the orbital plane at the end
of the LK cycles.
In Fig. 8 we show the distributions of ðS; θS1L; θS1S2Þ in

the (top, middle, bottom) panel, for the dataset where only
jχeff j < 0.1 is required (each individual spin vector does not
necessarily lie in the orbital plane for this case). Here the
solid-grey and solid-olive traces are the distributions at the
end of the LK interaction (which we defined as
a ¼ 0.3 AU) for those evolved numerically using the
DA and SA equations. The dashed-cyan curves are the
probability densities reconstructed using each individual
system’s ðJ; L; eÞ at a ¼ 0.3 AU according to Eqs. (61)
and (63), summed together using Eq. (62). To get the
dashed-purple traces, we first evolve the ðJ; eÞ of each
system as a function of L, using the precession-averaged
method outlined in the previous Section, from 0.3 AU to
300 Mt ≃ 3 × 10−4 AU, and then reconstruct the proba-
bility density. Figure 8 shows that the reconstructed
distribution matches well with the numerical results.
Furthermore, for this dataset, we do not observe a signifi-
cant change in the distribution from 0.3 AU to 300 Mt.
Note that in the bottom panel it appears that the spins prefer
to be antialigned. This is, however, a simple geometrical
effect rather than a dynamical consequence of evolution.
Intuitively, if S1 is an angle of α above the orbital plane, S2
needs to be at least α below the orbital (for q ≃ 1) in order
to meet the χeff ≃ 0 requirement. Thus the two vectors need
to be at least 2α apart, which explains why a large spin-spin
angle is seemingly preferred.
Figure 9 shows more interesting results for the evolution

of the dataset where we further restrict each spin to initially
lie in the orbital plane. The traces of this figure retain the
same definitions as those in Fig. 8. As one would expect,
initially θS1L peaks at π=2 and θS1S2 is essentially a uniform
distribution. Figure 9 shows that, as the system evolves, the
distribution of θS1L broadens and θS1S2 begins to disfavor
smaller values, indicating the spin-spin interaction affects

FIG. 7. The evolution of the total angular momentum of the
inner binary J ¼ jLþ Sj, with respect to the its orbital angular L,
as a function of the orbital eccentricity. Note that we have
inverted the bottom-x-axis so that the system evolves, naturally,
toward smaller values of e.

11Here, each realization of our simulation has the same weight.
However, an extension that allows for different weights is
straightforward to implement in this framework.
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the distribution. In fact, the dynamical effects are increas-
ingly important as the inspiral continues, which we study in
detail in the following section.

C. Final distribution of the spin-spin alignment

The precession-averaged description provides an effi-
cient way to evolve the binary when the separation is wide
and we have τpre ≪ τgw. As the orbit decays further, the
separation in timescales is less well satisfied. In addition,
the precession averaging ignores the spin-orbit resonances
[50,51,67], which might become significant at small
separations. As a result, from 300 Mt to 6 Mt we evolve
the full set of precession equations outlined in Sec. II A.
Note that as we average over precession, we do not keep

track the exact value of S anyone. To do the full precession-
resolved evolution, we need to first reconstruct the initial

conditions at 300 Mt from the averaged evolution results.
This is accomplished by first randomly choosing a set
ðJ; L; eÞ from the numerical data at 300 Mt and sampling S
according to Eq. (61). Once S is determined, we obtain the
angles between different vectors according to Eqs. (51)–
(55), allowing us to construct the necessary vectors.12

A representative evolution track from 300 Mt to 6 Mt is
shown in Fig. 10. In this figure, we plot different quantities
as functions of the GW frequency, which is simply fgw ¼
2forb as the eccentricity has effectively decayed away.13 in
Fig. 10, from top to bottom, respectively, we show the

FIG. 8. From top to bottom, the probability densities of the total
spin magnitude S, the spin-orbit angle θS1L, and the spin-
spin angle θS1S2 . The solid traces are the distributions based
on our numerical simulation at the end of the LK evolution
(a ¼ 0.3 AU). Here we focus on those systems with jχeff j < 0.1,
which includes about 500 (450) DA (SA) systems after the
cut. The dashed traces are reconstructed probability densities
based on fJ; L; eg and the effective potential of S. The cyan
traces are evaluated at a ¼ 0.3 AU and the purple traces at
a ¼ 300 Mt (with ðJ; eÞ evolved first using the precession-
averaged method).

FIG. 9. Similar to Fig. 8, but in addition to jχeff j < 0.1, we

further require that θð0ÞS1ð2ÞLo
¼ π=2 initially. This initial condition

means that at the end of the LK evolution (a ¼ 0.3 AU), the spins
vectors are approximately in the orbital plane with θS1ð2ÞL ≃ π=2.
We specifically evolve 1200 DA and 1200 SA systems to increase
the sample size here. Note that as the systems evolve from 0.3 AU
to 300 Mt, the distribution of θS1L broadens and θS1S2 begins to
disfavor smaller valued angles.

12The orientation of the eccentricity vector is set by requiring
e · L ¼ 0. The initial angle between e and S affects only the
evolution of ê, not any other quantities, therefore it can be set
randomly.

