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Abstract— This paper addresses the problem of reconstruct-
ing the state of a linear time-invariant system from malicious
sensor measurements. The first result establishes that this
problem is, in general, NP-hard. We then identify classes of
subproblems that can be solved in polynomial time. When there
are at most s malicious sensors, the problem can be solved in
polynomial time when each eigenvalue is observable by at least
2s+1 sensors. When each eigenvalue has geometric multiplicity
one, this condition is equivalent to the system being 2s−sparse
observable. In contrast, the situation becomes more nuanced
when each eigenvalue is not observable by at least 2s+1 sensors,
as we describe in detail in the paper.

I. INTRODUCTION

In recent years, security has become a central issue in the
design of Cyber-Physical Systems (CPS). These large-scale
systems are often distributed, requiring sensitive information
to be communicated from sensors to controllers and con-
trollers to actuators [1]. The distributed nature as well as
the large amount of exchanged information render such CPS
vulnerable to adversaries who may wish to learn or even alter
its state [2]–[4].

Motivated by these considerations, researchers have in-
vested significant effort into solving the problem of recon-
structing the state in the presence of sensor attacks1, called
the Secure State-Reconstruction (SSR) problem in this paper.
The first experimental demonstration of a stealthy attack on
a control system was reported in [5], and it was followed by
the first theoretical results developed for special classes of
systems [6], [7]. Stealthy attacks were then formalized in [8],
[9]. An important step in the conceptual understanding of
these attacks was given in [10]–[12], where the existence of
such attacks was characterized by the system theoretic notion
of zero-dynamics.

In addition to detecting and identifying attacks, it is
important to mitigate their effect by continuing to control
the plant. Since this requires, in general, reconstructing or
estimating the state, there was a large body of literature
published on the SSR problem since the papers [13], [14].
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1We will equivalently use the expression “attacked sensors” and “mali-
cious sensors” since the manner in which the attack is conducted will not
play a role in the results of this paper.

The combinatorial nature (which subset of sensors is under
attack?) of the SSR problem led researchers to ingenious
ways of reducing the complexity of identifying the attacked
sensors. Examples include: convex relaxations [14], [15],
distributed detection filters [12] , specialized observers under
sparsity constraints [16], satisfiability modulo theory tech-
niques [17], and safety envelopes [18].

Implicit in the paper [19] is a polynomial time algorithm
for the SSR problem, suggesting that the SSR problem may
be tractable in certain cases. However, to the best of the
authors knowledge, a detailed discussion of the complexity
of the SSR problem has not appeared in the literature. The
goal of this paper is precisely to clarify the computational
hardness of the SSR problem. As we shall soon see, two
alternate notions of observability, namely “sparse observabil-
ity” introduced in [14], [16] (see also [10] for an equivalent
notion in continuous time), and “eigenvalue observability”
[20], [21], will play key roles in our characterization. Our
contributions are the following:

1) We show that the SSR problem is NP-hard.
2) We offer a polynomial-time solution for the SSR

problem under an eigenvalue observability assumption.
3) We show that checking sparse observability is coNP-

complete.
4) We show that the notions of sparse observability and

eigenvalue observability are equivalent when the ge-
ometric multiplicity of each eigenvalue of the system
matrix A is 1.

These results can be understood as follows. When the eigen-
values of the system matrix A have unitary multiplicity, the
SSR problem is tractable: checking sparse observability, a
necessary and sufficient condition for the SSR problem to be
solvable, can be done in polynomial time since this notion
becomes equivalent to eigenvalue observability which can
be tested in polynomial time. If sparse observability holds,
then the SSR problem can also be solved in polynomial
time. When at least one of the eigenvalues has geometric
multiplicity greater than one, we can still check eigenvalue
observability and, if successful, solve the SSR problem in
polynomial time. However, in this case, eigenvalue observ-
ability is no longer necessary for the SSR problem to be
solvable. Since even checking sparse observability is coNP-
complete, we conjecture that the SSR problem may be
intractable in this case.

