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A Communication-Efficient Algorithm for Exponentially Fast
Non-Bayesian Learning in Networks
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Abstract— We introduce a simple time-triggered protocol to
achieve communication-efficient non-Bayesian learning over a
network. Specifically, we consider a scenario where a group of
agents interact over a graph with the aim of discerning the
true state of the world that generates their joint observation
profiles. To address this problem, we propose a novel distributed
learning rule wherein agents aggregate neighboring beliefs
based on a min-protocol, and the inter-communication intervals
grow geometrically at a rate a > 1. Despite such sparse
communication, we show that each agent is still able to rule
out every false hypothesis exponentially fast with probability 1,
as long as q is finite. For the special case when communication
occurs at every time-step, i.e.,, when ¢ = 1, we prove that
the asymptotic learning rates resulting from our algorithm are
network-structure independent, and a strict improvement over
existing rates. In contrast, when a > 1, our analysis reveals that
the asymptotic learning rates vary across agents, and exhibit a
non-trivial dependence on the network topology and the relative
entropies of the agents’ likelihood models. This motivates us
to consider the problem of allocating signal structures to
agents to maximize appropriate performance metrics. In certain
special cases, we show that the eccentricity centrality and the
decay centrality of the underlying graph help identify optimal
allocations; for more general cases, we bound the deviation
from the optimal allocation as a function of the parameter a,
and the diameter of the graph.

I. INTRODUCTION

A typical problem in networked systems involves a global
task that needs to be accomplished by a group of entities
or agents that are only partially informed about the state
of the system. As such, inter-agent communication becomes
indispensable for achieving the common goal. Given this
premise, it is natural to ask: how frequently must the agents
communicate to solve the desired problem? Owing to its
practical relevance, the question posed above has received
significant recent interest by the control system, information
theory and machine learning communities in the context
of a variety of problems, namely average consensus [1],
optimization [2]-[4], and static parameter estimation [5].
Our goal in this paper is to extend such investigations to
the problem of non-Bayesian learning in a network where
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the global task involves learning the true state of the world
(among a finite set of hypotheses) that explains the private
observations of each agent in the network [6]-[11]. Two no-
table features specific to this problem are as follows. Unlike
consensus or distributed optimization, agents are privy to
exogenous signals, which, if informative, can enable them to
eliminate a subset of the false hypotheses exponentially fast.
A related problem where agents receive exogenous signals
(measurements) is that of distributed state estimation [12],
where the global task entails tracking potentially unstable
dynamics. In contrast, the true state remains fixed over
time in our setting, thereby simplifying the objective. These
attributes play in favor of the problem at hand, motivating
us to ask the following questions. (i) Can we design an
algorithm that enables each agent to learn the truth with
sparse communication schedules (and in fact, even sparser
than typically employed for other classes of distributed
problems)? (ii) If so, how fast do the agents learn the truth?
(iii) Can we quantify the trade-off(s) between sparsity in
communication and the rate of learning? We believe that
these questions remain largely unexplored. In this context,
our contributions are as follows.

We develop and analyze a simple time-triggered learning
algorithm that builds on our recent work [11], where the
data-aggregation step involves a min-protocol as opposed
to the consensus-based averaging schemes intrinsic to ex-
isting linear [6], [7] and log-linear [8]-[10] learning rules.
The basic strategy we employ to achieve communication-
efficiency is in line with those in [1], [2], [5], where inter-
agent communications become progressively sparser as time
evolves. Whereas [1], [2] explore deterministic rules where
the inter-communication intervals grow logarithmically and
polynomially in time, respectively, [5] analyzes a rule where
at each time-step, an agent communicates with its neigh-
bors with a probability that decays to zero sub-linearly. In
essence, these approaches establish that as long as the inter-
communication intervals do not grow too fast, the global
task can still be achieved. We depart from these approaches
by allowing the inter-communication intervals to grow much
faster: at a geometric rate a > 1, where the parameter a can
be adjusted to control the frequency of communication. We
show that our simple time-triggered protocol yields strong
guarantees: we prove that even with an arbitrarily large a
(leading to a highly sparse communication schedule), each
agent is still able to learn the truth exponentially fast with
probability 1, provided a is finite. Furthermore, we char-
acterize the dependence of the limiting error exponents on
the parameter a, thereby quantifying the trade-offs between
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communication-efficiency and the speed of learning.

