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Introduction
Markus Endler moderated the panel which he kicked off by 

introducing the panelists: Flavia, Sumi, Cintia and Satyajayant 
(“Jay”) (see Fig. 1 and the biographies at end of article), and by 
asking them to present, as opening statements, their visions and 
opinions regarding the following general question: 

If the IoT infrastructure is the nervous system of a 
cyber-physical system, Data Science is the knowledge 
construction, and Machine Learning is the brain, how 
can we be sure that we are collecting and processing 
all bits of information to build really smart, adaptive and 
human-friendly systems? 
The question was designed to address the complex interplay 

between three emerging and interrelated fields. Understanding 
and optimizing the interplay and knowing what is working and 
what is missing should provide urgently needed guidance into 
the research directions of such “glue” that can create a smart 
IoT, cyber-physical systems and data science cohesion. 

After each of the panelist responded to this general ques-
tion in their opening statements, Markus directed a series of 
questions to the panelists on infrastructure issues in such an 
ultra large-scale distributed IoT systems. He introduced his 
questions by stating that before we can take advantage and 
leverage the synergy between IoT, ML and Data Science, 
we need to provide solutions for scalable communication, 
coordination, and distribution, typically addressed by middle-
ware systems. He noted that although these issues are already 
extensively investigated in the context of traditional distributed 
systems, they take on a new and more complex dimension 
when reaching the envisaged scale for IoT. Responses to ques-
tions stirred an interesting discussion by the panelists, which 
we summarize in this installment after presenting the opening 
statements.

In the next installment, immediately following in this issue, 
we will present the panel’s views on issues of security, infor-
mation and event processing, and the needed business models 
that are anticipated to emerge to affect a value chain from the 
connected smart devices and the data generated by them. We 
hope you enjoy the panel coverage in both installments and 
welcome your comments and email questions to the panelists. 

Opening Statements
Flavia: The Internet of Things (IoT) aims to leverage Internet 

technology to the next level, by connecting an unprecedented 
number of devices, generating a swarm of heterogeneous sen-
sors and actuators that can interact with the physical environ-
ment, collect several types of variables, and support dynamic 
decision-making processes across multiple application domains. 
It is envisioned that this myriad of connected devices is ”smart”, 
continually learning from behavioral patterns of humans and 
other devices, and then autonomously adapting to changes at 
runtime. Such ability is based on the implicit assumption that 
IoT systems can make real-time decisions about data, usually 
on the move. Ultimately, the great potential of IoT is not about 
getting data, but about extracting valuable knowledge from 
that data. In this context, data science can make a great con-
tribution to make IoT systems more intelligent. Data science 
is the combination of different fields of sciences that uses data 
mining, machine learning (ML) and other techniques to find 
patterns and new insights from data. These techniques include 
a broad range of algorithms applicable in different domains. 
However, the intrinsic features of IoT, such as the high hetero-
geneity, velocity, volume, dynamism, volatility and uncertainty 
of the sensor generated data, makes applying ML techniques 
very challenging. The IoT requires a new generation of distrib-
uted algorithms based on lightweight, online and incremen-
tal learning. On the other hand, ML techniques require large 
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Figure 1. Animated discussion among the panelists Delicato, 
Helal, Margi and Misra (left to right).
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computational capabilities such as on powerful 
servers, and thus are not suitable for execution 
on small and resource constrained IoT devices. 
Thus, IoT should leverage the capabilities of 
resources at the edge of the network (edge 
nodes) and the collaboration among nodes. 
Horizontal collaboration among edge nodes 
should be promoted with the goal of sharing 
data, information and inferred knowledge 
about the environment. Moreover, the logical 
topology among the processing nodes in the 
IoT-edge system should be dynamic so as to 
facilitate the data flow between the data ana-
lyzing components, according to the Machine 
Learning workflow. This would be a data-driv-
en topology. However, before one can build 
a value chain for knowledge generation, the 
starting points are the most varied, and often 
tiny, objects empowered by IoT’s technologi-
cal capabilities: it all starts with the things. 

