
SplitServe: Efficiently Splitting Apache Spark Jobs
Across FaaS and IaaS

Aman Jain
Pennsylvania State University

axj182@psu.edu

Ata F. Baarzi
Pennsylvania State University

azf82@psu.edu

George Kesidis
Pennsylvania State University

gik2@psu.edu

Bhuvan Urgaonkar
Pennsylvania State University

bhuvan@cse.psu.edu

Nader Alfares
Pennsylvania State University

nna5040@psu.edu

Mahmut Kandemir
Pennsylvania State University

kandemir@cse.psu.edu

CCS Concepts • Computer systems organization Cloud
computing; • Information systems Cloud based
storage; MapReduce-based systems.

Keywords Cloud Computing; Cloud Functions; Virtual Ma-
chines; Apache Spark

ACM Reference Format:
Aman Jain, Ata F. Baarzi, George Kesidis, Bhuvan Urgaonkar, Nader
Alfares, and Mahmut Kandemir. 2020. SplitServe: Efficiently Split-
ting Apache Spark Jobs Across FaaS and IaaS . In 21st Interna-
tional Middleware Conference (Middleware ’20), December 7–11,
2020, Delft, Netherlands. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3423211.3425695

Abstract — Due to their lower startup latencies and finer-
grain pricing than virtual machines (VMs), Amazon Lambdas
and other cloud functions (CFs) have been identified as ideal
candidates for handling unexpected spikes in simple, stateless
workloads. However, it is not immediately clear if CFs would
be similarly effective in autoscaling complex workloads in-
volving significant state transfer across distributed application
components. We have found that, through careful design, cur-
rently available CFs can indeed be useful even for complex
workloads. To demonstrate this, we design and implement
SplitServe, an enhancement of Apache Spark. If not enough
executors on existing VMs are available for a newly arriving
latency-sensitive job, SplitServe is able to use CFs to quickly
bridge this shortfall in VMs, so avoiding the startup latencies
of newly requested VMs. If desirable in terms of performance
or cost, when newly requested VMs, or executors on existing
VMs, do become available, SplitServe is able to move ongo-
ing work from CFs to them. Our experimental evaluation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8153-6/20/12. . . $15.00
https://doi.org/10.1145/3423211.3425695

SplitServe using four different workloads (either on a mixture
of VM-based executors and CFs or just CFs) shows that it
improves execution time by up to (a) 55% for workloads with
small to modest amount of shuffling, and (b) 31% in work-
loads with large amounts of shuffling, when compared to only
VM-based autoscaling.

1 Introduction
Many customers (tenants) are motivated to migrate to the
public cloud because of the significant savings in infrastruc-
ture costs for their private clouds. Having migrated, tenants
often realize that they can further reduce costs, subject to
performance requirements, by more careful management of
their workloads and of the resources they procure. In par-
ticular, they can take advantage of the diversity in available
cloud services, including consideration of how resources are
provisioned for them and how they are billed in concert with
more intelligent characterization of the resource needs of their
workloads.

Public cloud providers now offer a plethora of service
types ranging from infrastructure as a service (IaaS), most
prominently virtual machine (VM) instances, software as a
service (SaaS), and the freshly trending “serverless comput-
ing” or platform as a service (PaaS). Perhaps the most popular
form of PaaS is Function-as-a-Service (FaaS), or cloud func-
tions (CFs), that allows a tenant to execute custom functions
within lightweight containers or virtual machines (VMs)1

managed by the cloud. Commercially available examples
of CFs include offerings from Amazon (AWS Lambda) [3],
Google (Google Cloud Functions) [21], Microsoft (Azure
Functions) [6], and IBM (IBM Cloud functions) [23]2.

CFs offer much lower startup latencies than general-purpose
VMs, about 100ms when warm for AWS Lambdas vs. 2 min-
utes or more for AWS VMs (“instances”), respectively, with a
lower minimum price. This has made it appealing to use them
for handling unexpected spikes in mostly stateless workloads

1AWS has used a specialized small footprint VM called Firecracker instead
of containers for its Lambdas since 2018 [1, 18].
2In the rest of this paper, we will use Lambda to refer to the AWS offering
and FaaS or CF when discussing this type of offering more generally.

1

https://doi.org/10.1145/3423211.3425695
https://doi.org/10.1145/3423211.3425695

Middleware ’20, December 7–11, 2020, Delft, Netherlands A.Jain, A.F.Baarzi, G.Kesidis, B.Urgaonkar, N.Alfares, and M.Kandemir

that are latency-sensitive [32, 37, 49]. Upon a surge in work-
load beyond what the provisioned VM capacity can handle,
CFs can be launched quickly and excess workload can be
directed their way. If the spike persists, additional VMs may
be launched and CFs can be decommissioned when the VMs
are ready. This is desirable both because: (a) VMs are cheaper
over long periods due to their lower per-unit resource price,
and (b) current CFs often have a limited lifetime (e.g., 15
minutes for Lambdas).

It is not immediately clear if using CFs for latency-critical
workloads that exchange significant state among distributed
application components can be similarly effective. Reasons to
be skeptical include the following limitations in currently of-
fered CFs: (i) relatively limited resource capacity (e.g., Lamb-
das may only have at most 3GB main memory, as of this
writing), (ii) limited lifetime, and (iii) limited support for
sharing the intermediate state (e.g., Lambdas must use an
external storage service such as AWS S3). Contrary to what
conventional wisdom might suggest, we show that it is indeed
possible to exploit the faster startup times of CFs to improve
the cost/performance of autoscaling even for complex work-
loads.
Approach and Contributions: Our general approach con-
sists of (a) launching Lambdas to handle workload in excess
of the currently provisioned VM capacity and (b) later, if
needed, segueing from these CFs to newly available VMs
(or to executors that become available on existing VMs). For
complex workloads, however, a number of design choices
must be made to address the limitations of CFs (e.g., [24,
25, 35, 44]) as well as idiosyncrasies of the application. We
demonstrate how all these challenges may be addressed by
embodying our approach in SplitServe, an enhancement of
Apache Spark [39, 48], that allows specified tasks comprising
a parallel Spark job to run on AWS Lambdas with the rest
simultaneously running on VMs (the latter being the default).
To accomplish this, we make three important enhancements
to Spark:

• We enhance the Spark master3 so it may launch ex-
ecutors on both VMs and Lambdas and divide a single
job’s tasks across them.

• We implement a high-throughput storage layer for inter-
mediate data shuffling using HDFS, which is suitable
for both VM and Lambda based executors.

• We implement mechanisms for terminating executors
running on Lambdas to efficiently segue to VM-based
executors without triggering extensive execution roll-
back due to Spark’s fault recovery.

We evaluate SplitServe using diverse benchmark work-
loads with different data shuffling intensities. Recall that our
interest is in latency-critical workloads wherein the user ex-
pects a response within a short amount of time. Therefore,

3Note that the Spark master must itself be on a VM since it is a long-running
entity.

we employ DataBrick’s Spark-SQL-Perf [40] TPC-DS bench-
mark which utilizes a generalized query model. This model
allows the benchmark to capture important aspects of the
interactive, iterative nature of on-line analytical processing
(OLAP) queries many of which are constructed to answer
immediate and specific business questions [31, 34]. Addition-
ally, we use Intel’s HiBench [22] machine learning (K-means
clustering) and web-search related (PageRank) workloads.
Although these ML and search workloads are generally con-
sidered to be of the “batch processing” type where the metric
of interest is throughput as opposed to latency, they still offer
useful evaluation scenarios. There are in fact scenarios where
latency matters even for such workloads, for e.g., when using
ML or big data computing in finance [42]. Our evaluation
results reveal that SplitServe is suitable for fast autoscaling
using AWS Lambdas and provides advantages over purely
VM- or Lambda-based execution. Specifically, by jointly us-
ing VMs and Lambdas to execute Spark jobs, we find up to
55% execution time improvement for jobs with small to mod-
est amount of shuffling and up to 31% improvement jobs with
large amounts of shuffling when compared to only VM-based
autoscaling. SplitServe code and all our experimental data is
open-sourced and freely available online [41].

2 Related Work

Aspect −→ Uses Uses Execution Cost
VMs? CFs? time

TR-Spark [46] Yes No No n/a
Apache Flink [8] Yes No Yes Yes

Burscale [7] Yes No Yes Yes
Qubole [36] No Yes No No

Flint [26] No Yes No No
ExCamera [20] No Yes n/a n/a

numpywren [38] No Yes No No
PyWren [24] No Yes No No

Locus (PyWren+Redis) [35] No Yes Yes No
Cirrus [25] No Yes Yes No

gg [19] No Yes Yes No
FEAT [32], MArk [49] Yes Yes n/a n/a

SplitServe Yes Yes Yes Yes

Table 1. A comparison of SplitServe against the state-of-the-
art platforms exploiting VMs and Cloud Functions (CFs). The
rightmost two columns relate to whether SplitServe shuffling
compares favorably in terms of execution-time performance
and cost to Vanilla Spark running on public-cloud VMs.

