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Abstract

We develop a theory for distributed branch points and investigate their role in deter-
mining the shape and influencing the mechanics of thin hyperbolic objects. We show
that branch points are the natural topological defects in hyperbolic sheets, they carry
a topological index which gives them a degree of robustness, and they can influ-
ence the overall morphology of a hyperbolic surface without concentrating energy.
We develop a discrete differential geometric approach to study the deformations of
hyperbolic objects with distributed branch points. We present evidence that the max-
imum curvature of surfaces with geodesic radius R containing branch points grow
sub-exponentially, O(e“/k) in contrast to the exponential growth O (e“'R) for sur-
faces without branch points. We argue that, to optimize norms of the curvature, i.e.,
the bending energy, distributed branch points are energetically preferred in sufficiently
large pseudospherical surfaces. Further, they are distributed so that they lead to fractal-
like recursive buckling patterns.
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1 Introduction

Leaves, flowers, fins, wings and sails are examples of the ubiquity of thin sheets in
natural and engineered structures. These objects often display intricate rippling and
buckling patterns around their edges. Figure 1 displays some of the complex shapes of
leaves and flowers that result from such hierarchical, “multiple-scale” buckling. In the
physics literature, a relation between these buckling patterns and the growth of a leaf
at its margins was first identified by Nechaev and Voituriez (2001) (see also Sharon
et al. 2002, 2004, 2007; Liang and Mahadevan 2011; Sharon and Sahaf 2018). This
phenomenon is not restricted to living organisms, where it might be explained as a
genetic trait selected for by evolution; it is seen in torn plastic sheets (Sharon et al.
2007). Also, a wavy pattern can be induced in a naturally flat leaf; Sharon et al. show
that application of the growth hormone auxin to the edge of an eggplant leaf, which is
naturally flat, induces growth at the margin, ultimately causing buckling out-of-plane
(Sharon et al. 2004).

Qualitatively similar patterns are observed in torn plastic (Sharon et al. 2002, 2007)
and temperature-sensitive hydrogels (Klein et al. 2007; Kim et al. 2012a). These
patterns, and their bifurcations, have been studied intensively over the last 20 years
(Sharon et al. 2002; Marder 2003; Marder et al. 2003; Audoly and Boudaoud 2003;
Klein et al. 2007; Efrati et al. 2009; Klein et al. 2011; Gemmer and Venkataramani
2013). The changes to the internal structure during the growth of a leaf, or through
the stretching of a plastic sheet at a tear, result in surfaces whose intrinsic geometries,
i.e., Riemannian metrics, are no longer “compatible” with a flat shape; significant
external forces compressing the elastic sheet would need to be imposed for the surface
to lay flat. The analogy between the localized stretching near the edge of a torn plastic
sheet and the preferential growth of leaves along to their edge motivates the need for
a purely mechanical explanation for the observed self-similar, fractal-like buckling
patterns (Marder et al. 2003; Audoly and Boudaoud 2003; Sharon et al. 2007; Liang
and Mahadevan 2009; Efrati et al. 2013; Gemmer et al. 2016).

(A) (B) ©

Fig.1 a A leaf with regular undulations (photo by TS). b An Iris with 3 generations of undulations (photo
by SV). ¢ Curly mustard leaves with multiple generations of buckling (photo by J Watkins, U. Arizona)
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Hydrogels have emerged as a useful system for exploring thin sheets with complex
geometries in a controllable and reproducible manner (Klein et al. 2007; Efrati et al.
2007; Kim et al. 2012a). Experimental techniques can prescribe a desired Riemannian
metric in a hydrogel sheet that is initially flat, but acquires the programmed metric
upon “activation” (Klein et al. 2007; Kim et al. 2012a,b). A variety of environmental
stimuli, such as light or temperature changes can activate the programmed metric.
A gel sheet that swells more near the center leads to an ultimately spherical shape.
Alternatively, if the differential swelling is larger near the margins and reproduces the
effect seen in leaves, producing a wavy surface (Klein et al. 2007; Efrati et al. 2007,
Huang et al. 2018). Hydrogels which undergo such controlled shape transitions, due
to a switch in the metric, have a variety of potential applications in medical devices,
micro- and nanoscale robotics and flexible electronics.

Another “experimental” system, less quantitative, but beautifully pairing art and
mathematics is “hyperbolic crochet” (Henderson and Taimina 2001; Meyer 2013;
Wertheim and Wertheim 2015). Through crochet, artists and mathematicians have
rendered embeddings of (subsets of) the hyperbolic plane H? in R?. Hyperbolic crochet
is constructed by increasing the perimeter exponentially with the radius. Sprawling
hyperbolic crochet provides striking resemblance to sea creatures and plant life and has
been exhibited through “The Crochet Coral Reef project” (Wertheim and Wertheim
2015). In “Floraform,” a project inspired by the differential growth in plant structures
and the ruffles of lettuce sea slugs, the authors simulate growth of a thin surface using
techniques from differential geometry and physics, to uncover novel design principles
and also to create art (Louis-Rosenberg 2014).

There is remarkable unity of form in leaves and hyperbolic hydrogels (Huang et al.
2018), in corals and crochet (Wertheim and Wertheim 2015), in sea slugs, and in
jewelry made using simulated differential growth (Louis-Rosenberg 2014). Why is
this so? This is the fundamental question we seek to address in this paper—Why do
systems, with completely different physics, some directed by complex evolutionary
processes and others generated by simple mathematical rules, end up with similar
fractal-like buckling patterns?

A commonly held explanation is that hyperbolic surfaces, i.e., objects whose
perimeter grows exponentially with the radius, develop complex buckling patterns
because there are no smooth ways to embed them in R3 without stretching (Hender-
son and Taimina 2001). Putative evidence for this picture includes scaling laws that
imply a dependence of the buckling wavelength on the thickness of the sheet (Audoly
and Boudaoud 2003; Klein et al. 2011; Bella and Kohn 2014a; Vetter et al. 2013)
suggesting a competition between localized stretching energy and regularization from
bending energy. However, these scaling laws arise from (sometimes implicit) boundary
or “forcing” conditions. There are no proofs (yet) that these scaling laws also apply to
free sheets. Theorems on nonexistence (Hilbert 1901; Holmgren 1902) and singulari-
ties (Amsler 1955; Efimov 1964) for isometric immersions of complete surfaces with
negative curvature are sometimes invoked in this context. This argument, however,
is a misunderstanding of the results in Hilbert (1901), Efimov (1964) which apply
to complete surfaces that are necessarily unbounded. Any finite piece of a smooth
hyperbolic surface can always be smoothly and isometrically embedded in R? (Han
and Hong 2006).
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As we argue in this paper, the answer is somewhat more subtle, and it is tied to
the regularity of the allowed configurations of a hyperbolic sheet in R>. In particular,
we demonstrate that the class of C!"! isometric immersions (no stretching, uniformly
bounded curvatures that are not necessarily continuous) are “flexible,” while C 2 (con-
tinuous curvatures) isometric immersions are “rigid.” “Singular” C!! isometries can
have substantially smaller elastic energy than “smooth” C? isometries, which seems,
on the surface, completely counterintuitive. Further, the organizing principle for min-
imizing the energy of C!'! isometries is approximate “local” balance between the
principal curvatures (Gemmer et al. 2016), and this naturally leads to fractal-like
buckling patterns, as we illustrate in this work. The key to the flexibility of C!!
immersions is a novel topological defect in pseudospherical surfaces—branch points
(Kirchheim 2001; Gemmer and Venkataramani 2011) that are the principal objects of
interest in this work.

After a review of non-Euclidean elasticity in Sect. 2, we present our main results
in Sects. 3, 4 and 5. We conclude with a short discussion of our results and their
implications in Sect. 6. We believe this work will be of interest to readers with diverse
backgrounds, so we summarize our key results here to give readers an overview of the
entire paper in broadly accessible language. This introduction is necessarily informal,
and we refer the readers to the discussion in the body of the paper for the precise
mathematical statements.

We define branch points in Definition 3.6. At “regular points,” a surface negative
Gauss curvature is saddle-shaped and has 4 “sectors,” two above and two below the
tangent plane. In contrast, at a branch point, the surface has 2m > 4 sectors. We con-
struct pseudospherical immersions containing branch points by assembling multiple
sectors together—Proposition 3.10. Given 2m > 4 smooth curves y;, originating at
a point p, tangent to a common plane through p, and with alternating torsions +1,
there is a branched pseudospherical surface, with bounded principal curvatures, that
contains (sufficiently small segments of) the curves y;.

Our next main result is that branched points are topological defects since they

carry a topological charge that cannot be smoothed away. A key preliminary step is
Definition 3.18 that identifies the appropriate quantity which measures the topological
charge.
Theorem 3.22. If a pseudospherical surface S can be approximated in Wli’cz, i.e., the
local difference in curvatures as measured by the elastic bending energy can be made
as small as desired, through surfaces with bounded curvature and no branch points,
then the surface S itself cannot have branch points.

In Sect. 3.4, we outline a procedure we call surgery, that allows us to add additional
branch points to surfaces (see Lemma 3.24). We then generalize the classical sine-
Gordon equation for smooth pseudospherical surfaces, d,,¢ = sin ¢, to surfaces with
branch points.

Theorem 3.27. With an appropriate definition of ¢ (u, v), the angle between the asymp-
totic directions as a function of the asymptotic coordinates, we have

f l(3 dv —9 du)—f/ sin(p)dudv — 7 Z(m'—Z)
) v® u @ = - @ i )

piel
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where I is any domain bounded by asymptotic curves and the correction is the r times
the sum of the topological charges, of all the branch points contained in I".

In Sect. 4.1, we introduce a new class of discrete nets that represent the extrinsic
geometry of pseudospherical surfaces (i.e., the second fundamental form) in intrinsic
coordinates, and allow for branch points. This is useful in applications to the elastic-
ity of thin sheets, since they naturally discretize the class of low-energy (isometric)
deformations of a pseudospherical surfaces. Using this discretization, we formulate
Algorithm 4.1, a greedy algorithm for finding (heuristically) the distribution of branch
points that optimizes the elastic energy, i.e., solving the min—max problem of finding
arg min, ess sup,.q|H (x)| over immersions r : 2 — R? with branch points where
H (x) is the mean curvature at r(x).

In Sect. 5, we present a “physics-style” back of the envelope calculation that allows
us to estimate the energy and the number of wrinkles of nearly energy optimal immer-
sions of disks with constant negative curvature, while allowing for branch points. Our
arguments reveal the role of the branch points in significantly decreasing the elastic
energy, from loginf & ~ R for smooth immersions to loginf £ ~ +/R for branched
immersions of a disk of radius R, cf. Egs. (5.1) and (5.2). We compare our estimates
with numerical simulations.

2 Non-Euclidean Elasticity

We model our elastic bodies as hyperelastic materials, so that the observed configu-
rations are minimizers of an elastic energy functional. The functional quantifies the
elastic energy due to strains in a particular deformed configuration of the body relative
to the intrinsic (non-Euclidean) geometry which can be represented as a Riemannian
manifold (53, G). This suggests a candidate for the resulting three-dimensional elastic
energy

Im=/B||8J-a,&—Gi,-||2dv, @1

with  : B — R3 representing the deformation (Audoly and Boudaoud 2002; Marder
etal. 2003; Efrati et al. 2009). Though Eq. (2.1) is arguably a prototypical model elastic
energy, this functional is not appropriate from variational perspective (Lewicka and
Pakzad 2011) because of the possibility of fine-scale, orientation-reversing “folded
structures.” An appropriate elastic energy is defined using a polar decomposition of
the deformation gradient Vy to measure its deviation from an “energy well” F(x) =
{RA(x) : R € SO(3)}, where A = /G is the symmetric, positive definite root of the
Riemannian metric G (Lewicka and Pakzad 2011). F(x) contains all the orientation
preserving isometric linear maps, from the tangent space 7,3 to R and this defines
the elastic energy

1[5 = / dist? (V§(x), F(x)) dx. (2.2)
B

The fully three-dimensional variational problem for (2.2) is analytically intractable
motivating the development of reduced models for shells, plates and rods (Love 1892;
Timoshenko 1959). For plates,
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the Foppl-von Karman approximation (Ciarlet 1980) is one such asymptotic reduction
of the full three-dimensional system to a two-dimensional system on the center surface
€2 in the limit of vanishing thickness # — 0. Here and henceforth, g will represent
the 2d metric on 2. For a sheet of thickness /, scaling the in- and out-of-plane dis-
placements to be O(+/h) and O (h), respectively, gives an energy functional, called
the FvK energy in the physics literature:

5h =h gstretching + h3 Sbending- (2~3)

The resulting variational formulation, also known as the Foppl-von Karman (FvK)
equations, are coupled PDEs representing the equilibrium conditions associated with
the reduced energy and have been used extensively to model thin elastic sheets. Efrati
et al. extended the FvK theory to non-Euclidean plates, i.e., cases where the reference
metric g is not the Euclidean metric (Efrati et al. 2009). Using the formalism in (Efrati
et al. 2009), the energy of a non-Euclidean plate with elastic modulus Y, Poisson’s
ratio v = 0 and setting y = y|q is

Yh Yh?
- [ Idy - dy — gl|I*dA + —— / (4H* — 2K)dA. (2.4)

eh =

The first integral measures the stretching energy, quantifying the deviation of the
induced metric from an assumed reference metric. The second integral, also known as
the Willmore functional, describes the energy due to bending. H = % is the mean
curvature and K = kjk3 is the Gauss curvature, where k1 and « are the principal
curvatures of the immersion y : € — R3. In this work, K = —1 and we expect
EM ~ k3 if y is an isometry.

