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Abstract— The problem of distributed optimization requires
a group of agents to reach agreement on a parameter that mini-
mizes the average of their local cost functions using information
received from their neighbors. While there are a variety of
distributed optimization algorithms that can solve this problem,
they are typically vulnerable to malicious (or “Byzantine’)
agents that do not follow the algorithm. Recent attempts to
address this issue focus on single dimensional functions, or
provide analysis under certain assumptions on the statistical
properties of the functions at the agents. In this paper, we
propose a resilient distributed optimization algorithm for multi-
dimensional convex functions. Our scheme involves two filtering
steps at each iteration of the algorithm: (1) distance-based and
(2) component-wise removal of extreme states. We show that this
algorithm can mitigate the impact of up to ' Byzantine agents
in the neighborhood of each regular node, without knowing the
identities of the Byzantine agents in advance. In particular, we
show that if the network topology satisfies certain conditions, all
of the regular states are guaranteed to asymptotically converge
to a bounded region that contains the global minimizer.

I. INTRODUCTION

The problem of distributed optimization requires a net-
work of agents to reach agreement on a parameter that
minimizes the average of their objective functions using local
information received from their neighbors. This framework is
motivated by various applications including machine learn-
ing, power systems, and robotic networks, and there are a
variety of approaches to solve this problem [1]-[3]. However,
these existing works typically make the assumption that all
agents follow the prescribed protocol; indeed, such protocols
fail if even a single agent behaves in a malicious or incorrect
manner [4].

A handful of recent papers have considered this problem
for the case where agent misbehavior follows prescribed
patterns [5], [6]. A more general (and serious) form of
misbehavior is captured by the Byzantine adversary model
from computer science, where misbehaving agents can send
arbitrary (and conflicting) values to their neighbors at each
iteration of the algorithm. Under such Byzantine behav-
ior, it has been shown that it is impossible to guarantee
computation of the true optimal point [4], [7]. Thus, some
papers have formulated distributed optimization algorithms
that allow the non-adversarial nodes to converge to a certain
region surrounding the the true minimizer, regardless of the
adversaries’ actions [4], [8], [9]. However, the above works
focus on single dimensional functions. The extension to
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general multi-dimensional functions remains largely open,
however, since even the region containing the true minimizer
of the functions is challenging to characterize in such cases
[10]. The recent papers [11], [12] consider a vector version
of the resilient decentralized machine learning problem by
utilizing block coordinate descent. Those papers show that
the states of regular nodes will converge to the statistical
minimizer with high probability, but the analysis is restricted
to i.i.d training data across the network.'

In this paper, we propose an algorithm that extends the
“local-filtering” dynamics proposed in [4], [8] (for single-
dimensional convex functions) to the multi-dimensional case.
However, this extension is non-trivial, as simply applying
the filtering operations proposed in those papers to each
coordinate of the parameter vector does not appear to yield
clear guarantees. Instead, we show that by having each node
apply an additional filtering step on the parameter vectors
that it receives from its neighbors at each step (based on the
distance of those vectors from a commonly chosen reference
point), one can recover certain performance guarantees in the
face of Byzantine adversaries.

II. NOTATION AND TERMINOLOGY
A. General Notation

Let R and N denote the set of real and natural numbers, re-
spectively. For N € N, let [N] denote the set {1,2,...,N}.
Vectors are taken to be column vectors, unless otherwise
noted. We use [z], to represent the p-th component of
a vector x. The cardinality of a set is denoted by | - |,
and the Euclidean norm on R? is denoted by || - ||o. We
denote by (u,v) the Euclidean inner product of v and v i.e.,
{(u,v) = uTv and by Z(u,v) the angle between vectors u
and v i.e., Z(u,v) = arccos (%) The Euclidean ball
in d-dimensional space with center at xy and radius r is
denoted by B(zg,r) £ {x € R?: ||x — z¢||2 < 7}. Given a
convex function f : R? — R, the set of subgradients of f at
any point z € R? is denoted by 9f(x).