13At 300 Mt the median eccentricity of systems in our
simulation is e ¼ 0.008, and at 6 Mt all of the systems have
e < 0.01. See also Figs. 17 and 18.
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angles between different vectors, their cosines, and the
relevant timescales. Note that the precession timescale τpre
[Eq. (58)] can become comparable or even greater than the
orbital decay timescale τgw [Eq. (10)], indicating the
necessity of performing a precession-resolved evolution
in the last stages of the inspiral (see also Appendix C to
remove the bias that would be induced on pðSÞ when
τgw < τpre). In the remainder of this section, we focus in
detail on the dynamics of the spin orientations.
We first focus on the distributions of different angles

θS1L, θS2L, and θS1S2 at 6 Mt showm in Fig. 11. There, the
orange contours (including 8000 realizations) correspond
to the distribution with initial conditions drawn according
to Fig. 8. In other words, the orange contours represent the
systems starting from an isotropic spin distribution and
then with the condition jχeff < 0.1j imposed. Additionally,
we show for comparison, grey contours (including 5000

realizations) corresponding to the distribution obtained
from the initial condition given by Fig. 9, where we further
restrict the spins to be initially in the orbital plane (by

setting θð0ÞS1Lo
¼ θð0ÞS2Lo

¼ π=2 as the initial condition for the
LK evolution).
At first glance, the orange contours appear to be similar

to the initial conditions shown in Fig. 8. Furthermore, we
do not find a significant dependence of θS1S2 on the merger
time as shown in Fig. 12 [see also Eq. (11). Note that the
merger time is closely related to the maximum eccentricity
excited by the LK mechanism].
Nevertheless, if we instead focus on specific slices of

data, specified by a small range of values of the in-plane
spin components χ1p ≡ χ1 sin θS1L,

14 then certain evolu-
tionary effects become clearer, as shown in Fig. 13 (see
also, e.g., Ref. [44]). In Fig. 13, we compare the angle
distributions at 6 Mt (solid-grey) and at 300 Mt (dashed-
olive) for different values of χ1p evaluated at 300 Mt. While
the olive traces are consistent with the distribution one
would get by starting from an isotropic spin distribution
restricted to a particular range of χeff and χ1p, the grey
traces are nonetheless the results of dynamical interactions.
Specifically, we see that for χ1p > 0.695, the final spin
vectors disfavor to be aligned, which is also demonstrated
by the grey contoured dataset in Fig. 11. Similarly, Fig. 11
shows that the spin-orbit angle θS1ð2ÞL is also affected by
these interactions. While the grey dataset has θS1ð2ÞL peaking
at π=2 initially, spins out of the orbital plane are favored at
merger. More specifically, the more massive component
slightly favors θS1L < π=2 while the less massive one
favors θS2L > π=2.
A closely related observation is the significant correla-

tion between θS1L and θS1S2 shown by the grey contours in
Fig. 11. In fact, this correlation exists not only for those
systems with χ1p ≃ 0.7, or θS1L ≃ π=2 initially at 300 Mt,
but for different values of χ1p generically, as indicated
in Fig. 14.
In the top panel of Fig. 14, we show a scatter plot of θS1S2

and θS1L. The points are colored according to the value of
χ1p at 300 Mt. Note that each set scatters around a line
corresponding to

C≡ cos θS1L þK cos θS1S2 ¼ Const; ð64Þ

where15

FIG. 10. An example of a binary evolution from 300 Mt to
6 Mt as a function of the GW frequency fgwð¼ 2forb as the
system has circularized). The top panel shows the evolution of
various angles in degrees and the middle panel shows the cosine
of the angles. Note that ðcos θS1L þK cos θS1S2Þ (purple line)
stays approximately constant until a time near the merger. In the
bottom panel we compare the GW decay timescale τgw and the
precession timescale τpre.

14Unlike χeff which is conserved through the evolution, the in-
plane spin component χ1ð2Þp is a time-dependent quantity. As
such, we explicitly state the time at which it is evaluated
whenever referring to χ1ð2Þp.

15Here we have assumed q ≠ 1 which is the case for our
simulations. The analog expression for q ¼ 1 is given in Appx. D,
Eq. (D6).
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K≡ S2
ð1 − qÞL : ð65Þ

Here, K has a well-defined value at 6 Mt, as e < 10−2, and
evaluates to Kja¼6 Mt

¼ 1.3.

The above relation is a direct consequence of the fact that
J2 and L2 are constants at 2 PN. Specifically, one may first
express cos θS1L and cos θS1S2 in terms of ðJ; L; SÞ using
Eqs. (52) and (54), and then find a linear combination of
them that eliminates S2, the only variable at 2 PN. It turns

FIG. 11. The distribution of spin-orbit and spin-spin alignment at a separation a ¼ 6 Mt. The olive contours represent all the systems
with jχeff j < 0.1 after the LK evolution (the initial conditions are shown in Fig. 8; including 8000 realizations in total). The grey contours
further restricts the set to include only those that satisfy χ1p ≃ χ2p ≃ 0.7 at the end of the LK evolution (initial conditions from Fig. 9;
including 5000 realizations). Note that for the grey contours, the final spin vectors tend with θS1S2 disfavors strongly the aligned state,
and it peaks at around 80°. The grey contours also show clear correlations between different angles. While the correlation between θS1L
and θS2L is simply a consequence of χeff ≃ 0, the interesting correlation between θS1L and θS1S2 is explained by the nearly conserved
quantity of Eq. (64).
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out that Eq. (64) is exactly the appropriate linear combi-
nation. Hence, this relation explains the observed correla-
tion. In fact, even when we take into account the 2.5 PN
dynamics (including the decay of J and L; see Appendix D
for a detailed discussion, including the special case where
q ¼ 1), the quantity C still stays approximately as a
constant until the final merger.
The constant nature of C is also demonstrated numeri-

cally in the middle panel of Fig. 10, where we show
Eqs. (64) in the purple trace. While both cos θS1L (grey
trace) and cos θS1S2 (olive trace) are oscillatory, the purple
trace remains very well a constant until the last precession
cycle (fgw ≳ 3 Hz). Close to the final merger, our
assumption of Eq. (D11) breaks down, which explains
the deviation of C away from its constant value.
Nevertheless, this is sufficient to explain why the top

panel of Fig. 14 show a clear dependence on the initial
value of χ1p (which determines sin θS1L and hence cos θS1L).
It also explains why in the bottom panel of Fig. 14, the
purple dots demonstrate a clear positive correlation

between C ¼ cos θS1L þK cos θS1S2 at 6 Mt and the initial
value of cos θS1L at 300 Mt.