Our analysis subsumes the special case when commu-
nication occurs at every time-step, i.e., when a = 1; this
corresponds to the scenario studied in our previous work
[11] which lacked a convergence rate analysis. A significant
contribution of this paper is to fill this gap by establishing
that when a = 1, the asymptotic learning rates resulting from
our proposed algorithm are network-structure independent,
and a strict improvement over those existing in the literature.
In contrast, when a > 1, we show that the asymptotic
learning rates differ from agent to agent, and depend not only
on the relative entropies of the agents’ signal models, but also
on properties of the underlying network. Given this result, we
introduce two new measures of the quality of learning, and
study the problem of allocating signal structures to agents to
maximize such measures. In certain special cases, we show
that the eccentricity centrality and the decay centrality of
the communication network play key roles in identifying the
optimal allocations. For more general cases, we bound the
deviation from the optimal allocation as a function of the
parameter a, and the diameter of the graph.

II. MODEL AND PROBLEM FORMULATION

Network Model: We consider a group of agents V =
{1,...,n} that interact with each other over a directed graph
G = (V, &) at certain specific time-steps (to be decided by a
time-triggered communication schedule). An edge (i,j) € €
indicates that agent ¢ can directly transmit information to
agent j; the set of all neighbors of agent ¢ is defined as
N ={j € V: (j,i) € £}. For a strongly-connected graph
G, we will use d(i,7) to denote the length of the shortest
path from i to j, and d(G) to denote the diameter of G.

Observation Model: Let © = {6,05,...,0,,} denote m
possible states of the world, with each state representing a
hypothesis. A specific state §* € O, referred to as the true
state of the world, gets realized. Conditional on its realiza-
tion, at each time-step ¢ € N, every agent ¢ € V privately
observes a signal s; ; € S;, where S; denotes the signal space
of agent i.! The joint observation profile so generated across
the network is denoted s; = (s14,82.4,-..,5n,t), Where
s €S,and § = §1 X S X ... S,. Specifically, the signal
s¢ is generated based on a conditional likelihood function
1(-|6*), the i-th marginal of which is denoted [;(:|6*), and is
available to agent ¢. The signal structure of each agent ¢ € V
is thus characterized by a family of parameterized marginals
l; = {li(w;]0) : 0 € ©,w; € S;}. We make certain standard
assumptions [6]-[10]: (i) The signal space of each agent
i, namely S;, is finite. (ii) Each agent ¢ has knowledge of
its local likelihood functions {/;(:0,)};L;, and it holds that
li(w;]0) > 0,Yw; € S;, and V8 € O. (iii) The observation se-
quence of each agent is described by an i.i.d. random process
over time; however, at any given time-step, the observations
of different agents may potentially be correlated. (iv) There
exists a fixed true state of the world 6* € © (unknown to

'We use N and N to represent the set of non-negative integers and
positive integers, respectively.

the agents) that generates the observations of all the agents.
The probability space for our model is denoted (€2, F, ]P’e*),
where Q £ {w: w = (s1,82,...),Vs; € S,Vt € N}, Fis
the o-algebra generated by the observation profiles, and P
is the probability measure induced by sample paths in €.

Specifically, P?" = [ I(:|6*). We will use the abbreviation
t=1

a.s. to indicate almost sure occurrence of an event w.r.t. P/

Given the above setting, the goal of each agent in the
network is to eventually learn the true state 6* - a task that
may be impossible for any agent to achieve in isolation.
Specifically, let 07" 2 {0 € © : I;(w;|0) = l;(w;]0*), Yw; €
S;} represent the set of hypotheses that are observationally
equivalent to 0* from the perspective of agent i. An agent &
is deemed partially informative about the truth if |©%"| > 1.
Since potentially every agent can be partially informative
in the sense described above, inter-agent communications
become necessary for each agent to learn the truth.