The energy functional (2.3) obtains from making an ansatz “lifting” an immersion
y : @ — R3 of the center surface to a deformation 7" : B — R? given by the
Kirchhoff-Love extension that maps fibers orthogonal to the center surface 2 in B
to fibers orthogonal to the image y(£2) in R3 (isometrically for v = 0). In contrast,
rigorous derivations of the # — 0 limit energy for plates are ansatz-free and are
obtained through I'-convergence (Friesecke et al. 2002, 2006). In the ['—convergence
approach, one assumes that, for a sequence of mappings 3" : © x —%, ]%] — R3, the
elastic energy satisfies a uniform bound 2=%/ [ih] < C, where I[-]is the “bulk” elastic
energy defined in (2.2). With no further assumptions, one shows that a subsequence
of the immersions 7" (appropriately rescaled) converges (in an appropriate sense).
One then defines a space of limit configurations and a limit energy E, so that for any
allowed limit configuration ¥, one can recover a sequence of configurations 3" such
that 3" — 3, h~*I[3"] — E[7]. The limiting space and the limit energy can depend
on «, and in general, one obtains a hierarchy of limiting elastic energy functionals,
distinguished by the scaling of the energy with & (Friesecke et al. 2006; Lewicka et al.
2014).
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Fig. 2 Minding’s bobbin with smooth asymptotic curves and cuspidal singular edges. The normal N¢ is
also shown along an asymptotic curve

In our work, we are in the scaling regime /[7"] < Ch3, and the corresponding
limit theory is called the Kirchhoff plate theory in the literature on rigorous dimension
reduction for slender elastic objects (Friesecke et al. 2006; Schmidt 2007b; Lewicka
and Pakzad 2011). The scaled energy 231 converges

24173 r k2 +KkHdA ifye W22 dy-dy =g,
1] > &y = /TR yeu L arar=28
Y +00 otherwise,

2.5)

to the isometry restricted Willmore energy, for various problems in incompatible elas-
ticity of thin objects (Schmidt 2007a,b; Lewicka and Pakzad 2011; Kupferman and
Solomon 2014; Bhattacharya et al. 2016). In this work, we will also consider an alterna-
tive bending energy, the isometry restricted max curvature Ex[y] = maxgq (|k1], |x2])
for y € W»*, dy - dy = g and 400 otherwise. For all bounded domains, the limit
(Willmore) energy &> is bounded by (the square of) the £, so finding configurations
with £ finite is sufficient for showing the existence of finite Willmore energy isome-
tries. We also note that k1k2 = —1 a.e. for C1! surfaces with K = —1. Consequently,

2[H ()] = [k1(x) + k2(x)[ = max(|cr (x0)], [k2(x)]) < 2|H(x)| + 1

so that, for surfaces of constant curvature, the max curvature energy £ is essentially
the same as the max mean curvature max,cq |H (x)]|.

A significant obstruction to finding these configurations is the singular edge; see
Example 3.4 and Fig. 2. The singular edge is an example of a cuspidal edge singularity,
and is a generic feature of isometric immersions of H? into R3 (Amsler 1955; Ishikawa
and Machida 2006). One of the principal curvatures diverges at the singular edge so the
W2 energy is locally unbounded. As we show elsewhere, the Willmore energy also
diverges in any neighborhood of a point on the singular edge. Our principal concern
in this work will therefore be the question of how to evade or stave off the occurrence
of a singular edge.

The question of isometric embeddings and immersions of a Riemannian 2-manifold
(2, g) as a surface in R3 has a long history, reviewed in Han and Hong (2006,
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Chaps. 2 & 3, §4.2). We are specifically interested in the case of pseudospherical
surfaces, i.e., when g has constant negative curvature (Stoker 1989, Chap. 4). In 1901,
Hilbert showed that there exists no geodesically complete, analytic immersion into
R3 of a metric with constant negative curvature (Hilbert 1901). This result was later
extended by Efimov to C? isometric immersions into R3 for any metric with negative
curvature bounded away from zero (Efimov 1962; Milnor 1972):

Theorem (Efimov) No surface with negative Gauss curvature bounded away from
zero K < —8 < 0 can be C? immersed in Euclidean 3-space so as to be complete in
the induced Riemannian metric.

Alternatively, Nash (1954) and Kuiper (1955) showed that, for a general metric g,
there exists a C! isometric immersion, indeed even an embedding:

Theorem (Nash—Kuiper) Let (M, g) be an m-dimensional Riemannian manifold and
f : M — R" a short immersion (resp. embedding), where n > m + 1. Given an
€ > 0, there exists an isometric immersion (resp. embedding) f. of class C' satisfying

g(vv w) = (dfé‘(v)v df&‘(w)>a (26)
which is uniformly e-close to f in the Euclidean norm on R":
I f(x) = fe)| < eforallx € M. 2.7

The juxtaposition of these two results provides a strong motivation to explore iso-
metric immersions with regularities between C! and C?. There is a substantial body
of work investigating the existence of isometric immersions of surfaces into R> with
Holder regularity in the class C La (Borisov 1959, 2004; Conti et al. 2012; De Lellis
etal. 2018; De Lellis and Inauen 2020), with proofs of flexibility foro < 1/5 and rigid-
ity for @ > 2/3. Our interest is in isometric immersions with W22 Sobolev regularity
(Pakzad 2004), motivated by the need to define a meaningful bending (i.e., Willmore)
energy for the immersion, as is clear from the reduced energy (2.5). Provided that
the space of W?2-isometric immersions is non-empty, containing potentially many
immersions, we use the elastic energy as a selection process: The observed surface is
the isometric immersion which minimizes the bending energy.

Remark 2.1 Bella and Kohn prove that wrinkles do arise through a competition
between stretching and bending energies, for 2 > 0, with additional “forcing” condi-
tions that restrict the class of allowed deformations (Bella and Kohn 2014a, Thm. 1).
In this circumstance, the W22 energy of minimizers does not stay bounded as & — 0,
i.e., the limiting isometries are not W2,

We consider a different scenario in this work, namely free sheets with no imposed
forces or boundary conditions. To analyze equilibrium states, we have to impose
boundary conditions that are appropriate for isometric immersions of free sheets,
namely zero net forces and moments (Guven et al. 2019). In this work, we take a
variational perspective for the problem of minimizing (2.5), or the simpler problem
of minimizing £s, = xmax. Our candidate states are therefore “test functions” for the

@ Springer



Journal of Nonlinear Science (2021) 31:13 Page9of60 13

energy, and unlike equilibria, they need neither satisfy the appropriate Euler—Lagrange
equations nor the corresponding boundary conditions.

3 Pseudospherical Surfaces with Branch Points
The preceding discussion highlights the role of the regularity of isometries. Beyond
the existence/nonexistence of isometries, it is crucial whether a candidate isometry is

in W22, This motivates the following problem: (2, g) is a Riemannian 2-manifold.

Find y : Q@ — R®such that y € W22(Q,R%), dy-dy=gae. (3.1

C

a1y X 0
If y : @ - R3is C!, the Gauss normal map is given by N = Ay XAy with
; 01y x B2yl
d; = — for (arbitrary) coordinates (x',x%) on Q. If y and g are C?, it follows

dx!
that N is C' and Gauss’ Theorema Egregium implies that (3.1) is equivalent to the
Monge—Ampere exterior differential system (EDS) (Ivey and Landsberg 2003, §6.4):

N -dy =0, N*(dQ) =« dA, K = k[g] is determined by g, 3.2)

where d<2 is the area form on the sphere S? and « is the Gauss curvature.

Classical results in differential geometry imply that smooth solutions of (3.2) with
k < 0are hyperbolic surfaces and locally saddle-shaped. In contrast, the curly mustard
leaf'in Fig. 1c is “frilly,” i.e., buckled on multiple scales with a wavelength that refines
(“sub-wrinkles”) near the edge (Sharon et al. 2004). This “looks” very unlike smooth
saddles (cf. Fig. 4a).

If © c R? is a bounded domain with a smooth boundary, and g is a smooth metric
on  with negative curvature, g can be extended to a smooth metric g on R? with Gauss
curvature xk[g] < O decaying (as rapidly as desired) at infinity. The existence of iso-
metric immersions into R3, of smooth metrics with decaying negative curvature (Hong
1993), therefore implies that bounded smooth hyperbolic surfaces can be smoothly
and isometrically embedded in R3. A smooth (C? is sufficient) hyperbolic surface
cannot refine its buckling pattern and is thus “non-frilly,” as we show in Sect. 3.2.
Why do we see frilly shapes in natural surfaces, as in Fig. lc, rather than a smooth
saddle (see Fig. 4a)?

We have addressed aspects of this puzzle in recent work (Gemmer and Venkatara-
mani 2011, 2012, 2013; Gemmer et al. 2016; Acharya and Venkataramani 2020) and
find that frilly surfaces, somewhat counterintuitively, can have smaller bending energy
than the smooth saddle, despite being (seemingly) rougher. It is true that C2 hyperbolic
surfaces are saddle-like near every point. A key result in this work is the identifica-
tion of a topological invariant, the winding number (ramification index) of the normal
map at a branch point, that distinguishes sub-wrinkled surfaces from saddles locally
(see Lemma 3.19 and Fig. 4). With branch points, the surfaces are only C!!, like the
monkey saddle in Fig. 4c, but the gain the additional flexibility to refine their buckling
pattern and thus lower their energy (Gemmer et al. 2016). This flexibility is not avail-
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able to smooth saddles and constitutes a key property of surfaces with branch points
(Gemmer et al. 2016).

The additional flexibility for C!*! immersions of hyperbolic surfaces has been
explored since the 1960s. Rozendorn discussed the branched hyperbolic paraboloid
as an important example of a C!! hyperbolic surface (Rozendorn 1992) and con-
structed C'-! immersions of geodesically complete, uniformly negatively curved
(K < —§ < 0) surfaces that are smooth except at finitely many points (Rozendorn
1962a, 1966, 1992). In contrast to Rozendorn’s construction (Rozendorn 1962a), with
a focus on minimizing the “singular set” of C*! points and leaving the metric “free,”
the constructions in Gemmer et al. (2016), Gemmer and Venkataramani (2011) exactly
preserve a prescribed metric, but need “larger” sets of singular C!-! points. The goals
for this approach include enlarging the domain that can be immersed isometrically
into R? or optimizing the bending energy over isometries. In this work, we follow the
latter approach and seek C!-! isometric immersions of a prescribed metric, namely
one with constant negative curvature K = —1.

Definition 3.1 (Hyperbolic plane) The hyperbolic plane H? is the maximally sym-
metric, simply connected, 2-manifold with constant negative curvature —1. An
explicit model for this space is the Poincaré disk x> + y> < 1 with the metric
4(dx? +dy?)
g = .
(1= (2 +yH)?

3.1 Pseudospherical Surfaces

Here and henceforth, we will use the adjective pseudospherical to mean “pertaining
to subsets of the hyperbolic plane.” We will build branched C!'! pseudospherical
surfaces in R by patching together C? immersions of subsets of H2, such that the
pieces join with continuous tangent planes. To this end, we collect and also extend a
few properties of C? pseudospherical surfaces [see (Eisenhart 1909, Chaps. V & VI)
(Rogers and Schief 2002, §1.1 & §1.2) and (Dorfmeister and Sterling 2016)].

(A) Every C? immersion with K = —1 admits a pair of asymptotic coordinates
(u, v) (locally) so that parametrized surface (u, v) — r(u, v) satisfies r,, x r, #
O, N-ry, = N -ryy =0where N = £r, xr,/|ry xry|| (Hartman and Wintner
1951). The sign choice in the definition of N is immaterial if ||r, X 7| never
vanishes.

(B) By the Beltrami—Enneper theorem (Eisenhart 1909, Chap. V), the unit speed
asymptotic curves r (-, vg) and r (ug, -) have constant torsions £ 1. We choose the
u and v coordinates so that the corresponding asymptotic curves have torsions
-1 and +1, respectively. Since r, L N andr, L N, (ry, N X r,, N) is an
orthonormal Frenet frame for the u-asymptotic lines r (-, vg) and (ry, N x ry, N)
is a frame for the v-asymptotic lines. The Frenet—Serret formulae (Eisenhart
1909, Chap. V) read

Tu 0 «* 0 Tu
| Nxr,|=1-«"*0 —1 N xr, |,
N 0 1 0 N
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©

(D)

(E)

(F)

(&)

Iy 0 «'0 Iy
O | Nxry|=]—-x«" 01 N xry]. 3.3)
N 0 —-10 N

k" and «V are the geodesic curvatures of the # and v asymptotic lines.