Sumi: While we all share the great IoT 
vision and foretell of impressive IoT scenarios and possibilities 
enthusiastically, we do not yet have a clear pathway to realiz-
ing this vision at a wide scale. In fact, it can be argued that the 
focus on vision and abstracting away many details, including 
about “things” themselves, was intentional to productively bol-
ster our imagination, but this approach has now run its course. 
Ignoring the details and staying abstract will be counterpro-
ductive at this stage. Indeed, the success of the IoT will largely 
depend on how its main ingredient, the thing, is architected and 
prepared to match the high expectations and to fulfill the big 
heroic role that will magically make blue-sky visions a reality. 
Unfortunately, it seems we have not focused adequately on the 
architectural aspects of things in our pervasive computing jour-
ney [1]. To get there, we will have to walk before we run, that 
is, we have to realize thing before we are able to realize the 
Internet of Things. Just because thing can communicate does 
not mean thing is smart or that thing is ready to realize IoT. 
What seems to be needed is an explicit thing architecture that 
captures requisite requirements drawn from the blue-sky think-
ing. My research team has been trying a few ideas [2, 3], but 
more concentrated and coordinated efforts are needed. If we 
somehow find these requirements and if we manage to create 
such architecture, we may succeed in creating proper things 
for the IoT, things of high IoT utility (high IoTility as I attempt-
ed to define it in [4]) in terms of the multitude of scenarios 
made possible and programmable. Minimal hardware and net-
working to enable reasoning and interactions will be one basic 
requirement. But this will not be enough or we end up with an 
Mbed-OS-like architecture [5], which is a good and efficient 
architecture but falls short of elements that could enable blue-
sky thinking and aspiration. We may need to explore the ability 
to chat, ability to socialize, ability to establish meaningful cal-
culated interactions, ability to self-API, and even the ability of a 
thing to create apps or parts of apps. My view is IoT is not just 
a massive data generating infrastructure, but also an intelligent 
active infrastructure that consumes its data in place through 
reasoning and embedded intelligence. Such infrastructure will 
be the brick and mortar of our smart living spaces and future 
smart cities. We will have it both ways, as a data and knowl-
edge generator, and as an intelligent and active environment if 
we succeed to architect things properly for both purposes. This 
would necessitate architectural elements that render IoT to be a 
programmable machine, which will accelerate a shift in thinking 
from IoT concepts to IoT apps. 

Jay: The long term vision of IoT is that of ubiquitous things, 
sensing their environment using different modes and sending 
information to a brain (either distributed or centralized), which 
helps make intelligent decisions using ML or data mining tech-
niques. This creates two challenges: a) How do we transport all 

relevant bits of information to the brain, while 
meeting the needs of the application in terms 
of latency, bandwidth, and data reliability? b) 
How do we ensure that the information is 
accurate, every piece of information has prove-
nance, and the data transmission, storage, and 
utilization meets the security and privacy needs 
of the applications and end-users. Answering 
these two questions satisfactorily is absolute-
ly essential for the success and application of 
VLIoT applications, such as smart cities, auton-
omous driving, and the smart grid. The Internet 
will be the conduit for the massive upload of 
data from the forecast billions of IoT devices 
at the Internet’s edge. However, it was built (is 
still being upgraded with the same principle) 
for massive data downloads from the servers 
to mostly-passive clients. We have fat pipes at 
the core of the network that push data to the 
edges (with content delivery networks, content 
are close to the core). However, the reverse 

is not true. We do not have fat pipes going from the Internet’s 
edge to the core, essential for moving the massive amounts of 
data generated by the billions of devices that will make up the 
VLIoT constituents. This has called for a rethink of the design of 
the Internet’s network architecture to address the challenges of 
VLIoT, which resulted in efforts around the world including the 
U.S. National Science Foundation’s Future Internet Architecture 
(FIA) [6] effort and the European Union and Japan ICN2020 
project [7], which started thinking of a new design paradigm, 
information-centric networking (ICN), for the Internet. The idea 
of ICN is to leverage data names at the network layer of the 
TCP/IP stack instead of IP addresses for transferring data in the 
network, which enables requesting for content using names of 
locations, events, etc., and also provides the intermediate nodes 
forwarding nodes to use the names to provide specialized ser-
vice to different data packets. Further, ICN makes signature of 
the data by the source/originator of the data mandatory. This 
provides provenance for the data. To handle the data volumes 
emanating from the edge there have also been proposals such 
as edge computing, i.e., computing on the data near the source 
of its generation to draw inferences and also to substitute the 
transmission of the data with the transmission of the model or 
the insights. Machine learning will serve as an important enabler 
in performing this volumetric reduction. For instance, federated 
learning will help learning to be performed at the edge or fog 
computing servers with the insights/partial models being trans-
mitted to the brain, which in turn does the aggregation of the 
partial models into a holistic global model, which can be sent 
back to the local edge servers. These enablers will help move 
the data bits (or the model created with the learning of the bits) 
from all the end devices to the brain of the IoT network. 