Table 1 summarizes the most important ways in which
our proposed solution differs from the state of the art solu-
tions, most which making a case for either IaaS or FaaS but
not a combination of the two. Application frameworks like
Apache Spark [39], and Apache Flink [8], a framework and
distributed processing engine for stateful computations over
unbounded and bounded data streams, employ only VMs to

2

SplitServe: Efficiently Splitting Apache Spark Jobs Across FaaS and IaaS Middleware ’20, December 7–11, 2020, Delft, Netherlands

run, complex Map-Reduce and bulk synchronous processing
(BSP) workloads [14, 28]. These workloads typically gener-
ate a large amount of intermediate shuffle data that are either
communicated directly between functions, or are persisted
in storage. Even though these frameworks support dynamic
executor allocation, scaling down the cluster has always been
a tedious problem [12]. This is largely because, even after
flushing their task queues, executors may continue their role
as servers for the shuffle data for other workers. Given the
fault tolerance mechanisms built into these frameworks, there
may be cost overheads and performance degradation due to
the transferal of large amounts of state-data for execution roll-
back. Furthermore, if an executor is lost, the entire execution
dependency is rebuilt using the transformation lineage that
Spark internally maintains.

TR-Spark [46], runs as a secondary background task on
transient resources and curbs performance degradation with
fleeting executors using periodic checkpointing of the its
resilient distributed datasets (RDDs) [47]. I/O operations are
fast and cost-effective since shuffle writes are to the local
storage of the worker/slave nodes, instead of some external
storage. However, since the executors are usually large in size,
the straggler problems common to BSP workloads remain.

The tenant can optionally employ burstable VMs e.g., [43].
A recent system called BurScale makes a case for provi-
sioning burstable VMs as “standby” resources to deal with
transient overloads while new regular VMs are being pro-
cured from the cloud by an autoscaler [7] thereby helping
hide performance degradation during the possibly slow addi-
tion of new VMs. One benefit of BurScale over SplitServe
is that it does not require modifications to the applications
considered whereas SplitServe requires non-trivial enhance-
ments to Apache Spark. On the other hand, BurScale deals
with relatively simple applications (replicarted web servers
and Memcached-based caching) and its efficacy for complex
applications like Spark remains to be demonstrated. Also,
BurScale’s efficacy relies on being able to manage token state
properly despite workload uncertainty, a complexity Split-
Serve does not face. Generally, we view these as solutions
with complementary strengths and certain tenants might in
fact find it beneficial to combine these ideas into a single
system. Even if a BurScale like system for Spark were de-
vised, the motivation for SplitServe remains: it’s possible that
a latency critical job will arrive to find insufficient executors
(or credits) available among the VMs and burstable VMs have
the same slow spin-up delay of regular VMs, i.e., autoscaling
with burstables [7] is not an option that will satisfy the job’s
SLO.

The other solutions shown in Table 1 propose running com-
plex, and in some cases stateful, workloads on stateless cloud
functions like AWS Lambda. Most of these frameworks (like
Qubole’s Spark on Lambda [36] and PyWren [24]) use an
external storage platform such as Amazon S3 for the shuf-
fle data. This allows individual Lambda functions to work

as executors, relinquishing the CPUs as soon as the task is
completed.

Since S3 is a multi-tenant service, there is a forced up-
per bound on the maximum number of I/O requests per S3
bucket. Although this may be relaxed as the number of buck-
ets increases, the service usually tends to throttle when the
aggregate throughput reaches a few thousands of requests
per second. So, in general, associated workloads take a long
time to finish, even though the overall I/O bandwidth is com-
parable to that of a local disk write. Also, even though the
per-write cost is relatively low, workloads like CloudSort [9],
which can trigger on the order of 1010 shuffle writes in sin-
gle job execution, can incur enormous total S3 related costs.
Note also that shuffle I/O may be reduced by employing data
compression [13], but with added computational overhead.

Recently, [35] proposed to solve these problems by us-
ing a Redis cluster for storing intermediate shuffle data and
S3 forthe initial input and final output. Redis, being an in-
memory dictionary, significantly improves on I/O operations
compared to disk writes, but is quite expensive as it requires
the use of large VMs. Flint [26], another prototype of Spark
on AWS Lambda, replaces AWS S3 with SQS [2] for inter-
mediate data I/O using multiple distributed queues, which
is a better fit for a high number of small writes. SQS does
better in terms of throughput but is costlier and less reliable
compared to AWS S3.

numpywren [38] is a system for linear algebra applications
built on a serverless architecture. It is based on PyWren and
relies on VMs for deploying an external scheduler and provi-
sioner. The task queue is implemented on Amazon SQS and is
constantly probed to change the number of executors to map
to the current degree of parallelism of the job. SplitServe can
inherently perform this task without needing any additional
VMs. As with [24, 35, 36], numpywren also uses AWS S3
for external storage.

ExCamera [20] is a dedicated framework designed to per-
form digital video encoding by leveraging the parallelism
of thousands of Lambda functions. It uses AWS S3 to per-
form intra-thread communication. It also relies on VMs for
coordination and rendezvous between the Lambda functions.

Cirrus [25] is a machine-learning training framework which
uses AWS Lambda for compute scalability and AWS S3
for high throughput storage. Also, a relatively small amount
of high-performance storage to improve the performance of
these pipelines is achieved by using a few VM instances to
implement an in-memory parameter server. In some cases,
Cirrus converges 3× faster than Tensorflow and 5× faster than
Bosen [45]. While Cirrus can outperform frameworks which
runs strictly on VMs in terms of training completion time, it
does not outperform on cost, which may be up to 7× higher.

gg [19] is yet another framework that helps users exe-
cute burst-parallel applications – e.g., software compilation,
unit tests, video encoding, or object recognition – by using
thousands of parallel threads on a cloud function service,

3

Middleware ’20, December 7–11, 2020, Delft, Netherlands A.Jain, A.F.Baarzi, G.Kesidis, B.Urgaonkar, N.Alfares, and M.Kandemir

like Lambda, to achieve near-interactive completion times.
Even though in this work the framework relies on external
ephemeral storage solutions like AWS S3, Redis and Google
Cloud Storage, the authors claim to have found that two
Lambda functions can communicate directly using off-the-
shelf NAT-traversal techniques, at speeds up to 600 Mbps,
with variable performance. Hence, if used in future, such tech-
nique can likely improve performance of systems using cloud
function service for complex workloads.

FEAT [32] explores the idea of auto-scaling using Cloud
Functions (CFs). It first launches an application on a pool
of CFs then determines the number of VMs and the number
of cores on each VM required by the application and subse-
quently launches these VMs in the background. When the
VMs are ready, the control is transferred from the CFs. Note
that FEAT considers workloads like publish/subscribe and
request/response, which are largely stateless and scalable and
thus a good fit for the serverless paradigm. In particular, these
workloads do not face the problems of stragglers, intermedi-
ate data, or dependencies, and hence they do not need to work
with external substrates for storage. Tasks of individual jobs
are not, in any single point in time, divided between IaaS and
FaaS services.

3 Background and Motivation
Background on Apache Spark: Apache Spark [39] is a
widely used, open-source, general-purpose framework for
large-scale, distributed data processing. A Spark cluster has a
single master (driver) and one or more slaves (worker nodes,
executors). A Spark driver is the entry point of a Spark ap-
plication – it runs the main function of the application and
is the place where the “Spark context” is created. A job is a
unit of work that a user is interested in. Upon the submission
of a job, Spark creates a series of stages. This breakdown is
represented as a Directed Acyclic Graph (DAG) which is an
“action plan” for the execution of the job. A stage may have
multiple parallel tasks (e.g., map, reduce). The Spark driver
contains several components that are collectively responsi-
ble for converting a user submitted Spark application to an
execution Directed Acyclic Graph (DAG) composed of multi-
ple stages, each of which in turn consists of parallel running
tasks. The driver schedules job execution and negotiates with
the cluster manager if any (e.g., Mesos, Yarn, Kubernetes or
Spark’s Standalone cluster manager) for resources in terms
of “executors.” An executor is a distributed agent responsible
for the execution of tasks. Every Spark application has its
own executor process(es). Spark offers two modes of executor
allocation: static allocation, wherein all executors run for the
entire lifetime of the application, and dynamic allocation, that
lets an application start with a predefined minimum number
of executors, which can grow in numbers (up to a specified
maximum) as and when the resources becomes available in

the cluster. If however, an executor is idle for some time, it is
killed and the resources are returned to the cluster.