The Frenet—Serret equations yield N, = N x r, so (ry, Ny, N) is aright-handed
orthonormal frame. Similarly, (r,, —N,, N) is a right-handed orthonormal
frame. This gives the Lelieuvre formulae (Rogers and Schief 2002, §1.6)

ru(u,v) = N,(u, v) x N(u, v),
ry(u, v) = —Ny(u, v) X N(u, v). (3.4)

The Lelieuvre equations are consistent if and only if 9, (r,) = 9, (r,) which is
equivalent to the condition that the normal field (u, v) +— N(u, v) is Lorentz
harmonic

N X Nyp = 0. (3.5)

It immediately follows that r,,, = N, X N,.

Note that Egs. (3.4) and (3.5) and the signs of the torsions in (3.3) are invariant
under three separate symmetries: N — —N,u — —u or v — —v. Also, the
transformations u — —u, v - —v or N — — N, respectively, reverse the sign
of the geodesic curvature «“, reverse the sign of ¥ and reverse the signs of both
k" and kv in (3.3).

Note that —u (resp. —v) is as much a valid asymptotic coordinate as is u (resp.
v). This is not an issue with global (smooth) asymptotic coordinates, but will be
an issue for the branched surfaces that are our principal objects of interest.

We will define N so that it is continuous in situations where the underlying
surface is C!, independent of the specific asymptotic parametrization. Let o be
an orientation (a non-vanishing 2 form) on this surface. If the surface is a graph
(x1, x2, w(x, x2)), a canonical choice is @ = dx; A dx,. We define the normal
N so that the orientation @ on the surface is consistent with the cross product in
the ambient space R3,ie., w(X,Y) = B(X xY)- N forall vector fields X, Y
tangential to the surface and a strictly positive function . This is equivalent to
defining

ry Xry Iy X Iy

N = N® = sign(w(ry, ry)) 3.6)

=0 ,
lry X ryll lry X ryll

where we have defined o = sign(w(ry, 1)) to keep the notation compact. It is
easy to see that this definition of N is insensitive to “flips” u — —uorv — —v
in the asymptotic parametrization. A related issue is addressed in the definition
of the normal Ngon¢ for a pseudospherical front in Ref. Dorfmeister and Sterling
(2016), where the consideration was the potential vanishing of ||r, x r,]|.

If we define the angle between the asymptotic directions by cos ¢ = ry, - ry, this
definition is not invariant under the flips 4 — —u or v — —v. We therefore pick
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an “invariant” definition for the angle between the asymptotic directions by

cos(p) =ory -ry = —0 Ny, - Ny,
sin(p) =o(ry xry) N
= llru x ryll
Fuy = Ny X Ny = —o singN. 3.7

For this definition, sing > 0 so 0 < ¢ < m.r is an immersion only if r, and
ry are linearly independent, so this precludes ¢ from attaining the values O or
7 on a smooth pseudospherical surface. Initially, we work on open sets where
w(ry, ry) does not change sign and ||7, X ry || is non-vanishing.

(H) Interms of this angle ¢ and the normal N = N®, the first and second fundamental
forms of the pseudospherical surface are given by

g=dr-dr = du’® + 20 cos ¢ dudv + dv?
h=dN® -dr = —20 sin ¢ dudv. (3.8)

I N, = N xr,and Ny, = —N X ry are in the plane perpendicular to N that is
spanned by r,, ry. Indeed N, is obtained by rotating r, by 7 /2 and N, is ry
rotated by —r /2. Differentiating, and using (3.7), we get

Nyy = Ny X1y = —(N X 1ry) Xry
=Ny -ry) —ry(ry - N) =0cosoN = —(N, - Ny)N. 3.9)

(J) To extract all the compatibility conditions encoded in (3.3), we also need the
derivatives of the Frenet frame for the u-lines with respect to v and vice versa.
Recognizing that N x r,, = N, and combining the results in the previous items,

we have
Tu 0 0 —sing Tu
WINXxr,| =0 0 0 cos ¢ N X ry
N sing —cose O N

Writing these equations abstractly as 9, F* = AF", 9,F* = BF", where F"
denotes the frame (r,,, N,,, N), compatibility 9, (9, F*) = 9,(d, F") is equivalent
to the zero-curvature condition d0,A — 9, B + [A, B] = 0 (Rogers and Schief
2002, §1.2). Computing the matrix entries for this system, and the corresponding
system for the frame FV, we get

K" = =g, &=y,
—dy(k") = 0y (k") = @y = o sin g, (3.10)
the Sine-Gordon equation for ¢ and relations between the geodesic curvatures
k", kV of the asymptotic curves and the derivatives of ¢. In obtaining this equa-

tion, we have assumed that ¢ is a constant, so this only applies to open sets where
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w(ry, ry) does not change sign. In Sect. 3.5, we generalize the sine-Gordon equa-
tion to situations where o can change sign (see Theorem 3.27).

We are now in position to define the basic building block of a branched pseudo-
spherical surface. We will follow the discussion in Dorfmeister and Sterling (2016):

Definition 3.2 A function (1, v) — f(u,v) € R" is C'™ if each component is cl,
and has continuous mixed partial derivatives f,, = f,, on the domain of f.

Note that C'™ functions are not necessarily C? and neither fuu nOT fyyy needs to exist.
Also, a smooth reparametrization (4, v) = g(r,s) ofa C IM function f can yield a
function h(r, z) = f o g(r, s) that is not C'™ (Dorfmeister and Sterling 2016).

Definition 3.3 Let D C R? be equipped with global coordinates (i, v). A C'™ map-
ping N : D — S? is weakly (Lorentz) harmonic if

(1) Ny-N, >0and N, - N, > Oon D.
(2) N is Moutard, i.e., there is a continuous function v : D — R such that N,, =
Ny, = vN (Bobenko and Suris 2008, Thm. 1.12).

Weakly harmonic mappings D — S2 allows us to generalize the class of smooth
pseudospherical surfaces (Dorfmeister and Sterling 2016). In particular, if D is simply
connected and N : D — S? is weakly harmonic, then there is a corresponding
pseudospherical front, or PS-front for short (Dorfmeister and Sterling 2016), i.e., a
CM golutionr : D — R3 to the Lelieuvre equations (3.4), that is weakly regular, i.e.,
ry -y > 0,ry - ry > 0. PS-fronts allow for the possibility of singularities, i.e., sets
where 7 is not an immersion, and classical examples include the pseudosphere [see
(Dorfmeister and Sterling 2016, §6)], and Minding’s bobbin, as we discuss further in
Ex.3.4.

There is a necessary and sufficient condition for ruling out such singularities—r is
an immersion at every point where N is an immersion, i.e., Ny, X N, # 0 (Dorfmeister
and Sterling 2016).

Example 3.4 A Minding’s bobbin, depicted in Fig. 2, is a surface of revolution given
in cylindrical polar coordinates (p, 6, z) by p(s) = « ! cosh(s), z(0) = 0, Z/(s)> +
p'(s)?> = 1, where s is the arclength along a meridian and « is the curvature of
the “throat” of the bobbin, the equatorial circle s = 0. The induced metric is g =
ds? + p*dH? and the corresponding Gauss curvature is K = —p”/(s)/p(s) = —1. The
maximal extension of a Minding’s bobbin has a singular edge at a finite distance from
the equator, since it cannot be extended smoothly beyond s = £L, L = arcsinh(k)
where p’(s) = =£1,7/(s) = 0. Minding’s bobbin has the topology of a cylinder
S! x (=L, L) and its universal cover is a “strip” R x (—L, L). The diameter of any
geodesic disk than can be smoothly and isometrically embedded in the universal cover
is therefore bounded by 2 arcsinh(k) (Gemmer and Venkataramani 2011).

In order to get a diameter 2R, it follows that the max curvature £, > k > sinh(R).
Note that, this bound obtains from the throat, and not, as one might have imag-
ined, from the region near the singular edge. The longitudinal curvature is given by
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(% arcsin p'(s) = \/%, and it diverges as the distance to the singular edge to
the power —% (Gemmer et al. 2016). In particular, the Willmore energy also diverges,
logarithmically, on any neighborhood of a point on the singular edge. For bobbins that
can “contain” a disk with radius R, we have,

inf€ > inf max (K, cosh(R) (i’ — sinhz(R))_1/2> , (3.11)
Kk >sinh(R)

and optimization requires a “global” balance between the “azimuthal” principal cur-
vature at the throat and the “longitudinal” principal curvature near the edge.

Reflecting a pseudospherical surface of revolution about a plane through antipodal
meridians preserves the arc length parameter s +— s, inverts the torsion so u-asymptotic
curves map to v-asymptotic curves and vice versa, and also inverts angular derivatives
dg +—> —0p. It therefore follows that the vector d; || (3, + 0y) and g || (3, — 9y).
Indeed, more is true. The fact that the angular separation in 6 between two u- (or v-)
asymptotic curves is the same at any “height” z(s) (equivalently independent of the
arc-length coordinate s) implies that & o« u — v for any pseudospherical surface of
revolution. Consequently, we can choose u, v such thatr, - r, =r, -ry, = 1,5 =
s(u +v),0 = au — av for some constant c.

With these “normalizations” for the asymptotic coordinates # and v, Minding’s
bobbin can be expressed as s = s(u + v) in terms of elliptic functions (Gray 1998,
§21) (Gemmer and Venkataramani 2011). Rather than recapitulate the exact solutions,
our goal here is to illustrate various features of PS-fronts using Minding’s bobbin as
an example.

dy = %(BM — 0p) is the Killing vector generating the azimuthal symmetry. For
scalar quantities ¢ € {s, ¢, 0}, invariance under this symmetry implies ¢ = g (u + v).
Comparing the metric g = ds? + «x ~2 cosh?(s)d#? with the expression in asymptotic
coordinates

g = du® + 20 cos ¢ dudv + dv?
cos? £ (du + dv)? + sin? £ (du — dv)? o =+1,
sin? £ (du 4 dv)? 4 cos? §(du —dv)*> o = —1,

we get, after setting & = u + v,

l—0o . ¢

ds 14+0o
sin —
2 2

as ¥
& 2 2
1 -
%cosh(s(é)) = % sin% +— 7 cos g. (3.12)

+

We can determine the constant o by imposing the requirement that, at the singular
edge, whether approached from a region with o = 1 or from a region with o = —1,

o . . e .
we should get 7 cosh(s(§)) — 1. This suggests setting o = Jorg 0 (3.12) will

yield a pseudospherical surface of revolution with a profile p(s) = « ! cosh(s). This
is indeed true as we now prove:
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Lemma Let « > 0,0 € {—1, 1} be given, and let s(£) be a solution to the ODE

ds\? 1 )
(E) + e cosh“(s) = 1. (3.13)

Then, on domains where s'(u + v) # 0,

¢(u,v) = (1 + o) arcsin (cosh(z;%v))) + (1 — o) arccos (cosh(;“;—u:—lv)))
(3.14)

solves the sine-Gordon equation d,,¢ = o sin ¢.

Proof 1t is straightforward to verify that any solution of (3.13) followed by a definition
of ¢ through (3.14) will give s(£), ¢ that satisfy (3.12). These solutions are smooth
whenever ¢ is smooth, i.e., constant. Multiplying the two equations in (3.12) yields

[smh(s(é))] cosh(s(£)) ( ) 1 sin

= —sing.

d§ | V2 +1 V2 + dg 2

Differentiating the second equation in (3.12) assuming o is locally constant and divid-
ing by s'(&) # 0 from the first equation gives

sinh(s(§)) _ 157 cos § — 157 sin § <¢ (5)) ¢'(§) c(-1.1}
= oe{-1,1}.
K2+ 1 1+T"cos%+lTs1n2 2 2
Combining these two equations, we get d,,¢ = ¢” (u + v) = o sin ¢. O

Note that (3.13) is the statement of conservation for an energy for a unit mass particle
moving in a potential V (s) = 2(}(2—14_1) cosh?(s) if we interpret & = u + v as time. The
corresponding orbits are bounded periodic functions s = s(£) and the turning points
where s’ = 0 are when s = +L as expected. This mechanical analogy shows that, at
the turning points, s’(§) = 0 and s”(&§) = —V'(s) # 0, and further, the solutions s =
s(u—+v) are “global,” i.e., exist for all (u, v) € R2.Sinceds? = d (k! cosh(s))2+dz2,
it follows from (3.13) that

dz\* sinh?(s)\ (ds\? _ (k2 — sinh?(s))?
(&) - (-2 (&) -ty oo

The right-hand side vanishes quadratically in (L% — s2), so it follows that z/(£.) =
7"(&.) = 0 at the turning points & where s(&.) = %L and we can pick the square root
so that z/(&§) > 0 for all £. Near a turning point, we therefore get

PE) = pe—c1(E —E)? + O((E — &)%), 2() = zc + 26 —&)° + O((E — &)%)
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where p. = p(€.) = kT 'WiK2 + 1, z. = z(&) and ¢1, ¢ > 0. The mapping

(u,v) — r(u, )

= | p(u+v)cos M , p(u + v) sin M ,z(u +v)
Vi +1 Vi +1
(3.16)

isnotanimmersion on the circles given by u+v = &, and exhibits cuspidal singularities
at these points, as we illustrate in Fig. 2. Nonetheless, the asymptotic curves u +—>
r(u, vo) are smooth and satisfy r,, - r, = 1, and likewise for the curves v — r(ug, v).