B. Graph Theory

We denote a network by a directed graph G = (V,€),
which consists of the set of nodes V = {v1,v9,...,05} and
the set of edges £ C Vx V. If (v;,v,) € &, then node v; can
receive information from node v;. The in-neighbor and out-
neighbor sets are denoted by N;” = {v; € V: (vj,v;) €
E}and N7 = {v; € V1 (v;,v5) € E}, respectively. A

'We note that there is also a branch of literature pertaining to optimiza-
tion in a client-server architecture [13] [14]; this differs from our setting
where we consider a fully distributed network of agents.
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path from node v; € V to node v; € V is a sequence of
nodes Vg, ,V,,- ..,V such that vy, = v;, vy, = v; and
(Vk,, Vk,,,) € € for 1 < r < [ — 1. Throughout the paper,
the terms nodes and agents will be used interchangeably.
Definition 1: A graph G = (V, &) is said to be rooted at
node v; € V if for for all nodes v; € V\ {v;}, there is a path
from v; to v;. A graph is said to be rooted if it is rooted at
some node v; € V. O
We will rely on the following definitions from [15].
Definition 2 (r-reachable set): For any given » € N, a
subset of nodes & C V is said to be r-reachable if there
exists a node v; € S such that |N,” \ S| > r. O
Definition 3 (r-robust graphs): For r € N, a graph G is
said to be r-robust if for all pairs of disjoint nonempty
subsets S1, Sy C V), at least one of Sy or Sy is r-reachable.
O

C. Adversarial Behavior

Definition 4: A node v; € V is said to be Byzantine
if during each iteration of the prescribed algorithm, it is
capable of sending arbitrary (and perhaps conflicting) values
to different neighbors. O

The set of Byzantine nodes is denoted by .A C V. The set
of regular nodes is denoted by R =V \ A.

The identities of the Byzantine agents are unknown to reg-
ular agents in advance. Furthermore, we allow the Byzantine
agents know the entire topology of the network and functions
equipped by the regular nodes (such worst case behavior is
typical in the study of such adversarial models [4], [7], [11]).

Definition 5 (F-local model): For F' € N, we say that the
set of adversaries A is an F-local set if [V, N A| < F, for
all v; € R. |

Thus, the F'-local model captures the idea that each regular
node has at most F' Byzantine in-neighbors.

III. PROBLEM FORMULATION

Consider a group of NN agents )V interconnected over a
graph G = (V,&). Each agent v; € V has a local convex
cost function f; : R — R. The objective is to collaboratively
solve the following minimization problem:

1

min > filx) (1)

v; €V
where x is the common decision variable. We assume that
nodes can only communicate with their immediate neighbors
to solve the above problem. However, since Byzantine nodes
are allowed to send arbitrary values to their neighbors at each
iteration of any algorithm, it is not possible to solve Problem
(1) under such misbehavior (since one is not guaranteed
to infer any information about the true functions of the
Byzantine agents) [4], [7]. Thus, the optimization problem

is recast into the following form:

1
i o v; fi(z). 2)

We will now propose an algorithm that allows the regular
nodes to approximately solve the above problem (as char-
acterized later in the paper). We will make the following
assumption throughout.

Assumption 1: For all v; € V, the functions f;(x) are con-
vex, and the sets argmin f;(x) are non-empty and bounded.

IV. A RESILIENT DISTRIBUTED OPTIMIZATION
ALGORITHM

The algorithm that we propose is stated as Algorithm 1.
At each time-step k, each node v; € ) maintains and
updates a vector x;[k], which is its estimate of the solution
to Problem (2). After presenting the algorithm, we describe
each of the steps and the update rule.

Algorithm 1 Distance-MinMax Filtering Dynamics

Input Network G, functions {f;},, the parameter F
1: Each v; € R sets ] < optimize(f;)
2: & + resilient_consensus (F, {z}})
3: Each v; € R sets z;[0] =z

4: for k € N do

5 for v; € R do > Implement in parallel
6: broadcast(N;", z;[k])

7: Silk] + receive(WN))

8 SEk] «— dist_filter(F, &, S;[k])

9: SMM(k] +— minmax_filter(F, SIk])

10: zilk] + average(SM™[k])

H: x;lk 4+ 1] < gradient(f;, z[k])

12: end for

13: end for

Note that Byzantine nodes do not necessarily need to
follow the above algorithm, and can update their states
however they wish. We now explain each step used in
Algorithm 1.