Cintia: IoT is a heterogeneous environment, composed of 
several different devices (some with very constrained capacity 
in terms of processing and memory), with different types of sen-
sors (both in terms of what they sense and their accuracy) and 
communication technologies (different data rates and coverage, 
to say the least). To some extent, this is very similar to the Wire-
less Sensor Networks (WSN) environment. Research in WSN 
has been ongoing for over 20 years, and while the research 
community has made significant contributions and supported 
the development of several standards, WSN did not achieve the 
much awaited impact as was expected in terms of application. 
So what makes IoT different from WSN? IoT is related to several 
different applications leveraging from the sensed data, achieved 
by instrumenting the real-world objects, so it all starts with the 
things. Looking back at WSN, most deployments targeted a 
specific application, and devices and protocol selections were 
driven by that, so infrastructure was not shared among different 
applications. Therefore, IoT can leverage from WSN, but we 

“It seems we have not 
focused adequately on 
the architectural aspects 

of things in our pervasive 
computing journey. To 
get there, we will have 
to walk before we run, 
that is, we have to real-
ize thing before we are 

able to realize the  
Internet of Things.”
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must look into ways of turning this WSN infra-
structure shared among different applications. 
Concerning the IoT applications, what are the 
requirements concerning: (i) sensing/data col-
lection, (ii) local and in-network processing, 
and (iii) communications, such as delay and 
packet delivery rate (or acceptable packet loss 
rate)? These different requirements impact the 
device selection and infrastructure construc-
tion, concerning communication protocols and 
node placement. Software-Defined Network-
ing (SDN) has been presented as an approach 
that can benefit WSN and IoT, since it brings 
flexibility in the network configuration, and 
enables improved management, resource shar-
ing and reuse (i.e., sensor nodes and commu-
nication infrastructure) [8]. In order to evaluate 
this approach, we designed and developed a 
Software-Defined WSN framework: IT-SDN 
[9]. The design requirements included: 
resource constrained devices, IEEE 802.15.4 as 
MAC layer, and in-band control. The framework is composed 
by: southbound, neighbor and controller discovery protocols; 
northbound API; and network monitoring features. Experimen-
tal evaluation results, considering several different scenarios 
and network sizes, indicate that SDN is feasible for WSN, pre-
senting a competitive data delivery ratio while saving ener-
gy in comparison to RPL, the Routing Protocol for low-power 
and lossy networks [10]. In summary, I consider that the SDN 
approach will enable an IoT communication infrastructure able 
to meet requirements for data exchange with the brain of the 
IoT network (what was already very well explained by my col-
leagues), to support different data collection applications and 
communication patterns, and to enable in-network processing. 
Furthermore, the SDN central points could be used to facilitate 
applications, such as to apply machine learning algorithms to 
improve infrastructure, as well as to improve applications. 

Communication Issues
Markus: IoT is ultimately about interaction among smart 

devices, and of smart devices with back-end services in the 
cloud. Since all this involves massive communication over wire-
less and wired links, how does it affect the QoS of the exchange 
of data, information and shared knowledge? 

Flavia: Certainly, communication is at the bottom of the 
pyramid to generate knowledge from distributed sources like 
IoT. There are two important aspects regarding communication 
in the IoT. The first aspect concerns heterogeneity. The second 
aspect concerns the question that Markus is bringing up: QoS 
provisioning. Naturally, since we are dealing with the Internet 
of everything, there is of course a huge variety of devices, of 
the respective generated data and of the communication pro-
tocols adopted. The traditional Internet has only become what 
it is, a global network for interconnecting computers, thanks 
to the TCP/IP stack. In contrast, there is not yet a standard 
protocol stack for IoT, although some protocols such as IEEE 
802.15.4 are emerging as a trend. Therefore, for IoT to reach 
its full potential as the basis for building advanced information 
exchange applications, one possible way is to invest in stan-
dardization efforts. There are a number of candidate protocols 
already in use, and standardization bodies should continue to 
work to create certifications and compliance rules to converge 
toward the adoption of standards that favor interoperability 
[11]. However, there is an important difference here between 
the traditional Internet and IoT regarding application-specific 
characteristics. IoT heterogeneity also encompasses applica-
tions, and while the Internet was built as an application agnos-
tic network, or to meet the needs of simple applications for 
document exchange, IoT has already been designed to meet 
the requirements of intelligent applications, with different QoS 

requirements. The Internet was created as a 
best-effort network where applications with 
QoS requirements were not the target. In the 
IoT, the network infrastructure must contribute 
to meeting different application requirements. 
For some of them, low latency is critical, and 
some protocols best contribute to meet this 
requirement. For others, high throughput is the 
target requirement, while for still others the 
data accuracy is essential, and this is usually 
achieved over a low latency, favored by a dif-
ferent type of protocol. Therefore, it is difficult 
to find a one-fits-all solution for the commu-
nication protocols in IoT. Instead, an alterna-
tive way to standardization is to exploit edge 
devices to translate between different data for-
mats and protocols. While acting as bridges to 
address the heterogeneity of communication 
protocols, such devices will be an integral part 
of the IoT system’s intelligence generation pro-
cess. Regarding network QoS provision, one 

aspect that has been explored recently concerns the virtualiza-
tion of network functions and the vision of software-defined 
networks. 