X
Defining the normal N = H yields, with a positive constant of proportion-
ry Xr
ality, o
d —v
Nu,v) ocs'(u+v) —Z£ cos K —v) ,
ds K2+ 1
dz . [(k(m —v)\ sinh(s(u + v))
——sin .
ds K2+ 1 K
Since g—§ = 0 at the turning points, this definition of the normal flips between
N = +ej3 at every turning point and is thus discontinuous. In contrast, the definition
X
N® = M, o = sgn(s’(u + v)) yields a continuous (even C'™) definition of
ry X1
the normal.u ’

Using (3.13) with (3.15) and recognizing that % =0 |% | we obtain

N, =« 'sinh(s(u +v)), o =sgn(s'(w+v), 0=xk&>+1)"wu—v)
N® = <—a,/1 — N2cosb, —o/1 — N2sin6, NZ) . (3.17)

N®,in conjunction with the PS-front r in (3.16), satisfies the Lelieuvre equations (3.4).

Definition 3.5 An Amsler sector is a PS-front r : [0, c0) x [0, 00) — R3 such that
the bounding u- and v-asymptotic curves r(-, 0) and (0, -) are geodesics in R3. A
pseudo-Amsler sector is a PS-front r : [0, ug) x [0, vg) — R3 such that the one of
the bounding u- and v-asymptotic curves either (-, 0) or r(0, -) is geodesic in R>.

Amsler and pseudo-Amsler sectors will play a fundamental role in this work. Amsler
sectors can be constructed by solving the sine-Gordon equation ¢,,, = sin ¢ on the
first quadrant u > 0, v > 0 with boundary data ¢(u, 0) = ¢(0,v) = ¢o (Amsler
1955). These solutions admit a self-similar reduction of the form ¢(u, v) = ¢(2),
with z = 2/uv. This self-similar ansatz gives 9, = %BZ + % and the sine-Gordon
equation reduces to

/

®'(2)
Z

¢"(2) + —sing(z) =0, (3.18)
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known as Painlevé III in trigonometric form (Bobenko and Eitner 2000, Chap. 2).
The preimage of z = 0 is the set {(#,v) : u = Oorv = 0}, and hence, we see
immediately that ¢(u, v) is a constant along the axes, and there is an (unbounded)
open neighborhood of the axes on which the PS-front is actually an immersion since ¢
is close to ¢g and away from 0 and . This is in stark contrast with Minding’s bobbin
where every u-asymptotic curve hits the cuspidal singular edge at a finite value of the
parameter u and likewise for v-asymptotic curves.

For an Amsler sector, along the asymptotic curves given by u = 0, we have " =
d,¢ = 0 by (3.10), and it follows from Eq. (3.3) that 9,7, = 0 showing that this curve
is geodesic in R3. A similar argument applies to the asymptotic curve given by v = 0.

3.2 Assembling a Pseudospherical Surface with Branch Points

As a first illustration of the procedure to construct C*! pseudospherical immersion,
we construct a monkey saddle with constant negative curvature, K = —1. Fix an even
integer 2m > 4. The number 2m determines the number of asymptotic rays extending
from the origin and the resulting topological structure of the asymptotic coordinate
system.

Definition 3.6 (m-star) Given angles «; € (0,7),i € {1...2m} satisfying ) ", o; =
27 and lengths [; > 0,i = 1,2,...,2m, set fo = 0,6 = Bi—1 + «; fori =
1,2, ...2m, and define the unit vectors s; = cos(;)e| + sin(B;)e,. Define the sectors
S;  R? by

Si={esisi+dsi|0<c<l_,0<d<L), i=12, ..., 2m. (3.19)

An m-star T is a topological space with the set T = T ({«;}, {l;}) = U,zfl S; con-
structed as above and equipped with the subspace topology given by the inclusion
T c R2.

We define coordinates (&;, n;) so that x = &;s; + n;sj+1 for n; > 0 and x = &;s; —
nisi—1 forn; < 0.This gives abi-Lipschitz mapping (&;, ;) : (0, ;) x (—li—1,li+1) —
Si-1 Y $HY ¢ R2, that is, in general, not smooth on any open set that intersects
{ni = 0}.

Remark 3.7 Inorder for all the coordinates (§;, n;) tobe smooth, we needs; | = —S;_1
for all i, and this forcesm = 2, a; + @ = 7, 0] = a3, 03 = 4.

The coordinate patches for (§;, ;) and (§; 11, n;+1) overlap on the interior of S i and
the transition functions between the coordinates, given by n;+1 = —&; and &1 = n;,
are Lipschitz (even smooth). On the sector S;, we can compute the coordinate (&;, 1;)
by

1 * *
Gi,ni) = *—-S-(Siﬂ - X, —S; - X),
i+1 " Si
where the “dual” vectors are given by sjf = e3 x s;. Note that s;‘ 1S = sin(Bi4+1 —

Bi) = sin(a;) > 0, and these formulae extend the coordinates &;, n; to the closure S;
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as Lipschitz functions. The origin x = 0 is given by (&;, ;) = (0, 0). We define the
asymptotic coordinates (u;, v;) by

o i
(i vj) = &, ni) 1 l %s even 320
(i, &) ifiisodd.

The quantities (u;, v;) are only defined on the sector S;. Also, for i even (respectively,
iodd), 0 < u; = ujy1 < lj and v; = vig1 = 0 (resp. u; = ujy1 = 0 and
0 < v =vjy1 <lj)onS;NS;y1. We will fix the sector S; in the rest of this argument
and henceforth drop the subscripts i on u; and v;. Given a point z € R3, a direction
n € S? and unit vectors e, and e, that are pependicular to n, we define the boundary
conditions for an Amsler sector by

N(u,0) = cos(u)n + sin(u)n x e,
N (0, v) = cos(v)n — sin(v)n X e,
rwu,0)=z+ue,, r,0) =z+ve,. (3.21)

It is straightforward to verify that the definitions in (3.21) are solutions of (3.3). It
follows that we can solve the Moutard equation (3.9), a Goursat problem for the normal
N (u, v) [see (Bobenko and Suris 2008, Thm 1.12) for the details], to obtain smooth
solutions in the interior of the sector S; that extend continuously to the boundary, and
on the segment u = 0 (respectively, v = 0), N (0, v) (resp. N (u, 0)) agrees with the
definition in (3.21).

We specialize by settingz = 0, n = e3, e, = s;, e, = s;_jifiisevenande, =s;_;
and e, = s; if i is odd. Note that, for points that are in multiple sectors, i.e., points on
the sector boundaries, either u or v is zero, N and r are defined consistently, i.e., they
are same independent of which sector is taken in the definition. In particular, the point
u = v = 0, which belongs to all sectors, has r;(0,0) =z = 0, N;(0,0) = n = e3 for
all ;.

In the interior of the sector S;, the normal field N; which solves the Moutard
equation (3.9) is weakly harmonic and thus determines a PS-front r; : S; — R3
through the Lelieuvre equations (3.4). Since lim ) (0,0) Nu X Ny = :l:sj‘_l -s; # 0,
it follows that there exists ¢; > 0 such that N, x N, does not vanish on the rectangular
domain J; = {0 < u; < ¢;,0 < v; <d;} C S;. r; extends continuously to J; and we
have constructed a PS-front r; € C*°(J;)NC(J;) such that r; (0, 0) = 0 and the normal
to the immersion is given by our choices for N above, i.e., for points in S; (] S i N
is well defined since the two potential definitions of the normal, N; and N;, agree.
We can, after shrinking c;, d; if needed, patch these solutions to obtain an m-saddle,
i.e., a piecewise smooth PS-front  : T — R3 where T = \U; Ji is an m-star and
r(x) = r;i(x) on J;.

This procedure is illustrated in Fig. 3 with 2m = 6,0y = 7/3,k = 1,2,...,6.
Since the resulting immersion is continuous and piecewise smooth, and has a contin-
uous and piecewise smooth normal field, it follows that the normal field is (globally)
Lipschitz, and the immersion is C!!. The immersion restricted to each sector is an
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Fig. 3 Construction of a K = —1 3-saddle (“monkey saddle”) of geodesic radius 1. Each colored sector
is smooth, and the gluing procedure maintains continuity of the normal field, shown by the arrows (Color
figure online)

example of an Amsler sector as in Definition 3.5, an object that will play a key role in
our constructions below.

Remark 3.8 We will, for the most part, drop the subscript i that indicates the domain of
definition S;, and refer to # and v simply as asymptotic coordinates. This has potential
to cause confusion since u and v are not coordinates in the differential geometric
sense and do not define a one-to-one map on any open set that intersects a boundary
between sectors. This is mitigated somewhat since we usually work only of a single
sector at a time, and on the intersection S; () S ;i between two sectors, u and v have
to agree. Indeed, this condition along with the requirement that r (u, v) and N (u, v)
be well defined on the intersections of sectors S; () S;, independent of whether (u, v)
refer to the coordinates on S; or on S;, allows up to patch sectors together to obtain a

continuous functions on the m-star Ulz;"l Si.

We generalize the construction of patching Amsler sectors (Gemmer and Venkatara-
mani 2011) by relaxing the requirements imposed in (3.21).

Definition 3.9 An m-saddle is a C'-! mapping r : T({e;}, {l;}) — R3 from an m-
star to R3 such that the restriction r; = r|s, is a PS-front, i.e., r; (u;, v;) and the
corresponding normal N;(u;, v;) are C"™M in the coordinates (u;, v;), the normal is
weakly regular and is Lorentz harmonic. m is the order of saddleness at the point
u; =v; = 0

We now define an algorithm for constructing m-saddles through assembly.

Proposition 3.10 (Assembly) Let 2m > 4 be an even number and let L < 0o. Assume
that we are given smooth functions k; : [0, L) — R and angles o; € (0, ), for
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i=1,2,...,2m, satisfying 212:1 o = 2m. Thereexistl; € (0,L),i =1,2,...,2m,
sufficiently small, 2m arc-length parametrized Frenet frames F; : [0, ;) — M3x3 and
an m-saddle r : T ({o;}, {I;}) — R3 satisfying

(1) r(0,0) =0and N(0, Q) = es,
(2) Fori even (resp. i odd) F; satisfies the first (resp. second) equation in (3.3) with
k" = ki (resp. k¥ = «;) and the initial conditions r,(0) = s; (resp. ry(0) = s;)

and N (0) = es,

where B; = Zi-:l aj,s; = cos(B;)e) + sin(B;)e; and T is an m-star as in Defini-
tion 3.6.

Proof The proof is by explicit construction. The existence and uniqueness for the
Frenet frames follow from standard results for ODEs. The prescribed data therefore
determine the normal field N at the boundaries of the sectors S; where T = U?Zl Si,
and we can solve (3.9) for N; (u, v) in the interiors of the sectors S;. This normal field
is weakly harmonic on each sector so we can construct the corresponding immersions
using the Lelieuvre formulae. The solutions on the sectors S; can be patched on the
intersections S; N ;41 since both patches agree with the curve  +— r(ts;),0 <t < [;
on this intersection, and the normals agree as well with the solution for the Frenet frame
F;. On the sector S;, limy, ) 0,0y [Ny X Nyl = Is}_; - si| > 0 so there is a m-star
containing the origin, given by {/;} sufficiently small, such that patching the sectors
gives a piecewise smooth, globally Lipschitz normal field N and a C'-! immersion
r:T — R3. O

It follows from Definition 3.9 that the order of saddleness m , at any point p is the
number of times any sufficiently small deleted neighborhood of p crosses from one side
of (say “below”) the tangent plane at p to the other side (“above”) (Rozendorn 1962b).
m p, thus measures the number of “undulations” at p. The m , —2 “excess” undulations,
in comparison with a regular saddle, persist to the boundary. This mechanism allows
hyperbolic surfaces to refine the buckling wavelength, isometrically, near the boundary
(Gemmer et al. 2016).

For the point p, which is common to all the sectors Sy in Prop. 3.10, the order
of saddleness m, = m, corresponding to half the number of sectors at p. Since the
asymptotic directions at p are defined by the intersection between the surface and the
tangent plane at p [cf. Dupin Indicatrix (Stoker 1989, §4.12)], this relation between the
number of asymptotic directions at p and m , holds more generally. This is illustrated
in Figs. 4a, c. Every point in Fig. 4a has m = 2. In Fig. 4c, most points have m = 2
but there is one point with m = 3.

