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Abstract— The problem of finding the minimizer of a sum of
convex functions is central to the field of optimization. Thus,
it is of interest to understand how that minimizer is related to
the properties of the individual functions in the sum. In this
paper, we consider the scenario where one of the individual
functions in the sum is not known completely. Instead, only
a region containing the minimizer of the unknown function
is known, along with some general characteristics (such as
strong convexity parameters). Given this limited information
about a portion of the overall function, we provide a necessary
condition which can be used to construct an upper bound on
the region containing the minimizer of the sum of known and
unknown functions. We provide this necessary condition in both
the general case where the uncertainty region of the minimizer
of the unknown function is arbitrary, and in the specific case
where the uncertainty region is a ball.

I. INTRODUCTION

Optimization is an important tool in various fields, includ-
ing machine learning [1], signal processing [2], control the-
ory, [3]–[5], and robotics [6]–[8]. Given an objective function
to be optimized, there are several standard algorithms that
can be applied to find the optimal variables [9]–[12].

However, in many applications, it may be the case that
the objective function is only partially known. For example,
such scenarios are central to the field of robust optimization,
where the objective function contains some parametric un-
certainty, and the goal is to choose the optimization variable
to be robust to the possible realizations of the uncertainty
[13]–[15]. The problem that we consider in this paper also
has a similar flavor, in that we assume that the optimization
objective is not fully known. However, rather than seeking
to find a single solution that is simultaneously robust to all
possible realizations of the uncertain parameter (or learning
that parameter [15]), we instead seek to characterize the
region where the minimizer could lie for each possible
realization of the uncertainty. This approach has the potential
to yield insights regarding the nature of the possible solutions
to the given uncertain optimization problem.

In our recent paper, [16] we determined a region con-
taining the possible minimizers of a sum of two strongly
convex functions, given only the minimizers of the local
functions, their strong convexity parameters, and a bound on
their gradients. In contrast, in this paper, we shall consider
the case of optimizing a sum of known and unknown
functions where only limited information about the unknown
function is available. In this case, we are given some general
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characteristics of the unknown function, namely a region
containing the minimizer, and the strong convexity parameter
of the function. Our goal is to determine necessary conditions
for a point to be a minimizer of the sum. In particular, we
will determine a region where the potential minimizer of the
sum can lie. Thus, if a point from within this region is chosen
as an estimate of the true minimizer of the sum, the size of
the region can be used to quantify how far the estimate can
be from the true minimizer. Below, we describe an example
scenario to illustrate this problem.

An Example Scenario
In supervised machine learning problems, one uses labeled

training data in order to construct a model that can be used to
perform regression or classification tasks. The training data
consists of pairs xi and yi which are the feature vector and
label of the i-th example, respectively. For simplicity, assume
that we have 2 training sets denoted by Dj = {x(j)

i , y
(j)
i }

Nj

i=1

for j ∈ {1, 2}. We can write the aggregate loss function of
the whole dataset D = D1 ∪ D2 as

L(w;D) =

N1∑
i=1

l(w; x
(1)
i , y

(1)
i )︸ ︷︷ ︸

L1(w;D1)

+

N2∑
i=1

l(w; x
(2)
i , y

(2)
i )︸ ︷︷ ︸

L2(w;D2)

where w is a model parameter that we need to optimize
and l(w; x

(j)
i , y

(j)
i ) is a loss function for each sample.

Assume that L(w;D) is a strongly convex function (which
will be the case when we consider linear regression problems
or functions incorporating l2 regularization [17]). Suppose
w∗ and w∗2 are the minimizer of L(w;D) and L2(w;D2),
respectively.

Now suppose that the entity trying to find the optimal
parameter w for L(w,D) can only access the data set D1,
but not D2 (or alternatively, can only access a corrupted or
poisoned version of D2 [18], [19]). In this case, the entity
may only know certain properties of the function L2(w;D2)
(such as its general form, convexity parameters, etc.), and a
region containing the minimizer of L2(w;D2) (e.g., based on
the statistical properties of the underlying data). Given this
limited information about L2(w;D2), and with L1(w;D1)
fully known, the entity could seek to find a region that is
guaranteed to contain the minimizer of the true function
L(w;D). This is the problem tackled in this paper.