1. xf < optimize (f;)
Each node v; € R finds the minimizer x; of its local
function f; (using any appropriate algorithm).

2. &+ resilient_consensus (F, {z}})
The nodes run a resilient consensus algorithm to calculate
a consensus point (which we term an auxiliary point)
% € R4, with each node v; € R setting its initial vector
to be its individual minimizer ;. For example, d parallel
versions of the the resilient scalar consensus algorithm
from [15] can be applied (one for each component of
the parameter vector). This is guaranteed to return a
consensus value Z that is in the smallest hyperrectangle
containing all of the minimizers of the regular nodes’
functions, regardless of the actions of any F'-local set of
adversaries (under the network conditions provided in the
next section) [15].

3. broadcast (N, z;[k])
Node v; € R broadcasts its current state x;[k] to its out-
neighbors N
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4. S;[k] < receive(N,")
Node v; € R receives the current states from its in-
neighbors N;”. So, at time step k, node v; possesses the
set of states S;[k] = {x;[k] : j € N;”} U {w;[k]}.

5. S8k] < dist_filter (F, &, Si[k])
Node v; € R computes

Dijlk] = ||z;lk] — 2[l2 for z;[k] € S;[k]\ {:i[k]}.
3)

Then, node v; removes the states z,[k] € S;[k] \ {z;[k]}
that produce the F'-highest values of D;;[k]. The remain-
ing states x;[k] are stored in S{![k].

6. S™[k] + minmax_filter (F, SHk])
Node v; further removes states that have extreme values in
any of their components. More specifically, node v; € R
removes the state x;[k] € SIUE]\ {z;[k]} if there exists
p € [d] such that [z;[k]], is in the F-highest or F-lowest
values from the set of scalars {[z;[k]], : z;[k] € SH[k] \
{x;[k]}}. The remaining states are stored in S"™™[k].

7. z;lk] + average (S™[k])
Each node v; € R computes

1
Z ij (k] 4)

vy €N K]

zi[k] =

where N™™[k] £ {v, : z[k] € SP™[K]}.
8. z;[k + 1] + gradient (f;, zi[k])
Node v; € R computes the gradient update as follows:

wilk + 1] = zi[k] — nlk]g:[k] (5)

where g;[k] € 0f;(z;[k]) and n[k] is the step-size at time-

step k.

Remark 1: The role of the auxiliary point Z is to give
the states x;[k] a “sense of good direction”. In other words,
since adversarial nodes can try to pull the regular nodes
away from the true minimizer, the auxiliary point provides
a common reference point for each regular node with which
to evaluate the states in its neighborhood. This motivates the
distance-based filtering step of Algorithm 1 (in line 8), which
removes the F’ states that are furthest away from the auxiliary
point at each time-step. Note that the auxiliary point will, in
general, be different from the true minimizer of interest. We
also note that the resilient consensus algorithm from [15] for
computing the auxiliary point will only provide asymptotic
consensus in general. The regular agents will converge to
consensus exponentially fast under that algorithm, however,
and thus we expect that running the resilient consensus
algorithm to compute the auxiliary point simultaneously with
the other update steps (given by lines 6-11) will also lead
to the same guarantees. In the interest of space, we do not
provide that analysis here. O

V. ASSUMPTIONS AND MAIN RESULTS

We will make the following assumptions in our analysis.
Assumption 2: There exists L > 0 such that ||g;(z)|l2 < L
for all x € R? and v; € V, where g;(z) € dfi(z).

Assumption 3: The step-sizes used in line 11 of Algo-
rithm 1 satisfy limy_ oo n[k] = 0, nlk + 1] < n[k] for all
k, and Y77 k] = oc.

Assumption 4: The underlying communication graph G is
((2d + 1)F + 1)-robust, and the Byzantine agents form a
F-local set.

We will also use the following lemma from [15].