3.3 The Topology of the Normal Map and Obstructions to Smoothing

Our primary interest in this work is to immerse a geodesic disk @ = Bg c H?
of radius R and constant curvature K = —1 into R? isometrically with essentially
bounded principal curvatures. The local structure of this mapping near any point
p € 2 will be modeled by our construction of m-saddles and m-stars. This motivates
the following definition.
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Fig. 4 (Local) winding number of the normal field about a point p for two surfaces: a a smooth pseu-
dospherical saddle and ¢ A C L1 pseudospherical monkey saddle. b, d Projections of the corresponding
normal fields. p denotes the center of the disks. mp = 2, J, = —1 for the saddle and mp = 3, Jp = —
for the monkey saddle

Definition 3.11 A branched pseudospherical immersion of a subset Q of the hyper-
bolic plane is a globally C+! and piecewise C? isometric immersion ¢ : Q — R3such
that every p € €2 has a neighborhood O, a homeomorphism 7, : O, — T}, where
T, is am ,-star, and an associated m ,-saddle r, : T, — R? such that y/| 0, =TpoTp.

In this work, we will consider branched pseudospherical immersions ¢ : @ — R3
where m, = 2 except for finitely many points p1, p2,..., px € £, the branch
points of . Note that our definition of branch points/immersions is local. For global
considerations, we will use notions from the theory of cell complexes, and refer the
reader to Hatcher (2002, Chap. 0) and Kaczynski et al. (2004, §2.1) for background
material. We begin by stating the definition of a quadraph.

Definition 3.12 (Quadgraph, cf. Def. 2, Huhnen-Venedey and Rorig 2014) A quad-
graph is a strongly regular polytopal cell decomposition of a surface, such that all
faces are quadrilaterals (quads).

A cell decomposition of a surface given by vertices {V;}, edges {E;} and faces {Fy}
is strongly regular if (i) the edges and vertices of each face are pairwise distinct and
(ii) the intersection of two faces is either empty, a single vertex or the closure of
an edge. For our purposes, the quadgraph is required to admit preferred “asymptotic
coordinates.”

Definition 3.13 (Asymptotic complex) An asymptotic complex A is a quadgraph such
that (i) each face Fj is equipped with a bijection v : Fy — Ry where Ry = [0, uy] x
[0, vg] is a rectangle, (ii) the collection of edges is partitioned into a family of u-edges
E" and a family of v edges EV such that adjacent edges on every face come from
alternating families, and (iii) if a (closed) u edge E7 = F; N F;, then u; = u; and
the attaching map is given by (u, v,) € E;‘ C Fy = (u,vp) € Fror (u,v,) € E;‘ -
Fy — (up —u, vp) € F;y where v, € {0, v}, vp € {0, v;}. Mutatis mutandis a similar
condition holds for the v-edges.

Lemma3.14 Let A be an asymptotic complex. Then A is checkerboard colorable,
i.e., we can assign labels “red” and “black” to the faces in F such that any pair of
neighboring faces get different labels. Also, every interior vertex (a vertex notin 0 A)
has even degree.
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A) (B)

Fig.5 Examples of checkerboard-colorable, simply connected asymptotic complexes that are embedded in
the plane

Proof From out definition, there is a globally consistent assignment of the edges, i.e.,
elements of X1, to u- and v-edges that alternate going around any vertex. This implies
that every cycle in the dual graph, which crosses equal numbers of u and v edges
in X is even, and thus, the dual graph is bipartite (Asratian et al. 1998, Chap. 2).
In particular, the complex A is checkerboard colorable, and every interior vertex has
even degree, since the faces incident on an interior vertex constitute a cycle in the
dual graph, the link of the vertex. These features are illustrated by the examples in
Fig. 5. The two grids are equivalent as graphs, although the grid in Fig. 5a is naturally
interpreted as the quadgraph for the surface obtained by assembly in Sect. 3.2, while
the grid in Fig. 5b is perhaps naturally interpreted as the result of surgery by excising
a quadrant and replacing by 3 sectors, as in Sect. 3.4. O

Remark 3.15 The bijection ¥ : Fy — [0, ux] x [0, vx] in Definition 3.13 gives
asymptotic coordinates on the face Fy € A. We will henceforth assume that A is
simply connected and can be embedded into R?. The second condition actually follows
from the first so every simply connected asymptotic complex is homeomorphic to the
disk (Huhnen-Venedey and Rorig 2014, Rmk. 7).

Definition 3.16 (Branched PS-front/Asymptotic quadrilateral) A branched PS-front
is a mapping r : A — R3 on an asymptotic complex A such that the restriction
ry = r|p, is continuous on the face Fy and a C'"™ PS-front on the interior F, ,? . An
asymptotic quadrilateral is the image r (F) of a face in a branched PS-front.

An asymptotic quadrilateral is thus a “rectangular” domain, bounded by 2 pairs of
intersecting # and v asymptotic curves, on which we can define global asymptotic
coordinates.

Definition 3.17 (Sector) Let ¢ :  — R3 be a branched isometry. A sector (at p)
is a closed set K C €2, such that there is a injection T : K — [0, up) x [0, vp),
T € C(K)NC?(K), and a PS-front r : (0, ug) x (0, vg) x R3 satisfying ¢ |x = rort.
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Further t(p) = (0,0) and K contains the segments y, = 1[0, ug) x {0}) and
vo =t ({0} x [0, vo)).

Informally, a sector at p is a set bounded on “two sides” by a u- and a v-asymptotic
curve through p, and contains no other asymptotic curves through p.Let p € Q@ C H
and let ¢ : Q — R3 be a branched isometry. The sum of the m p angles of the sectors
at p (in the surface) is 27r. The images of these sectors under the Gauss normal map
N, however, can wind around the normal N (p) multiple times, as depicted in Fig. 4d.
This motivates

Definition3.18 Let V. € Q be an open set, p € V and U = V \ {p} denote a
deleted neighborhood of p. Let N :  — S be a continuous map with the property
that N(U) € S2 \ {£N(p)}, where —N(p) is the antipodal point to N(p). The
ramification index of the normal map at p, denoted by J,, is defined as the degree of
the (composite) map

st u N 2\ (N 5 S,

where y isasimpleclosedcurveinU,x; = x—(N(p), x)N(p)andmw(x) = x /||xL |
is the canonical retraction 7w : $2\ {=N(p)} — S' (“retracting to the equator”).

For surfaces with negative extrinsic curvature, J, < 0 everywhere since the normal
winds clockwise for a counterclockwise circuit around p. If J,, = —1, the normal map
is alocal homeomorphism. However, if J, < —1, then N (V) is abranched (“multiple-
sheeted”) covering of a neighborhood of N (p), which is therefore a branch point for
the inverse of the Gauss normal map. This justifies calling p a branch pointif |J,| > 1,
and is in keeping with standard usage (Kirchheim 2001; Gemmer and Venkataramani
2013; Gemmer et al. 2016).

Every immersion can be (locally) expressed as a graph (x1, x2, w(x, x2)) where
(x1, x2) are coordinates in the tangent plane at p, and w(x1, x2) is the normal displace-
ment from this plane. In these coordinates, 7 o N = Vw/||Vw]||, so we can compute
the ramification index J, as the degree of the map § I — §! given by

Vw(exy, €x3)
{(xl,x2) |x2 +X2 = 1} =,
b IVw(ext, ex)l|

for any sufficiently small €. This computation of J), is illustrated in Fig. 4.
The winding number J;, and the order of saddleness m, are related as follows

Lemma3.19 Lery : @ — R3 be a C! pseudospherical immersion, and let p be a
pointin Q. Then J, = 1 —m ), where J, is the local degree of the Gauss normal map
N:Q — S*at p, and m is the order of saddleness of the immersion y at p.

Proof We remark that the quantities m, and J, are well defined for C L1 immersion
(and even for immersions with lower regularity), since N : @ — S2 is continuous
(even Lipschitz) (Hartman and Nirenberg 1959). The equality J, = (1 —m ) isknown
from the theory of weakly regular saddle surfaces [see (Rozendorn 1966, Lemma 1.2)].
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We will have further use for the intuition behind this result so we give a short, self-
contained argument that holds for branched C!! surfaces. Our argument is based on
the Lelieuvre equations (3.4).

By invariance under Euclidean motions, we can, WLOG, assume that y(p) =
0, N(p) = e3. A saddle of order m is defined by angles 0 = g < B1 < -+ < Bom =
27 such that the tangent vectors, at p, to the # and v asymptotic curves are given by
s;i = cos(B;)e] + sin(p;)ex (cf. Eq. (3.19)).

From (3.4), we have, N, = N x r,, Ny = —N X ry, so the asymptotic curves lift
to S by the normal map N into curves whose tangents at N(p) = ez are given by
t; = cos(0;)e; + sin(0;)ex where 6; = B; + % mod 27 if i is even and 6; = B; —
7 mod 27 if i is odd. We can determine the values of 6; by imposing the requirement
0 < 6; — 6;+1 < m, which is necessary to ensure that N, x N, = —r, X ry. Since
0 < Biy1 — Bi < m, it follows that 0;10 — 0; = Bit2 — Bi — 2m. Adding up the
differences in the 6;, we thus get

2m m
D 16 =611 =) [0 — b2k 2] = Bay — fo — 2mm =2(1 —m)m,
i=1 k=1

thus proving the claim that J, =1 —m,. o

Figure 4 shows an illustration of this result. It seems natural that there is no “nice”
way to approach the monkey saddle (Fig. 4c) through normal saddle surfaces (Fig. 4a),
since we cannot go from a winding number of 1 to a winding number of 2 continu-
ously. This is indeed the case as we show in Theorem 3.22. This theorem encapsulates
the principal motivation for an investigation of pseudospherical surfaces with branch
points, namely that surfaces with branch points are distinct from smooth surfaces pseu-
dospherical surfaces because they carry a topological index that cannot be smoothed
away. Our approach is based on the ideas of Brezis and Nirenberg for the degree of
BMO mappings (Brezis and Nirenberg 1995, 1996) with quantitative estimates from
the theory of quasi-isometric mappings (John 1968, 1969).

Definition 3.18 for J), is through computing the index on a circle with sufficiently
small radius €. We now show that the radius € is only limited by the max curvature
so that, for any minimizing sequence for s, consisting of C2 immersions, we have
uniform control on the size of the circles that we may use to compute the “local”
degree of the normal map.

Lemma3.20 For all kpax < o0 there exist 1 = n(kmax) > 0 such that for all
0 < 8 < n and for all C? pseudospherical immersion y : Bzs — R3 with
max (|« (x)], [k2(x)]) < kmax for all x € Bas, we have

(1) The normal map N : Bys — Sz_is one to one.
(2) For all x in the “collar” Bys \ Bs, we have ||N(x) — No|| > c(kmax)$, where Ny
is the image of the center of the geodesic ball B»s.

Proof For a C? immersion y : B3; — R>, there are global asymptotic coordinates
u,v on Bys and an angle field ¢ : Bys — (0, ) such that the metric is given by
g = du? + 20 cos(¢p)dudv + dv? (Hartman and Wintner 1951) (see also (3.8)), and
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the pull back of the metric on the sphere by the normal map gives G = du? + dv? —

20 cos(¢)dudv. The larger principal curvature is given by max(tan %, cot %) so the

hypothesis gives the restriction 2 tan™! kL <@ <m—2tan"! kL We note here
max

. max '
that k1 (x)k2(x) = —1 so, necessarily, kpax > 1.
For any tangent vector w € span(%, ;’—U), we have

k2 < 1 —|cos @] - G(w,w) < 1+ |cos | <2 (3.22)
1+ |cosy| g(w, w) 1 — |cos ]

Setting n = %k;;x, it is straightforward to see that the length of a spherical arc

between Ng and N (x) is less than % Consequently, N(x) - No > O for all x € B3s
and the image of B35 under the normal map is contained within a hemisphere.

We can identify B3s with a subset of the unit disk through the Poincaré disk
embedding (Anderson 2005, Chap. 4) (see also Sect. 4.1). Pre- and post-composing
the normal map N with complex conjugation and projection L: S> — R? into

the orthogonal complement of Ny, we obtain the map Nt B3s — R? given by
(x+iy) > N(x —iy) = (N(x —iy), No>1\j?-
We collect a few properties of the map N~ :

(1) The image of this map is contained in the unit disk.
(2) This map is C' since N is C! and the other maps are smooth.

3) Nl preserves orientation since complex conjugation and N are both orientation
reversing, while L preserves orientation.