II. PRELIMINARIES AND NOTATIONS
The cardinality of a finite set I = {i1, . . . , ip} is denoted

by |I| = p. For matrices Qi1 , . . . ,Qip over the same
field and with the same number of columns, we define the
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matrix QI =
[
QT
i1
· · · QT

ip

]T
by stacking the individual

matrices vertically. For a matrix A ∈ Rn×n, we use sp(A)
to denote the spectrum of the matrix A, and gA(λ) to denote
the geometric multiplicity of an eigenvalue λ ∈ sp(A). We
will use the notation In to represent the identity matrix of
dimension n. Given a vector b ∈ Rn, we denote by ‖b‖0
the number of non-zero entries in b.

III. PROBLEM FORMULATION

A. System Model

Consider a discrete-time linear time-invariant system un-
der sensor attacks of the following form:

x[k + 1] = Ax[k]

yi[k] = Cix[k] + ei[k],
(1)

where x[k] ∈ Rn, yi[k] ∈ Rpi and ei[k] ∈ Rpi represent the
state of the system, the measurement acquired by sensor i,
and the attack vector for sensor i at time-step k ∈ N, respec-
tively. Let V denote the set of sensors, and let N = |V|. We
use C =

[
CT

1 · · · CT
N

]T
to denote the collection of the

sensor observation matrices, y[k] =
[
yT1 [k] · · · yTN [k]

]T
and e[k] =

[
eT1 [k] · · · eTN [k]

]T
to represent the collective

measurement vector and the collective attack vector.
We define Oi =

[
CT
i (CiA)T . . . (CiA

τi−1)T
]T

to be the observability matrix of sensor i, with τi be-
ing the observability index of the pair (A,Ci). We
also define Yi =

[
yTi [0] . . . yTi [τi − 1]

]T
and Ei =[

eTi [0] . . . eTi [τi − 1]
]T

to be the collection of measure-
ments and attacks of sensor i over time, respectively. An
equivalent expression for the measurements is:

Yi = Oix[0] + Ei.

In the remainder of the paper, we drop the time indices to
simplify notation.

B. The Secure State-Reconstruction Problem

Problem 1. (Secure state-reconstruction)
Input: Matrices Oi ∈ Rpiτi×n, i = 1, . . . , N, and a set of
vectors Yi ∈ Rpiτi , i = 1, . . . , N.
Question: Find a vector x ∈ Rn and a set I of minimal
cardinality such that Yj = Ojx for all j /∈ I.

In other words, the SSR problem requires the reconstruc-
tion of the state x and the simplest attack explanation in the
form of the least number of attacked sensors.

C. Sparse Observability and Eigenvalue Observability

The notions of sparse observability and eigenvalue observ-
ability are instrumental to the results in this paper.

Definition 1 (Sparse observability index). The sparse ob-
servability index of the pair (A,C) in system (1) is the
largest integer k such that kerOV\K = {0} for any |K| ≤
k, K ⊆ V . When the sparse observability index is r, we say
that system (1) is r−sparse observable.

It is proved in [14], [16] (see also [22] for a similar notion
in continuous time) that if at most s sensors have been

attacked in a system, the initial state x[0] can be uniquely
reconstructed if and only if the system is at least 2s−sparse
observable. In view of this result, computing the sparse
observability index of a system is of great interest since
it characterizes the maximum number of arbitrary sensor
attacks that can be tolerated without compromising the ability
to uniquely reconstruct the state.

In addition to sparse observability, we will require the
notion of “eigenvalue observability” [20], [21].

Definition 2 (Eigenvalue observability index). We say that
an eigenvalue λ ∈ sp(A) is observable w.r.t. sensor i if the
following condition holds:

rank
[
A− λIn

Ci

]
= n. (2)

If the above condition is satisfied, we equivalently say that
“sensor i can observe eigenvalue λ”. Let the set of all
sensors that can observe an eigenvalue λ be denoted Sλ. The
eigenvalue observability index of system (1) is the largest
integer k such that each eigenvalue of the matrix A is
observable by at least k + 1 distinct sensors. When the
eigenvalue observability index is k we say that system (1)
is k-eigenvalue observable.