16

D. Kick velocity distribution

The angle between the two spin vectors θS1S2 as well as
its projection onto the orbital plane ΔΦ plays a significant
role in determining the final merger product. Here we
consider one aspect of the merger that is influenced by
spins, namely, the distribution of the GW kick velocity vk.
It has been shown that the maximum recoil velocity

scales as (see, e.g., Ref. [52])

max½vk;z� ∝ jχ2p cosΔΦ − qχ1pj; ð66Þ

where the subscript z indicates that the kick is along the
direction of the orbital AM. This means an antialigned spin

FIG. 12. Top panel: scattering plot of the final angle between
spin vectors θS1S2 as a function of the merger time. Bottom panel:
distribution of θS1S2 for data with τm > 106 yr (grey) and with
τm ≤ 106 yr (olive). Both plots indicate that there is no significant
correlation between the spin-spin angle and the merger time.

FIG. 13. The distribution of θS1S2 at 6 Mt (solid-grey traces)
and at 300 Mt (dashed-olive traces). The top panel shows the
distribution marginalized over χ1p and the bottom three panels
show the distribution corresponding to a narrow range of χ1p
(evaluated at 300 Mt).

16They are not equal to each other because of the deviation
shown in the middle panel of Fig. 10.
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configuration (which is preferred from our spin evolution)
could lead to a greater kick than the aligned case.
To further demonstrate this point, we compute the

recoil distributions for two different spin configurations.
One is from our evolutionary model. Specifically, we
take the olive samples from Fig. 11, and further selecting
those systems satisfying ðχ21p þ χ22pÞ2 > 0.68 at a ¼ 6 Mt.
As shown in the second row of Fig. 13, this set prefers a
large angle between the two spins and strongly disfavors
an aligned configuration. In terms of the in-plane angle
ΔΦ, only 10% of the systems have ΔΦ < 90° after
applying the χ1p > 0.68 cut. The second set we consider
is those systems with χeff ¼ 0 and χ1ð2Þp ¼ χ1ð2Þ ¼ 0.7,
and with a uniform distribution on ΔΦ. The spins are
specified at 6 Mt with a randomized orbital phase and the
final recoil velocity is obtained from a GW surrogate
model [84,85].

The result of the above procedure is shown in Fig. 15. In
this figure, the grey trace corresponds to our evolutionary
models and the olive trace corresponds to the reference
model with uniform ΔΦ. Whereas the model with uniform
ΔΦ peaks at vk ≃ 250 km s−1, the evolutionarymodel peaks
at a much higher kick velocity of vk ≃ 1800 km s−1. On the
other hand, the evolutionarymodel still has a non-negligible
likelihood to find a small kick velocity like the 200 km s−1
value suggested by Ref. [9].
Lastly, we conclude this section by reemphasizing that

whereas we focus on systems experiencing a significant LK
evolution initially, the final distribution of spin-spin angle
θS1S2 holds in a more generic context. This is because the
orbit has essentially circularized at 300 Mt, and the final
spin-spin alignment shows no obvious dependence on the
eccentricity excitation (Fig. 12). The LK evolution simply
provides an initial distribution of χeff and χ1ð2Þp. However,
if certain values of χeff and χ1ð2Þp are known (e.g., from the
inspiral waveform), we can produce a relevant posterior
distribution, as in Fig. 15, by restricting the systems to
those consistent with the provided χeff and χ1ð2Þp values.

IV. LIMITING ECCENTRICITY OBTAINED
DURING THE LK OSCILLATION

Having discussed the final spin distributions extensively
in the previous section, we now return to our discussions on
the LK evolution, with a specific focus on the maximum
achievable eccentricity. Here, we revisit the discussion in

FIG. 14. Top panel: a scatter plot of cos θS1S2 vs cos θS1L at the
ISCO. The points are from the olive samples in Fig. 11. We color
the points according to the initial values of χ1p at 300 Mt. Each
group follows a correlation given by Eq. (64) (solid lines).
Bottom panel: various quantities at 6 Mt as a function of the
cosine of the initial (a ¼ 300 Mt) spin-orbit angle cos θS1L. Note
that the quantity C [Eq. (64)] at 6 Mt shows a clear positive
correlation with respect to the initial value of cos θS1L.

FIG. 15. Distribution of the GW kick velocity vk. The grey trace
is obtained from samples in Fig. 11 (i.e., following binary
evolution), restricted to those systems with ðχ21p þ χ22pÞ1=2 >
0.68 at 6 Mt. For comparison, the olive trace is the kick velocity
distribution for systems with the same χeff ≃ 0 and χp ≃ 0.7, but
with a uniform distribution of ΔΦ at 6 Mt. While both distri-
butions are broad and consistent with the 200 km s−1 value
suggested by Ref. [9], the evolutionary model favors a “stronger”
kick (peaking at around 1800 km s−1) than the model with a
uniform ΔΦ prior.
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Sec. II B, now also including the affects of dissipative GW
radiation. In this section we also examine the detectability
of the orbital eccentricity by ground and space-based GW
detectors.
Note that in Sec. II B (which follows closely