II. NOTATION AND PRELIMINARIES

A. Sets
We denote the closure, interior, and boundary of a set E

by Ē , E◦, and ∂E = Ē \ E◦, respectively.
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B. Linear Algebra

We denote by Rn the n-dimensional Euclidean space. For
simplicity, we often use (x1, . . . , xn) to represent the column
vector

[
x1 x2 . . . xn

]T
. We use ei to denote the i-th

basis vector (the vector of all zeros except for a one in the i-
th position). We denote by 〈u, v〉 the Euclidean inner product
of u and v i.e., 〈u, v〉 = uT v, by ‖ · ‖ the Euclidean norm
‖x‖ := (

∑
i x

2
i )

1/2 and by ∠(u, v) the angle between vectors
u and v. Note that

∠(u, v) = arccos

(
〈u, v〉
‖u‖‖v‖

)
.

We use B(x0, r) = {x ∈ Rn : ‖x − x0‖ < r} and B̄(x0, r)
to denote the open and closed ball, respectively, centered at
x0 of radius r. Moreover, the function u(x1, x2) : (Rn ×
Rn) \ {(z1, z2) ∈ Rn × Rn : z1 = z2} → Rn denotes the
unit vector in the direction of x1 − x2, i.e.,

u(x1, x2) =
x1 − x2

‖x1 − x2‖
with x1 6= x2. (1)

C. Convex Sets and Convex Functions

A set C in Rn is said to be convex if, for all x1 and x2 in C
and all θ in the interval (0, 1), the point (1−θ)x1 +θx2 ∈ C.

We say a vector g ∈ Rn is a subgradient of f : Rn → R at
x ∈ dom f if for all z ∈ dom f , f(z) ≥ f(x) + 〈g, z− x〉.

If f is convex and differentiable, then its gradient at
x is a subgradient; however, a subgradient can exist even
when f is not differentiable at x. A function f is called
subdifferentiable at x if there exists at least one subgradient
at x. The set of subgradients of f at the point x is called
the subdifferential of f at x, and is denoted ∂f(x). The
subdifferential ∂f(x) is always a closed convex set, even if
f is not convex. In addition, if f is continuous at x, then the
subdifferential ∂f(x) is bounded.

A function f is called strongly convex with parameter
σ > 0 (or σ-strongly convex) if for all points x, y ∈ dom f ,
〈gx − gy, x− y〉 ≥ σ‖x− y‖2 for all gx ∈ ∂f(x) and gy ∈
∂f(y). We denote the set of all convex functions by F , and
the set of all σ-strongly convex functions with minimizer x∗u
in the set A ⊆ Rn and dom(·) = Rn by S(A, σ).

III. PROBLEM STATEMENT

We consider a function of the form

f(x) = fk(x) + fu(x) (2)

where fk and fu are convex functions. We assume that
we know fk exactly, but do not know fu, other than some
general properties described below.

We assume that fk ∈ F and fu ∈ S(A, σ) where A
is a compact set (i.e., we only know that fu is σ-strongly
convex and that its minimizer lies in some set A). Our goal
is to find the set of points x ∈ Rn that could potentially be
the minimizer of f(x) in (2). To this end, we will seek to
characterize the region

M(fk,A, σ) ,
{
x ∈ Rn : ∃fu ∈ S(A, σ),

0 ∈ ∂fk(x) + ∂fu(x)
}
. (3)

For simplicity of notation, we will omit the argument of the
set M(fk,A, σ) and write it as M. Note that M contains
all points x ∈ Rn that can potentially be a minimizer of f ,
given fk, and the quantity σ and the set A pertaining to fu.