We study the SSR problem under the following assump-
tions.

Assumption 1: For each attacked sensor i ∈ {1, . . . , N},
the adversary can only manipulate sensor i’s measurements
through the signal ei[k] in (1).

Assumption 2: The adversary is omniscient, i.e., we
assume the adversary has full knowledge of the system state,
measurements, and plant model. Moreover, all the malicious
sensors are allowed to work cooperatively.

IV. SSR IS HARD

Fawzi et al. established in [14] a connection between the
SSR problem and compressed sensing by drawing inspiration
from the ideas of Candes and Tao in [23]. We take this
approach further by also using the ideas in [23] to establish
that the SSR problem is NP-hard.

Problem 2. (Compressed sensing)
Input: A full row rank matrix F ∈ Qm×n, a vector b ∈ Qm.
Question: Find the sparsest solution of Fx = b.

The compressed sensing problem yields the solution to the
minimization problem:

min
e
‖e‖0 s.t. Fe = b. (3)

Theorem 1. The SSR problem is NP-hard.

Proof. Given an instance of the compressed sensing problem,
we generate an instance of the SSR problem as follows.
Let the system matrix be of the form A = In, and the
collective observation matrix C satisfy ImC = kerF. Let the
measurements of the sensors be scalar-valued, i.e., let Ci be
the i-th row of C. Note that based on the above A matrix,
the observability index for each sensor i ∈ {1, . . . , N} is
given by τi = 1, and thus Oi = Ci. Finally, let Y be any
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solution to the equation FY = b. Since the linear equation
FY = b is underdetermined, finding a solution Y can be
done in polynomial time [24]. For each i ∈ {1, . . . , N}, set
Yi to be the i-th row of Y. Thus, given an instance of the
compressed sensing problem, the above instance of the SSR
problem can be constructed in polynomial time.

The SSR problem for the constructed instance degenerates
to:

min
x,e
‖e‖0 s.t. Cx + e = Y.

We now show these two problems have the same solution.
It is easy to see that any solution (x, e) of Cx + e = Y
yields a solution to Fe = b, since by applying F we obtain:

F(Cx + e) = FY ⇔ Fe = b. (4)

To prove the converse, we show that for every e such that
Fe = b, there exists some x satisfying Cx + e = Y.
Recalling that FY = b, we obtain F(Y − e) = 0, i.e.,
Y − e ∈ kerF. Since kerF = ImC, there exists an x such
that Cx = Y − e, as desired.

Note that the equations Fe = b and Cx + e = Y have
the same solutions for e; we conclude they also have the
same sparsest solution. In other words, if there exists an
algorithm A that solves the SSR problem for the specific
instance constructed by us, such an algorithm will also yield
a solution to the given instance of the compressed sensing
problem. It then follows that since the compressed sensing
problem is NP-hard, the SSR problem is also NP-hard.

V. CLASSES OF SSR PROBLEMS SOLVABLE IN
POLYNOMIAL TIME

While in the previous section we established that the SSR
problem is NP-hard, the goal of this section is to prove the
positive result that specific instances of the problem do admit
polynomial time solutions.

Theorem 2. Consider the system (1), and suppose at most
s sensors are compromised. Let the eigenvalue observability
index of system (1) be at least 2s. Then, the SSR problem
can be solved in polynomial time.

Proof. We prove the result in two steps. In the first step, we
show that each sensor can recover the portion of the initial
condition corresponding to the eigenvalues it can observe.
Given this result, in the second step we argue that the sensors
can collaboratively recover the entire initial condition vector
via majority voting. We now outline the details of these steps.