Refs. [35,72,75]), we consider the limiting eccentricity
for conservative systems, denoting the associated quantities
with a tilde. An interesting feature of the results is that
1 − ẽlim depends sensitively on the semi-major axes of both
the inner and outer orbits [see Eq. (31)].
However, such an eccentricity is not achieved instanta-

neously, but instead occurs over a timescale characterized
by τLK [Eq. (8)]. At the same time, the eccentricity also
significantly reduce the orbital decay timescale τgw
[Eq. (10)]. Therefore, the inner binary’s eccentricity can
accumulate only if τLK < τgw.
In fact, this timescale argument allows us to obtain the

limiting eccentricity in a dissipative system by solving the
equation17 (see also, e.g., Ref. [33])

τgwðelimÞ ¼ τLKðelimÞ: ð67Þ

In the limit elim ≃ 1, the above equation simplifies to

1 − elim ≃ 9.1 × 10−5

×

�
μ

25 M⊙

�
1=3

�
Mt

100 M⊙

�
5=6

�
að0Þi

3 AU

�−11=6

×

�
M3

109 M⊙

�
−1=3

�
ao

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p
0.06 pc

�
: ð68Þ

The corresponding merger timescale is now obtainable by
plugging Eq. (68) to Eq. (11), leading to

τm;lim ≃ 2.5 × 103 yr

�
Mt

100 M⊙

�
1=2

�
að0Þi

3 AU

�−3=2

×

�
M3

109 M⊙

�
−1
�
ao

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p
0.06 pc

�3

: ð69Þ

Therefore, the limiting value of ð1 − elimÞ is now given by
the maximum of Eq. (68) and Eq. (31). Similarly, the
merger timescale is given by the maximum of Eq. (69)
and Eq. (32).

We numerically verify this result in Fig. 16 using both
the DA and SA LK equations (for the SA equations, we
consider 6 different initial phases of the outer orbit, each
differing by π=3). The initial inclination between the inner
and outer orbit is fixed at the value given by Eq. (29). The
crosses are the maximum eccentricity obtained

numerically, the dotted-olive trace is the prediction for a
conservative system, and the solid-grey trace corresponds
to systems including GW-driven decay using Eq. (67).
Figure 16 confirms that the timescale argument is in good
agreement with the numerical results.18

The limiting merger time, Eq. (69), explains why in the
scatter plot of Fig. 2 we see points piled up at a vertical line
corresponding to 2.5 × 103 yr (such piling up is also seen
in, e.g., Fig. 3 of Ref. [35] and is explained by exactly the
same reasoning). While some values of the initial inclina-
tion Ið0Þ can give more extreme eccentricity excitation
when the system is conservative [Eq. (31)], once the GW
decay is taken into account, the eccentricity is then limited

FIG. 16. Limiting eccentricity achievable as a function of að0Þi
(left) and ao (right). The limiting eccentricity during the LK
process, including GW radiation, obtained numerically (crosses)
are in good agreement with the analytical expressions [solid-grey
and dash-olive traces, corresponding respectively to Eqs. (68) and
(31)]. Also shown as dots (pluses) are the eccentricity when the
orbital frequency forb satisfies 2forb ¼ 3 mHz (2forb ¼ 10 Hz).
The triple system has masses ðM1;M2;M3Þ ¼ ð55; 45; 109Þ M⊙,
and in the left (right) plot we have fixed ao ¼ 0.06 pc

(að0Þi ¼ 3 AU). The shaded region denotes the space in which
the triple system is dynamically unstable.

17During the initial eccentricity excitation phase, the inner
orbit’s semimajor changes little and can be well approximated by
its initial value að0Þi .

18A caveat is that if the limiting values are set by Eqs. (31) and
(32), corresponding to the cases in which the GW decay rate is
always slower than the LK oscillation rate, then the use of SA
equations and/or the inclusion of other effects (such as those
associated with an SMBH; Sec. II C) could exceed the bounds
given by these equations. Also, for triples in the field with
comparable masses, the octuple-order effects may also play a
significant role. See examples from Refs. [4,35,41], etc.. None-
theless, when the limiting values are set by the dissipative ones,
Eq. (68) and (69), then from the piling-up of points in, e.g.,
Figs. 1 and 2 we see that our result should still apply both when
the SA approximations is used (top panel of Fig. 2) and when
SMBH effects are incorporated (Fig. 1).

SPIN AND ECCENTRICITY EVOLUTION IN TRIPLE … PHYS. REV. D 102, 123009 (2020)

123009-19



to Eq. (68). Consequently, all systems with Ið0Þ in this range
have the same merger time given by Eq. (69).
Note also that once the eccentricity reaches its limiting

value given by Eq. (67), the inner binary also effectively
decouples from the tertiary perturber, and its eccentricity
then decays monotonically according to Eq. (13). This
allows us to explore the eccentricity at a given frequency
(e.g., 2forb ¼ 10 Hz with forb the orbital frequency) over a
large range of parameter space.
One such example is shown in Fig. 17. In Fig. 17, we fix

the triple system to have masses ðM1;M2;M3Þ ¼
ð55; 45; 109Þ M⊙ and vary the initial semimajor axes of
the inner and outer orbits. We first determine the expected
limiting eccentricity according to Eq. (68) can be achieved

through the LK process and then use ½að0Þi ; elim� as the initial
condition for binary evolution. By solving the scalar
versions of Eqs. (12) and (13) (as we do not need to
follow the spin here), we can then obtain the estimated
eccentricity when the inner binary enters the sensitivity
band of a ground-based detector (2forb ¼ 10 Hz).