In this context, our objectives in this paper are to develop
an understanding of (i) the amount of leeway that the
above problem affords in terms of sparsifying inter-agent
communications without compromising on the objective of
learning the truth; and (ii) the trade-offs between sparse
communication and the rate of learning. To this end, we
recall the following definition from [11].

Definition 1. (Source agents) An agent i is said to be a
source agent for a pair of distinct hypotheses 0,0, € © if it
can distinguish between them, i.e., if D(1;(:|0,)||li(-|64)) >
0, where D(1;(-|0,)]1:(-|04)) represents the KL-divergence
[13] between the distributions 1;(-|0,) and 1;(-|0,). The set
of source agents for pair (0,,0,) is denoted S(6,,0,). [

Throughout the rest of the paper, we will use K;(6,,6,)
as a shorthand for D(1;(:|6,)]|1:(:10,)).

IIT. A COMMUNICATION-EFFICIENT LEARNING RULE

In this section, we formally introduce a simple time-
triggered belief update rule parameterized by a constant
a € N_ that determines the frequency of communication
(to be made more precise below). Every agent ¢ maintains a
local belief vector 7, ;, and an actual belief vector K g each
of which are probability distributions over the hypothesis set
©. These vectors are initialized with m; () > 0, p;,0(0) >
0,V0 € ©,Vi € V, and subsequently updated as follows.

o Update of the local beliefs: At each time-step t +1 €

N, m;+41 is updated via a standard Bayesian rule:

Li(si,e41]0)74,:(0)
21 Li(si,t4110p)mi,e(0p)
=

Tier1(0) = 1
« Update of the actual beliefs: Let T = {t;}, .y, be a
sequence of time-steps satisfying ¢4, — t, = a*,Vk €
Ny, with ¢y = 1. If t4+1 € I, then K41 is updated as

min it (D) }ien: ,mitr1(0
Mz’,t+1(0) S {{1,6(0)}jen,; mie+1(0)} ),
2= min{{p;,t(0p)}jen; mit+1(0p)}

p=1

Ift+1¢1, p;,, is simply held constant as follows:
Hit+1(0) = it (0). 3)
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In words, while the local beliefs are updated at every time-
step, the actual beliefs are updated only at time-steps that
belong to the set I, i.e., an agent ¢ € V is allowed to transmit
M;, to its out-neighbors, and receive p;, from each in-
neighbor j in G if and only if ¢t + 1 € I. When a = 1,
the actual beliefs get updated via (2) at every time-step, and
we recover the rule in [11]. When a > 1, note that the
inter-communication intervals grow exponentially at a rate
dictated by the parameter a. Prior to analyzing the impact of
such sparse communication, a few comments are in order.
First, notice that the data-aggregation rule in (2) is based
on a min-protocol, as opposed to any form of “belief-
averaging” commonly employed in the distributed learning
literature [6]-[10]. Essentially, while the local belief updates
(1) capture what an agent can learn by itself, the actual
belief updates (2) incorporate information from the rest of the
network. Second, we note that the proposed time-triggered
protocol is simple, easy to implement, and computationally
cheap. At the same time, the exponentially growing intervals
afford a much sparser communication schedule relative to
related literature. Third, while one can potentially consider
extensions of this algorithm that account for asynchronicity,
communication failures, delays etc., we focus on the scheme
here in order to concretely isolate the trade-off between
sparse communication and the asymptotic rates of learning,
and highlight how the network structure impacts such rates.

IV. MAIN RESULT AND DISCUSSION

The main result of the paper is as follows (the proof will
be provided in the next section).