Remark 1: Returning to the regression scenario involving
data that is not directly available to the optimizing entity
(described in the Introduction), the unknown function would
be of the form fu(x) = ‖Ax − y‖2 where A is a matrix
containing (unknown) training data and y is the (unknown)
vector of corresponding labels. When A has full rank, the
loss function is strongly convex. In addition, if some general
underlying statistical properties of the data are known to the
optimizing entity, it could estimate a lower bound on the
strong convexity parameter σ, and a region containing the
possible minimizer of fu(x). Thus, using this information,
the central entity seeks to find the set of possible minimizers
of the sum of this unknown function and its own loss function
(corresponding to data that it has access to directly).

IV. ANALYSIS FOR GENERAL A
In this section, we provide a necessary condition for a

point x∗ ∈ dom fk to be the minimizer of f in the general
case where the uncertainty region A of the minimizer of the
unknown function is compact, but of arbitrary shape.

For any given point x∗ ∈ Rn \ A, define the set

Ã(A, x∗) ,
{
x ∈ ∂A : (1− θ)x+ θx∗ /∈ A, ∀θ ∈ (0, 1)

}
.

(4)

In words, Ã(A, x∗) is the set of points x on the boundary
of A such that the line joining x to x∗ does not intersect A
(except at x). We now present the main result of this section
(in the interest of space, we provide the proof in [20]).

Theorem 1: Suppose fk ∈ F and A ⊆ dom fk is a
compact set. A necessary condition for a point x∗ ∈ Rn
to be in M(fk,A, σ) \ A is

min
x∗
u∈A, gkx∗∈∂fk(x∗)

〈gkx∗ , u(x∗, x∗u)〉
‖x∗ − x∗u‖

≤ −σ. (5)

Furthermore, the above inequality (5) can be reduced to

min
(x∗

u,g
k)∈X (fk,A,x∗)

〈gk, u(x∗, x∗u)〉
‖x∗ − x∗u‖

≤ −σ (6)

where

X (fk,A, x∗) ,
{

(x, g) ∈ Ã(A, x∗)× ∂fk(x∗) :

〈g, u(x∗, x)〉 < 0
}
. (7)

We can interpret the necessary condition in Theorem 1 as
follows. To check whether x∗ ∈ Rn can be a minimizer of
f(x), we can follow the inequality (5) and search for a pair
(x∗u, g

k
x∗) with x∗u ∈ A and gkx∗ ∈ ∂fk(x∗) such that the pair

satisfies the inequality

〈gkx∗ , u(x∗, x∗u)〉
‖x∗ − x∗u‖

≤ −σ. (8)

However, the inequality (6) with X (fk,A, x∗) defined in (7)
suggests that we do not have to search throughout the space
A× ∂fk(x∗). Instead, we can restrict our attention to be in
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the set X . Now we have the variables x∗u and gkx∗ that are
coupled through the inequality 〈gkx∗ , u(x∗, x∗u)〉 < 0. That
is, if we first choose gkx∗ ∈ ∂fk(x∗), then we can consider
x∗u that is in the set {x ∈ ∂A : 〈gkx∗ , u(x∗, x)〉 < 0, (1 −
θ)x+ θx∗ /∈ A, ∀θ ∈ (0, 1)}. Similarly, if we first choose
x∗u ∈ {x ∈ ∂A : (1 − θ)x + θx∗ /∈ A, ∀θ ∈ (0, 1)},
then we can consider gkx∗ that is in the set {g ∈ ∂fk(x∗) :
〈g, u(x∗, x)〉 < 0}.

If the function fk is differentiable at x∗, we have a single
element in the set ∂fk(x∗), namely ∇fk(x∗), and we can
search for x∗u ∈ ∂A such that 〈∇fk(x∗), u(x∗, x∗u)〉 < 0.
However, if the set A is arbitrary, this search may be
computationally expensive. In the next section, we consider
additional structure on the set A to simplify the search.