While the residual eccentricity increases as að0Þi increases
and as ao decrease, it is unlikely to be more than 0.1 when
the binary enters LIGO’s sensitivity band,19 as to excite a
greater eccentricity the triple system would be in the
dynamically unstable regime [68]. Note that this result is
consistent with the pluses in Fig. 16, where we numerically
evolve the full set of equations governing the triple system.
Furthermore, it is easy to show that the eccentri-

city evolution with respect to the orbital frequency,

de=dforb ∝ eð1 − e2Þ=forb, is independent of the masses,
yet from Eqs. (31) and (68) we see that a massive inner binary
disfavors extreme eccentricity through the LK mechanism
(which is the initial condition for the binary evolution). This
is also why we find smaller residual eccentricities than
previous studies that focused on lighter inner binaries (see,
e.g., Refs. [33,41]). Therefore, it is unlikely for the LK
mechanism to produce significant residual eccentricity for a
massive binary like GW190521 when it enters the LIGO
band. On the other hand, if we observe significant residual
eccentricity, it would suggest the binary is likely formed via
other dynamical channels (e.g., binary-single scattering
[86–88] or gravitational-braking [15,89,90]).
Consequently, a space-based GW detector is ideal for

studying the orbital eccentricity evolution at lower orbital
frequencies. This idea has been studied extensively in the
context of LISA (see, e.g., Ref. [58,60]). However, for
systems reaching the limiting value [Eq. (68)], the eccen-
tricity would be so high when 2forb is in LISA’s band that
the orbital energy is radiated away via high-order orbital
harmonics which LISA is insensitive to (see Ref. [91]).
To demonstrate this point, we follow the approach by

Ref. [18]. Specifically, we decompose the GW strain as a
sum of orbital harmonics as

hðtÞ ¼
X∞
k¼1

hkðtÞ; ð70Þ

where each harmonic oscillates at fk ¼ kforb þ _γ with γ the
direction of the pericenter.20 Each harmonic has a character-
istic strain amplitude in the frequency domain, which is
given by

hc;kðfkÞ ¼
1

πDL

ffiffiffiffiffiffiffiffi
2 _Ek

_fk

s
; ð71Þ

where _Ek is the GW power radiated at frequency fk. We
refer interested readers to Ref. [18] and references therein
for the details of this calculation, while here we focus solely
on the results.
In Fig. 18 we show the evolutionary trajectories of the

characteristic strain amplitudes for the first four orbital
harmonics (grey traces). Here the binary is assumed to have
ðM1;M2Þ ¼ ð55; 45Þ M⊙ and is at a cosmological redshift
of z ¼ 0.44.21 We further assume the binary has initial
conditions of að0Þ ¼ 3 AU and 1 − eð0Þ ¼ 10−4, similar to
the limiting eccentricity of the main triple system consid-
ered in this paper (see Eq. (68). Note that different
harmonics reach the same frequency at different times,

FIG. 17. Maximum eccentricity when the inner binary enters
the LIGO band (2forb ¼ 10 Hz) for a triple with ðM1;M2;M3Þ ¼
ð55; 45; 109Þ M⊙ going through the LK process.

19Due to the caveat described in f.n. 18, we do not claim the
values as absolute upper limits on the residual eccentricities.
Nonetheless, they serve as decent approximations, as numerically
verified in Fig. 16.

20A circular binary only emits via the k ¼ 2 component, which
is why we typically use 2forb to indicate the frequency.

21This is consistent with the parameters of GW190521 as
reported in Ref. [9]. Note that the masses have been redshifted to
ð1þ zÞM1;2 in the detector frame.
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as such, we use the (plus, dot, cross) markers to represent
timestamps of (1 week, 1 day, 1 hour) prior to the merger.
Also shown in the plot (cyan traces), from left to right, are
the sky-averaged sensitivity curves22 of LISA [64], TianGO
[66], and LIGO-Voyager [92].
As discussed above, when the binary enters the band of a

ground-based detector (2forb ≳ 10 Hz) only the k ¼ 2
harmonic has a significant amplitude, due to circulariza-
tion. In the case of a milli-Hz detector, e.g., LISA, there is a
potential loss of detection because when 2forb is in the
millihertz band (corresponding to the instant marked by the
pluses), the GW is mostly carried away by the high-order
harmonics [94] that oscillate at frequencies above LISA’s
sensitivity band. However, a detector sensitive to the
decihertz band, e.g., the proposed TianGO mission [66]
(middle cyan trace), could detect the evolution of these
eccentric systems.

V. CONCLUSION AND DISCUSSIONS

In this paper we studied the spin and eccentricity
evolution in hierarchical triple systems via the LK mecha-
nism, and also followed the inner binary’s evolution further
toward the merger. To conclude our study, we first

summarize our key results in Sec. VA, and discuss their
implications in Sec. V B.

A. Key results

(1) We confirmed the existence of a spin attractor for
systems that experience multiple “clean” LK cycles, as
reported by Ref. [35]. However, the attraction is not toward

χeff ¼ 0, but it is in fact demonstrated to be j cos θS1ð2ÞLj ¼
j cos θð0ÞS1ð2ÞLo

j (see Fig. 4).

(2) We generalized the effective potential theory intro-
duced by Ref. [67] to allow for nonzero orbital eccentricity,
and provided a prescription to evolve such binaries in the
precession-averaged manner (Sec. III A). This allows us to
efficiently evolve a binary from its formation (typically
with large eccentricity if the binary is formed in the
dynamical channels, including the LK mechanism) to a
semimajor axis of few hundred Mt.
(3) We found that the final alignment of the spin vectors

are essentially independent of the maximum eccentricity
excited by the LK interaction (Fig. 12). Instead, it depends
on the initial in-plane component of the spin (Fig. 13). For a
system with a large component spin initially lying in the
orbital plane, the spin evolution significantly disfavors
aligned final spins. This in fact should be true irrespective
of its formation channel (whose role is to provide a prior
distribution of χeff and χ1ð2Þp).
(4) We further reported an interesting correlation

between the spin-orbit and spin-spin alignments (Fig. 11
and 14). This can be further explained by the (nearly)
conserved quantities which we shown in Eq. (64) and
discussed in details in Appx. D. Such a correlation could be
incorporated in parameter estimation pipelines to help
extract more information from detected binaries.
(5) Since the GW kick depends on the final spin-spin