Step 1: Recovering locally observable portions of initial
conditions: First, perform a similarity transformation x[k] =
Tz[k] that maps A to its Jordan canonical form J, and
transforms (1) to the following form:

z[k + 1] = Jz[k],

yi[k] = C̄iz[k], ∀i ∈ {1, · · · , N},
(5)

where A = TJT−1 and C̄i = CiT. Let the set of
eigenvalues of A that are observable w.r.t. sensor i be
denoted Ui. Now perform a second similarity transformation

z[k] = Piz̄i[k] that permutes the state vector z[k] in (5),
yielding: [

zUi [k + 1]
zŪi [k + 1]

]
︸ ︷︷ ︸

z̄i[k+1]

=

[
J̄Ui 0
0 J̄Ūi

]
︸ ︷︷ ︸

J̄i

[
zUi [k]
zŪi [k]

]
︸ ︷︷ ︸

z̄i[k]

,

yi[k] =
[
C̄Ui C̄Ūi

]︸ ︷︷ ︸
Ḡi

z̄i[k].

(6)

In the above equations, J̄Ui is the collection of the Jordan
blocks corresponding to the eigenvalues observable w.r.t. sen-
sor i, and J̄Ūi comprises of the remaining Jordan blocks in J.
Similarly, C̄Ui contains the columns of C̄i corresponding to
the matrix J̄Ui , with an analogous definition for C̄Ūi . Based
on the above discussion, notice that the states corresponding
to the eigenvalue set Ui have been grouped into the vector
zUi [k] ∈ Roi , where oi represents the dimension of the
square-matrix J̄Ui . We now describe how zUi [0] can be
recovered via the measurements available at sensor i. To
this end, let T̄i be a non-singular matrix that performs an
observable canonical decomposition of the pair (J̄Ūi , C̄Ūi)
in (6). Consider the following transformation matrix:

Ti =

[
Ioi 0
0 T̄i

]
. (7)

Define the coordinate transformation z̄i[k] = Tivi[k]. Based
on this transformation, and using (6), we obtain: zUi [k + 1]

wUi [k + 1]
wŪi [k + 1]


︸ ︷︷ ︸

vi[k+1]

=

 J̄Ui 0

0
MUi 0
? MŪi


︸ ︷︷ ︸

T−1
i J̄iTi

 zUi [k]
wUi [k]
wŪi [k]


︸ ︷︷ ︸

vi[k]

,

yi[k] =
[
C̄Ui HUi 0

]︸ ︷︷ ︸
ḠiTi

vi[k],

(8)
where:

T̄−1
i J̄ŪiT̄i =

[
MUi 0
? MŪi

]
,

C̄ŪiT̄i =
[
HUi 0

]
.

(9)

Define:

Ai , diag(J̄Ui ,MUi), Hi ,
[
C̄Ui HUi

]
, (10)

and si[k] ,
[
zUi

T [k] wUi
T [k]

]T
. Based on the above

definitions, and referring to (8), we obtain:
yi[0]
yi[1]

...
yi[ni − 1]


︸ ︷︷ ︸

Yi[0:ni−1]

=


Hi

HiAi

...
HiA

(ni−1)
i


︸ ︷︷ ︸

Fi

si[0], (11)

where ni is the dimension of Ai. We claim that Fi as defined
in the above equation has full column rank. To see this,
notice that each of the pairs (J̄Ui , C̄Ui) and (MUi ,HUi) are
observable based on our construction. Furthermore, J̄Ui and
MUi do not share any eigenvalues. In view of these facts, the
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pair (Ai,Hi), as defined in (10), is observable. This readily
justifies our claim of Fi being full column rank, since Fi
is precisely the observability matrix of the pair (Ai,Hi).
Consequently, the measurements at sensor i can be used to
uniquely recover si[0] based on (11). This in turn implies
recovery of zUi [0], since zUi [0] =