Lemma 1: Suppose a graph G satisfies Assumption 4. Let
G’ be a graph obtained by removing (2d + 1)F or fewer
incoming edges from each node in G. Then G’ is rooted. [

A. Convergence to Consensus

We first show that the states z;[k] of all regular nodes
v; € R reach consensus under Algorithm 1.
Theorem 1 (Consensus): Under Assumptions 2, 3, and 4,
limy o0 ||z [k] — 2 [K]|| = 0 for all v;,v; € R. 0
Proof: We will argue that all regular nodes v; € R
reach consensus on each component of their vectors x;[k],
which will then prove the result. For all p € [d] and for all
v; € R, from (5), the p-th component of the vector z;[k]
evolves as

[zilk + 11y = [z:[Kl]p — nlk][gi[F]],- (6)

From (4), the quantity z;[k] is an average of a subset of the
parameter vectors from node v;’s neighborhood. In particular,
the set S/ [k] is obtained by removing at most (2d+1)F of
the vectors received from v;’s neighbors (F' vectors removed
by the distance based filtering in line 8, and up to 2F
additional vectors removed by the minmax filtering step on
each of the d components in line 9 of the algorithm). Thus,
at each time-step k, component [z;[k]], is an average of at
least |N,7| — (2d + 1)F of v;’s neighbors values on that
component. Since the graph is ((2d 4+ 1)F + 1)-robust and
the Byzantine agents form an F'-local set (by Assumption 4),
and leveraging Lemma 1 and the fact that the term n[k]g;[k]
asymptotically goes to zero (by Assumptions 2 and 3), we
can use an identical argument as in Theorem 6.1 from [4] to
show that the scalar dynamics (6) converge to consensus. H

B. What Region Do the States Converge To?

We now analyze the trajectories of the states of the agents
under Algorithm 1. We start with the following result about
the quantity z;[k] calculated in line 10 of the algorithm (and
given by equation (4)).

Proposition 1: For all k € N and v; € R, if there exists
R;[k] € Rx¢ such that ||z;[k] — &||2 < R;[k] for all v; €

Proof: Consider the step S¥8![k] « dist_filter
(F, %, S;[k]) in Algorithm 1. We will first prove the
following claim. For each v; € R, there exists v, € (N, N
R) U {v;} such that ||x;[k] — &|l2 < ||z,[k] — Z||2 for all
v € {vs @ z5[k] € Sk}

There are two possible cases. First, if the set S%st[k]
contains only regular nodes, we can simply choose v, €
(N, NR) U {v;} to be the node whose state z,[k] is
furthest away from #. Next, consider the case where S3[k]
contains the states of one or more Byzantine nodes. Since

4401

Authorized licensed use limited to: Purdue University. Downloaded on January 12,2021 at 18:49:16 UTC from IEEE Xplore. Restrictions apply.



node v; € R removes the F’ states from /\/i_ that are furthest
away from 2 (in line 8 of the algorithm), and there are at most
F Byzantine nodes in N, there is at least one regular state
removed by the node v;. Let v, be one of the regular nodes
whose state is removed. We then have D;,.[k] > D;;[k], for
all v; € {vs : z5[k] € SE&[k]} which proves the claim.

Consider the step S™[k] < minmax_ filter
(F, S%[k]) in Algorithm 1. We have that S™[k] C SIst[k].
Then, consider the step z;[k] < average (S™™[k]). We
have

1 .
Z mm (‘rj [k] - (E)
v EN;“m[kZ] ‘Sz [k] ‘
Since ||z;[k] — Z||2 < |lzr[k] — Z||2 for all v; € N™™[k]
(where v, is the node identified in the claim at the start of
the proof), we obtain

1
> ekl = &2 < Rilk].
v; ENimm[k] |S1, [k] |

[[zi[k] — 22 <

Next, we will establish certain quantities that will be useful
for our analysis of the convergence region. Since the set
argmin f;(x) is non-empty for all v; € V (by Assumption 1),
we define 27 € R? to be a minimizer of f;(z) for all v; € V.
For € > 0, define

Ci(e) & {z e R?: fi(x) < fi(a]) + ¢} (7

Since the set argmin f;(z) is bounded for all v; € V, there
exists d;(€) € (0,00) such that C;(e) C B(z},d;(e)) for all
v; € V.