Remark 2: Note that the set A◦ ⊆ M(fk,A, σ). To see
this, note that for all x∗ ∈ A◦, there exists ε > 0 such
that B(x∗, ε) ⊂ A◦. Suppose g ∈ ∂fk(x∗). We can choose
fu(x) = σu

2

∥∥x − (x∗ + g
σu

)∥∥2
where σu = 2k‖g‖

ε and
k = max

{
1, σε

2‖g‖
}

. One can verify that x∗u ∈ B(x∗, ε),
∇fu(x∗) = −g, and σu ≥ σ.

V. ANALYSIS FOR THE CASE WHERE A IS A BALL

Here, we consider additional structure on the uncertainty
set A in order to provide a more specific characterization
of the region M. In particular, we consider A = B̄(x̄, ε0),
where x̄ is the best guess of what the true parameter x∗u
is, and ε0 is the maximum possible deviation of the true
minimizer from our best guess.

We begin by investigating a property of the necessary
condition (6) under a coordinate transformation. Suppose
x = (x(1), x(2), . . . , x(n)) ∈ Rn and x∗ /∈ B(x̄, ε0). Let
T and R be the translation and rotation operators such that
R(T(x̄)) = 0, R(T(x∗)) = (x̃∗(1), 0, . . . , 0) with x̃∗(1) > 0,
and R(gk) = (g̃(1), g̃(2), 0, . . . , 0) with g̃(2) ≥ 0 while
preserving the distance between any two points. In other
words, given the ball B̄(x̄, ε0), a point x∗ and a vector gk,
we transform the coordinates so that the ball is centered at
the origin, the point x∗ lies on the x-axis, and the vector gk

lies on the x-y plane.
Next, consider the expression 〈g,u(x∗,x∗

u)〉
‖x∗−x∗

u‖
. Notice that both

numerator and denominator can be written as inner products.
Since R is a unitary operator, we have〈

R(g), u
(
R(T(x∗)),R(T(x∗u))

)〉
‖R(T(x∗))−R(T(x∗u))‖

=
〈g, u(x∗, x∗u)〉
‖x∗ − x∗u‖

.

This means that even though we use the coordinate transfor-
mation R(T(·)), we can still apply Theorem 1. Therefore,
for the purpose of deriving our main result, without loss
of generality, we can consider x̄ = 0, x∗ = (x∗(1), 0, . . . , 0)

where x∗(1) > ε0, and g (= gk) = (g(1), g(2), 0, . . . , 0), where
g(2) ≥ 0.

Before going into the result, we introduce some definitions
that will appear in the theorem. For any given x∗ ∈ Rn,
define z1(x∗) ∈ Rn as

z1(x∗) , arg min
x∈B(x̄,ε0)

‖x− x∗‖. (9)

By our assumption that x∗ = (x∗(1), 0, . . . , 0), we have
z1(x∗) = (ε0, 0, . . . , 0). Since x∗ /∈ B(x̄, ε0), the point
z1 is unique and is on ∂B(x̄, ε0). If g 6= α(x∗ − x̄) =
(αx∗(1), 0, . . . , 0) for all α ≥ 0 (i.e., ∠(g, x∗ − x̄) 6= 0),
we define the set P to be such that

P(g, x∗) , arg min
x∈∂B(x̄,ε0)

∠(g, x− x∗),

the point z2 ∈ Rn to be such that

z2(g, x∗) , arg min
x∈P(g,x∗)

‖x− x∗‖, (10)

and the curve C0(x̄, ε0, g, x
∗) to be the shortest path on the

surface ∂B(x̄, ε0) that connects z1 and z2 together, i.e., C0
is the geodesic path between z1 and z2 on ∂B(x̄, ε0).

To clarify these definitions, we introduce two more ob-
jects. Let L be the ray that starts from the point x∗ and runs
parallel to the vector g i.e.,

L(g, x∗) = {x ∈ Rn : ∃ t ∈ [0,∞), x = x∗ + tg}.