[
Ioi 0

]
si[0]. With this

development in place, we proceed to the next step.
Step 2: Recovery of the entire state vector based on

majority voting: Consider any eigenvalue λj ∈ sp(A).
Let the portion of the vector z[0] that corresponds to this
eigenvalue be denoted zj [0], and let z(i)

j [0] indicate the i-
th component of zj [0]. Our development in step 1 implies
that zj [0] (and hence z

(i)
j [0]) can be recovered using the

measurements of each of the sensors in the set Sλj .2 Based
on the hypothesis of the theorem, |Sλj | ≥ (2s+ 1). Conse-
quently, since at most s sensors have been compromised, we
are guaranteed at least s + 1 consistent copies of the state
z

(i)
j [0]. In other words, each component of the vector zj [0]

can be recovered via majority voting. Since the assertion
holds for each λ ∈ sp(A), it follows that z[0] can be securely
reconstructed. Since a non-singular transformation maps z[0]
to x[0], the latter can also be securely reconstructed.

VI. COMPLEXITY OF CHECKING SPARSE
OBSERVABILITY

In the previous two sections we studied the complexity
of the SSR problem, and in particular, identified instances
of the problem that can be solved in polynomial time.
Recall that under at most s sensor attacks on the system
(1), 2s-sparse observability turns out to be necessary and
sufficient for the SSR problem to yield a unique solution,
namely the true initial state vector x[0]. Given this result,
we now take a step back and ask: What is the complexity
of deciding whether a given system is 2s-sparse observable?
As explained in Section III-C, the above question is highly
relevant since it aims to identify the maximum number of
sensor attacks that can be tolerated by a given system of
the form (1). In what follows, we show that determining the
sparse-observability index (see Definition 1) of a system is
computationally hard; we will focus on the case of scalar-
valued sensors throughout, as that suffices to show the
computational complexity of the problem.

Problem 3. (r-sparse observability)
Input: A matrix A ∈ Qn×n, a matrix C ∈ Qp×n and a
positive integer r.
Question: Is the pair (A,C) r-sparse observable?

Note that if the answer to an instance of the r-sparse
observability problem is “no”, then there is a simple proof:
one can provide a set of r rows of C that, if removed, result
in a system that is no longer observable. However, it is not
clear whether there is a similarly simple proof for “yes”
instances. Thus, the r-sparse observability problem is in the

2Recall that Sλj represents the set of sensors w.r.t. which λj is observ-
able.

class coNP.3

The complement of a decision problem is the problem
obtained by switching the “yes” and “no” answers to all
instances of that problem. If a problem is in the class coNP,
then its complement is in the class NP, and vice versa.

We will show that the r-sparse observability problem
is coNP-hard by showing that its complement is NP-hard.
Specifically, we define the following complement problem
to r-sparse observability.

Problem 4. (r-sparse unobservability)
Input: A matrix A ∈ Qn×n, a matrix C ∈ Qp×n and a
positive integer r.
Question: Is there a set of r rows that can be removed
from C in order to yield a matrix C̄ such that (A, C̄) is
unobservable?

Note that the answer to an instance of r-sparse unobserv-
ability is “yes” if and only if the answer to the corresponding
instance of r-sparse observability is “no” and vice versa.
Further note that r-sparse unobservability is in the class NP.

We show that r-sparse unobservability is NP-complete by
providing a reduction from the following Linear Degeneracy
problem. This problem was shown to be NP-complete in
[26].

Problem 5. (Linear Degeneracy [26])
Input: A full column rank matrix F ∈ Qp×n.
Question: Does F contain a degenerate (i.e., noninvertible)
n× n submatrix?

In other words, the linear degeneracy problem asks
whether it is possible to remove p − n rows from matrix
F so that the resulting (square) matrix is not full rank. We
are now ready to prove the following result.

Theorem 3. The r-sparse unobservability problem is NP-
complete. Thus, the r-sparse observability problem is coNP-
complete.

Proof. Given an instance of the linear degeneracy problem
(with matrix F ∈ Qp×n), we construct an instance of the
r-sparse unobservability problem as follows: set A = In,
C = F, and r = p− n.