alignment, we found that the spin evolution may signifi-
cantly affect the distribution of the kick velocity (Fig. 15).
(6) We considered the limiting eccentricity that can be

achieved by the LK mechanism in the presence of GW
radiation and provided bounds derived from a timescale
argument [Eq. (67) and Fig. 16]. For binaries in the vicinity
of an SMBH, we showed that the residual eccentricity is
typically small (≲0.1) when the binary enters a LIGO-like
ground-based detector’s band (Fig. 17) for two main
reasons: the triple stability requires the octuple effects to
be small (Sec. II A), and inner binaries may be intrinsically
massive [Eqs. (31) and (68)]. Furthermore, in order to
capture the full orbital evolution, a decihertz detector would
be necessary (Fig. 18).

B. Discussion

In this study we made no attempt to predict the merger
rates, given the complicated dynamics in dense stellar
environments. Instead, we focused on studying the spin

FIG. 18. Characteristic strain as a function of frequency for
the first 4 orbital harmonics (k ¼ 1–4) for a system with
að0Þ ¼ 3 AU, 1 − eð0Þ ¼ 10−4, and located at a cosmological
redshift z ¼ 0.44 (corresponding to a luminosity distance DL ≃
2.5 Gpc assuming cosmological parameters from the Planck
2015 results [93]). The three cyan curves, from left to right,
correspond to the sky-averaged sensitivities [i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5fSnðfÞ

p
] of

LISA, TianGO, and Voyager, respectively. We use the (plus, dot,
cross) symbols to represent the instant that the binary is (1 week,
1 day, 1 hour) before the final merger.

22Specifically, we plot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5fSnðfÞ

p
, where SnðfÞ is the power

spectral density of the noise in each detector. The sky-averaged
signal-to-noise ratio (SNR) for each harmonic is then
SNR2 ¼ R

d ln ffh2c;kðfÞ=½5fSnðfÞ�g. See Ref. [18].
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orientation at the end of the LK interaction. We further
restricted to the leading-order (quadrupole) interactions
which, according to Ref. [35], showed the cleanest attrac-
tion of the spin vectors. If further corrections are included
(see, e.g., Ref. [4]), it typically broadens the distribution of
the spin-orbit angle. Nonetheless, as the spin attraction is
toward the initial angle between the spin and the outer AM,
we do not expect high-order corrections to significantly
affect the distribution of χeff for an initially isotropic spin
distribution. On the other hand, if the spins have a preferred
initial orientation after takeing other astrophysical proc-
esses into account, we would then expect the LK process to
shape the distribution of χeff .
While we started our discussion regarding the final spin

orientations in the context of LK interactions in Sec. III, we
also considered the orientations obtained froma specific slice
of ðχeff ; χ1pÞ. This allows our conclusions in that section to be
extended to a more generic context, which hold as long as a
formation channel allows for the same initial conditions.
Specifically, the correlation between the spin-orbit and

spin-spin alignments [Eq. (64)] is derivedbasedonbinaryPN
dynamics. Such a correlation could be further used to
improve parameter estimation. For example, if we could
measure the angle between spin and orbit first with a space-
based detector in, e.g., the decihertz band (as demonstrated in
Ref. [66]), and then again with a ground-based detector at its
merger, then Eq. (64) and Fig. 14 indicate the final spin-spin
angle, θS1S2 , is no longer a free parameter to be inferred, but
can in fact be constrained by the evolution from the lower-
frequency measurement. With a better constrained θS1S2 , it
could further improve our prior on, e.g., the GW recoil
velocity. These ideas provide much to explored in future
studies.
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APPENDIX A: EXPLICIT EQUATIONS
OF MOTION

In this section we provide the explicit equations of
motion of the LK interaction for both the DA and SA

approximations. Consistent with the main text, here we
truncate to the quadrupole order. The octupole-order terms
are available in, e.g., Refs. [35,72] for DA and SA
approximations, respectively.
To obtain the DA LK evolution, we integrate

ðL; e;Lo; eoÞ,
dL
dt

����
LK

¼ LΩDAffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ½ð1 − e2ÞðL̂ · L̂oÞL̂ × L̂o

−5ðe · L̂oÞe × L̂o�; ðA1Þ
de
dt

����
LK

¼ ΩDA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
½ðL̂ · L̂oÞe × L̂o

þ2L̂ × ê − 5ðe · L̂oÞL̂ × L̂o�; ðA2Þ
dLo

dt

����
LK

¼ LΩDAffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p ½ð1 − e2ÞðL̂ · L̂oÞL̂o × L̂

−5ðe · L̂oÞL̂o × e�; ðA3Þ
deo
dt

����
LK

¼ LΩDA

Lo

ffiffiffiffiffiffiffiffiffiffiffiffi
1− e2o

p
×



−5ðe · L̂oÞeo × eþ ð1− e2ÞðL̂ · L̂oÞeo × L̂

−
�
1

2
− 3e2 þ 25

2
ðe · L̂oÞ2 −

5ð1− e2Þ
2

ðL̂ · L̂oÞ2
	
L̂o

× eo



; ðA4Þ

where

ΩDA ¼ 3

4

�
M3

M1 þM2

��
a

ao
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2o

p �
3

Ωorb; ðA5Þ

The SA LK evolutions are solved in terms of
ðL; e; ro; dro=dtÞ,

dL
dt

����
LK

¼ LΩSAffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ½−ð1 − e2ÞðL̂ · r̂oÞL̂ × r̂o