Markus: In fact, there is some divergence between research-
ers regarding converging toward the adoption of global/univer-
sal standards for IoT protocols and middleware, and the vision 
of relying on multi-protocol gateways for a conversion and 
translation between different protocols, each of which is best 
suited to meet the specific requirements of the applications and 
the autonomic control of its IoT devices. What are your opin-
ions on this, Cintia and Jay? 

Cintia: 6LowPAN, RPL and CoAP [12] are examples of 
the efforts taken by IETF working groups to incorporate low 
power and lossy networks to the Internet. CoAP and 6Low-
PAN are important standardization efforts to support end-to-
end application communication from the IoT devices to the 
cloud. On the other hand, RPL addresses routing in the con-
strained devices networks, but do not consider QoS require-
ments. Software-Defined WSN approaches could leverage 
from the controller view of the network and use information 
provided by application managers to use different objective 
functions (i.e., routing metrics) to select the network paths for 
each different application. For instance, if delay is a require-
ment, the controller could use information from the network 
monitoring module to determine the route with the least 
accumulated delay. On the other hand, if data loss is an issue, 
the controller could select a route with minimum data packet 
loss, even if the delay is larger. Furthermore, the centralized 
view the controller has and updated information from the 
network status could be used to determine if incoming appli-
cations with hard requirements would be able to run on the 
infrastructure. 

Jay: VLIoT will consist of diverse devices, using heteroge-
neous wireless communication technologies, such as WiFi, LiFi, 
and Bluetooth Low Energy. In addition, new protocols, such as 
CoAP, 6LoWPAN, RPL, Message Queue Telemetry Transport 
Protocol (MQTT), and Advanced Message Queuing Protocol 
(AMQP) will be in use in the devices. This will make effective 
communication between the devices a challenge, particularly 
when the devices are autonomous, independent and need to 
coordinate. This will call for the capability of the IoT devices 
to perform translation across multiple communication technol-
ogies as well as different protocols. There has been work on 
multi-protocol gateways in IoT [13, 14], but they have been 
initial and more needs to be done. Further, the sheer number 
of devices potentially communicating even on diverse bands, 
namely 300 MHz, 2.5 GHZ, 5 GHz, and 60 GHz, the number 
of devices and their differently capable MIMO (multiple-input 
multiple output) antennas will generate such large amounts 

“The traditional Internet 
has only become what it 
is, a global network for 
interconnecting comput-
ers, thanks to the TCP/IP 
stack. In contrast, there 
is not yet a standard 
protocol stack for IoT, 

although some protocols 
such as IEEE 802.15.4 

are emerging as a trend.”
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of data that it will require scheduling of the 
devices to be able to use the scarce spectrum, 
which will make the problem challenging. In 
addition, differentiated QoS for different appli-
cations will become a necessity, particular-
ly with the widening of the adoption of 5G, 
which will support low-latency, high bandwidth 
applications with potential device-to-device 
communications to achieve the results. 

Markus: Now Sumi, I am just curious about 
your opinion about this. 