Spark creates stages at state transfer boundaries, i.e., when
the execution of the next stage depends on the output of
the tasks from the previous stage. This movement of data
between nodes at stage boundaries is known as shuffling. In
static allocation of executors, the shuffle data can be kept in
the executor’s memory which can act as a server for other
executors who want to access this data. However, in the case
of dynamic allocation, since an executor might be killed due
to inactivity, to prevent the intermediate shuffle data from
being lost, all of the intermediate shuffle output is written to
the local disk.
Why Combine VMs and Lambdas? From a tenant’s per-
spective, two advantages of AWS Lambdas over IaaS VMs
(simply VMs henceforth) are of significance to our work. First,
Lambdas offer a finer-grain, pay-per-request billing model.
Second, Lambdas offer significantly lower startup latency
than VMs. Existing studies [10, 11, 32, 44, 49] and our own
measurements show that an AWS VM may take up to 2 min-
utes or more after the user requests it to start working. While
a “cold-start” Lambda (i.e., requiring a fresh VM boot-up and
container launching) incurs a similar startup latency, a “warm-
start” Lambda (i.e., an already existing recently-used VM
with relevant code/data likely to be in memory) incurs a much
smaller startup latency of only about 100ms [44].4 Second,
Lambdas are cheaper for short-lived resource usage patterns
through sub-second minimum cost and billing granularity.5

Specifically, AWS Lambdas are priced based on memory al-
located (ranging from 128MB-3GB of memory per instance
with one vCPU per 1.5GB) and execution time. Also, their
cost is given by the product of memory allocated and time-
in-use rounded up to the nearest 100ms (there are additional
costs related to number of invocations). On the other hand,
VM prices are typically based on their type (e.g., reserved,
on-demand, burstable, spot) as well as resource capacities
(CPU, memory, storage). In particular, AWS VM cost is given
by their price times the time-in-use rounded up to the nearest
second.

Figure 1 compares the cost of one vCPU on a m4.large
instance to an AWS Lambda with 1.5GB memory which gives
it an effective capacity of one vCPU. AWS EC2 instances
impose a minimum 1-minute charge on the users following
which the cost is calculated in 1 second increments. In the
figure, we can see this as a horizontal line till 60 seconds,
and a step-wise monotonically increasing pattern following
that. In comparison, AWS Lambda bills the tenants in 100
milliseconds increments with a minimum charge of only 100

4AWS keeps “dormant" Lambda alive for ∼90 minutes.
5There are other cost advantages of Lambdas stemming from the fact that
they relieve the user of managing OS and runtime environments. These cost
aspects are harder to quantify in the context of our work and are beyond the
scope of this paper.

4

SplitServe: Efficiently Splitting Apache Spark Jobs Across FaaS and IaaS Middleware ’20, December 7–11, 2020, Delft, Netherlands

milliseconds, presenting itself as a much more continuous-
looking step function as soon as the billing cycle starts. The
graph shows how quickly a Lambda can overshoot a VM
in terms of cost of execution. Cost curves like this can help
the tenants choose the duration for which they want their
workloads to run on Lambdas while working under budget
constraints.

Figure 1. Cost of one vCPU on a m4.large
instance compared with an AWS Lambda
function with 1536 MB memory which gives
an effective capacity of one vCPU.

Given these prop-
erties, it is nat-
ural for a cost-
conscious tenant
to use Lambdas as
follows: instead of
over-provisioning VMs
to deal with work-
load mispredictions,
the tenant can pro-
vision them closer
to predicted re-
quirements and use
the agile Lambdas
to reactively handle unexpected spikes in workload. In-
deed this is the basic idea behind recent works such as
[25, 32, 37, 49] which deal with stateless workloads.
Why SplitServe Is Challenging: In their current form, Lamb-
das have a number of restrictions that pose hurdles in adapting
the above ideas for complex workloads:
• Limited resource capacity: Lambda containers do not pos-

sess enough memory for the needs of many workloads.
We have found that due to their relatively modest memory
allocation, garbage collection may begin posing significant
overheads after only a few minutes of execution even for
moderately memory-intensive workloads. Finally, each in-
stance is provided a relatively small local storage (/tmp
directory) of size 512MB to store intermediate state [4].

• Limited lifetime and user control: Lambdas are terminated
after 15 minutes, rendering them unsuitable for longer-
running jobs [4]. Also, a user cannot easily control the
order in which interacting Lambdas are actually started
by the provider. Control could be achieved either by an
orchestrator on a VM, which would introduce delays, or by
“step functions” that may increase costs [5, 17].

• Poor support for sharing of intermediate state: Since Lamb-
das do not expose an IP address L, there is no direct channel
for an entity (whether VM or Lambda) to send data over
the network to a Lambda after its initial invocation. This
in combination with (i) their limited lifetime and (ii) the
user’s lack of control over when Lambdas are initiated
by the provider, imply that state transfer between Lamb-
das must rely on a storage facility external to the source
Lambda’s container. Existing solutions (see Section 2) use
either: (a) Amazon’s S3 or SQS [26], which have been

reported to be slow6; or (b) in-memory datastores such
Redis [35], which are relatively expensive.

• Steeper cost curve for longer-lasting work: Currently, Lamb-
das charge a higher price per unit resource as compared to
VMs which results in higher costs for long-lasting resource
needs, as discussed above (see Figure 1).

A final challenge concerns the effort involved in modifying
the existing framework codebase (written for VMs) to let
tasks execute on Lambdas. Two observations are worth noting
here. First, while this effort (and corresponding cost) may be
non-trivial – e.g., see details of our design in Section 4 – it
would be amortized over the long run by the operational cost
improvements offered by SplitServe. In fact we benefited
from the Qubole project [36] that had ported Spark to run
completely run Lambdas (except for the master). Second, this
points to an important future research direction developing
systems support for (largely) automating such IaaS to Lambda
code modification.

4 SplitServe: Overview and Design
We intend for SplitServe to be part of a larger system that
performs cost-conscious autoscaling of Apache Spark-based
latency-critical workloads in the public cloud. As Figure 3
shows, we view such an autoscaling system as combining
resource procurement/management at two time-scales: (a)
inter-job decision-making spanning multiple jobs (how many
VMs should the cluster have during the next few minutes?)
and (b) intra-job decision-making (how to best satisfy the
service-level objective (SLO) of an individual job based on
resource requirement prescriptions made by (a)?) SplitServe’s
design and operation are concerned with the latter intra-job
resource management.

4.1 Autoscaling Apache Spark: Inter-Job Management
A Scenario Motivating Splitserve: Suppose a budget con-
scious tenant runs a long-term, latency-critical stream of
Apache Spark jobs. Also, the workload may be random and
not perfectly predictable, either in terms of the job sizes
or when jobs arrive. Multiple jobs can arrive together and
may need to be executed simultaneously. To avoid wastage, a
budget-conscious tenant would dynamically adjust the size of
the VM cluster it procures from the cloud in response to such
workload variations rather than always provisioning for the
worst-case needs (note that, generally, the worst-case needs
may themselves not be perfectly predictable). For such au-
toscaling, the tenant would need to estimate individual job
execution times as a function of key workload properties
such as relevant input data features (e.g., size) as well as the
inter-job arrival process. Much work has been done on such
estimation and modeling using techniques spanning offline

6[27] attributes their slowness to their fault tolerance mechanisms that it
deems excessive for the relatively short-lived intermediate state transferred.

5

Middleware ’20, December 7–11, 2020, Delft, Netherlands A.Jain, A.F.Baarzi, G.Kesidis, B.Urgaonkar, N.Alfares, and M.Kandemir

Figure 2. Illustrative example of average predicted work-
load needs (in terms of number of executors, one per core)
with 95% confidence bands over a typical workday. Random
𝑤 (𝑡) is the true number of executors/cores needed. Note that
𝑤 (𝑡1) > 𝑚(𝑡1) + 2𝜎 (𝑡1), i.e., additional executors are needed
at time 𝑡1 even if𝑚(𝑡1) + 2𝜎 (𝑡1) VM-based executors are pro-
cured by the tenant at time 𝑡1. Also, 𝑤 (𝑡2) < 𝑚(𝑡2) − 2𝜎 (𝑡2),
i.e., VM-based executors will be idling at time 𝑡2 even if only
𝑚(𝑡2) − 2𝜎 (𝑡2) VM cores are procured by the tenant at time
𝑡2.

profiling and online learning, e.g., [15, 30], that one may
borrow from.