Theorem 1. Suppose the communication parameter satisfies
a > 1, and the following hold: (i) for every pair 0,,60, € ©,
S8(0,,0,) # 0; and (ii) G is strongly-connected. Then, the
distributed learning rule given by (1), (2), (3) guarantees:
o (Consistency): For each agent i € V, u; +(6*) — 1 a.s.
o (Asymptotic Rate of Rejection of False Hypotheses):

The following holds for each i € V, and 6 € ©\ {6*}:
log 11, (0) K,(6%,0)
% > vegl(aéz(e) PCICES) a.s. (4)

liminf —
t—o0

0

We immediately obtain the following important corollary.

Corollary 1. Suppose communication occurs at every time-
step, i.e., suppose a = 1. Let the conditions in Theorem 1
hold. Then, the proposed learning rule guarantees consis-

tency, and the following holds ¥i € V, and 6 € O\ {0*}:
lim inf—w > max K,(0*,0)as. (5

t—o0 veS(0*,0)

g
Implications of Theorem 1: We first note that despite
its simplicity, the algorithm proposed in Section III provides
strong guarantees: eq. (4) indicates that although the inter-
communication intervals grow exponentially at an arbitrarily
large (but finite) rate a, each agent is still able to eliminate
every false hypothesis exponentially fast with probability 1.
More interestingly, (4) reveals that unlike existing literature

[6]-[10], the asymptotic learning rates are agent-specific, i.e.,
different agents may discover the truth at different rates.? In
particular, note from the RHS of (4) that, when considering
the asymptotic rate of rejection of a particular false hypothe-
sis at a given agent ¢, one needs to account for the attenuated
relative entropies of the corresponding source agents, where
the attenuation factor scales exponentially with the distances
of ¢ from such source agents. It is easy to see from (4) that
sparser communication schedules (corresponding to larger
a’s) incur lower learning rates. Moreover, since such rates
depend upon the network-structure when ¢ > 1, a poor
allocation of signal structures to agents can have adverse
effects on the learning rates of certain agents.

Implications of Corollary 1: Let us now compare the
performance of our algorithm with that of existing “belief-
averaging” schemes [6]-[10] when communication occurs at
every time-step, i.e., when a = 1, which is the standard
distributed hypothesis testing setup. In sharp contrast to
when a > 1, Corollary 1 indicates that the asymptotic
learning rates are network-structure independent, and iden-
tical for each agent. Moreover, under the conditions on
the observation model and the network structure given in
Thm. 1, both linear [6], [7] and log-linear [8]-[10] opinion
pooling lead to an asymptotic rate of rejection of the form
> ey VilK(0*,0) for each § € © \ {#*}, and the rate is
identical for each agent. Here, v; represents the eigenvector
centrality of agent 7, which is strictly positive for a strongly-
connected graph. Thus, referring to (5), we conclude that
a significant contribution of the algorithm proposed in this
paper is that it yields strictly better asymptotic learning rates
than those existing, for the standard setting when a = 1.

V. PROOF OF THE MAIN RESULT

In order to prove Theorem 1, we require a few intermediate
results, the first of which is quite standard (see [11]).

Lemma 1. Consider a false hypothesis 6 € © \ {6*}, and
an agent i € S(0*,0). Suppose m; o(0,) > 0,0, € ©.
Then, the update rule (1) ensures that (i) m; (6) — 0 a.s.,
(i) Tioo(0%) £ limy_oo m;((0) exists a.s. and satisfies
Ti,00(0%) > m;.0(8%), and (iii) the following holds:

tliglo 1 log ;r;;,:((e@*)) = —K;(0*,0) a.s. (6)

O

Lemma 2. Suppose the conditions in Theorem 1 hold, and
each agent employs the algorithm given by (1), (2), and (3).
Then, there exists a set Q0 C Q with the following properties:
(i) P (Q) = 1, and (ii) for each w € ), there exist constants
n(w) € (0,1) and t'(w) € (0,00) such that

T, (0%) > n(w), pie (0%) > n(w),Vt > t'(w), Vi e V. (1)
|

Proof. Let Q C Q denote the set of sample paths for which
the assertions in Lemma 1 hold for each false hypothesis 6§ €