þ5ðe · r̂oÞe × r̂o�; ðA6Þ
de
dt

����
LK

¼ ΩSA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
½−ðL̂ · r̂oÞe × r̂o

−2L̂ × êþ 5ðe · r̂oÞL̂ × r̂o�; ðA7Þ

d2ro
dt2

¼ −Φo

�
r̂o
ro

�
−ΦQ



−3

�
r̂o
ro

�
× ½−1þ 6e2 þ 3ð1 − e2ÞðL̂ · r̂oÞ − 15ðe · r̂oÞ�

þ 6
1 − e2

ro
ðL̂ · r̂oÞ½L̂ − ðL̂ · r̂oÞr̂o�

− 30
ðe · r̂oÞ
ro

½e − ðe · r̂oÞr̂o�g; ðA8Þ
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where in the above equations we have defined

ΩSA ¼ 3

2

�
M3

M1 þM2

��
a
ro

�
3

Ωorb; ðA9Þ

Φo ¼
ðM1 þM2 þM3Þ

ro
; ðA10Þ

ΦQ ¼ 1

4

M3

ro

�
μ

μo

��
a
ro

�
2

: ðA11Þ

APPENDIX B: DERIVING dS=dt FOR
ECCENTRIC ORBITS

dS
dt

¼ 1

2S
dðS · SÞ

dt
¼ 1

S
dðS1 · S2Þ

dt

¼ 1

S

�
dS1
dt

· S2 þ S1 ·
dS2
dt

�
; ðB1Þ

where we have used S ¼ S1 þ S2 and the magnitudes S1,
S2, S21, S

2
2 are constants. Now plugging in Eqs. (17) and

(20)–(22) we have,

d
dt

ðS1 · S2Þ

¼ −
3

2a3ð1 − e2Þ3=2
1 − q2

q

�
1 −

M1M2χeff
L

�
× S1 · ðS2 × LÞ

¼ −
3

2
η6ð1 − e2Þ3=2

�
M2

t

L

�
5 S1S2
Mt

ð1 − q2Þ
q

×

�
1 −

ηM2
t χeff
L

�
Ŝ1 · ðŜ2 × L̂Þ; ðB2Þ

where we have replace the semi-major axis a in terms
of ðL; eÞ.
Further note that geometrically we have

Ŝ1 · ðŜ2 × L̂Þ ¼ sin θS1L sin θS2L sinΔΦ; ðB3Þ

with the angles given by Eqs. (52), (53), and (55), and each
angle is a function of ðJ; L; SÞ. Similarly, we can write
S1 · L and S2 · L in terms of cos θS1LðJ; L; SÞ and
cos θS2LðJ; L; SÞ.

APPENDIX C: BIAS IN THE SPIN
DISTRIBUTION WHEN τgw < τpre:

In the main text we have used Eqs. (61)–(63) to generate
the probability density functions of various quantities,
and as shown in Figs. 8 and 9, our method reproduces
well the distribution obtained from numerical simulations.

However, this method can only be applied when we have
τpre ≪ τgw, and we demonstrate here the potential bias that
would be induced when the timescale requirement is not
satisfied.
Specifically, we can repeat the process we have used in

generating Fig. 8 for data at 6 Mt (the olive data in Fig. 11).
The reconstructed probability of the total spin magnitude S
is shown in the olive trace in the bottom panel of Fig. 19. As
a comparison, the true distribution from the numerical data
is shown in the grey trace. Clearly, the reconstructed
probability is biased toward small S.
To examine things in more details, we also show the

instantaneous precession time which we define as
ðS1 þ S2Þ=jdS=dtj and compare it with the GW decay
timescale in the top panel of Fig. 19. Here each grey trace is

FIG. 19. Top panel: timescale comparison at the ISCO. Each
grey trace represents the allowed instantaneous precession time
based on the final J and L using the effective potential theory, and
the red cross is the true value we obtained in the simulation. The
purple-dotted line is the fifty times the GW decay timescale at
6 Mt. Bottom panel: the true distribution of S at the 6 Mt (grey-
solid trace). If we simply assign pðSjJ; LÞ ∝ 1=jdS=dtðJ; LÞj as
we have done for Figs. 8 and 9, we would obtain a probability
density function described by the olive trace, which is signifi-
cantly biased relative to the true distribution.
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generated with a set of ðJ; L; eÞ and the full range of S
allowed by the effective potential, and each red cross is the
true value of S obtained from the evolution. While the
instantaneous precession time can be hundreds of times
longer than τgw, and according to Eq. (61) those locations
should be more likely to be sampled, we nonetheless see
that the majority of the realization actually happens in the
region where the precession time is less than 50τgw (dotted-
purple line).
Consequently, we conclude that while the effective

potential theory is still valid at 6 Mt, it cannot be used
to directly predict the likelihood that the condition τpre ≪
τgw is not satisfied. To obtain a faithful distribution, a full
numerical simulation over a large ensemble would thus be
necessary.

APPENDIX D: UNDERSTANDING THE
CORRELATION BETWEEN cos θS1L AND cos θS1S2
In this section we study the dynamical relations between

the spin-orbit angle θS1L and the spin-spin angle θS1S2 . The
goal is to better understand the correlations shown in,
e.g., Fig. 11, and the nearly constant quantities shown in the
middle panel of Fig. 10. Note that our derivations here do
not assume a circular orbit, but holds generically for
eccentric orbits as well.
We have23