(4) It follows from the smoothness of complex conjugation, the smoothness of the
Poincaré disk identification of the unit disk x> 4 y? < 1 with the hyperbolic plane,
the smoothness of the orthogonal projection from the (open) hemisphere to the
unit disk, the compactness of Bas, and from (3.22) that an analogous relation is

true for the mapping NL, i.e., the (local) distortion of lengths by the mapping Nt
is bounded away from 0 and oo on the ball B,s. The constants giving these bounds
only depend on 71 and the constants in (3.22), so they only depend on kmax.-

It follows that NL : Bys — RZisa regular quasi-isometry (John 1968) (i.e., a
bounded length distortion (BLD) local homeomorphism (Martio and Véisild 1988,
§4)). Our conclusions are a direct restatement of the Thm. III in John 1968 [see also
(Martio and Viiséld 1988, Lemma 4.3)]. O

In the preceding proof, we used the following result, first proved in John (1968,
Thm. IIT). We present an equivalent statement using the notation in Martio and Viisdld
(1988).

Definition (BLD mapping, Def. 2.1, Martio and Viisild 1988) Let L > 1. A Lipschitz
mapping [ : G € R" — R” is said to be of L-bounded length distortion, abbreviated
L-BLD, if, for a.e. x € G, (i) |h|/L < |f'(x)h| < L|h| for all h € R", and (ii)
det(Df(x)) > 0.
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Theorem (Thm. III, John 1968) If f : G € R" — R" is an L-BLD immersion
and if Br(x) € G, then || f(w) — f(II/L < llw —z|l < L[| f(w) = f ()]l for all
w,z € B, p2(x).

The following lemma weakens the hypotheses in the previous lemma, by (i) allow-
ing for branched, i.e., globally C!-! and piecewise C?> immersions, and (ii) removing
the uniform bound kn,x for the max curvature. The conclusions are also correspond-
ingly weaker.

Lemma 3.21 Ler Q C H? denote a (proper) open subset of the hyperbolic plane and
let y : Q@ — R3 be a branched pseudospherical immersion. For every point p € €,
there exist § > 0 and dy > 0 such that:

(1) The normal map N : Bas(p) — S? satisfies N(x) # N(p) for any x in the
punctured ball Bys(p) \ {p}.
(2) For all x in the “collar” Bys(p) \ Bs(p), we have |[N(x) — N(p)|l = dp.

Proof If y is a C? immersion, the normal map N :  — S? is an immersion at p and
thus injective in a neighborhood of p, implying the existence of an appropriate § > 0
such that for all x € Bzs(p) \ {p} we have N(x) #= N(p). Since Bas(p) \ Bs(p) is a
compact subset of B3s(p) \ {p} and N is continuous, the conclusions follow.

If y is abranched immersion, the normal map is not injective on any neighborhood of
abranch point p since p is a ramification point for the Gauss normal map N : Q — S2.
However, if S; C €2 is one sector at the branch point p, we can extend the asymptotic
curves bounding S; smoothly so that the extensions satisfy Eq. (3.3). As in Prop. 3.10,
we can now construct a C2 immersion ¥; on a neighborhood of p, one that agrees with
y on the sector S;. Thus there is a §; > 0 such that N(x) # N(p) on S; [ B3s; (p).
Setting § = min(Jo, 81, . .., S2m,—1) gives a§ > 0 with the required property. O

Theorem 3.22 Let Q2 denote an open, simply connected, domain in the hyperbolic
plane and y : Q@ — R> be a C'! immersion, possibly with branch points. Assume
that there exists a sequence of C* pseudospherical immersions y, : Q — R> such
that

(1) y, > yin Wl20’02.
(2) Esolyn] < kmax for all n.

Then m,[y] = 2 for every point in 2.

Proof p €  is an arbitrary point. In what follows, let ¢ > 0 be sufficiently
small so that B3.(p) € @ and € < min(n(kmax), 8(p)) for n(kmax) as given by
Lemma 3.20, and §(p), as given by Lemma 3.21. Also, there is a corresponding
po(p) = min(c(kmax)€, do(p)) > 0, such that x € By.(p) \ B<(p) implies that
IN(x) = N(p)Il = po(p) and [Ny (x) — Np(p)ll = po(p) for all n, where N and N,
are the normal maps for the immersions y and y,, respectively.

€ > 0 now gives uniform control on the size of the geodesic ball B.(p) whose
boundary can be used to compute the local winding number J,(p) and the limiting
winding number J,, as in Definition 3.18, at (a potential branch point) p.
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For the C? immersions Yn, Ny is locally one to one (Hartman and Nirenberg 1959)
and J ,(,”), the local degree of the normal map N, at N,(p) is —1 (from the reversal
of orientation). Wli’cz convergence y, — y implies W12 convergence of the normal
maps on compact sets (here By (p)). Convergence of the normals in W12(Bse (p))
implies convergence in BMO (Evans 1998, §5.8.1), as well as in Ll(Bze(p)). Our
maps N, thus satisfy the hypotheses required for the stability of degree under BMO
convergence (Brezis and Nirenberg 1996, Property 2, §11.2). This implies J, = —1
for the immersion y. Lemma 3.19 now implies that m , = 2. O

According to Theorem 3.22, the monkey saddle in Fig. 4c, which has a point p
with J, = —2, cannot be approximated, in Wli’cz, by sequences of C? pseudospherical
immersions with uniformly bounded principal curvatures Exo(y,) < kmax < 00. This
is a local statement, so the relevant issue is not that the grincipal curvatures are gettin§
large away from the branch point p. Indeed, since Wlo’cOo convergence implies Wl%)’c
convergence, it follows that any sequence of smooth pseudospherical immersions
that converges to the monkey saddle in Wlf)’cz necessarily has blowup of the principal
curvatures on arbitrarily small neighborhoods of the branch point p and therefore does
not converge in Wlf)’coo. In physical terms, the index m (or equivalently J,) makes
branch points topological defects, and they cannot be “smoothed out” while keeping
the principal curvatures uniformly bounded.

Theorem 3.22 allows/suggests the possibility that the infimum of max curvature
Eso for C11 branched isometries can be strictly smaller than the infimum over C2 or
smoother isometries, since we cannot a%)proximate isometries with a non-empty set of
branch points {p; | J(p;) > 2}, in WI%)’C , Or a fortiori in WI%)’COO, by smooth isometries
with locally uniformly bounded curvatures. Such an energy gap between these two
regularity classes is certainly unexpected, since branched isometries can indeed be
approximated by smooth mappings. Also, this behavior is in striking contrast to the
case of flat (Pakzad 2004; Hornung 2011) and elliptic surfaces (Hornung and Velcié
2018), where W22 isometries (respectively, C!'! isometries) can be approximated in
Wli’cz (resp. WIZO’COO) by smooth isometries.

We present numerical evidence to support the existence of an energy gap for surfaces
with constant negative curvature (see Fig. 17a), and argue that rather than being merely
a mathematical curiosity, this energy gap is key to explaining the observed ubiquity
of undulating morphologies for hyperbolic sheets in nature, despite the existence of
smoother isometries (Gemmer et al. 2016). The existence of an energy gap for the
max curvature and Willmore functionals restricted to isometries is an example of
the Lavrentiev phenomenon (Lavrentieff 1926; Ball and Mizel 1985; Cesari 1983,
§18.5), and this has important consequences for numerically minimization of energy
functionals (Ball and Knowles 1987). We discuss these issues further in Sect. 6.

Remark 3.23 Theorem 3.22 does not imply that y, a W]%’cz limit of C? pseudospheri-
cal immersions is necessarily CZ, although the local degree of y is —1 everywhere.
Indeed, the construction from Eq. 3.19 with m = 2 (4 sectors) but with o] + oy # 7
and & 4 a3 # 7 gives a piecewise smooth, non-C? surface in any neighborhood of
p since the u and the v asymptotic curves through p (respectively, y, and y,) are not
differentiable at p. However, y, and y, can be uniformly approximated by smooth
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solutions of Eq. (3.3) obtained by smoothing the (distributional) geodesic curvature(s)
K" (respectively, k) of y, (resp. y,) giving a pair of intersecting “initial curves.” Solv-
ing the Lelieuvre equations yields smooth pseudospherical surfaces that converge to a
¢! immersion with J = —1 everywhere. This argument also gives approximations
by smooth isometries for the C'™ pseudospherical surfaces investigated by Dorfmeis-
ter and Sterling (2016), which have J = —1 everywhere, in contrast to the branched
pseudospherical surfaces considered in this work.

3.4 Introducing a New Branch Point: Surgery

Here, we outline another specific example of a branched surface, illustrating an
approach that we call surgery, in contrast to the approach of assembly in the ear-
lier section. In the process of surgery, we introduce a branch point into a “preexisting”
PS-front.

Lemma 3.24 (Surgery) Let Qo = [0, max] X [0, vmax] and let ro : Qo — R3
be a C'"™M PS-front. Given (u*,v*) in the interior of Qo and i, v > 0, let Q* =
[0, umax] x [0, vmax] \ [1*, max] X [V*, Umax])s 21 = [0, umax — u*] x [0, V], Q2 =
[0, &] x [0, v], 23 = [0, &t] x [0, vmax — v*]. There exist PS-fronts r; : Q; — R3 and
attaching maps x; such that we can glue together Q* with Q;,i = 1,2,3 and the
PS-front ro|q« with the PS-fronts ri,i = 1,2, 3 to obtain a branched PS-front with a
branch point at (u*, v*) € Q*.

Proof We set z; = ro(u™®,v*),n; = Nou*,v*),t, = Oro(u™ v*) and t, =
dyro(u™, v*). We define the asymptotic complex A using the attaching maps

x1:(u,0) € Q= W +u,v)eQ* x2:w0) € (u,0) €
x3:(0,v) € Q31— (W, v*+v) e Q" x4:(00,v) € Q1 (0,v) € Q3. (3.23)

We construct PS-fronts ry, rp and r3 on the rectangles Q1 = [0, umax — u*] x
[0, v], 22 = [0, &] x [0, v] and 23 = [0, &] x [0, vmax — v*], respectively, which
are then assembled with the PS-front ryp on Q* as in Sect. 3.2. The procedure for
gluing the patches is outlined in Fig. 6, and the corresponding gluing procedure for
the immersions, r; is illustrated in Fig. 7.

We will take r, to be an Amsler patch on 2 with boundary conditions given
by (3.21) with data inherited from r( by attaching at (u*, v*). Specifically, we set

2t t 2t t
Z=12|, n=np, e(l)z—v+” m_ utb

, = , (3.24)
! 2t, + )l " 12t + to|

as an approximation to trisecting the angle between the asymptotic curves at the branch
point. Solving (3.9) and (3.4) gives N and the corresponding PS-front r;.

To build the Gauss map, N : Q1 — $2, again, we need only prescribe normal data
along the axes: # > 0 and v > 0, where the coordinates (i, v) are now “local” to Q.
We get data along v = 0 by copying it from the normal field Ny using the attaching
map xi:
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Fig.6 Surgery for asymptotic coordinate patches in 2. a Q, b Q* and ¢ * |_J ;. The normal field along
the u-line in Q| is obtained by copying the corresponding data from the immersion of Q*

A) B)

(©) (D) (E)

Fig.7 Introducing a branch point into a smooth pseudospherical surface away from the origin. The resulting
sectors have curved edges

Ni(u, 0) = No(x1(u, 0)) for u € [0, umax — u*]. (3.25)
The data for Ny along # = 0 come from the PS-front r;:
N1(0,v) = Na(x4(0, v)) = cos(v)n; — sin(v)n; x e! for v € [0, 7]. (3.26)
We can now obtain a weakly harmonic normal field N by solving the Moutard equa-
tion (3.9) on the rectangle €2; and then integrating the Lelieuvre equations to obtain
the PS-front r;. A similar procedure yields N3 and r3.
By construction, Ng = Njox| = rg = rjox; on 2*Ny, and similar relations hold

on all the edges where asymptotic quadrilaterals intersect. We can therefore assemble
the PS-fronts rg, 1, 7 and r3 to obtain a branched PS-front ¥y : A — R3 that agrees
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(A) (B)

Fig.8 Recursively performing surgery on an initially smooth surface

with rg on *, and on a sub-domain such where N, x N, does not vanish, to obtain a

¢! isometric immersion with K = —1. The topological structure of the asymptotic
lines corresponds to a monkey saddle (2m = 6) at the branch point (u*, v*)—there
are six asymptotic rays extending from the branch point. O

It is clear how we can repeat this procedure recursively by picking branch point,
cutting out one sector from this branch point, and replacing it with 3 new sectors. We
call this procedure surgery to contrast it with the procedure in Sect. 3.2, which we
refer to as assembly. Surfaces with a second generation of branch points are shown in
Fig. 8.