2We use the lower bounds derived in (4), (5) as a proxy when referring
to the corresponding asymptotic learning rates.
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©\{6*}. Based on Lemma 1, we note that P’ (Q) = 1. Thus,
it suffices to establish (7) for each sample path w € Q. To this
end, fix w € . Following similar arguments as in [11], one
can find (w) € (0,1) and ¢'(w) € (0, 00), such that Vi € V,
Ta(07) = @),V > F(@), and jigp (07) = n(w). We
thus focus only on establishing that y; +(6*) > n(w),Vt >
t'(w), Vi € V. To this end, let t(w) > t'(w) be the first time-
step following ¢'(w) that belongs to the set I. Based on (3),
notice that y; +(0*) > n(w) for all ¢ € [t'(w),t(w)), and for
each i € V. Based on (2), at time-step #(w) € I, p; 7(.,)(0*)
for an agent ¢ € V satisfies:

Hiiw) (07) > =5 n()
>~ min{ {4 7(w)—1(0p) }jen: Tigw) (Op) }
= ®)
> 1) =n(w),

where the last equality follows from the fact that the local
belief vectors generated via (1) are valid probability distribu-

tions over © at each time-step, and hence Z i i(w) (Op) =

1. The above argument applies identically topeach agent in V.
Furthermore, it is easily seen that based on (3), and a similar
reasoning as above, identical conclusions can be drawn for
each time-step ¢t > t'(w), t € T when the agents update their
actual beliefs based on (2). This readily establishes (7). [J

Lemma 3. Consider a false hypothesis 0 € ©\{0*} and an
agent v € §(0*,0). Suppose the conditions stated in Theorem
1 hold. Then, the learning rule described by equations (1),
(2) and (3) guarantee the following for each agent i € V:

liminf — (d<59:)fl)) a.s. 9

t—o0

log p1i,1(6) >
t iy

O

Proof. Throughout this proof, we use the same notation as in
Lemma 2. Fix an w € ), an agent v € S(6*,6), and an agent
i € V. Since condition (ii) in Thm. 1 is met, there exists a
path of shortest length from v to ¢; we shall induct on the
length of such a path. First, we consider the base case when
d(v,i) = 0, i.e., when ¢ = v. Fix € > 0, and notice that since
v € §(0*,0), Eq. (6) implies that 3¢, (w, 0, €), such that:

Tt (0) < e O 0=9 'y > ¢ (w.6,€).  (10)

Since w € Q, Lemma 2 guarantees the existence of a time-
step t'(w) < oo, and a constant n(w) > 0, such that on w,
7rzt(6‘*) > n(w), pit(0%) > n(w),vt > t'(w),¥i € V. Let

to(w, 0, €) = max{t'(w),t,(w,0,€)}. Let £ > #, be the first
time-step following £, that belongs to I.°> Then, Eq. (2) leads
to the following inequalities:

(a) (0
poil0) < = Toil)
Zlnnn{{u]f 10p)}jens ™, 1 (0p)} (11
p=
Ku(0%,0)—e
® e 0o — C(w)e K" 0=

n(w)

3We suppress the dependence of various quantities on the parameters
w, 6, and € for brevity.

where C(w) = n(w)”". Regarding the inequalities in (11),
(a) follows directly from (2), whereas (b) follows from (10)
and the fact that n(w) lower bounds the beliefs (both local
and actual) of all agents on the true state 6*. Note that
consecutive trigger-points tx, tx11 € I satisfy 41 = atp+1.
Based on (3), we then have:

po,1(0) < Clw)e™

Observe that the next update of 1, ;(6) takes place at at + 1.
Repeating the reasoning used to arrive at (11) yields:

/"u,@f—i—l( ) < C( )

Coupled with the above inequality, (3) once again implies:

(K, (6%,0)—

Evteltat+1). (12)