As an illustrative example of such autoscaling in Figure 2,
suppose 𝑡 is a particular time in a regular workday and let𝑚(𝑡)
and 𝜎2 (𝑡) be the estimated mean and variance, respectively, of
the number of Spark executors7 needed to service the tenant’s
workload at time 𝑡 . The tenant may choose to provision VM
resources based on a high percentile of its estimated needs
(e.g., policy based on𝑚(𝑡) + 2𝜎 (𝑡) in Figure 2). Despite such
planning, it is possible that a job will arrive to find insufficient
VM resources to meet its execution-time SLO. An example
of this occurs at time 𝑡1 in Figure 2. If new VMs are requested
at 𝑡1, they may not be available for a few minutes causing
the SLO to be violated. If SLO violations are unacceptable,
the tenant would need to provision more VMs (than based on
𝑚(𝑡) + 2𝜎 (𝑡)) with associated higher costs. SplitServe would
allow the tenant to overcome these delays and get additional
resources at 𝑡 more quickly via Lambdas. Equally importantly,
SplitServe may allow the tenant to explore a less conservative
inter-job VM procurement strategy (e.g., policy based on
𝑚(𝑡) as opposed to𝑚(𝑡) + 2𝜎 (𝑡) in Figure 2). Such a policy
may8 prove less costly but would result in more occurrences
of VM shortfall to be bridged by Lambdas. Assuming the
tenant employs a cost manager that determines a suitable
combination of VMs and Lambdas per-job based on these

7We assume, for simplicity, one core per executor with corresponding al-
location of other resources within a VM. This can be generalized to more
complex allocations per executor.
8Since Lambdas are more expensive than VMs on a per-unit resource price
basis (besides having other shortcomings discussed earlier), lowering the
number of procured VMs in this manner would generally prove useful only
up to a certain point.

considerations, we focus on designing SplitServe to run the
job on its prescribed number of cores seamlessly.

4.2 SplitServe Design for Intra-Job Management
SplitServe’s design consists of three key facilities shown in
Figure 3.
Launching Facility: SplitServe implements a “launching fa-
cility” that can share access to the system-wide VM/Lambda
state with the cost manager. This state keeps track of where
the executors for a job are currently running and which VM
cores are currently free (if any). The launching facility ar-
ranges for the requested number of cores for a new job from
the currently free cores and, if needed, by launching new
Lambdas.
Segueing Facility: Besides the steeper cost of Lambdas be-
yond a certain duration (recall Figure 1), another reason for
segueing longer-running tasks (initially started on Lambdas)
to VMs is the relatively small memory allocation of Lambda
containers. In particular, the smaller memory on Lambdas
results in more frequent invocations of the JVM garbage
collector (GC), which in turn hurts the overall workload per-
formance. This may make it difficult, or in some cases im-
possible, to run a workload processing large datasets on a
small number of Lambdas. SplitServe implements a "segue-
ing facility" that launches VMs in the background matching
the cores procured through any Lambdas that the launching
facility starts. These VMs are only launched if the job’s ex-
pected execution time (i.e., the SLO conveyed by the inter-job
manager) exceeds the nominal VM start up delay. Note that,
for jobs with SLO smaller than the VM start up delay, starting
new VMs would be futile.
State Transfer Facility: Many Spark workloads engage in
significant data transfers across stages, i.e., the shuffle op-
eration. If an application framework dynamically allocates
executors – which is the case for our cost-conscious tenant
– then to prevent the loss of any shuffle data when dealing
with fleeting executors, the shuffle data is written to local stor-
age. This becomes a problem for Lambda-based executors,
where (a) users have to pay a steeper price per unit resource
than VMs to preserve the shuffle data, and (b) a relatively
small amount (512 MB) of local storage is made available to
each Lambda. Currently popular solutions to this problem are
based on using a cloud-offered shared storage layer (e.g., S3
or SQS in the case of AWS), possibly in conjunction with
in-memory caches like Redis or Memcached. However, these
solutions tend to be either too slow (for reasons such as throt-
tling) or too expensive or both. Therefore, a final important
facility SplitServe implements is a storage layer that enables
fast transfer of state to and from Lambdas.
An Example: We use the example shown in Figure 3 to clar-
ify how these facilities work together. At the very bottom of
the figure, we depict the evolution of the VMs and Lambdas
being employed by SplitServe in panels A-D. Each VM is

6

SplitServe: Efficiently Splitting Apache Spark Jobs Across FaaS and IaaS Middleware ’20, December 7–11, 2020, Delft, Netherlands

Figure 3. SplitServe operates at the individual job granularity
and combines the agility of Lambdas with the longer-term
lower costs of VMs. A complementary resource procurement
system would carry out cost-aware resource procurement
based on inter-job objectives and rely upon SplitServe to
meet individual job’s performance needs.

assumed to have 4 cores; the scheme to denote a core’s occu-
pancy appears in the legend. In our example, the inter-job cost
manager (at the very top) reckons 5 cores to be appropriate for
meeting a new job’s SLO and conveys this to SplitServe along
with the SLO itself. Upon receiving this request, SplitServe
consults the system-wide VM/Lambda state to find only 2
VM-based cores currently available in the cluster (panel A).
SplitServe then launches 5-2=3 Lambdas making a total of
5 cores available for the job (2 VMs and 3 Lambdas) and
starts directing tasks to them (panel B). Let us assume that the
job’s expected duration is longer than the nominal VM startup
delay. Given this, SplitServe also launches a new VM. Upon
this VM becoming ready, SplitServe orchestrates seguing of
the tasks running on Lambdas to 3 cores on this VM (panel
C). Finally, once the tasks on the 3 Lambdas have completely
transitioned to using cores on the new VM, the Lambdas are
decommissioned bringing the system to an all VM execu-
tion (panel D). At each of these steps, SplitServe updates
the VM/Lambda state. Alternatively, segue may occur to an
executor that becomes available on an existing VM.

4.3 SplitServe Implementation Details
We implement SplitServe by modifying Apache Spark version
2.1.0 (rc5). We also adapt certain features from Qubole’s

Spark-on-Lambda [36], which is a rendition of Spark that
uses AWS Lambdas for all the executors running a job.
Launching Facility: Our implementation of SplitServe’s
launching facility and the VM/Lambda state mainly spans
Spark’s CoarseGrainedSchedulerBackend, StandAloneSched-
ulerBackend, CoarseGrainedExecutorBackend, and Execu-
torAllocationManager classes. The ExecutorAllocationMan-
ager class is responsible for requesting executors based on a
job’s requirements [50]. Since these requirements can change
throughout the lifetime of the job, Spark allows the users to
use the “dynamic allocation” mode where the number of ex-
ecutors allocated to a job can increase or decrease as the job
makes progress. The CoarseGrainedSchedulerBackend class
is responsible for identifying available executors, and Stan-
dAloneSchedulerBackend is responsible for launching new
executors if needed. The TaskScheduler class assigns tasks
to available executors. SplitServe needs the ability to distin-
guish an executor running on a Lambda vs. one running on a
VM. Towards this, we add the functionality of launching both
VM and Lambda executors to StandaloneSchedulerBackend
and modify appropriate data structures to account for the two
types. The CoarseGrainedSchedulerBackend class records
the time whenever a Lambda-based executor is registered.
This effectively allows SplitServe to keep track of the time
since a job’s beginning that a Lambda-based executor has
been executing the job’s tasks – this information is used for
decision-making regarding launching new VMs and/or segue-
ing the Lambda-based executor’s tasks to VMs (as described
next).
Segueing Facility: Everytime the CoarseGrainedBackend-
Scheduler needs to pick an executor to schedule a new task
upon, it first checks if there are any Lambda-based execu-
tors amongst the list of available executors, and if so, also
checks how long they have been running for by comparing
the current time against the timestamp recorded at executor
registration. If a Lambda executor has been running for more
than a pre-defined time threshold it is possible that it will
either run into GC-induced slowdown or overrun its budget.

If we simply kill an executor at this stage, the tasks cur-
rently running on this executor will be marked as ’Failed’.
Although Spark is designed to handle such failures with
its recovery-from-fault mechanisms, the system enters into
an “execution roll-back,” which typically means a high re-
covery time (and corresponding costs) due to cascading re-
computations. This is similar to working with transient re-
sources as discussed in [46], and may greatly increase job
execution times and create a large amount of network traffic.
To overcome this, SplitServe simply stops directing additional
tasks to a long-running Lambda-based executor. This makes
the long-running Lambdas finish any pending tasks and get
gracefully decommissioned once they become idle. We add a
new configuration parameter spark.lambda.executor.timeout
which acts as the threshold on which these decisions are based.
Note that this is a configurable “knob” which can be set based

7

Middleware ’20, December 7–11, 2020, Delft, Netherlands A.Jain, A.F.Baarzi, G.Kesidis, B.Urgaonkar, N.Alfares, and M.Kandemir

on concerns like budget, classification of big or small jobs,
ability of the inter-job cost manager to spin-up new VMs, or
an expectation that existing VM-based executors will soon
become available.
HDFS-Based State Exchange for Lambdas: In Section 2,
we discussed the storage solutions which have been explored
by other state-of-the-art frameworks and offer a qualitative
analysis of how and why these solutions are either not suitable
or not feasible for our work.

SplitServe uses a single common high throughput stor-
age layer, which can be accessed by both VM and Lambda
based executors. Our choice of HDFS is solely due to the
relative ease of implementation compared to with alter-
natives. Spark comes with library support for HDFS writes.
We leverage this support to modify Spark internals to direct
intermediate shuffle files to HDFS. However, SplitServe can
use any other similar storage facility that offers the tenant
a desirable cost-performance trade-off including ideas from
recent research such as [27, 35], etc.