We now show that the answer to the constructed instance
of r-sparse unobservability is “yes” if and only if the answer
to the given instance of linear degeneracy is “yes”.

First, suppose that the answer to the constructed instance
of r-sparse unobservability is “yes.” Then there exists a set
of r rows of C that can be removed such that the remaining
rows are not sufficient to yield observability. However, since
A = I, the above implies that there is a set of r rows of C
that can be removed such that the remaining rows are not
full column rank. Since C = F and r = p − n, this means
that there is an n × n submatrix of F that loses rank, and
thus the answer to the linear degeneracy problem is “yes.”

Next, we show that if the answer to the given instance of
linear degeneracy is “yes,” then the answer to the constructed

3See, e.g., [25] for additional details on the complexity classes NP and
coNP.
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2s-sparse
observability

2s-eigenvalue
observability

gA(λ) = 1, ∀λ ∈ sp(A)

Fig. 1. Figure illustrating the hierarchy of relationships between different
notions of observability.

instance of r-sparse unobservability is “yes.” We will do
this by showing the contrapositive: if the answer to the
constructed instance of r-sparse unobservability is “no”, then
the answer to the given instance of linear degeneracy is “no.”
Suppose the answer to the constructed instance of r-sparse
unobservability is “no.” Then, by definition, the pair (A,C)
is observable even after removing any arbitrary r rows from
C. However, since A = I, in order for the system to remain
observable after removing r rows from C, it must be the
case that the remaining rows of C have full column rank.
Thus, if the answer to the constructed instance of r-sparse
unobserability is “no”, then C has full column rank after
removing any arbitrary r = p − n rows. This means that
every n× n submatrix of C is invertible. Since C = F, the
answer to the given instance of linear degeneracy is “no”
(i.e., there is no n× n submatrix of F that is degenerate).

Thus, we have shown that the answer to the constructed
instance of r-sparse unobservability is “yes” if and only if
the answer to the given instance of linear degeneracy is
“yes.” Since linear degeneracy is NP-complete, so is r-sparse
unobservability.

Finally, since r-sparse observability is the complement
of r-sparse unobservability (and since r-sparse observability
is in coNP), we have that r-sparse observability is coNP-
complete.

VII. CONNECTIONS BETWEEN SPARSE
OBSERVABILITY AND EIGENVALUE

OBSERVABILITY

In Sections IV and VI, we showed that the SSR problem
and the problem of determining the sparse observability
index of a system are each computationally hard. At the
same time, Section V gave us the positive result that certain
instances of the SSR problem can be efficiently solved. This
motivates the question: can the sparse observability index
of a system be computed in polynomial time for certain
specific instances? In this section, we show that this is indeed
the case by identifying instances of the problem where the
notions of sparse observability and eigenvalue observability
coincide. Given that the eigenvalue observability index of a
system can always be computed in polynomial time based
on simple rank tests, an equivalence between the two notions
of observability immediately yields instances of the problem
where the sparse observability index of the system can also
be computed in polynomial time. In this section we will

prove each of the implications indicated in Figure 1. We
begin with the following simple result.

Proposition 1. Consider the linear system (1), and suppose
its eigenvalue observability index is 2s. Then, the pair
(A,C) is at least 2s-sparse observable.

Proof. Consider any subset of sensors F ⊂ V , such that
|F| ≤ 2s. To establish that the pair (A,C) is at least 2s-
sparse observable, we need to show that the pair (A,CV\F )
is observable. Based on the PBH test, this amounts to
checking that each eigenvalue λ ∈ sp(A) is observable w.r.t.
the observation matrix CV\F . A sufficient condition for this
to happen is |(V \ F) ∩ Sλ| ≥ 1, which is indeed true
given that an eigenvalue observability index of 2s implies
|Sλ| ≥ (2f+1), ∀λ ∈ sp(A), and the fact that |F| ≤ 2s.