K (9* ) E)(a£+1). (13)

fio.1(0) < C(w)e™Fe@0=HD) i ¢ 4741, a?i4-a+1).
(14)
Generalizing the above reasoning, we obtain:

po£(0) < C(w)e™ K, (67.0)—€)(a’t+f ()

Vt € [aPt+ f(p), a®Di+af(p)+1), p €N, where f(p) =
(a? —1)/(a —1). We conclude that V¢ > ¢:

5)

Lo +(0) < C(w)e—(Kw(9*79)—6)(a”(”t~+f(p(t)))7 (16)
where
g (=Dt
(a—1)t+1
t) = t t) = ———. 17
pl6) = Lol6)). 9(0) =~ a7
From (16), we obtain that V¢ > :
~ log 1,4(0) S (Ko (0%,0) — ) (a*Mi+ f(p(t))) log Clw)
t t t (18)

Let o, (6, €) = (K, (0*,0)—¢). Then, taking the limit inferior
on both sides of the above inequality yields:

5 p(t) _
lim inf —w > ay(6,€) lim 1 {ap(t)t + ail]
t—o00 t t—oo t a—1
» (0, 1 - 1
> M lim = {ag(t)(t+ )}
a t—o0 a—1
(0, ¢)
‘ (19)

where the second inequality follows from the fact that |x| >
x — 1,Vz € R, and the final equality results from further
simplifications based on (17). Finally, noting that € can be
made arbitrarily small in the above inequality establishes (9)
for the base case when d(v,4) = 0. To proceed, suppose (9)
holds for each node ¢ € V satisfying 0 < d(v,:) < ¢, where
q is a non-negative integer satisfying ¢ < d(G) — 1 (recall
that d(G) represents the diameter of the graph G). Let i € V
be such that d(v,i) = ¢ + 1. Thus, there must exist some
node | € NV; such that d(v,l) = g. The induction hypothesis
applies to this node [/, and hence, we have:

. 1 0 ,
liminf — Ogﬂé,t( ) > K, 29 ,9)
t— o0 al

a.s. (20)

Let Q C Q be the set of sample paths for which the
above inequality holds. With 2 defined as before, notice that
PP (2N Q) = 1, since Q and Q each have P -measure 1.
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___________

Fig. 1. The figure represents the network for the simulation example in
Section VI. Based on the parameters of the model, Theorem 1 implies that
the asymptotic rates of rejection of 0y for the agents enclosed in the red,
blue and green rectangles are dictated by the relative entropies of agents 1, 7
and 5, respectively, illustrating the agent-specific learning rate phenomenon.

Pick an arbitrary sample path w &€ QN €Q, and notice that
based on arguments identical to the base case, on the sample
path w there exists a time-step #;, such that the beliefs of all
agents on #* are bounded below by n(w) following #;, and

we(0) <e

where € > 0 is an arbitrary small number, and H;(0*,0) =
K, (6%,60)/al9t1), Proceeding as in the base case, let 7 > #;
be the first time-step following ¢; that belongs to the set I.
Noting that [ € N, using (2), (21), and similar arguments
as those used to arrive at (11), we obtain:

ti,r—1(0)

il min{{p; -—1(0p) }jen:, mi,r (0p)}
—(H(07,0)—€)(T—1)

<T = Ci(w)e”

where Cj(w) = e (070~ /n(w). Repeating the above
analysis for each time-step of the form a7 + f(p),p € N4,
using (3), and arguments similar to the base case yields:

—(H(0",0)—¢€)t

V> 1, 2

ﬂi,‘r(e)g
(22)

(Hy (0" »9)*6)77

1 (0) < Cl(w)e—(Hz(9*79)—5)(aﬁ<’)f+f(ﬁ(t>))7Vt >7, (23)
where P
log (7= 7t-+1

p) = Lg(0)], gt = —p @Y

Notice that the inequality in (23) resembles that in (16).
Thus, repeating the analysis for the base case yields:

lim inf
t—o0

log pi,e(0) ~ Hi(07,0)
el > OO o @)

The induction step follows by substituting the expression for
H;(6*,6) in (25), and recalling that d(v,i) = g + 1. O

We are now in position to prove Theorem 1.