We modified various storage-related classes in SplitServe
(like BlockManager, DiskBlockManager) to allow both VM-
based and Lambda-based executors to write in one com-
mon place while following the Spark semantics of directory
structure. Both VM- and Lambda-based executors use their
uniquely identifiable and distinguishable Ids as an entry point
into this directory structure. Using these unique Ids also al-
lows the user to perform a fine-grained analysis of the work
distribution between the two types of executors.

5 Experimental Evaluation
We first describe our experimental set-up including offline
workload profiling9. We then provide a comparative perfor-
mance evaluation of SplitServe vs alternatives. We use di-
verse latency-sensitive workloads from two well-regarded
benchmark suites: Spark-SQL-Perf [40] and Intel HiBench
[22] . From DataBrick’s Spark-SQL-Perf, we present results
for TPC’s Decision Support (TPC-DS) ETL-type queries,
which represent real world business critical analytics queries.
From Intel HiBench, we present results for (i) WebSearch
(or PageRank), which is compute and shuffle I/O intensive,
and (ii) Distributed K-Means, a compute intensive machine
learning-based workload with some shuffle I/O. Finally, we
also give results for concurrent calculation of Pi – although
not latency-sensitive per se, we use it as a proxy for a work-
load that is different from the previous ones in being compute-
intensive, but having very little shuffling.

9In practice, offline workload profiling (to trade off cost and performance
when autoscaling) can be continually updated by online reinforcement learn-
ing, e.g., [30], i.e., when jobs are repetitive as in Figure 2. Such profiling
results, service pricing, and runtime execution progress information may be
used by a cost manager to control the invocation of SplitServe.

5.1 Workload Profiling
Recall mention of our interest in latency-critical workloads in
Section 1. Broadly speaking, any workload where a response
time greater than the start-up time of VMs is an acceptable
SLO is not considered as latency critical. In such cases, au-
toscaling solutions using only VMs can be adopted, and hence
such workloads are outside the scope of our work. Workload
SLOs and how SplitServe considers them are discussed in
Sections 3, 4.

For a latency-sensitive Spark job to meet its desired ex-
ecution time target, its degree of parallelism and resource
allocation for individual tasks must be carefully chosen. We
carry out offline profiling for our workloads to understand
how their job execution times depend on (a) input data size
and (b) degree of parallelism (i.e., number of executors).10 As
the number of executors is increased, the input data size (or
task size) per executor decreases proportionately. We illustrate
our profiling methodology and findings for PageRank; simi-
lar ideas and findings apply to our other workloads as well.
Throughout this study, we assign each executor exactly one
core. Consequently, the term "executor" is synonymous with
"one core" in what follows. Similarly, we only consider ho-
mogeneous task partitioning (i.e., the tasks of a job are of the
same size). Alternate resource allocation policies (e.g., mul-
tiple or different number of cores per executor) or heteroge-
neous task sizing constitute complementary directions that
we do not explore. Recall that an AWS Lambda is assigned at
most 1.5 GB memory per core, which implies that there is typ-
ically more memory available for a VM-based executor than a
Lambda-based executor. In our illustration here, we consider
three input dataset sizes for PageRank jobs: “large" (100,000
pages), “medium" (50,000 pages), and “small" (25,000) pages.
We also consider much larger input datasets in the next sub-
section.
Profiling Lambda-based Executions: We report a first set
of experiments on SplitServe wherein the executors are all
Lambda-based. We run the master on an adequately provi-
sioned m4.xlarge AWS VM. As seen in Figure 4(a), our
profiling offers a classic “U-shaped" curve expected for the
execution time of a parallel workload [29, 33]. The curve
suggests that, for a fixed input dataset size, there exists a
“performance-optimal" degree of parallelism: increasing the
degree of parallelism further results in poorer performance
owing to the communication overheads while lower degrees
do not fully extract the benefits of parallelism. We also plot
the total cost (on the Y2 axis) which depends both on the
number of executors and on the total execution time. With
these profiles, decisions of the following type can be made: in
case of a “large" PageRank job, if the execution time needs to
be less than 70s, then two executors would be the lowest-cost

10Given a continual job stream as in Figure 2, such profiling can similarly be
done online.

8

SplitServe: Efficiently Splitting Apache Spark Jobs Across FaaS and IaaS Middleware ’20, December 7–11, 2020, Delft, Netherlands

choice; however, if the execution time needs to be less than
60s, then the only choice is 4 executors.
Profiling VM-based Executions: We perform a second set
of experiments using all VM-based executors for which we
employ “vanilla” Spark (worker nodes are EC2 instances with
types determined as explained momentarily) with the master
again running on a m4.xlarge instance. For each degree of
parallelism, we use the fewest number of instances that pro-
vide the required number of cores to minimize the inter-VM
communication overhead: m4.large, m4.xlarge, m4.2xlarge,
m4.4xlarge, m4.8xlarge, m4.16xlarge, and two m4.16xlarge,
for 1-2, 4, 8, 16, 32, 64, and 128 cores, respectively. Note
that, generally, the cost per core grows with VM size whereas
execution time reduces because of the substantially less inter-
VM communication, e.g., for data shuffling – see the cost
curves of Figure 4(b). Also, note from Figure 4(b) that, even
though the optimal degree of parallelism is the same as that
when running only with Lambda-based executors, the overall
execution time for the job is much lower when running on
VMs (as expected).

Figure 4. Offline profiling to determine cost and performance vs. degree of
parallelism for PageRank jobs when using (a) only Lambda-based executors
or (b) only VM-based executors.

Metrics and Scenarios: We compare several scenarios for
processing an incoming Spark job in terms of performance
(execution time, which is also the time between job submis-
sion and completion since SplitServe does not queue jobs)
and cost (incurred towards any VMs, Lambdas, and stor-
age systems such as S3 involved in executing the job). Note
that we only report the cost incurred towards the job
in question under the scenario being considered. Specif-
ically, this cost should not be confused with or viewed
as being a proxy for the long-term cost incurred by the
tenant (e.g., its monthly cloud bill). The latter would de-
pend on the autoscaling policy especially the degree of
VM under/over-provisioning – recall Figure 2. Each sce-
nario represents a combination of (i) whether adequate re-
sources (we simply use “cores" henceforth although it should
be clear we are also referring to other resources such as mem-
ory associated with them) are available, (ii) when enough
cores are not available, whether autoscaling is done, (iii)
whether the ability to run on Lambdas exists (as with Qubole-
on-Lambda and SplitServe but not with vanilla Spark), (iv)
when Lambda-based execution is possible how shuffling is
done (S3 vs. HDFS), and (v) whether seguing from Lamb-
das to VMs is possible (as in SplitServe but not in Qubole-
on-Lambda). Below we describe each of our scenarios. The
scenarios involving (vanilla) Spark or Qubole represent “base-
lines” representing the state of the art. We use 𝑅 to denote the
arriving job’s required number of cores. In scenarios where
the number of cores currently available in the cluster is less
than 𝑅, we denote it by 𝑟 and the difference 𝑅 − 𝑟 by Δ.
Spark 𝑟 VM: The job arrives to find the cluster under provi-
sioned and the system does not employ autoscaling. Specifi-
cally, the job is executed by vanilla Spark with 𝑟 < 𝑅 cores
available on VMs. The job runs using only these 𝑟 cores for
its entire execution.
Spark 𝑅 VM: The job arrives to find adequate cores already
provisioned on VMs. Vanilla Spark with 𝑅 cores available on
VMs. This obviously represents the best case from both a cost
and a performance point of view without autoscaling (and so
is extraneous to the problem SplitServe is trying to address).
Spark 𝑟/𝑅 autoscale: The job arrives to find the cluster
under-provisioned (vanilla Spark with initially 𝑟 < 𝑅 re-
sources available on which the job starts running). Subse-
quently, upon observing/predicting that the job execution
time is more than a threshold, after time 𝑡 , 𝑅 − 𝑟 additional
cores are procured.
Qubole 𝑅 La: The job is executed entirely using Lambdas.
Specifically, the job runs on Qubole’s Spark-on-Lambda,
which launches executors on 𝑅 Lambdas (each with one core),
and uses Amazon S3 as external storage to store all the inter-
mediate shuffle data.
SS 𝑅 VM: The job arrives to an adequately provisioned sys-
tem using SplitServe. That is, 𝑅 cores are available on VMs

9

Middleware ’20, December 7–11, 2020, Delft, Netherlands A.Jain, A.F.Baarzi, G.Kesidis, B.Urgaonkar, N.Alfares, and M.Kandemir

when the job arrives. We would like this to perform compara-
bly to “Spark 𝑅 VM.” Any difference between the two would
be indicative of overheads posed by SplitServe.
SS 𝑅 La: The job arrives to SplitServe with no cores available
on the VMs. All 𝑅 executors are launched on Lambdas.
SS 𝑟 VM / Δ La: The job arrives to SplitServe with 𝑟 < 𝑅

cores available on VMs. The remaining 𝑅 − 𝑟 cores are
launched immediately on Lambdas but no seguing is per-
formed from Lambdas to newly-available/procured VMs.
SS 𝑟 VM / Δ La Segue: The job arrives to SplitServe with
𝑟 < 𝑅 cores available on VMs. The remaining 𝑅 − 𝑟 executors
are launched immediately on Lambdas. Additionally, after a
time threshold 𝑡 , which is smaller than the predicted execution
time of the job, Δ cores are made available on VMs (either
procured or became free); so, the execution flow is segued
from Lambdas to the newly-available VM resources.