Proposition 2: Consider a convex function f that has
bounded subgradients, and suppose the set argmin f(z) is
non-empty and bounded. Then for all ¢ > 0 there exists
0(e) > 0 such that Z(—g(z), 2" —x) < 0(e) < F for all
x ¢ C(e), g(x) € Of (), and =* € argmin f(z), where C(e)
is defined in the same way as (7). O

Proof: From the definition of convex functions, for any
2,y € R we have f(y) > f(z) + (g(x), y — x), where
g(x) € Of(z). Substitute a minimizer z* of the function f
into the variable y to get

—(9(x), " —x) = f(z) — f(z"). (8)

Let O(x) £ Z(g(x),z — 2*). The inequality (8) becomes

lg(@)llz [|l2* — |2 cos (a) = f(x) — f(z¥).

Fix € > 0, and suppose that x ¢ C(€). Applying ||g(z)|2 <
L, we have

flx) = fr) _ fl) = f(=7)

lg@)ll2 lz* = lla = L[la* — a2

Let 2 be the point on the line connecting * and z such that

cos é(:z:) > 9

f(@) = f(x*) + €. We can rewrite the point z as
r=az"+t(Z —2") where t= ” 33*||2
12— 2*|2

Suppose C(€) C B(z*,d(€)). Consider the term on the RHS
of (9). We have

fla) = fla) _ fla™ + i@ —2")) = f(a")
[ — |2 t|Z — 2*[|
S fE 4@ - 27) - f@)

tmaxgec(e) |7 — 2% |2
S S+ i@ —2%)) - fz7)
- té(e) ’

Since the quantity 2@ HE=2)=f@") ¢ non_decreasing in
t € (0,00) [16, Lemma 2. 80] the inequality (10) becomes

flz) — f(=7) > f(@) = fam) e

(10)

= —. (11
[z —2*|]2 5(e) 5(e)
Therefore, combining (9) and (11), we obtain
€
cos O(z) > (o) (12)

However, from the definition of convex functions, we have
f@®) = (@) + {9(7), 2" = F).
Since ||g(Z)||2 < L and ||z* — Z||2 < d(€), we get
€= f(Z) = f(a") < —(9(2), =" = T) < Ld(e).

Since € > 0 and Lé(
inequality (12) becomes

< 1 from the above inequality, the

0(x) < arccos (%(e)) £ 0(e) <

Do

|
From Proposition 2, if f; satisfies Assumptions 1 and 2 for
all v; € R, then for all € > 0, we have Z(—g;(x), zf—z) <
0i(e) < % for all x ¢ C;(e) and v; € R.
Define R; £ ||z — Z|| and

R 21>1£ { max { max{R; sec 0;(¢),

Ri+oi(0}} ). (3)

We now come to the main result of this paper, showing
that the states of all the regular nodes will asymptotically
converge to a ball of radius R* around the auxiliary point
under Algorithm 1.

Theorem 2 (Convergence): If the states are updated using
Algorithm 1, and Assumptions 1, 2, 3 and 4 hold, then for
all v; € R, limsupy, ||z;[k] — Z||2 < R*, regardless of the
actions of any F-local set of Byzantine adversaries. O

The full proof of the theorem is somewhat long, and is
thus provided in [17]. We present here a sketch of the proof.
We work towards the proof of Theorem 2 in several steps.
For a fixed ¢ > 0 and for all £ € R+, define the convergence
radius

s"(&€) £

Throughout the paper, we will omit the dependence of € in
s*(&, €) for notational simplicity.

The key idea is that for a fixed £ > 0, we partition the
space R into 3 regions:
1. B(,@7 maxvien{éi + (Sl}),

gle&%{max{Risecﬁi( €), Ri 4 (e ) +E
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2. B(z, s*(€)) \ B(&, max, cg{R; +d;}), and
3. R?\ B(&, s*(£)).

We refer to B(&, s*(€)) as the convergence region and
note that R* = inf.~( s*(0). In Steps 1, 2 and 3, we analyze
the gradient update (5) for each regular agent v; € R, and
in Step 4, we consider the sequence of distance updates of
the regular agent furthest from the auxiliary point. Finally,
we will take £ to go to zero and take the infimum of the
distance bound over € > 0.