If g 6= α(x∗ − x̄) = (αx∗(1), 0, . . . , 0) for all α ∈ R, let P2

be the 2-dimensional plane that contains the vectors g and
x∗ − x̄ as its bases, and contains the point x∗, i.e.,

P2(x̄, g, x∗) , {x ∈ Rn : ∃ s, t ∈ R such that
x = x∗ + sg + t(x∗ − x̄)}

= {x ∈ Rn : x(3) = x(4) = . . . = x(n) = 0},

where the second equality follows from the fact that x∗ =
(x∗(1), 0, 0, . . . , 0) and g = (g(1), g(2), 0, . . . , 0).

There are two possible cases: (i) the ray L passes through
the ball B(x̄, ε0) and (ii) the ray L does not pass through the
ball B(x̄, ε0).

In the first case, we have

min
x∈∂B(x̄,ε0)

∠(g, x− x∗) = 0,

and there are either one or two elements in the set P . The
point z2 is the one that closer to the point x∗. Note that
z2 ∈ P2. The illustration of the first case is shown in Fig. 1.

In the second case, we have

min
x∈∂B(x̄,ε0)

∠(g, x− x∗) > 0.

The vector z2−x∗ is a tangent vector at the point z2 on the
ball B̄ and has angle ∠(z2−x∗, x̄−x∗) = arcsin

(
ε0

‖x∗−x̄‖
)
.

Furthermore, the point z2 is on the plane P2 since z2−x∗ and
x̄− x∗ must be on the same 2D-plane in order to minimize
the angle between them. The illustration of the second case
is shown in Fig. 2.

Since P2 passes through the center x̄ of the ball B̄(x̄, ε0),
we can define the great circle G ⊂ P2 which is the
intersection of ∂B̄ with P2. Since z1 and z2 are in G (and
also in P2), the geodesic path C0 is in P2. The geodesic path
in both cases is also shown in Fig. 1 and Fig. 2.

Before stating the theorem, define the open half-space

H(g, x∗) , {x ∈ Rn : 〈g, u(x∗, x)〉 < 0},
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Fig. 1. The points z1 and z2, and the curve C0 on the surface ∂B(x̄, ε0)
in the case that the ray L passes through the ball B(x̄, ε0).

Fig. 2. The points z1 and z2, and the curve C0 on the surface ∂B(x̄, ε0)
in the case that the ray L does not pass through the ball B(x̄, ε0).

Note that C0(x̄, ε0, g, x
∗)∩H(g, x∗) 6= ∅ as long as ∠(g, z2−

x∗) < π
2 or equivalently, ∠(g, x̄−x∗) < π

2 +arcsin
(

ε0
‖x∗−x̄‖

)
as shown in Fig. 3 and 4.

We now come to the main result of this section.
Theorem 2: Suppose fk ∈ F and ε0 > 0. A necessary

condition for a point x∗ ∈ Rn to be inM
(
fk,B(x̄, ε0), σ

)
\

B(x̄, ε0) is

min
(x∗

u,g
k)∈X̃ (fk,x̄,ε0,x∗)

〈gk, u(x∗, x∗u)〉
‖x∗ − x∗u‖

≤ −σ (11)

where

X̃ (fk, x̄, ε0, x
∗) ,

{
(x, g) ∈ C0(x̄, ε0, g, x

∗)× ∂fk(x∗)}.
(12)

Proof: For a given gkx∗ ∈ ∂fk(x∗) with gkx∗ 6= 0, we
consider the angle ∠(gkx∗ , x∗ − x̄) in two disjoint cases:
(a) Suppose the gradient gkx∗ is colinear with the vector x∗−

x̄.
(i) If gkx∗ = α(x∗ − x̄) for some α > 0 (i.e., gkx∗

is pointing directly away from B̄(x̄, ε0) on the
x(1)-axis), then 〈gkx∗ , u(x∗, x)〉 > 0 for all x ∈
B(x̄, ε0). Thus, no points in B(x̄, ε0) can satisfy
the inequality (8).