Note that the reverse implication does not hold in general.
In other words, 2s-sparse observability of a system is in
general less restrictive than the condition that the eigenvalue
observability index of the system is 2s. In what follows, we
establish that the two aforementioned notions coincide when
additional structure is imposed on the spectrum of A.

Proposition 2. Consider the linear system model (1), and
suppose λ ∈ sp(A) has geometric multiplicity 1. Consider
any non-empty subset of sensors S = {i1, i2, . . . , i|S|} ⊆ V .
Then, the eigenvalue λ is observable w.r.t. the pair (A,CS)
if and only if there exists a sensor ip ∈ S such that λ is
observable w.r.t. sensor ip, i.e., λ is observable w.r.t. the
pair (A,Cip).

Proof. Consider a similarity transformation that maps A to
its Jordan canonical form J. Let this transformation map
CS to C̄S , and Cij to C̄ij , for each ij ∈ S . Since λ has
geometric multiplicity 1, there exists a single Jordan block
corresponding to λ in J. Let this Jordan block be denoted
Jλ. Without loss of generality, suppose J is of the following
form:

J =

[
Jλ 0
0 J̄

]
, (12)

where J̄ is the collection of the Jordan blocks corresponding
to eigenvalues in sp(A) \ {λ}. Based on the PBH test, λ is
observable w.r.t. the pair (J, C̄S) if and only if the following
condition holds:

rank
[
J− λIn
C̄S

]
= n. (13)

Given the structure of J in (12), and the fact that λ has
geometric multiplicity 1, it is easy to see that (13) holds if
and only if there is at least one non-zero entry in the first
column of C̄S . However, the preceding condition holds if and
only if there exists some sensor ip ∈ S with at least one non-
zero entry in the first column of C̄ip ; the latter is precisely
the condition for observability of λ w.r.t. the sensor ip, given
that gA(λ) = 1. To complete the proof, it suffices to notice
that a similarity transformation preserves the observability of
an eigenvalue.
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We now use the above results to establish an equivalence
between sparse observability and eigenvalue observability.

Proposition 3. Consider the linear system model (1), and
suppose every eigenvalue of A has geometric multiplicity 1.
Then, the pair (A,C) is 2s-sparse observable if and only if
the eigenvalue observability of the system is 2s.

Proof. For necessity, we proceed via contradiction. Suppose
the pair (A,C) is 2s-sparse observable, but there exists some
λ ∈ sp(A) that is observable w.r.t. at most 2s distinct sen-
sors. Recall that the set of sensors w.r.t. which λ is observable
is denoted Sλ. Based on our hypothesis, |Sλ| ≤ 2s. Suppose
|Sλ| = 2s (since an identical argument can be sketched when
|Sλ| < 2s). Based on our hypothesis, the pair (A,CV\Sλ) is
observable. However, based on Prop. 2, this requires λ to be
observable w.r.t. at least one sensor in V \Sλ, leading to the
desired contradiction. This completes the proof of necessity.
For sufficiency, note from Prop. 1 that the pair (A,C)
is at least 2s-sparse observable whenever its eigenvalue
observability index is 2s; the fact that the observability index
is no more than 2s follows from the additional assumption
on the geometric multiplicity of eigenvalues, and arguments
similar to those used for establishing necessity.

It directly follows from the definition of eigenvalue ob-
servability that the eigenvalue observability index of a system
can be computed in polynomial time. Hence, we have the
following corollary.

Corollary 1. When all the eigenvalues of the matrix A have
geometric multiplicity 1, the sparse observability index of the
system can be computed in polynomial time.

Corollary 2. For a 2s-sparse observable system (1), when all
the eigenvalues of the matrix A have geometric multiplicity
1, the SSR problem can be solved in polynomial time.