Step 1: First, we show that if k& is sufficiently large and
the state z;[k] is in Region 1 i.e.,

zik] € B(ﬁvgggg{éj +4;}) C B(z,57(€)),

then by applying the gradient update (5), the state x;[k + 1]
is still in the convergence region i.e., z;[k+1] € B(Z, s*(§)).
To do this, we leverage the fact that the magnitude of the
gradient step satisfies n[k]||g;[k]||2 < n[k]L by Assumption
2 and n[k]L decreases as k increases by Assumption 3.
Step 2: We find the relationship between the terms ||z;[k+
1]—2||2 and ||z;[k]—2||2 which will be used in the subsequent
step. Specifically, for v; € R, if the state z;[k] is in region 2
or 3, i.e., ||zi[k] — &[|2 > max,,er{R; +6;}, then we show

lilk + 1] = @[3 < [|z:[k] — 3
— Ai(llzi[k] = Zll2, nlk] llg:[F]ll2)

where we define A; : [R;,00) x Ry — R to be the function

Ai(p, 1) & 2l(\/p2 — R2cos; — R; sin9i) -2

Step 3: We show that if % is sufficiently large and the state
z;|k] is in Region 2 i.e., ||z;[k] — Z||2 € (maXUjeR{Rj +
8;},s*(£)] then by applying the gradient update (5), we have
that the state x;[k + 1] is still in the convergence region i.e.,
x|k + 1] € B(Z, s*(€)). This is done by showing that small
n[k]L makes the RHS of (14) bounded above by (s*(&))2.

From Step 1 and 3, and Proposition 1, we can conclude
that for sufficiently large k, for each regular node v; € R,
if the state x;[k] is in the convergence region, then the state
x;[k + 1] is still in the convergence region, i.e., the regular
states cannot leave the convergence region.

Step 4: We show that the states of all regular nodes
eventually enter the convergence region. Specifically, from
Proposition 1, we have that

(14)

max |[z;[k] — &2 < max [|lz;[k] — 2]l (15)
On the other hand, for the agents whose state z;[k]
is in Region 3, we show that the term A;(]|z[k] —
Z||2, nlk] ||g:[k]||2) in (14) is bounded below as

Ai(llz:k] = 2[l2, nlk] lgilk]ll2) > cinlk]

for sufficiently large k, where c¢; is a positive constant.
Incorporating (15) and (16) into (14), we can conclude that
the quantity max,,cx ||z;[k] — #||3 strictly decreases if it
is greater than s*(£). Eventually, every state will enter the
convergence region, which completes the proof.

(16)

To gain insight into the convergence region, we provide
the following result.

Proposition 3: Let x* be a solution of Problem (2). If
Assumptions 1 and 2 hold, then z* € B(Z, R*) where R* is
defined in (13). 0

Proof: We will show that the summation of any
subgradients of the regular nodes’ functions at any point
outside the region B(Z, R*) cannot be zero.

Let 2 be a point outside B(Z, R*). Since ||zg — Z||2 >
max,,cr {R; + 0;(€)} for some € > 0, we have that z( ¢
Ci(e) for all v; € R. By the definition of C;(¢) in (7), we
have f;(zg) > fi(x})+ € for all v; € R. Since the functions
fi are convex, we obtain g;(xg) # 0 for all v; € R where
gi(o) € Ofi(wo).

Consider the angle between the vectors xo—x; and zo—Z.
Suppose R; > 0; otherwise, we have Z(zo—xz*, xo—i) = 0.

Using Lemma 2 in [17], we can bound the angle as follows:

L(xg—axf, 1o — &) < max  ZL(zg—vy, xo — &)

yEB(2,R;)

) ( R; )
= arcsin [ ————— ).
lzo — 2|2

Since ||zo — &[]z > max,,cr {R; secf;} and arcsin(z) is an
increasing function in = € [—1, 1], we have

R;
L(xo — x], T — &) < arcsin (Ni)

R; sec;
= arcsin(cos 6;)
T
— 5 - 01'.