(ii) If gkx∗ = α(x∗ − x̄) for some α < 0 (i.e., gkx∗ is
pointing directly toward B̄(x̄, ε0) on the x(1)-axis),
then the ray L passes through the ball B̄(x̄, ε0)
at z1, and thus {z1(x∗)} = {z2(gkx∗ , x∗)} = C0.
Furthermore, B̄ ⊂ H. For simplicity of notation,

we will omit the arguments and write z1(x∗) and
z2(gkx∗ , x∗) as z1 and z2, respectively. From (10),
for all x ∈ ∂B̄, we have

∠(gkx∗ , u(z2, x
∗)) ≤ ∠(gkx∗ , u(x, x∗))

⇒ ∠(gkx∗ , u(x∗, z2)) ≥ ∠(gkx∗ , u(x∗, x))

⇒ cos∠(gkx∗ , u(x∗, z2)) ≤ cos∠(gkx∗ , u(x∗, x))

⇒ 〈gkx∗ , u(x∗, z2)〉 ≤ 〈gkx∗ , u(x∗, x)〉. (13)

Since z2, x ∈ H, we have 〈gkx∗ , u(x∗, z2)〉 ≤
〈gkx∗ , u(x∗, x)〉 < 0. In addition, from (9), for all
x ∈ ∂B̄, we have 0 < ‖x∗−z1‖ ≤ ‖x∗−x‖. Since
z1 = z2 in this case, we obtain

−‖gkx∗‖
‖x∗ − z1‖

=
〈gkx∗ , u(x∗, z1)〉
‖x∗ − z1‖

≤ 〈g
k
x∗ , u(x∗, x)〉
‖x∗ − x‖

for all x ∈ ∂B̄. Thus, it suffices to only check
z1 ∈ C0 to see if (8) is satisfied.

(b) Suppose the gradient gkx∗ is not colinear with the vector
x∗ − x̄. Then we can define the points z1 and z2 as
described earlier. If

∠(gkx∗ , x̄− x∗) ≥
π

2
+ arcsin

( ε0
‖x∗ − x̄‖

)
,

then B̄(x̄, ε0) ∩H(gkx∗ , x∗) = ∅ as shown in Fig. 3, and
no points in B(x̄, ε0) can satisfy the inequality (8). If

∠(gkx∗ , x̄− x∗) <
π

2
+ arcsin

( ε0
‖x∗ − x̄‖

)
,

then B̄(x̄, ε0) ∩ H(gkx∗ , x∗) 6= ∅ and z2 ∈ H(gkx∗ , x∗)
as shown in Fig. 4. In this case, consider a point x ∈
∂B̄(x̄, ε0) ∩H(gkx∗ , x∗) and x /∈ C0.

(i) Suppose ‖x − x∗‖ > ‖z2 − x∗‖. By the defini-
tion of z2 in (10), we have ∠(gkx∗ , u(z2, x

∗)) ≤
∠(gkx∗ , u(x, x∗)). Since z2, x ∈ H, using the
same argument as (13), we get 〈gkx∗ , u(x∗, z2)〉 ≤
〈gkx∗ , u(x∗, x)〉 < 0. Therefore,

〈gkx∗ , u(x∗, z2)〉
‖z2 − x∗‖

<
〈gkx∗ , u(x∗, x)〉
‖x− x∗‖

,

i.e., if x satisfies (8), then so does z2. This means
that we can consider z2 ∈ C0 instead of any point in
∂B̄(x̄, ε0) ∩H(gkx∗ , x∗) with greater distance from
x∗.

(ii) Suppose ‖x − x∗‖ ≤ ‖z2 − x∗‖. Since C0 is
connected and h(y) = ‖y − x∗‖ is a continuous
function, {h(y) : y ∈ C0} is connected. Then, we
have[
‖z1 − x∗‖, ‖z2 − x∗‖

]
⊆
{
‖y − x∗‖ : y ∈ C0

}
.