5.2 Evaluation Results for Our Workloads
We begin by describing our findings for TPC-DS, a decision
support query benchmark used to business critical analytical
queries, from a purely performance perspective. We show how
SplitServe, our VM+Lambda hybrid solution, outperforms ex-
isting pure Lambda based solutions as well as improving upon
VM based autoscaling solutions. We then explore our find-
ings from Intel HiBench, running WebSearch and Machine
Learning benchmarks and show that in resource constrained
scenarios where a hybrid solution may not be the most op-
timal (in terms of cost, performance or both) due to fewer
VMs available than desired, an all-Lambda solution may be a
better choice to consider, and that all-Lambda solution under
SS outperforms other baselines.
TPC-DS: TPC-DS is a decision support question benchmark
that models several generally applicable aspects of a decision
support system. The queries generally have diverse compute
and I/O footprints across them and are a prime example of
ETL workloads. Specifically, we used DataBrick’s Spark-
SQL-Perf, a benchmark to test Spark’s SQL performance.
The TPC-DS workload suite consists of 100 queries, out of
which we picked 10 with a range of compute and memory
requirements and are I/O intensive (i.e., heavy on shuffle data
generation) and tested them over a range of scaling factors.
These queries allows the benchmark to capture important as-
pects of the interactive, iterative nature of on-line analytical
processing (OLAP) queries many of which are constructed
to answer immediate and specific business questions, hence
denoting their latency critical nature. Out of those, we present
the results of 4 queries (Q5, Q16, Q94 and Q95) which were
run on a scale factor of 8. The workload is run on 32 cores
using a m4.10xlarge instance to launch VM based executors.
Since we want to match the performance of different sys-
tems as closely as possible, we run the SplitServe Master
and HDFS on a m4.10xlarge instance as well to get similar
dedicated EBS bandwidth.

We use 𝑅 = 32 and 𝑟 = 8. Starting with “Spark 8 VM” re-
sults in Figure 5, we observe that running the queries on only
a subset of desired resource requirements can deteriorate per-
formance by up to 4×, or in some cases even more than that.
Running on “Quobole 32 La” takes 21.7× more execution
time on average11. “SS 32 VM” compares closely with “Spark
32 VM” performing at par in most cases and doing only 1.6×
poorer in the worst case. Since there is a large amount of inter-
mediate shuffle data to be transferred over network, Lambda’s
unreliable and proportional to memory network bandwidth
proves to be a bottleneck for SS 32 Lambda in the worst case
performing ∼2.3× poorer than “Spark 32 VM”. Since “SS 32
VM” performs very similarly to “Spark 32 VM”, combining
VMs and Lambdas proves advantageous. As more tasks are
pulled to faster VM based executors, we see a continuously
improving performance. This shows the efficacy of having a
hybrid solution for executing analytical and latency criti-
cal workloads. Unlike many other frameworks, SplitServe
is able to scale as required using Lambdas, able to run the
queries (due to being independent of slow external storage
like S3) and does not rely on specialized storage solutions
(like Redis) to finish execution in required time. On average,
“SS 8 VM / 24 La” addresses insufficient resources much
more efficiently and takes 55.2% less execution time com-
pared to VM based autoscaling. Since most of these queries
finish executing under, or in some cases at about, 60 seconds,
no tasks needed segueing from Lambdas to VMs.
WebSearch: PageRank is an algorithm used by Google
Search to rank web pages in their search engine results. PageR-
ank works by counting the number and quality of links to a
page to determine a rough estimate of how important a web-
site is. The underlying assumption is that, more important
websites are likely to receive more links from other websites.
Specifically, we used Intel HiBench’s WebSearch (PageRank)
workload. This workload spends most of its time on iterations
of several CPU-intensive tasks with moderate disk I/O and
memory utilization (but considerably more than distributed K-
means clustering). We run this workload with a data set size of
850,000 pages. The experiment involved 16 cores/executors
of m4.4xlarge EC2 under Vanilla Spark.

Running on only 𝑟 = 3 cores, instead of 𝑅 = 16, results in
a performance degradation of around 2.1×. Even with VM
based scaling, total execution time is worse by as much as 2×.
Since PageRank is much more shuffle intensive than K-means
clustering, we see the effects of large amounts of shuffling
becomes more apparent. Since Qubole’s Spark-on-Lambda
uses S3, the overall execution time increases by more than
60%, but SplitServe’s HDFS based shuffling increases it by
only 27%.

11Note that we were not able to get results on Q5 for Qubole’s Spark-on-
Lambda since their prototype encounters fatal errors while running this
query.

10

SplitServe: Efficiently Splitting Apache Spark Jobs Across FaaS and IaaS Middleware ’20, December 7–11, 2020, Delft, Netherlands

200

400
TPC-DS

Spark 8

Spark 32

Qubole 32

SplitServe 32VM

SplitServe 32L

SplitServe 8L-24VM

Q5 Q16 Q94 Q95
0

50

E
xe

cu
ti

on
ti

m
e

(s
)

Figure 5. Comparing performance of Q5, Q16, Q94 and Q95 queries from Spark-SQL-Perf’s TPC-DS workload suite.

Figure 6. Comparing PageRank performance on SplitServe
and other systems under various scenarios.

In our setup for this experiment, the (single) HDFS node
shares resources with the Spark master – we colocate both of
these on a m4.xlarge instance with only 750 Mbps dedicated
EBS bandwidth. On the other hand, in “Spark 16 VM” the
executors are running on a m4.4xlarge machine with 2,000
Mbps of dedicated EBS bandwidth. Hence, the worker nodes
provisioned on m4.4xlarge get about 3× more dedicated EBS
bandwidth as compared to the Master node provisioned on a
m4.xlarge machine. In our experiments, we trade off perfor-
mance with cost-savings to show the efficacy of our system
even with stringent budgets. Similarly, other overheads such
as network latency in case of Lambdas and “clean-up" over-
head in case of segueing to VM based executors are amplified
due to the increased shuffle data traffic. Even in a conservative
setup, executing the workload over both VMs and Lambdas

Figure 7. Comparing PageRank (6 execution stages) time-
lines for: (i) Vanilla Spark on a 16-core/executor VM; (ii)
SplitServe with 3 VM cores and 13 Lambdas, and (iii) Split-
Serve of (ii) with segue to 16 VM cores. A thinnest red bar
indicates when one new executor starts to be used. The blue
bar indicates when segue commences – in this example, we
suppose that a core on an existing VM became available at
45s, i.e., earlier than the typical availability time if the core
was on a VM newly requested at time 0.

under SplitServe offers about 32% improvement on overall
execution time when compared to VM based scaling. Combin-
ing the joint execution with segue, we still see a performance
improvement of 24% along with a cost benefit of 8%. A
smaller cost improvement is an outcome of using a smaller
instance (in terms of resources) on which to locate master
node. Since the master is a longer running entity, a cluster
manager should assign it to a core of one of its largest VMs
when the application is I/O intensive.

In Fig. 7, we compare execution timelines for 3 scenarios.
11

Middleware ’20, December 7–11, 2020, Delft, Netherlands A.Jain, A.F.Baarzi, G.Kesidis, B.Urgaonkar, N.Alfares, and M.Kandemir

Machine Learning Workload: K-means clustering is a widely
used unsupervised learning technique that groups unlabeled
data points into 𝑘 > 1 clusters. An example of latency-critical
K-means is for supervised attack detection, e.g., [16], i.e., re-
quiring immediate and continual application on the latest
online data for timely attack detection, and immediate updat-
ing (online K-means) once zero-day (previously unknown)
attacks are identified. The algorithm works iteratively to (a)
assign each data point to one of the 𝑘 groups based on the
features that are provided (map), and then (b) compute a
new cluster center for each group (reduce). Data points are
clustered based on their feature similarity.

We run the Intel HiBench ML K-means workload on a
data set of size of 3 × 106 points, where each point is a 20-
dimensional feature vector, and with 𝑘 = 10 groups. Each job
runs for a maximum of 5 iterations and tries to achieve a con-
vergence distance of 0.5. Using workload profiling described
in Section 5.1 we choose a degree of parallelism of 16 for our
job which would allow it to meet a desired execution time of
< 2 minutes for “Spark 16 VM.” We use 𝑅 = 16 and 𝑟 = 4.