Using Proposition 2 and the inequality above, we can bound
the angle between the vectors g;(xo) and zo — Z as follows:

Z(gi(x0), o — T)
< Z(gi(20), xo — ) + L(zo — TF, T0 — 7)

s 0
b+ (5 -6:) = 2.
<0; + 5 5
Note that the first inequality is obtained from [18, Corol-
lary 12]. Let u = m Compute the inner product
(> gilwo), w) = 3 {gi(wo), w)
v;ER v, ER
=Y llgi(@o) |2 cos £(gi(wo), w0 — #)
vV ER
>0

since ||gi(xo)|l2 > 0 and cos Z(g;(xo), o — &) > 0 for
any v; € R. This implies that > gi(¥o) # 0. Since we
can arbitrarily choose g;(zo) from the set Jf;(zo), we have
0 ¢ 0f(z0) where f(z) = 1 3, o file). =

Thus, Theorem 2 and Proposition 3 show that Algorithm 1
causes all regular nodes to converge to a region that also
contains the true solution, regardless of the actions of any
F-local set of Byzantine adversaries. The size of this region
scales with the quantity R*. Loosely speaking, this quantity
becomes smaller as the minimizers of the local functions
of the regular agents get closer together. More specifically,
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consider a fixed € > 0. If the functions f;(x) are translated
so that the minimizers x; get closer together (i.e., R; is
smaller and 6(e) is fixed), and the auxiliary point & is in
the hyperrectangle containing the minimizers (which is the
case when we run a resilient consensus algorithm such as
the one in [15]) then R* also decreases, and the state x;[k]
is guaranteed to become closer to the true minimizer as k
goes to infinity.

VI. NUMERICAL EXPERIMENT
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Fig. 1. Function value f(x) evaluated at the average of regular agents’

states (blue solid line), at the regular agent’s state that gives the lowest and
highest value (orange and yellow solid line respectively), at the auxiliary
point (blue dashed line), and at the minimizer (red dashed line)

In our numerical experiment, we set the total number of
agents to be n = 100 and the number of dimensions to be
d = 3. We construct a 15-robust network in order to tolerate
up to 2 Byzantine agents in the neighborhood of any regular
nodes i.e., F' = 2. Each regular node possesses a quadratic
function fi(z) = 327Q;x + blx where Q; and b; are
randomly chosen with Q; guaranteed to be positive definite.
Each Byzantine agent selects the transmitted vector based on
the target regular node. Specifically, the transmitted vector is
picked uniformly at random inside the hyper-rectangle that
guarantees that its state is not discarded by the target node.

Let f(z) 2 ﬁ > v,er fi(®) be the objective func-
tion (Problem 2) evaluated at x, f* 2 mingcga f(z) be
the optimal value of the objective function and Z[k] =
ﬁ > v.cr Tilk] be the average of the regular nodes’ states
at time-step k. In Figure 1, the objective value evalu-
ated at the average of all regular states f(Z[k]) is near
the optimal value f* after 40 iterations. Furthermore, the
maximum of the objective values among all regular agents
max,,er f(x;[k]) and the minimum of the objective values
among all regular agents min,, cr f(z;[k]) converge to the
same value, which is an implication of the fact that the
regular agents reach consensus (from Theorem 1).

Remark 2: The bound in Theorem 2, for large %, does not
preclude ||Z[k] —z*||2 > ||& —x*||2, where =* is a minimizer

2To satisfy Assumption 2 (bounded gradients), we saturate the gradients
during the updates when the norms are sufficiently large.

of f, and f(Z[k]) > f(&). However, our experiments (with
various settings), including the one above, show that the
objective function value evaluated at the average of the states
is much closer to the optimal value than that of the auxiliary
point in practice, i.e., f(Z[k]) — f* < f(&) — f*. 0O

VII. CONCLUSION AND FUTURE WORK

In this paper, we developed a resilient distributed op-
timization algorithm for multi-dimensional functions. Our
results guarantee that the regular states asymptotically reach
consensus and enter a bounded region that contains the
global minimizer, irrespective of the actions of Byzantine
agents, if the network topology satisfies certain conditions.
We characterized the size of this region. A promising avenue
for future research would be to further refine the size of
the convergence region, and to relax the conditions on the
network topology.
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