Sumi: Well, Markus, let me first say that 
the IoT communication issue is a very import-
ant one because we are talking here about a 
highly fragmented market of devices in the 
shaping, and multiple ecosystems and pro-
posed standards. How can IoT achieve fric-
tion-free inter-thing interactions despite such 
fragmentation? I agree with Flavia and other 
panelists that this is a big challenge. On the 
one hand, we cannot discourage or fully con-
vict closed ecosystems (and IoT Platforms) 
such as Samsung’s SmartThing, Microsoft’s 
Azure IoT, Apple’s Home Kit, and Amazon’s AWS IoT, as they 
drive innovation and build the market. Perhaps learning from 
the past and applying heterogeneous or federated database 
system integration concepts may be helpful given the frag-
mentation. In a recent work [15], we introduced an interop-
erable communication framework for bridging RESTful and 
topic-based communication in IoT. The framework can be 
implemented as a cloud or edge service, or even as dedicated 
IoT things embedded in a smart space to achieve such trans-
lation and interoperability. Another major issue in IoT com-
munication arises in large-scale IoT deployments (e.g., smart 
cities) in which the IoT things must interact with cloud hosted 
and provisioned IoT applications or services. As the smart city 
grows, demand on cloud services spikes and the dimensional-
ity of the cloud becomes cost prohibitive. Also, as more smart 
city applications are added, energy concerns arise if access 
to the IoT things by a large number of applications is unco-
ordinated. To solve this problem, we need to use the edge 
creatively. In fact, I would go as far as to suggest that opposite 
to the original cloudlet approach in which an edge is utilized 
to bring the cloud and its benefits closer to the applications 
(often mobile apps), in cloud-and edge-connected IoT systems 
where the applications are deployed and run in the cloud, we 
should exploit the edge differently, either by bringing the IoT’s 
physical world and its data up closer to the edge or even the 
cloud and its applications and services, or by caching parts of 
the various applications down closer to the physical world, 
maybe at the edge or even beneath at the IoT itself. We have 
attempted to lay down a theoretical foundation for such invert-
ed use of the edge in [16] but much more needs to be done 
to explore this concept. 

Coordination Issues
Markus: One of the uses of IoT is also for monitoring and 

automating processes in the physical world, such as in Smart 
Buildings, Industry 4.0, precision agriculture or healthcare. 
In several such cases of complex automation, the IoT smart 
device’s functions and actions must be coordinated, both in 
time and space and in the actions, as for example for swarms 
of robots/UAVs [17]. But to me coordination appears as a very 
hard problem due to the potentially variable/dynamic set of 
interacting devices, and due to the heterogeneous capacity, 
provided QoS and fault-resilience of the IoT devices and (wire-
less) communication links, as well as the high latency to/from 
the backstage cloud services. So, how do you see the means 
to ensure correct coordination among the IoT devices in such a 
dynamic and heterogeneous environment?

Flavia: In this regard, once the hetero-
geneity issue has been overcome, the great 
challenge is dealing with the massive scale of 
IoT. Centralization is often an easier option for 
coordination than distribution, but again the 
scale factor makes centralization not a sustain-
able solution. Therefore, one possible way is to 
adopt hybrid solutions. Coordination between 
parties involved in data processing to generate 
intelligence in the IoT systems could be hier-
archical, with the global view (provided by a 
node in the cloud) being adopted only when 
strictly necessary, for example to optimize 
some process, while localized decisions would 
be the most common practice for coordina-
tion. A promising option is to adopt a hierar-
chical edge node topology and clustering IoT 
(end) devices using distance-based strategies 
to associate them with the edge nodes that 
would be responsible for their coordination. 
An example of such an approach is proposed 
in [18]. Each edge node would coordinate its 
subordinate nodes but would eventually resort 

to the cloud to update models or adjust parameters from the 
global view of the system. At the same time, groups edge node 
could collaborate horizontally, in a peer to peer fashion to share 
data and tasks, as proposed in [19]. In this view, coordination is 
fully distributed at the edge tier, but again the cloud can be 
triggered when needed. To sum up, IoT coordination should be 
distributed, possibly hierarchical, adaptive and context-aware. 

Cintia: Standards will enable the communication between 
heterogeneous devices, but the massive amount of devices 
and data creates challenges for coordination. I believe global 
coordination among IoT devices is not feasible either with dis-
tributed or centralized approaches, so a hybrid and hierarchical 
approach should be used. Different application domains will 
require different types of coordination as well. Thus, local coor-
dination should be used to address such requirements. Given 
local coordination concerns a smaller amount of devices, it 
could take advantage of a centralized view (for instance using a 
Software-Defined approach). On the other hand, a global gen-
eral coordination could provide requirements and information 
to support the local coordination. 

Sumi: Markus again asks the right and important question 
here. Indeed, coordination in an IoT is of paramount impor-
tance. Interference and conflicting operations in a smart space 
could create faults and even hazards. Compounded with 
promises to deliver intimate and convenient services surround-
ing our daily lives, the IoT vision poses imminent concerns and 
raises additional requirements for safety. As sensors and actu-
ators extend the capability of computer systems into effecting 
the physical realm, false logic and erroneous executions of 
IoT-based pervasive systems also implicate not only data loss 
or software crash, but also real dangers and physical harms. 
To manage safety in an open and constantly evolving smart 
space, a deliberate and systematic approach is required to 
accurately model the cyber-physical and inter-IoT interactions, 
to effectively manage and regulate these interactions, prevent 
conflicts and interferences, and enforce safety constraints at 
run time. My team is currently working on IoT Transactions 
(IoTXN) as a means to limit access to the smart space where 
all interactions must be through IoTXNs. We borrow from 
serializability theory but also see the need for new-look con-
cepts, protocols and algorithms [20, 21]. We certainly need 
to look at safety-oriented programming models and language 
constructs for IoT. For instance, exception handling needs to 
be redone within an IoT. 