d
dt

cos θS1L ¼ d
dt

ðL̂ · Ŝ1Þ ¼
dL̂
dt

· Ŝ1 þ L̂ ·
dŜ1
dt

; ðD1Þ

leading to

d
dt

cos θS1L ¼ 3S2ð1þ qÞ
2a3ð1 − e2Þ3=2q

×

�
1 −

M1M2χeff
L

	
Ŝ1 · ðŜ2 × L̂Þ: ðD2Þ

Meanwhile, from Eq. (B2) we have

d
dt

cos θS1S2 ¼
−3Lð1 − q2Þ

2a3ð1 − e2Þ3=2q

×

�
1 −

M1M2χeff
L

	
Ŝ1 · ðŜ2 × L̂Þ; ðD3Þ

which has a similar form as d cos θS1L=dt.
Therefore, we have

ð1 − qÞ d
dt

cos θS1L þ S2
L

d
dt

cos θS1S2 : ðD4Þ

If we treat L as a constant first, we then have

ð1 − qÞ cos θS1L þ S2
L
cos θS1S2 ¼ Const: ðD5Þ

This is also the relation we present in Eq. (64).
As we argued in the main text, the 2 PN relation can also

be derived from the effective potential and the fact that J2

and L2 are constants at 2 PN. This is illustrated in Fig. 20
where we plot the contours between χeff and various cos θ
(see also Ref. [67] on how to generate such contours). As
Eq. (64) or (D5) eliminates S2, the only variable at 2 PN, it
corresponds to a line in the effective potential description.
Thus, once we fix the value of χeff , Eq. (64) has to a fixed
value (in contrast to cos θS1L or cos θS1S2 which can
oscillates between the two intercepts formed by its contour
and a given value of χeff ).
To incorporate dynamics at higher PN orders, it is

interesting to first examine the special case where q ¼ 1.
From Eq. (D4) it is easy to see

cos θS1S2 ≃ Const: ðwhen q ¼ 1Þ: ðD6Þ

The above equation holds at 2.5 PN order.
To obtain the more general 2.5 PN relation when

q ≠ 1, it is easiest achieved by multiplying both sides of
Eq. (D4) by L and use Ld cos θS1L=dt ¼ dðL cos θS1LÞ=dt−
cos θS1LdL=dt. If we further define

ð1 − qÞLC≡ ð1 − qÞL cos θS1L þ S2 cos θS1S2 ; ðD7Þ

we have

ð1 − qÞ d
dt

ðLCÞ ¼ ð1 − qÞ cos θS1L
dL
dt

: ðD8Þ

Consequently,

FIG. 20. Effective potentials at ðJ; L; S; eÞ ¼ ð0.65M2
t ;

0.61M2
t ; 0.20M2

t ; 0Þ.

23Note that if dL=dt ¼ Ω × Lþ ðdL=dtÞL̂, then dL̂=dt ¼
ðdL=dtÞ=L − L̂ðdL=dtÞ=L ¼ Ω × L̂.
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ð1 − qÞ½LC − ðLCÞð0Þ� ¼ ð1 − qÞ
Z

cos θS1L
dL
dt

dt: ðD9Þ

For q ≠ 1, we can drop the (1 − q) factor from both side.

We can further approximate Cð0Þ ≃ cos θð0ÞS1L
, this leads to

LC −
Z

cos θS1LdL ≃ Lð0ÞCð0Þ ≃ Lð0Þ cos θð0ÞS1L
: ðD10Þ

Note that while in the second approximation we have
compromised some accuracy, it nonetheless renders the
right-hand side as a well-defined constant because as
L → ∞, cos θS1L → constant to a good approximation.
In fact, cos θS1L remains a constant until 2 PN, and even

when it starts to vary significantly, it oscillates around its

initial value cos θð0ÞS1L
(see, e.g., Fig. 10). Therefore we can

approximate the integral asZ
cos θS1L

dL
dt

dt ≃ cos θð0ÞS1L
½L − Lð0Þ�: ðD11Þ

Together with the approximation Cð0Þ ≃ cos θð0ÞS1L
, we now

have (for q ≠ 1)

C ¼ cos θS1L þ S2
ð1 − qÞL cos θS1S2

≃ cos θð0ÞS1L
: ðD12Þ

This means the quantity C can also be approximated as a
constant.
We can also write C in terms of ðJ; LÞ as

C ¼ J2 − L2 − S21 − S22 − ½q=ð1þ qÞ�χeffM2
t L

2ð1 − qÞS1L
ðD13Þ

If one uses the full expression of Cð0Þ, we then have

D≡ Δc1 þ
S2

ð1 − qÞLΔc12

¼
R
cos θS1LdL

L
− cos θð0ÞS1L

�
1 −

Lð0Þ

L

	
≃ 0; ðD14Þ

where

Δc1 ¼ ½cos θS1L − cos θð0ÞS1L
�;

Δc12 ¼ ½cos θS1S2 − cos θð0ÞS1S2
� ≃ cos θS1S2 :

Note that in practice cos θð0ÞS1S2
is not a well-defined quantity

at large orbital separations where spins precess faster than
the orbit decays. This introduces a fundamental uncertainty
of S2=ð1 − qÞL in the value of D.
In Fig. 21, we verify various relations we derived in this

section numerically. Specifically, the red trace corresponds
to the left-hand-side of Eq. (D10). In the purple trace, we
replace the LC term by its 2 PN counterpart Lðcos θS1L þ
K cos θS1S2Þ [see Eq. (64)] but still remove the secular
variation piece

R
cos θS1LdL. As expected, the purple trace

shows more oscillations than the red one. The dashed-olive
trace is the difference between the left- and right-hand sides
of Eq. (D11), whose difference should equal to LD (grey
trace) according to Eq. (D14). There is a constant offset

between them because we have intentionally set cos θð0ÞS1S2
to

0 when evaluating D. Lastly, the pink-dotted trace corre-
sponds to the last term introduced in Eq. (D8), which is
needed to cancel the Lense-Thirring spin-spin coupling’s
back-reaction on the orbit. As can be seen from the plot, it
is indeed a small quantity oscillating around 0 and can thus
be ignored.
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