Proof. (Theorem 1) Fix a € ©\ {0*}. Based on condition
(i) of the Theorem, S(6*, #) is non-empty, and based on con-
dition (ii), there exists a path from each agent v € S(8*, 6) to
every agent in V \ {v}; Eq. (4) then follows from Lemma 3.
By definition of a source set, K, (0*,0) > 0,Yv € §(0*,0);
(4) then implies limy_,o0 p15,:(0) =0 as., Vi € V. O

0.08 0.08

——log u3(02) /¢t — —log 14, (62)/t
0.07 Y 1
- - Ki(61,62)/Brs i - K6, 62)/Bra
:‘;n.uﬁ ——K5(61,6,)/ 555 iuoo ——K5(01,0)/Bs.4
< 005 ——K:(61,65)/Brs 005 ——K;7(01,0)/Br4 |
5004 \ 5004
=i

0 0.03 e &0 0.03

E |

S "~ S \\_

I S e e e e e ¥ | 0.02 S 1
~ \\~.

0.01 0.01

0 = - 2
0 2000 4000 6000 0 2000 4000 6000
t

Fig. 2. Plots of the instantaneous rates of decay of the beliefs of agents 3
and 4 on the false hypothesis 0. In the plots, 8; ; = ald(B)+1),

VI. SIMULATION EXAMPLE

Suppose © = {61,605}, and 6* = 6,. The network of
agents is depicted in Fig. 1. The signal space is given by
Si = {1,2},¥i € V. The agent likelihood models satisfy:
ll(l|01) = 0.5,Vi € {1, .. .77},l1(1‘92) = O.9,l5(1|92) =
0.7,17(1]02) = 0.85, and [;(1]02) = 0.5,Vi € {2,3,4,6}.
Thus, only agents 1,5 and 7 can distinguish between 6,
and 605, with their relative entropies satisfying K (61, 62) >
K7(61,02) > Ks(01,62) > 0. Let @ = 3, and note that
K7(91,92)/a2 > K5(91792)/a > K1(91,92)/a3. Flg 2
plots the instantaneous rates of rejection of the false hypothe-
sis 0, for agents 3 and 4, resulting from our algorithm. Based
on Figs. 1 and 2, we observe: (i) each informative agent
dominates the speed of learning of agents that are close to it
in G; (ii) the rate of rejection of 5 is indeed agent-specific;
and (iii) the simulations agree very closely with the lower
bounds on the limiting rates of rejection in Thm. 1.

VII. THE IMPACT OF INFORMATION ALLOCATION ON
ASYMPTOTIC LEARNING RATES

Thm. 1 indicates that the learning rates of the agents
are shaped by a non-trivial interplay between the relative
entropies of their signal models and the network structure.
In view of this fact, we now aim to analyze how information
should be allocated to the agents in order to maximize appro-
priate performance metrics that are a function of the learning
rates. Our investigation is inspired by similar questions in
[7]; however, unlike [7], our learning rule leads to learning
rates that are agent-dependent when a > 1 (see Sec. VI).
Thus, the performance metrics we seek to maximize differ
from those in [7]. As we shall soon see, while the eigenvector
centrality plays a key role in shaping the speed of learning in
[7], alternate network centrality measures become important
when it comes to the belief dynamics generated by our rule.