Jay: In light of 5G coming to life and a large proportion of 
the devices needing to communicate with other local devices 
to enable the ever increasing applications at the edge, e.g., 

“As the smart city grows, 
demand on cloud ser-
vices spikes and the 
dimensionality of the 

cloud becomes cost pro-
hibitive. Also, as more 
smart city applications 
are added, energy con-
cerns arise if access to 

the IoT things by a large 
number of applications is 

uncoordinated.”
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augmented reality, online games, autonomous 
driving, coordination will become a necessi-
ty. The applications and hence the supporting 
network will have to be designed in a way that 
local coordination is feasible, inputs from the 
cloud are utilized efficiently, and mobility and 
energy projections of the devices are used to 
identify the best means of coordination. Due 
to the highly dynamic nature of the nodes in 
the network, the hierarchical nature seems 
to be the best way to connect nodes into a 
hierarchical cluster for coordination. However, 
the challenge will be the automatic, dynamic 
reconfiguration of the network topology to 
meet the application needs. This also leads to 
the idea of concentrating/aggregating the data 
at the different cluster heads, who then send 
their data to their cluster head and so on, so 
that the data can migrate up the hierarchy as 
needed. 

Distributed (Cloud-Edge) Computing
Markus: Now it is almost taken for granted that for an IoT 

system to scale in the number of supported smart things, in 
the required communication bandwidth, and providing the 
data processing and storage functions required by the applica-
tions, such a system needs to employ different kinds of mutually 
dependent processing functions distributed over several nodes 
of the IoT infrastructure at varying ”distances” from the cloud-
based services, i.e., at the Edge and Fog devices, such as in 
ContextNet [22] and many other IoT middleware systems. But 
while coordinated distributed computing on homogeneous net-
work nodes is already quite complex, such distributed Cloud-
Edge Computing is even more so because of the very different 
processing, storage and (wireless) communication capacities, 
as well as the very different availability and reliability profiles 
of these classes of machines. How do you think we should 
approach this distributed computing complexity? 

Flavia: In my opinion, the distribution challenges in IoT must 
be analyzed at least from three dimensions: (i) the data itself 
(distributed sources); (ii) the data processing; and (iii) the man-
agement of the resources required for such processing [23]. 
Let’s focus our discussion on the data processing point of view, 
in particular, what is needed for the ML lifecycle. Data pro-
cessing in ML varies depending on the specific technique, but 
it generally takes place over a well-defined lifecycle. At the 
core of any ML technique is the model building, but the whole 
lifecycle involves several steps, from acquiring and preparing 
data to deploying models and putting them into production. 
Data acquisition in ML traditionally deals with data sources 
of different formats, but in IoT the degree of heterogeneity 
and distribution is higher. In addition, many ML techniques 
assume the use of file stores and data tables as the primary 
source of data, with learning generally occurring in persistent 
data at rest, with heavy use of historical data. Only recently data 
streams are increasingly being considered as learning objects. 
In IoT, in contrast, most data sources take the form of distrib-
uted streams and learning must often take place in an online 
fashion. Also, storing all data is not always required or possible 
in the constrained IoT devices. This makes it necessary, on the 
one hand, to delegate storage to computational nodes other 
than those that produced the data, and on the other hand, 
to decide when and which data should be stored. Once the 
data is acquired, there are preparation and preprocessing steps 
before such data is considered fit to participate in the training 
and model building. Data preparation and cleaning are typical 
examples of activities that should occur as close to the data 
sources as possible, either on the generating device itself or on 
edge nodes. Because of their proximity to the data sources and 
their greater resource capacity (compared to IoT devices), edge 

nodes are in a prime position to perform data 
cleaning and filtering tasks. However, depend-
ing on the amount and rate of generated data, 
their preprocessing may become infeasible in 
a single node, requiring the decentralization 
of this step, that can be done collaboratively 
among multiple edge nodes. Recent work has 
proposed solutions for distributed data clean-
ing in the context of wireless sensor networks 
and Big Data [24] [25] [26]. 

Markus: Distributed data cleaning sounds 
cool, but what about data analysis? Can, and 
should, it also be done by the edge devices? 
What do you think, Flavia? 