Figure 8. Performance and cost of our K-means clustering
job under different scenarios. The confidence error bars are
one sample standard-deviation from 15 independent trials.
Horizontal red dotted line is the “Spark 16 VM” baseline.

In Figure 8, we report the comparative performance and
cost of our K-means job. We see that running the same K-
means job on only a subset of desired resources, i.e., 4 execu-
tors (instead of 16), degrades the overall job execution time
by a factor of 10×. Further, even with cluster size scaling, we
see that the job still takes as much as 3.3× more time when
compared to “Spark 16 VM” Even though the VMs are avail-
able to use within ∼1 minute, the slowdown is due to the fact
that a large fraction of the tasks have already been scheduled
on the existing executors which are overloaded and cannot be
dynamically migrated to the newly available executors. Due
to these queuing issues, VM-based scaling may not be a good
option for a latency-critical job. Since K-means is compute as

Figure 9. Comparing SparkPi performance on SplitServe and
other systems under various scenarios.

well as somewhat I/O intensive, we see the effects of shuffling
when running the job over Qubole’s Spark-on-Lambda which
shuffles over S3: it takes about 51% more time to finish the
job than “Spark 16 VM” When comparing with SplitServe,
we see that with an all-VM setup, we perform almost as well
as “Spark 16 VM” even with an external shuffle over HDFS
running on a node with a relatively modest I/O bandwidth.
When we run the same job on SplitServe with only Lambdas,
we do only 11% worse than “Spark 16 VM” As discussed
in the previous subsection, the extra time is attributed to the
fact that HDFS is running on a m4.xlarge machine (recall
performance vs. cost savings trade-off). The slowdown is not
significant since because distributed K-means clustering is
not very shuffle intensive.

This experiment is another example where a hybrid so-
lution performs poorer and costs more than an all-Lambda
solution and hence opting for an all-Lambda solution under
SplitServe gives much better performance.
SparkPi: An example of a compute-intensive application, it
approximates the value of Pi by performing a Monte-Carlo
simulation. This is done by throwing 𝑛 random darts on (se-
lecting 𝑛 random points in) a plane, upon which there is a
circle of unit area. The value of Pi is then approximated by
calculating the fraction of points which fell in the unit disk.
This job is highly parallelizable by giving almost an equal
number of tasks (darts to throw) to each executor in the cluster
and finally accumulating the result by performing a simple
count. Since count is basically a reduce operation, there is
negligible shuffling involved. Hence, SparkPi is an exam-
ple of purely compute-intensive workloads, with negligible
memory footprint or I/O overhead. In our experiments, we
approximate the value of Pi by generating 1010 random points
and running the job on 64 executors. We use a m4.16xlarge
VM as the worker node to run these executors.

12

SplitServe: Efficiently Splitting Apache Spark Jobs Across FaaS and IaaS Middleware ’20, December 7–11, 2020, Delft, Netherlands

In Figure 9, we can see how the various baselines work
under different scenarios. We start by running the job on a
Vanilla Spark cluster with the best possible case, i.e., the job
finds the required resources available in the cluster. Compar-
ing this with the case where only a portion of the required
resources (4 executors) are available in the cluster, it can be
seen that the job has taken more than twice as long to com-
plete. For SplitServe with an all-VM executors setup (i.e., all
the executors run only on VMs and not on Lambdas), it can
be observed that the performance is similar to that of Vanilla
Spark. Using Lambda executors, we see that both Qubole’s
Spark-on-Lambda and SplitServe’s all-Lambda setup give
similar performance to that of Vanilla Spark. This is mainly
due to the fact that there is no shuffling involved in this work-
load. Finally, a more interesting case is when we split the
work across both VMs and Lambdas. Even here we see a sim-
ilar performance to that of our (best) baseline. Again, we did
not assess the Lambdas-segue-to-VMs setup under SplitServe
because the job finished under 1 minute.

6 Splitserve Discussion
SplitServe dynamic parameter selection: As discussed in
Sections 4 and 5, selecting parameters (“knobs") for Split-
Serve largely depends on the operational conditions includ-
ing overall budget (which dictates factors like how many
VMs/CFs can be procured, how long can these resources
be used for, etc.), resource availability expectation, desired
performance/SLO, and the type of workload being run.

Figures 1, 2 and 4 show how some of these factors evolve
over time and resources. The values chosen for these parame-
ters in our work were largely shaped by the aforementioned
factors, particularly the type of workloads we present in this
paper. To offer a comprehensive evaluation for the reader, we
chose workloads which encompass the large class of common
ETL workloads (e.g., decision queries, machine learning, I/O
intensive jobs, CPU intensive jobs) to give a better idea of
how these parameters will affect a given class of workloads.

Recall footnote 9 where we mention how users can leverage
offline profiling as a possible tool to tune the knobs provided
in SplitServe to best suite their requirements. In future work,
we will evaluate other methodologies where users can auto-
mate the process of tuning these parameters both statically
and dynamically.
Comparisons of the costs of autoscaling: We point out that,
generally, VM-based executors are less expensive than com-
parably provisioned Lambdas per unit time × resource. This is
natural considering Lambdas are priced at a finer granularity
and can be spun-up (especially warm start) and released more
quickly. Regarding Figure 2, we discuss allocating VMs con-
servatively (paying more “global" cost), or otherwise, based
on time-of-day predictions. Obviously, additional VMs in a
conservative approach would cost more but there would be
less autoscaling. As mentioned above, we only report the

marginal cost incurred for the job in question under the au-
toscaling scenario being considered since "global" cost com-
parisons of this sort would vary greatly depending on specific
streaming workloads, its volume, differences across policies,
and the prices of VMs and Lambdas procured/released over
time, all of which detract from the point of this paper: how
best to autoscale latency-critical workloads, considering as-
sociated (marginal) costs, with cloud functions.
How to use SplitServe? To reiterate, SplitServe has been
designed to efficiently run for a large class of widely used
workloads (particularly of the ETL type). it is hard to compre-
hensively illustrate how SplitServe would perform across a
long running streaming workload composed of various kinds
of jobs under different long-term resource procurements. On
the other hand, showing SplitServe’s performance across only
one class of workload (as some other works have) wouldn’t
rightly convey its capabilities and shortcomings.

To simplify exposition, in Section 5 we discuss Metrics &
Scenarios and Workload Evaluation. The former topic rep-
resents the various scenarios a job could find itself in on
arrival while the latter matches the scenarios to a class of
workload and describes how SplitServe would perform au-
toscaling (when needed) for a given combination of {scenario,
workload} under consideration.

7 Conclusions and Future Directions
We presented the design and implementation of SplitServe,
an enhancement of Apache Spark, that can concurrently run
a subset of the tasks within a parallel job on AWS Lambdas
with the rest on VMs (the latter being the default). Thus,
SplitServe is a valuable tool for a tenant interested in saving
cloud costs by avoiding over-provisioning of VMs in the
face of dynamic workloads. When newly requested VMs, or
executors on existing VMs, do become available, SplitServe
is able to move ongoing work from Lambdas to them. Our
experimental evaluation of SplitServe using four different
workloads shows that SplitServe improves execution time by
up to (a) 55% for workloads with small to modest amount of
shuffling, and (b) 31% in workloads with large amounts of
shuffling, when compared to only VM-based autoscaling.

Generally, an executor assigned a certain number of cores
on a VM vs. a Lambda-based executor with the same number
of cores will have access to different capacities of other re-
sources (e.g., memory, IO bandwidth). In future work, we will
explore the use of different task sizes for VMs and and Lamb-
das for better task-level load balancing. We will also devise
SplitServe versions of other popular application frameworks,
e.g., Flink [8].

Acknowledgments
This research was supported by a NSF CSR grant 1717571,
Cisco URP gift, and AWS credits gift.

13

Middleware ’20, December 7–11, 2020, Delft, Netherlands A.Jain, A.F.Baarzi, G.Kesidis, B.Urgaonkar, N.Alfares, and M.Kandemir

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 419–434.
https://www.usenix.org/conference/nsdi20/presentation/agache

[2] Amazon [n.d.]. Amazon SQS. https://aws.amazon.com/sqs/.
[3] Amazon [n.d.]. AWS Lambda. https://aws.amazon.com/lambda/.
[4] Amazon [n.d.]. AWS Lambda Limits. https://amzn.to/2vH102F.
[5] Amazon [n.d.]. AWS Step Functions. https://aws.amazon.com/step-

functions/.
[6] Azure [n.d.]. Azure Functions. https://azure.microsoft.com/en-

us/services/functions/.
[7] A. F. Baarzi, T. Zhu, and B. Urgaonkar. 2019. BurScale: Using

Burstable Instances for Cost-Effective Autoscaling in the Public Cloud.
In Proc. ACM SOCC.

[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache flink: Stream and
batch processing in a single engine. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering 36, 4 (2015).