Thus, there exists a z ∈ C0∩H such that ‖z−x∗‖ =
‖x− x∗‖. However, since C0 ⊂ P2, we get that

∠(gkx∗ , u(z, x∗)) ≤ ∠(gkx∗ , u(x, x∗)).
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Fig. 3. The area above the black dotted line is H(gkx∗ , x
∗) and the

blue dotted line shows the angle arcsin
( ε0
‖x∗−x̄‖

)
. In this case, the angle

∠(gkx∗ , x̄−x
∗) ≥ π

2
+arcsin

( ε0
‖x∗−x̄‖

)
, so B̄(x̄, ε0)∩H(gkx∗ , x

∗) = ∅.

Fig. 4. The area above the black dotted line is H(gkx∗ , x
∗) and the

blue dotted line shows the angle arcsin
( ε0
‖x∗−x̄‖

)
. In this case, the angle

∠(gkx∗ , x̄−x
∗) < π

2
+arcsin

( ε0
‖x∗−x̄‖

)
, so B̄(x̄, ε0)∩H(gkx∗ , x

∗) 6= ∅.

Furthermore, since z, x ∈ H, using the same
argument as (13), we get 〈gkx∗ , u(x∗, z)〉 <
〈gkx∗ , u(x∗, x)〉 < 0. In this case, we also have

〈gkx∗ , u(x∗, z)〉
‖z − x∗‖

≤ 〈g
k
x∗ , u(x∗, x)〉
‖x− x∗‖

,

i.e., if x satisfies (8), then so does z.
Thus, we conclude that for each point x ∈ ∂B̄ ∩ H, there
is a point z ∈ C0 such that 〈g

k
x∗ ,u(x∗,z)〉
‖x∗−z‖ ≤ 〈gkx∗ ,u(x∗,x)〉

‖x∗−x‖ .
Therefore, to check if there is a point x ∈ ∂B̄ ∩H satisfying
(8), we only need to check points in C0, yielding (11).

In fact, we can replace C0(x̄, ε0, g, x
∗) in Theorem 2

by C0(x̄, ε0, g, x
∗) ∩ H(g, x∗). However, for simplicity of

exposition, we forego the discussion of this further reduction
in search space.

The set X̃ (fk, x̄, ε0, x
∗) defined in (12) suggests that we

do not have to search for a pair (x∗, gk) that satisfies the
inequality

〈gk, u(x∗, x∗u)〉
‖x∗ − x∗u‖

≤ −σ

throughout the set X (fk,A, x∗) defined in (7) but can
instead restrict our attention to be in the set X̃ (fk, x̄, ε0, x

∗)
in (12). Since the curve C0 depends on the vector gk that we
choose from ∂fk(x∗), we have to first select gk ∈ ∂fk(x∗)
and then we can consider the points on the curve C0 to see
if they satisfy (8). We will use this in the algorithm for
computing the region M in the next section.

VI. ALGORITHM

Consider the case from the previous section where the
uncertainty set is a ball, i.e., A = B̄(x̄, ε0). In this subsection,
we will give an algorithm (Algorithm 1) to identify the
region that satisfies the necessary condition (11). We provide
a discussion of each of the steps below.

Algorithm 1 Region M Identification (Ball Case)
Let X ⊆ dom fk be a set of points in the space
Input X , fk ∈ F , x̄ ∈ Rn, ε0 > 0, and σ > 0
Output minimizer(X)

1: for x∗ ∈ X do . Loop through the space
2: minimizer(x∗)← false
3: d← ‖x̄− x∗‖
4: g ← ∇fk(x∗)
5: α← ∠(g, x̄− x∗)
6: if α < π

2 + arcsin
(
ε0
d

)
then

7: for θ ∈
[
0, arccos( ε0d )

]
do

8: ‖x∗ − x∗u‖ ←
√
d2 + ε20 − 2ε0d cos θ

9: ∠(g, x∗−x∗u)← α+
[
π−arcsin

(
ε0 sin θ
‖x∗−x∗

u‖
)]

10: 〈g, u(x∗, x∗u)〉 ← ‖g‖ cos∠(g, x∗ − x∗u)