Flavia: Once the data is clear and prepared, 
we move on to the analysis phase, whose aim 
is building an ML model to analyze the data 
using various techniques and review the out-
come, evaluating the model. The initially cre-

ated model is then trained to improve its performance, often 
measured by its accuracy during a testing phase. Once the 
performance is considered suitable, the model can be put into 
production and executed to make predictions, inferences, and 
other learning outcomes. The training phase requires optimiz-
ing hundreds of millions of parameters and demands a lot of 
processing power. Therefore, most model training typically 
takes place in the cloud, often in a centralized server. However, 
as data size increases, it becomes hard for a single server to 
solve large-scale ML problems. To address the issue, distrib-
uted machine learning began to be adopted early in the last 
decade, where a typical ML task is accomplished through the 
cooperation of multiple servers. Several theoretical approaches 
in this context have emerged [27], with the goal of making 
parallel originally centralized learning algorithms, and focusing 
on collaboration between machines, but generally assuming 
homogeneous and powerful computers. When applying tradi-
tional distributed ML in the IoT context, the data processing is 
fully performed on cloud servers. Therefore, from the point of 
view of our current discussion, it is still considered a fully cen-
tralized approach. The growing presence of powerful mobile 
devices generating massive amounts of data is contributing 
to change this picture. Researchers are investigating ways to 
decentralize the training and execution steps of ML models and 
to perform the entire ML life cycle inside IoT devices [27]. The 
idea of performing ML on mobile devices [28] has emerged 
mainly motivated by the proliferation of advanced applications 
(e.g., face recognition) that demand such techniques. In the 
initial approaches, an ML model was first trained on servers (in 
the cloud) using huge datasets and then sent to IoT devices, 
where inference and predictions could be made locally. This 
scheme concentrates the entire workload of model training on 
cloud servers and can be considered a partially decentralized 
approach. The inference process performed locally only returns 
a prediction result which may be used to produce a service for 
the user (device owner), thus wasting resources (not so negligi-
ble) available on IoT devices and incurring the traditional issues 
of bandwidth-intensive and high latency. However, if part of the 
training can be done locally on IoT devices, several benefits can 
be obtained. The generated trained model can become person-
alized, and the improved model can be used immediately, thus 
providing a better Quality-of-Experience to the user. By period-
ically updating the locally trained model to the server, location 
awareness can be exploited to provide valuable information 
for the global model. Local resources are exploited, and the 
bandwidth consumption is decreased. This is exactly the idea of 
mobile distributed machine learning [29], which was motivated 
by the need to make the best use of user data generated on 
mobile devices while protecting users’ privacy. Distributed ML 
on mobile devices separates the learning task into sub-prob-
lems. The mobile devices solve sub-problems according to local 
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user data, eventually uploading their results 
to a centralized server that finally aggregates 
all intermediate results into a global model. 
Eventually, updated parameters are sent back 
to mobile nodes for a next round of iteration. 
All these stages pose their own challenges, 
such as decomposing the learning task into 
sub-tasks, compressing data for upload to the 
aggregator, and selecting the best frequency 
of uploading, balancing communication cost 
with model accuracy. Initial approaches for 
mobile distributed ML only consider end devic-
es as performing local training. However, as 
the edge/fog paradigm evolved, approaches 
integrating MEC with mobile ML emerged, in 
which more powerful edge nodes perform the 
local training [30, 31]. In 2015, researchers 
from Google proposed the federated learning 
approach, which shares the same principles of 
mobile learning. For example, the authors in 
[32] propose an algorithm to determine the 
frequency of global aggregation so that the available resourc-
es are most efficiently used. Mobile distributed and federated 
learning are examples of fully decentralized approaches, which 
make the most of the high degree of distributed resources in 
the current IoT-edge systems while trying to cope with the 
inherent challenges. From 2016 to 2018 Google published sev-
eral related articles [33, 34] to complement federated learning’s 
framework. 

Markus: Going back to the original question, Sumi, what 
is your vision for dealing with the complexity of distribution in 
highly heterogeneous and dynamic IoT-Edge-Cloud systems? 