Throughout this section, we consider a strongly-connected
graph G, and a set of n signal structures £ = {l1,...,l,},
where each [; represents a family of parameterized marginals
as defined in Section II. By an allocation of signal structures
to agents, we imply a bijection v : £ — V. Let ¥ represent
the set of all possible bijections between £ and V. Our aim
is to optimally pick 1 € ¥ to maximize the performance
metrics that we define next. Given a pair of hypotheses
0p,0, € O, recall from (4) that based on our learning rule,

P
P:'p (010» 9!1) £ max K 6y, 00)

veSH (6,0, aldw)+1) (26)
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lower bounds the limiting rate at which agent ¢ rules out
64, when 0, is realized as the true state; the superscript
reflects the dependence of the corresponding objects on the
allocation policy ©. We now introduce two measures of the
quality of learning that are specific to our setting:

P;li/g £ min_ 1 Ziev p::b(gpa‘gq)af’:ﬁin 2

min min 0,,0
0p,0,€0 ™ p7(p, a):

0p,0,€0 i€V

27
While pg’vg captures the average rate of learning across
the network, pim focuses on the agent that converges the
slowest; since any state in © can be realized, these metrics
account for the pair of states that is the hardest to distinguish.
We seek to maximize pi’Vg and p:flm over the set W. Our
first result on this topic makes a connection to two popular
distance-based network centrality measures, namely, the ec-
centricity centrality §; [14], and the decay centrality k;(0)
[15], of each agent ¢ € V), defined as:

§i:1/ggﬁ§}ﬂtjh

where 0 < § < 1 is the decay parameter.

Ki(6) = Zje\/\{i} §40), (28)

Proposition 1. Suppose a > 1, and that there exists a signal
structure 1, € L such that for all 6,0, € O,

€ L\ A{l}-

Then, (i) any allocation v € VU such that ¥(l,) €
argmax;cy, & maximizes p:ﬁin, and (ii) any allocation ¢ ev
such that | (l,) € argmax;cy, k(<) maximizes pl,.* O

The intuition behind the above result is as follows. Sup-
pose there exists a signal structure that is sufficiently stronger
in its discriminatory power than the others. Then, an agent
allocated such a structure will govern the rate of learning
of every other agent. To expedite learning, it thus makes
sense to allocate such a dominant signal structure to the most
central agent in the network, where the specific centrality
measure depends on the performance metric. Note that
eccentricity centrality and decay centrality have been widely
studied in the context of information spread over social
and economic networks [16], [17]. While the former bears
connections to information cascades [16], the latter facilitates
selection of an “implant” node that maximizes diffusion of a
certain product or idea over a network [17]. Prop. 1 identifies
conditions under which the above centralities have similar
implications for the belief dynamics generated by our rule.

While Prop. 1 allows one to identify the optimal allocation
by simply computing the appropriate centrality measures, the
scenario becomes much more complicated if no additional
structure is imposed on the agents’ likelihood models. For
such general cases, we provide a coarse upper bound on the
sub-optimality of any given allocation.

Klu, (9177 eq)/a(f(g) > Klw (0177 011)7 vzw (29)

Proposition 2. Suppose a > 1 and let Y7, € V and Y € ¥
be allocations that maximize Pim and p}fvg, respectively.

“4Here, the quantity K, (6p,64) should be interpreted differently from
K (0p,04); whereas the former indicates a relative entropy associated with
the signal structure l,,, the latter indicates a relative entropy associated with
agent u once it has been allocated a certain signal structure.

Then for any allocation E U, the following hold: (i)

pmm/pmm § a (g) and (”) Pavg/ﬂg} < ad(g) U
We omit the proofs of Proposmons 1 and 2 here due to
space constraints; they are available in [18].

VIII. CONCLUSION

We developed and analyzed a simple time-triggered pro-
tocol for achieving communication-efficient non-Bayesian
learning over a network. Unlike existing approaches, we al-
lowed the inter-communication intervals to grow unbounded
over time at an arbitrarily large (but finite) geometric rate
a > 1. We showed that despite such sparse communication,
our approach enables each agent to learn the true state
exponentially fast with probability 1. We then characterized
the limiting error exponents as a function of the parameter
a. For the special case when agents interact at every time-
step, i.e., when a = 1, we proved that our approach yields
strictly better asymptotic learning rates than those existing
in the literature. Finally, for @ > 1, we studied the impact of
signal allocations on the speed of learning.
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