11: if 〈g,u(x∗,x∗
u)〉

‖x∗−x∗
u‖
≤ −σ then

12: minimizer(x∗)← true
13: return minimizer(X)

Let X be a set of points; we wish to check whether
each point in X is a potential minimizer of fk + fu. For
simplicity, we assume that the function fk is differentiable,
i.e., ∂fk(x∗) = {∇fk(x∗)} and the set of points X ⊆
dom fk. For example, we can use linspace in MATLAB
to form a range for each axis, followed by using meshgrid
to construct X . The object minimizer is an array that keeps
a Boolean value for each point in X to indicate whether it is
a potential minimizer. First, we loop through each point x∗

in the set X and assign Boolean ‘false’ to that x∗. In order to
change the Boolean to be ‘true’, the point x∗ has to satisfy
the inequality (11). Before checking that inequality, we need
to compute several intermediate variables. In the algorithm,
we compute the distance between the center of the ball x̄
and the point x∗ (d ← ‖x̄ − x∗‖), the gradient of fk at
x∗ (g ← ∇fk(x∗)), and the angle between the gradient and
reference (α← ∠(g, x̄− x∗)). Note that we can compute α
explicitly by

α← ∠(g, x̄− x∗) = arccos
( 〈g, x̄− x∗〉
‖g‖‖x̄− x∗‖

)
.

We then verify the condition

∠(g, x̄− x∗) < π

2
+ arcsin

( ε0
‖x∗ − x̄‖

)
(line 6); if this is not satisfied, no points in B(x̄, ε0) can
satisfy the inequality (8) as argued in the proof of Theorem
2 and illustrated in Fig. 3. The next step is to compute the
path C0, which we parametrize by using the variable θ. The
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Fig. 5. Given ε0, d, and θ, we can compute ‖x∗ − x∗u‖.

Fig. 6. Given ε0 and d, we can compute ∠(z2 − x̄, x∗ − x̄).

variable θ in the algorithm corresponds to

θ = ∠(x∗u − x̄, x∗ − x̄) where x∗u ∈ C0

as shown in Fig. 5. So, we need to know the range of θ
that characterizes the path C0. This range can be computed
by considering the points z1 and z2, at which the angle θ
equals 0 and arccos( ε0

‖x̄−x∗‖ ), respectively, as shown in Fig.
6. Consider Fig. 5. For each θ in the range (discretized to
a sufficiently fine resolution), we can compute the distance
‖x∗−x∗u‖ (line 8) by using the cosine law. Consider Fig. 7.
We can compute the angle ∠(g, x∗ − x∗u) (line 9) by using

∠(g, x∗ − x∗u) = ∠(g, x∗ − x̄) + arcsin
( ε0 sin θ

‖x∗ − x∗u‖

)
and ∠(g, x∗ − x̄) = (π − ∠(g, x̄− x∗)).

After that we compute the inner product 〈g, u(x∗, x∗u)〉 (line
10). Finally, we can compute the LHS of (11) and compare
it to −σ. If the inequality (11) is satisfied by the current
values x∗ and θ, we set the Boolean associated to this x∗ to
be ‘true’. We provide an example illustrating this approach
in [20].

VII. CONCLUSIONS

In this paper, we studied the properties of the minimizer
of the sum of convex functions in which one of the functions
is unknown but the others are known. However, we assumed
that the unknown function is strongly convex with known
convexity parameter, and that we have a region A where the
minimizer of this function lies. We established a necessary

Fig. 7. Given ε0, θ, ‖x∗ − x∗u‖, and α, we can compute ∠(g, x∗ − x∗u).

condition for a given point to be a minimizer of the sum
of known and unknown functions for general compact A.
We then considered a special case where the region of the
unknown function’s minimizer is a ball. In this case, we
simplified the necessary condition and provided an algorithm
to determine the region that satisfies the necessary condition.

Future work could focus on providing sufficient conditions
for a given point to be a minimizer (to complement our nec-
essary condition). Alternatively, one could analyze properties
of the set of solutions that satisfy the necessary condition.
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