Sumi: This is indeed crucial. Not only do we need to solve 
the heterogeneity problem, but we need to do so under 
constraints or the distributed system spanning the cloud, the 
edge and the fog may not be sustainable as the scale of the 
IoT grows horizontally (e.g., as IoT is deployed in and across 
cities and metroplexes) or vertically (as the number of appli-
cations and the application-IoT interaction demand sharply 
increases upon popularity). A first step is to concentrate our 
efforts in standardizing communication in two dimensions. In 
the first, peer communication (thing-to-thing, edge-to-edge, and 
cloud-to-cloud) should be enabled. In the second, inter-layer 
communication must also be enabled. The goal is to enable 
communication between elements belonging to different ven-
dors. Ideally, we should not insist on a single standard (e.g., 
MQTT or other topic-based communication such as CoAP), but 
live with multiple strong ones. It should be possible to translate 
back and forth among a finite set of well-developed standards. 
Once communication is enabled, executing IoT apps and the 
entailed coordination and decision-making of what needs to be 
done, by whom, and where, will be our next frontier to tackle 
as researchers. But the classical distributed system question that 
emerged in the early 1980s as to whether we should move data 
to computation or move the computation to the data (which 
sparked mobile agent and DARPA’s active networks research 
programs) becomes sharply present and relevant in the context 
of coordinating the run-time execution of multi-tiered cloud-
edge-fog-thing (CEFT) architecture. I believe that once we stan-
dardize communication, we should work on online optimization 
that dynamically re-configures the CEFT architecture to meet all 
constraints, including energy savings (operational life span) of 
battery-powered things, and the limit in budgeted cost a juris-
diction is willing to pay cloud providers, and as of recently, also 
edge providers such as Telcos. The only thing we may all agree 
on here without much technical details is to minimize move-
ments of all sort in the CEFT (queries coming down from the 
cloud applications and services, and data streaming up from the 
IoT and its things). We will need to overcome the barriers we 
created ourselves in this optimization problem where we focus 

so much on doing all work energy-efficiently. 
Now, we need to ask ourselves the hard ques-
tion: Are we optimal in deciding which work 
needs to be done? Are we overworking unnec-
essarily (be it overworking energy-efficient-
ly)? In other words, should not we try to first 
make sure we are ”sentience-efficient” before 
we pursue energy efficiency? If we are able 
to break through and achieve unprecedent-
ed savings in movement and work, we may 
be able to establish the framework necessary 
for this type of distributed systems. I think 
this question by Markus is very important and 
evokes the need for a highly coordinated effort 
by the IoT and Distributed Systems’ research 
communities. 

Jay: I believe the information-centric net-
working (ICN) paradigm will be a very good 
networking architecture solution for this 
multi-level network structure. There are many 
challenges that need to be addressed, includ-

ing how does a client node discover the available fog/edge/
cloud resources? Once discovered, which edge node should 
provide the service needed by the client node? Whichever 
entity chooses the particular edge node to be used, how does 
it make that decision and with what kind of statistics? With ICN 
(particularly with the NDN architecture), the network is capable 
of providing the client information to answer its service query. 
In addition, each node in the network can have routes to every 
edge/fog/cloud node. This will allow the nodes in the network 
to send the service query to one or all the nodes providing a 
particular service. The service nodes may broadcast the utili-
zation information in the network as well, which the routers 
can use to direct the requests in the network. In NDN (most 
ICN architectures), the data response as well the data request 
(if needed) can be cached in the network for future use. Addi-
tionally, due to the use of names, there is also the capability to 
reuse the computation results at the routers or at the edge by 
using simple longest-prefix based name matching operations 
using the names of the requests and the data [35]. ICN coupled 
with SDN and NFV technologies will be able to tackle the com-
plexity inherent in the distributed computing scenario. 

Cintia: Similar to the coordination issue, approaches that 
combine local and global computing should be employed. 
Thus, fog, edge and cloud computing would be part of this 
distributed computing hierarchy, and several questions will fol-
low: (i) How to determine which data to process on each level 
of the computing hierarchy? (ii) Is this decision related to the 
critical level of the application that needs the data? (iii) Should 
raw data only be transmitted to the closest fog, or should raw 
data be sent to both to the closest fog and the next level, or to 
all the levels of the computing hierarchy? (iv) By sending data 
to multiple computing points, is this data transmitted multiple 
times over the IoT? To answer all these questions, which will 
determine how data should be routed, I think it is important to 
know both the network state (concerning resources and usage), 
as well as the application requirements. Therefore, the SDN 
approach could be used to support this, since the SDN control-
ler has information about the network and could obtain infor-
mation about the applications from its northbound API [36]. 

Conclusion
This article is the first part of a two-part article that brainstorms 
and debates the future of IoT architectures as well as IoT’s 
fast-growing entanglement with the fields of Data Science and 
Machine Learning. We hope we were successful in coherently 
capturing and communicating the panelists’ visions, views and 
opinions. Part 2, which immediatelely follows in this issue, will 
address the additional issues of security, information and event 
processing, and emerging business models. Taken together, we 
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hope both parts offer useful thoughts that can help shape an 
informed agenda for future R&D in these bordering areas of 
IoT, Machine Learning and Data Science. 
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