3.5 The Sine-Gordon Equation for Surfaces with Branch Points

Let f : @ — R be a smooth pseudospherical immersion, so that the asymptotic
curves and the angle function ¢(u, v) are differentiable. We can define a one form
o= %((pvdv — ¢udu) and an area 2-from g = ,/det(g;;) du A dv where g = du? 4+
20 cos ¢ dudv + dv? and the sign of the square root is picked so that the orientation
induced by B agrees with the orientation induced by w or equivalently, by N (see
Eq. (3.8)). It is now straightforward to check that 8 = o sin ¢ du A dv. On a domain
where o does not change sign, the sine-Gordon equation (3.10) is equivalent to do —
B = 0. Integrating over an asymptotic quadrilateral R = {ug < u < uyi,vp <v < vy},
we obtain the Hazzidakis formula

ARp = @(ug, vo) — @(uo, v1) + @1, vi) — @(uy, vo) = A(R), (3.27)

where Agp = > (— l)ei @i, i indexes the vertices in the quadrilateral, ¢; is the modulo
2 length of any path from the vertex (uq, vg) to the vertex labeled i, and A is the area
of (the immersion of) the quadrilateral. In order that R be immersed into R3, we must
have 0 < ¢(u, v) < m on R, which gives A(R) < 2x for any immersed asymptotic
quadrilateral. The Hazzidakis formula (3.27) holds even in circumstances where ¢ is
not differentiable. For C'™ PS-fronts, ¢ only needs tobe C 0 but this formula still holds
and the sine-Gordon equation can be interpreted in a distributional sense (Dorfmeister
and Sterling 2016).
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Definition 3.25 (Hamburger polygons) A Hamburger polygon y is a piecewise C!
Jordan curve that bounds a domain, y = dI', and consists of arcs that are either u or
v asymptotic curves (Hamburger 1924; Weinstein 1996, §3.3).

Equation (3.27) naturally extends to Hamburger polygons contained in domains
where the immersion r is C2. Integrating the sine-Gordon equation doo — 8 = Oon T,
we get

Arg =Y (—1)lig; = ;ﬁ o= frﬂ = A(D), (3.28)
i Y

where i indexes the vertices in the Hamburger polygon and ¢; is 0 mod 2 at every
initial vertex for an arc from the u-family (also a terminal vertex for a v-arc) and
£; = 1 mod 2 at every terminal vertex of a u-arc (resp. initial vertex of a v-arc), with
respect to the orientation on y that is induced by w.

Asymptotic quadrilaterals (Definition 3.16) and m-stars (Definition 3.6) are
bounded by asymptotic curves, so they are examples of Hamburger polygons. How-
ever, Eq. 3.28 is only guaranteed to apply to C2 asymptotic quadrilaterals, agreeing
with the Hazzidakis formula (3.27). Every m-star with m > 2 contains a branch point,
where the immersion is not smooth, so further work is needed to deduce the analog of
Eq. 3.28 for m-stars, or more generally for C!*! branched pseudospherical surfaces.
For C'™ gurfaces, with a continuous ¢, we see that Ap = A(I') - 0 as A(I") — 0,
so there is no concentration for the quantity Ar = 3531“ o on sets of vanishing area.

For branched surfaces, ¢ is not always continuous and ¢ necessarily has jumps
across the asymptotic curves that are incident on a branch point. This might potentially
resultin concentration of A on these “singular” objects. We can determine the potential
concentrations of A on branch points, and along the asymptotic curves that are incident
on branch points, by using appropriate Hamburger polygons as illustrated in Fig. 9.

Lemma 3.26 (Concentration at branch points) Let T; be an m-star that is obtained from
2m; asymptotic quadrilaterals incident on a point p;. Then A1, = A(T;) — (m; —2)m.

Proof From Definition 3.6 of an m-star, we see that 97; is a 2m; sided Hamburger
polygon, as shown in Fig. 9a. For the e-thin “rectangle” R, shown in Fig. 9a, we
have Ag, = ¢(r) —o(r;) + ¢(q;) — ¢(g;). Let us first assume that this rectangle
straddles a u-curve incident on p;. In this case, we can estimate (p(r;r ) — go(qgL ) =
i 9,9 7du + O(e) noting that the integral is taken entirely inside a sector at p;, so
there are no discontinuities along the integration path. Similarly, ¢(r;) — ¢(q;) =
[ dup~du + O(e). Although ¢ and ¢, the limits of the angle ¢ in approaching
the boundary ST N S~ from either side are different, their derivatives BugojE = —x"
have to match, since they are both equal to the geodesic curvature of a u-curve that
is common to both sectors (see Eq. (3.10)). Consequently, A, = O(g). A similar
argument also applies to v-curves incident on p;. Thus, there is no concentration of
A along the asymptotic curves that are incident on branch points.

We now consider the concentration of A on the branch point p; with order of
saddleness m; enclosed by a e-small, m;-star T, comprising of asymptotic rhombi
Ro, Ri, ..., Ryn,—1as shown in Fig. 9a. As discussed in Prop. 3.10, the local structure
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(A) (B)

Fig. 9 a The Hamburger polygon T allows us to compute the concentration of A at the central branch
points and the rectangle R, = [q, r, rj q;r ] determines the concentration on an asymptotic curve incident
on the branch point. b Blowing up the polygon 7. The angle ¢ is nearly constant on each sector. ¢ = op;
on the even sectors and ¢ = 7 — ;4 on the odd sectors, where «; is the angle between the asymptotic
curves bounding the jthsector

is given by alternating sets of m; u-curves and m; v-curves that are incident at p with
well-defined tangent directions. Let«j, j =0, 1,2, ..., 2m, — 1 denote the angle of
the rhombus R; at p; with respect to the orientation w induced by the normal N (p;).
This is consistent with the definitions in Sect. 3.2. Clearly Z?’l’{l aj = 2m. From
Eq. (3.7), we see that the angles between the asymptotic directions at p; are given by
comparing the sense of the rotation from r, to r,, chosen to be directed away from p,
with the orientation induced by w:

aj if r, tor, is counterclockwise

;= ST . (3.29)
T - otherwise.

On each rhombus R;, the surface restricts to a Cc? (even smooth) PS-front, so it
follows that ¢ is continuous. In particular, at the vertex g, diagonally across from p
in R;, we have ¢(q;) = ¢; + O(g). We can now compute,

Az, =Y (=Dgj+ 0(e) = —(m) — 2)7 + O(e). (3.30)
j

Combining these results, with the contributions of the quadrilaterals that comprise the
complement of the e-thin rectangles and the e-small m;-star T, that are given by the
Hazzidakis formula (3.27), we get A, = A(T;) — (m; — 2)m. O

Note that the same argument also applies at points p with m, = 2. This lemma
shows that branch points do indeed concentrate A. This concentration, equal to —(m , —
2)m at a point p, has a definite sign, and is zero at points where the surface is locally a
2-saddle, as we would expect. It is straightforward to “globalize” the arguments from
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above to get a generalization of the (integrated form) of the sine-Gordon equation that
is valid even for C!'! branched pseudospherical immersions. We record this in the
following theorem:

Theorem 3.27 Letr : (Q, g) — R? be a branched pseudospherical immersion, with

finitely many isolated branch points p;,i = 1,2, ..., k. LetT' C Q be a domain with
compact closure in Q whose boundary y = oI is a Hamburger polygon with vertices
q0, 41, - - - q2j—1 and qq is an initial vertex for a u-arc with respect to an orientation

w on 2. Then, we have

2j—1

Ar= Y (=1)"p(ga) = AT) = > (m; —2)m, (3.31)
n=0

pi€l’

where @, the angle between the asymptotic curves, is defined by o = sign(w (9,r, dyr)),
¢ € (0,m),singp = ||9,r X dyr||,coSQ = a0,r - 0yr.

Proof The domain I decomposes into a union of finitely many m-stars, each enclosing
a branch point, and a collection of finitely many asymptotic quadrilaterals. Therefore,
r= U?]:l Iy where each I'; is a Hamburger polygon. Since @ will induce opposite
orientations on a edge that is in I'; ()" with j # j’, it is easy to see that Ap =
» jyl=1 Ar i The theorem now follows from the additivity of the area A, the Hazzidakis
formula (3.27) and the “concentration at branch points” Lemma 3.26. m]

Remark 3.28 The principal curvatures of a pseudospherical immersion are given by
K1 = tan %, Ky = —cot % so K1k = —1. The Willmore energy is given by a density
Klz ~|—K22, and the W2 > energy is given by sup, .o max(|«(x)|, |k2(x)|). In either case,
optimizing the energy demands that we keep ¢ ~ 7 everywhere.

If ¢ were identically equal to 7, the left-hand side of (3.31) is zero since there are
equal number of positive and negative contributions from (—1)"¢(g,). The right-hand
side, however, is a difference between two positive quantities, the continuously varying
quantity A(T") and a discrete quantity Y piel (m; — 2)m. It is therefore impossible to
have ¢ = 7 everywhere. This underscores the need to distribute branch points on
2 so there is “quasi-local” cancellation between the area form and the branch point
contributions, i.e., energy optimal branched pseudospherical immersions will arise
from attempting to place, on average, 1 branch point with m = 3 in every Hamburger
polygon I' with area A(I") = m. Each such branch point adds an extra undulation to
the surface that persists from the branch point out to the boundary.

4 Discrete Differential Geometry for Branched Pseudospherical
Surfaces

Our goal is to construct discrete analogs of the geometric notions in Sect. 3. As in
Prop. 3.10, branched surfaces are realized by patching asymptotic rectangles, with the
combinatorics given by the underlying asymptotic complex. Following this approach,
we will build discrete PS-fronts by appropriate gluing of discrete K-surfaces (see
Definition 4.1).
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Asymptotic rectangles are discretized by rectangular subsets of € Z? for sufficiently
small € > 0. Indeed, there is a natural inclusion Ax : My = {0,€,2¢, ..., i€} X
{e,2e, ..., jke} C €Z? —> F given by inverting the bijection ¥ : Fr — [0, ug] x
[0, vk] (see Definition 3.13. WLOG we can assume uy, v; are multiples of € using
small perturbations if necessary). The sets {(i€, jo€)| 0 < i < ix} and {(ige, je)| 0 <
J < jx} are the “discrete” u and v asymptotic curves.

Rectangular subsets of €Z? have a natural quadgraph structure given by the faces
[ie, i +1)e] x[je, (j+ 1)e] and the natural attaching maps induced by inclusion into
IR?. This structure, along with the attaching maps defining the asymptotic complex A,
inherited through the mappings Ay : My — Fy, define a quadgraph Q€, which will
be the setting for our numerical constructions of (discrete) branched PS-fronts and
pseudospherical surfaces.

As with the “continuous” construction in Sect. 3, we will first construct a discrete
Lorentz-harmonic normal field N€ : Q¢ — $2, and then determine the corresponding
discrete immersion 7€ : Q€ — R using an appropriate discretization of the Lelieuvre
equations (3.4).

Within each face of the asymptotic complex, generating a PS-front reduces to
solving (3.9). As we discussed above, the discretization of a face uses square grids,
i.e., subsets of Z?, so we denote an arbitrary node by (i, j). We use the following
notation, which is standard in DDG (Bobenko and Suris 2008, Chap. 2), to denote the
discretization of a function f on an elementary quad:

fi.j = fo, fix1,j = f1. fi,jv1 = fo, and fir1 j11 = fi2. 4.1

Definition 4.1 (Discrete K-surface) A map r : J C 7Z> — R3 is called a discrete
K -surface if and only if there exists a discrete map N : J — S such that, on every
quad,

rr =ro+ Ny X Ng, rp=rg9— Ny x Ny, “4.2)

Equation (4.2) are the discrete Lelieuvre equations (cf. Eq. (3.4)) and go back to the
work of Sauer (1950) and Wunderlich (1951). The discrete Lelieuvre equations are
natural discretizations of the Lelieuvre (differential) equations (3.4). They guarantee
thatrj+y j—r; jand r; j+1 —r; j are orthogonal to N; ;,i.e., the vertex stars are planar
for any solution of (4.2).

Definition 4.1 only requires us to distinguish u-edges (corresponding to r; — o)
and v-edges (giving r, — ro) and therefore generalize naturally to discrete K -surfaces
defined on asymptotic complexes, through the requirement that (4.2) hold on each
quad with the following labeling of vertices: Give one of the 4 vertices the index O.
Label the neighbor of 0 along a u-edge by 1 and the neighbor along a v-edge by 2.
Finally label the diagonally opposite vertex 12. On each quad we have two possible
definitions of rq,, either from the path 0 — 1 — 12 or the path 0 — 2 — 12.
Compatibility requires that
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N1xNg — Ni2xNi — (=N2 X Ng + Ni2 X N2) = (N1 + N2) x (No+ Np2) =0

4.3)
Directly discretizing the (continuous) compatibility condition Eq. (3.5) yields
No+Ni+N>+ N
Nuwx N =0 0= (Via + No — (N + Ny ot Tot 2)
2
:Z(NOXNI — N1 x Ni2 + Ni2 X N2 — Np x Np)
1
= = (No+ Ni2) x (N1 + N2). (4.4)

2

This is the same as Eq. (4.3). This discretization therefore has the remarkable property
that the discretization of the (continuous) compatibility condition for the Lelieuvre
formulae is exactly the same as the discrete compatibility of the discrete Lelieuvre
formulae, rather than, as one might plausibly imagine, a numerical approximation that
recovers the exact result in the limit the discretization size i goes to zero. This particular
discretization exemplifies a key idea in discrete differential geometry (DDG). Rather
than serving merely as numerical discretizations of the “true” (continuous) differential
geometry, DDG is a complete theory in its own right (Bobenko and Suris 2008, p. xiv).