[9] Cloud Sort [n.d.]. Sort Benchmark. http://sortbenchmark.org/.
[10] Yan Cui. Aug. 28, 2018. Cold start / Warm start with AWS Lambda.

https://blog.octo.com/en/cold-start-warm-start-with-aws-lambda/.
[11] Yan Cui. Jan. 17, 2018. I’m afraid you’re thinking about AWS Lambda

cold starts all wrong. https://theburningmonk.com/2018/01/im-afraid-
youre-thinking-about-aws-lambda-cold-starts-all-wrong/.

[12] Databricks Spark [n.d.]. Databricks Spark Optimized Autoscal-
ing. https://databricks.com/blog/2018/05/02/introducing-databricks-
optimized-auto-scaling.html.

[13] A. Davidson and A. Or. 2013. Optimizing shuffle per-
formance in Spark. https://pdfs.semanticscholar.org/d746/
505bad055c357fa50d394d15eb380a3f1ad3.pdf.

[14] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008),
107–113. https://doi.org/10.1145/1327452.1327492

[15] C. Delimitrou and C. Kozyrakis. 2016. HCloud: Resource-Efficient
Provisioning in Shared Cloud Systems. In Proc. ASPLOS. Atlanta.

[16] H.M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B.T. Loo, and L.T.X.
Phan. July 2019. Detecting Asymmetric Application-layer Denial-of-
Service Attacks In-Flight with FINELAME. In Proc. USENIX ATC.

[17] Tarek Elgamal, Atul Sandur, Klara Nahrstedt, and Gul Agha. 2018.
Costless: Optimizing Cost of Serverless Computing through Function
Fusion and Placement. CoRR abs/1811.09721 (2018).

[18] firecracker-web [n.d.]. Introducing Firecracker, a New Virtualization
Technology and Open Source Project for Running Multi-Tenant
Container Workloads. https://aws.amazon.com/about-aws/whats-
new/2018/11/firecracker-lightweight-virtualization-for-serverless-
computing/.

[19] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19). USENIX Association, Renton, WA, 475–488.
https://www.usenix.org/conference/atc19/presentation/fouladi

[20] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. 2017. Encoding, Fast
and Slow: Low-Latency Video Processing Using Thousands of Tiny
Threads. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA,
363–376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

[21] Google [n.d.]. Google Cloud Functions.
https://cloud.google.com/functions/.

[22] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
2010. The HiBench Benchmark Suite: Characterization of the
MapReduce-Based Data Analysis. Proceedings - International Confer-
ence on Data Engineering, 41 – 51. https://doi.org/10.1109/ICDEW.
2010.5452747

[23] IBM [n.d.]. IBM Cloud Functions. https://cloud.ibm.com/openwhisk/.
[24] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. 2017. Occupy

the Cloud: Distributed Computing for the 99%. In Proc. ACM SOCC.
[25] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,

Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Program-
ming Simplified: A Berkeley View on Serverless Computing. CoRR
abs/1902.03383 (2019).

[26] Y. Kim and J. Lin. 2018. Serverless Data Analytics with Flint.
https://arxiv.org/pdf/1803.06354.pdf.

[27] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implementation (OSDI’18).
USENIX Association, Berkeley, CA, USA, 427–444. http://dl.acm.
org/citation.cfm?id=3291168.3291200

[28] Danny Krizanc and Anton Saarimaki. 1996. Bulk Synchronous Par-
allel: Practical Experience with a Model for Parallel Computing. In
Proceedings of the 1996 Conference on Parallel Architectures and Com-
pilation Techniques (PACT ’96). IEEE Computer Society, Washington,
DC, USA, 208–. http://dl.acm.org/citation.cfm?id=882471.883319

[29] R. Li, P. Guo, B. Hu, and W. Hu. Nov. 2019. Libra and the Art of Task
Sizing in Big-Data Analytic Systems. In Proc. ACM SoCC. Santa Cruz,
CA, USA.

[30] H. Mao, M. Schwarzkopf, S.B. Venkatakrishnan, Z. Meng, and M.
Alizadeh. [n.d.]. Learning Scheduling Algorithms for Data Processing
Clusters. https://arxiv.org/pdf/1810.01963.pdf.

[31] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of
TPC-DS. In Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB ’06). VLDB Endowment, 1049–1058.

[32] J.H. Novak, S.K. Kasera, and R. Stutsman. 2019. Cloud Functions for
Fast and Robust Resource Auto-Scaling. In Proc. IEEE COMSNETS.

[33] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Rat-
nasamy, S. Shenker, and I. Stoica. 2013. The Case for Tiny Tasks in
Compute Clusters. In Proc. USENIX HotOS.

[34] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007.
Why You Should Run TPC-DS: A Workload Analysis. In Proceedings
of the 33rd International Conference on Very Large Data Bases (VLDB

’07). VLDB Endowment, 1138–1149.
[35] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,

Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.
usenix.org/conference/nsdi19/presentation/pu

[36] Qubole [n.d.]. Qubole Announces Apache Spark on AWS Lambda.
https://www.qubole.com/blog/spark-on-aws-lambda/.

[37] J. Raj, M. Kandemir, B. Urgaonkar, and G. Kesidis. July 2019. Exploit-
ing Serverless Functions for SLO and Cost Aware Tenant Orchestration
in Public Cloud. In Proc. IEEE Cloud. Milan.

[38] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley.
2018. numpywren: serverless linear algebra. CoRR abs/1810.09679
(2018). arXiv:1810.09679 http://arxiv.org/abs/1810.09679

[39] Spark [n.d.]. Spark. spark.apache.org.
[40] Spark-SQL-perf [n.d.]. Spark-SQL-Perf Benchmark.

https://github.com/databricks/spark-sql-perf.

14

https://www.usenix.org/conference/nsdi20/presentation/agache
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://pdfs.semanticscholar.org/d746/505bad055c357fa50d394d15eb380a3f1ad3.pdf
https://doi.org/10.1145/1327452.1327492
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1109/ICDEW.2010.5452747
https://doi.org/10.1109/ICDEW.2010.5452747
http://dl.acm.org/citation.cfm?id=3291168.3291200
http://dl.acm.org/citation.cfm?id=3291168.3291200
http://dl.acm.org/citation.cfm?id=882471.883319
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
http://arxiv.org/abs/1810.09679
http://arxiv.org/abs/1810.09679

SplitServe: Efficiently Splitting Apache Spark Jobs Across FaaS and IaaS Middleware ’20, December 7–11, 2020, Delft, Netherlands

[41] Splitserve [n.d.]. Splitserve. https://github.com/PSU-Cloud/splitserve.
[42] Xinhui Tian, Rui Han, Lei Wang, Gang Lu, and Jianfeng Zhan. 2015.

Latency critical big data computing in finance. The Journal of Finance
and Data Science 1, 1 (2015), 33 – 41. https://doi.org/10.1016/j.jfds.
2015.07.002

[43] C. Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis. June 2017. Using
Burstable Instances in the Public Cloud: When and How?. In Proc.
ACM SIGMETRICS, Urbana-Champaign, IL.

[44] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. 2018. Peeking
Behind the Curtains of Serverless Platforms. In Proc. USENIX ATC.
Boston.

[45] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gre-
gory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing.
2015. Managed Communication and Consistency for Fast Data-parallel
Iterative Analytics. In Proceedings of the Sixth ACM Symposium on
Cloud Computing (SoCC ’15). ACM, New York, NY, USA, 381–394.
https://doi.org/10.1145/2806777.2806778

[46] Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole Chen, and
Thomas Moscibroda. 2016. TR-Spark: Transient Computing for Big
Data Analytics. In Proceedings of the Seventh ACM Symposium on

Cloud Computing (SoCC ’16). ACM, New York, NY, USA, 484–496.
https://doi.org/10.1145/2987550.2987576

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker,
and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory Cluster Computing. In Pre-
sented as part of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX, San Jose,
CA, 15–28. https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia

[48] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica.
2010. Spark: Cluster Computing with Working Sets. In Proc. USENIX
HotCloud.

[49] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019.
MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Ma-
chine Learning Inference Serving. In Proc. USENIX ATC. Renton, WA.

[50] Zhi Zhou, Fangming Liu, Hai Jin, Bo Li, Baochun Li, and Hongbo
Jiang. 2013. On Arbitrating the Power-Performance Tradeoff in SaaS
Clouds. In Proc. of IEEE INFOCOM.

15

https://doi.org/10.1016/j.jfds.2015.07.002
https://doi.org/10.1016/j.jfds.2015.07.002
https://doi.org/10.1145/2806777.2806778
https://doi.org/10.1145/2987550.2987576
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	1 Introduction
	2 Related Work
	3 Background and Motivation
	4 SplitServe: Overview and Design
	4.1 Autoscaling Apache Spark: Inter-Job Management
	4.2 SplitServe Design for Intra-Job Management
	4.3 SplitServe Implementation Details

	5 Experimental Evaluation
	5.1 Workload Profiling
	5.2 Evaluation Results for Our Workloads

	6 Splitserve Discussion
	7 Conclusions and Future Directions
	Acknowledgments
	References