VIII. CONCLUSION

In this paper we showed that when the eigenvalues of the
system matrix A have unitary multiplicity, the SSR problem
is tractable since both checking the sparse observability (see
Corollary 1) as well as solving the SSR problem (see Theo-
rem 2) can be performed in polynomial time. When at least
one of the eigenvalues has geometric multiplicity greater
than one, we can still compute the eigenvalue observability
index and, if it is at least 2s, solve the SSR problem in
polynomial time if at most s sensors are attacked. However,
in this case eigenvalue observability is no longer necessary
for the SSR problem to be solvable. Since even checking
sparse observability is coNP-complete, we conjecture the
SSR problem may be intractable in this case. The authors
are currently investigating this conjecture.

REFERENCES

[1] D. P. Moller, Guide to Computing Fundamentals in Cyber-Physical
Systems. Springer, 2016.

[2] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the
security of control systems,” in Proceedings of the 3rd Conference on
Hot Topics in Security, ser. HOTSEC’08, 2008, pp. 6:1–6:6.

[3] “Special issue on secure control of cyber physical systems,” vol. 4,
2017.

[4] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths,
N. O. Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-
based attack detection in cyber-physical systems,” ACM Comput. Surv.,
vol. 51, no. 4, pp. 76:1–76:36, Jul. 2018.

[5] S. Amin, X. Litrico, S. S. Sastry, and A. M. Bayen, “Stealthy
deception attacks on water scada systems,” in Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and
Control, ser. HSCC ’10. ACM, 2010, pp. 161–170.

[6] H. Sandberg, A. Teixeira, and K. Johansson, “On security indices
for state estimators in power networks,” Proc. 1st Workshop Secure
Control Syst., 01 2010.

[7] A. Gupta, C. Langbort, and T. Baar, “Optimal control in the presence
of an intelligent jammer with limited actions,” in 49th IEEE Confer-
ence on Decision and Control (CDC), Dec 2010, pp. 1096–1101.

[8] R. S Smith, “A decoupled feedback structure for covertly appropri-
ating networked control systems,” IFAC Proceedings Volumes (IFAC-
PapersOnline), vol. 18, 08 2011.

[9] R. S. Smith, “Covert misappropriation of networked control systems:
Presenting a feedback structure,” IEEE Control Systems Magazine,
vol. 35, no. 1, pp. 82–92, Feb 2015.

[10] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
via linear iterative strategies in the presence of malicious agents,” IEEE
Trans. on Autom. Control, vol. 56, no. 7, pp. 1495–1508, July 2011.

[11] F. Pasqualetti, F. Dörfler, and F. Bullo, “Cyber-physical security via
geometric control: Distributed monitoring and malicious attacks,”
Proc. of the 51st IEEE Conference on Decision and Control (CDC),
pp. 3418–3425, 2012.

[12] ——, “Attack detection and identification in cyber-physical systems,”
IEEE Trans. on Autom. Control, vol. 58, no. 11, pp. 2715–2729, 2013.

[13] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure state-estimation for
dynamical systems under active adversaries,” in Proc. of the 49th An-
nual Allerton Conference on Communication, Control, and Computing,
2011, pp. 337–344.

[14] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control
for cyber-physical systems under adversarial attacks,” IEEE Trans. on
Autom. Control, vol. 59, no. 6, pp. 1454–1467, June 2014.

[15] S. Z. Yong, M. Q. Foo, and E. Frazzoli, “Robust and resilient
estimation for cyber-physical systems under adversarial attacks,” in
2016 American Control Conference (ACC), July 2016, pp. 308–315.

[16] Y. Shoukry and P. Tabuada, “Event-triggered state observers for sparse
sensor noise/attacks,” IEEE Trans. on Autom. Control, vol. 61, no. 8,
pp. 2079–2091, Aug 2016.

[17] Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada, “Smc: Satisfiability modulo convex
programming,” Proceedings of the IEEE, vol. 106, no. 9, pp. 1655–
1679, Sep. 2018.

[18] A. Tiwari, B. Dutertre, D. Jovanović, T. de Candia, P. D. Lincoln,
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