We now give short, self-contained proofs of standard results from DDG for K-
surfaces r : Z2 — R3 [see the text (Bobenko and Suris 2008) for further details].
We first exhibit solutions for the discrete Goursat problem of specifying N (i, 0) and
N(0, j) and solving for N(i, j), on a single quad. On an elementary quad, assume
that N, is unknown, while values for Ny, N1 and N, are known. Then (4.4) requires

Ni2 = v(Ny + N2) — No,

for some v € R, as is the case for a Moutard net (Bobenko and Suris 2008, §2.3). The
condition that N13 is a unit vector gives a quadratic equation for v:

(N12, N12) = v?(N1 4 Na, N1 4 Na) — 2v(N; + N, No) + (No, No)
= V2||Ny + N2> — 2v(N| + N2, No) + 1,

which reduces to
0= (VING + N2> = 2(N1 + N2, No)) .

This implies that v = 0 and N1 = —Np or v = 2% and

Nos — [(Nl + N2)(N1 + Np)T
2=

- 11] No. (4.5)
(N1 4+ Nz, N1 + Vo)

The former being the antipodal point, and the latter being the desired solution. This is
the Householder reflection of Ny through the plane generated by Ny and N,. Though
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(A) (B)

Fig. 10 a A single quadrilateral in the induced Chebyshev net on $2. Given the normal vectors at three
vertices, the normal at the fourth vertex is determined. b Goursat-type discretized problem on the asymptotic
quadrilateral, €2. The nodes filled with grey represent provided boundary data, and open nodes are iteratively
solved for via the system (4.4)

we solved for Ni2 = N;41,j+1 above, this approach can be used to solve for the fourth
normal vector provided the normal at the three other corners is given (see Fig. 10a).

Lemma4.2 If |[No — Ni|l = ||No — N2, and Ni3 is determined by Householder
reflection as in (4.5), it follows that NoN1N12 N> is a spherical rhombus.

Proof Since the angle § between Ny and N is the same as the angle between N and
N>, (Ng, N1) = (Ng, N») = cos § and we have

0 = (N12 — No, N12 + No) = v({N12, N1 + Np) — 2cos §)
0 =v(N1 + N2, Ny — N3) = v(Ni2, N| — Np)
= co0sd = (N12, N1) = (N12, N2), (4.6)

proving that NoN1 N2 N3 is a spherical rhombus O

Recursively applying (4.5) we can solve for the normal field on an asymptotic
quadrilateral if it is specified on two of its boundaries, as illustrated in Fig. 10b. In
addition, this procedure also determines the normal field on the other two boundaries.
Since the u and v asymptotic curves have constant torsions (see (3.3)) we can discretize
these boundaries so that (N; o, Ni+1,0) = (No,j, No,j+1) = cosd. By (4.6), we get
(Ni,j, Niy1,j) = (Ni j, Ni j+1) =cosdand |[riy1 j —r; jll = lri j+1—rijll =sind
for all 7, j, so the discrete surface r;; is a discrete Chebyshev net in R3 and the
corresponding normal field N;; is a discrete Chebyshev net in S? as illustrated in
Fig. 10a. For our purposes, we need to generalize the ideas from above to consider
mappings 7 : Q — R3>and N : Q — S?, where Q is a general asymptotic complex,
and not restricted to be a subset of Z2. This motivates
Definition 4.3 (Spherical Chebyshev net) A spherical Chebyshev net is a branched

embedding N : Q — S of an asymptotic complex Q C R? into the sphere that (i)
maps every quad onto a spherical rhombus, (ii) reverses orientation and (iii) satisfies

4.7)

E o =2n(l —m 1n the interior has degree 2m
peFy 2 (1 p) p in the i ior has deg 2

oy € —dy)m, min((3 —d,)m,0 p on the boundary has degree d,,

peF; (a p) in(( p) ) y g 14
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where the sums are over all the faces Fj incident on p, and «y is the (negative) angle
at p for the image N (Fy).

Condition (4.7) enforces the hypothesis in Lemma 3.19 at interior vertices and allows
for “closing” an edge (respectively, corner) vertex with d, odd (resp. even), i.e., making
it an interior vertex by adding 2 (resp. 3) sectors with angles in (—, 0).

Lemma4.4 Let Q€ be an asymptotic complex (a simply connected, checkerboard
colorable quadgraph). For any spherical Chebyshev net N : Q€ — S, the discrete
Lelieuvre equations (4.2) are compatible, and generate generalized K -surface(s) r :
Q¢ > R3.

Proof We have, (No— N12, No+ N1+ N2+ Ni2) = [Nol> = N2>+ (No, N1+ Na) —
(N12, N1 + N2) =050 Ng + Ni2 and N1 + N, are both perpendicular to Ny — Ny».
A similar calculation shows that Ny + N> and N1 4+ N; are also perpendicular to
N1 — N».

Finally, (No — N12, N1 — N2) = cos$§ — cos§ — cosd + cosd = 0 so Ni — N>
and No — Nj» are not parallel since neither is zero. This implies that Ny + Ni2
and N1 + N are parallel and thus satisfy the compatibility condition (4.3). We can
therefore “integrate” the discrete Lelieuvre equations along any path in Q€, starting
from a designated “origin” o. Since Q€ is simply connected, we can find a path from o
to every other vertex, and summing (4.2) over the path gives a consistent definition of
r: Qf — R3. This gives a 3 parameter family of generalized K -surfaces determined
by the initial (arbitrary) choice of r(0) € R3.

In general, this mapping can be ramified (Wissler 1972), but imposing condi-
tion (4.7) ensures that r is not multi-sheeted, in contrast to N. In particular this
condition forces ) oy = 2w J, = 2w (1 — m,) at all interior vertices, giving consis-
tency with Lemma 3.19. O

The problem of constructing discrete PS-fronts therefore reduces to the problem of
constructing spherical Chebyshev nets on asymptotic complexes. To adapt the assem-
bly and surgery procedures defined for continuous surfaces to the discrete setting, we
define

Definition 4.5 (A corner vertex) A vertex ¢ in an asymptotic complex Q€ is a corner
vertex if a u-edge as well as a v-edge incident on ¢ are contained in the boundary 9 Q€.

Definition 4.6 (Boundary segments) A boundary segmentisacurvey = E{UE; ---U
E,, C 0Q°¢, where the edges overlap, E; N E; 11 # @, and are all either u or v edges.

Lemma 4.7 A boundary segment y is incident on a corner vertex g € Q€ if and
only if ¢ € dy. Conversely, every corner vertex q determines two maximal boundary
segments, y, consisting of u-edges and y, consisting of v-edges.

Proof Since Q€ is simply connected and embeddable in R? (see Remark 3.15), it
follows that d Q€ is a Jordan curve consisting of u and v segments. Definition 4.5
implies that ¢ is on one « and one v edge contained in the boundary, a Jordan curve, so
q is not on any other edge contained in the boundary. The lemma immediately follows.

O
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Lemma 4.8 (Discrete assembly) Let 2m > 4 be even and y;,i = 1,2,...2m be
mappings v; {0, 1,...,1;} = S? such that (i) yi(0) = (0,0, 1) for all i, (i) o; =
2yi-1(y )y (1) € (=7,0) and Y2 a; = 2t(1 — m) (here yo = yam). and (iii)
(yi(k), yi(k + 1)) = cosé for all admissible i, k. These data uniquely determine a
maximal asymptotic complex Q, a spherical Chebyshev net N : Q — S* and an
unramified K -surface r - Q — R3.

Proof Let J; ={0,1,...,05;—1} x{0,1,...,;},i =1,2,...,2m be 2m rectangular
domains. We will set o = lo,, Jo = Jom. Defining the attaching maps x; : (k,0) €
Ji — (li—1, k) € Ji_1, we obtain a (discrete) asymptotic complex Q. On each of the
sets J;, we define N; (k, 0) = y;_1(k), N; (0, 1) = y;(I) and extend N; to the rectangle
Ji using (4.5). By construction, the definitions agree along the overlaps, so we can
use the attaching maps to obtain a spherical Chebyshev net N : Q — S2. Taking
the edges y; with i even as the u-edges and i odd as the v edges, we can consistently
extended the definition of # and v edges on every rectangle J;. The result now follows
from Lemma 4.4. O

Lemma 4.9 (Discrete surgery) Let Q be an asymptotic complexand N : Q — S*> bea
spherical Chebyshev net (in particular, all vertices satisfy (4.7)). Givenly, l» € N and
q, a corner vertex for Q we can define an asymptotic complex Q' O Q by attaching 3
rectangular domains Ji,i = 1,2, 3 to Q and extending the spherical Chebyshev net
N toN': Q — S%suchthat g ¢ 3Q' and the associated K -surface is unramified,
i.e., single-sheeted.

Proof We set yop = y, and y3 = y, where y, and y, are the boundary u and v
boundary segments incident on g whose existence is given by Lemma 4.7. g sat-
isfies (4.7) and this defines § € (0, 3m). Since ¢ is a corner vertex, d, > 2 is
even. Let « = —m + §/3 € (—m,0). Determine y1(1) by Zyo()N(g)y1(1) = «
and (1) by Zyi(1)N(g)y2(1) = «o. Now we set y;(k) = N(gq)cosks) +
W sin(k8), k = 1,2, ...,1; corresponding to equally spaced points on
geodesics on the sphere. An argument identical to the proof of Lemma 4.8 gives the
desired result.

Note that, by adding three spherical sectors with angle « at the boundary point ¢,
we ensure that (4.7) is satisfied at g, and of course, we have not introduced further
branch points, or modified the solution at existing branch points away from g. O

Remark 4.10 We henceforth consider the discrete mappings N : Q€ — §2,r : Q¢ —
IR? as our objects of interest. It is also possible to treat them as discrete approxima-
tions of the continuous mappings considered in Sect. 3. With finitely many, isolated,
branch points the passage to the continuous limit upon refinement of the quadmesh
Q¢ follows from a straightforward application of standard arguments that are outlined
in Bobenko and Suris (2008, §5.5), applied to one asymptotic rectangle at a time. As a
“fully discrete” alternative, we can also build approximations to the branched surface
using hyperboloid surface patches since our quadmeshes are checkerboard colorable
(Huhnen-Venedey and Rorig 2014).
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4.1 DDG on the Poincaré Disk

Thus far, we have constructed branched pseudospherical surfaces as K -surfaces, i.e.,
mappings r : Q¢ — R3 from asymptotic coordinates into R3. However, the primary
object of interest in elasticity is the deformation y : € — R>, the mapping from
the Lagrangian (material) domain 2 to the Eulerian (lab) frame R3. To construct
this mapping, we need also to compute the transformation ¢ : Q¢ — Q that allows
us to identify the material location corresponding to a point with given asymptotic
coordinates so that y = r o ¢ ~!. To this end, we start with a coordinatization of €.

Since our interest is in pseudospherical surfaces, we have @ C HZ, and we can
identify H? with the Poincaré disk (D, g) given by D = {z | |z| < 1}, the unit disk, and
% (Anderson 2005, Chap. 4). z is our Lagrangian or reference coordinate,
since it labels material points independently of their particular locations in R3, i.e.,
independent of the deformation y : & — R>. We record a few standard facts about
the Poincaré disk model for H?:

g:

(A) The distance between two points z1, z2 € D is given by

lz1 — 22/
dye (21, z2) = arccosh (1 +2 .
H (1= |z1 ) (1 = |z2]?)

In particular, if one of the points is the origin, this expression reduces to
dp2 (0, z) = 2 arctanh(|z]). (4.8)

(B) The orientation preserving isometries of H” are given by (a subgroup of) the
Mobius transformations

0 2120

2;20,0) =e -,
f(z;20,0) Tt 5

(4.9)

where |z9| < 1,6 € [0, 2). For our purposes, it suffices to take & = 0 and we

shall henceforth drop this variable and use f(z; zg) = f’j ZZ'Z?O .Itis straightforward

to check that f/(0:z9) = 1 — |z0|* is real and positive, and f~!(w; z9) =
fw: —z0) = {75

(C) Equally spaced points on the geodesics through z = 0, are given by yg(n) =
¢'P tanh (%), where A is the separation between successive points on the

geodesic. Likewise, geodesics through a point zg are given by z, = f(ys(n); zo).

As we argued above, constructing the appropriate DDG for K = —1 surfaces is
equivalent to constructing discrete Chebyshev nets, i.e., rhombic quadrilaterals in the
appropriate space. Constructing such rhombi on S2, as in (4.5), gives us DDG for
the Gauss normal map. As we now show, the same idea also applies to the problem
of finding the (discrete) mapping ¢ : Q¢ — Q C H?. Given &, ¢; and ¢ with
dg (0, §1) = dp (80, £2) = 2 tanh (§), we can apply the isometry f (., —Zo) to these
points and obtain

o>
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. A .
wi = f(&j, =), wo=0, wy=—eP, wy="e¢P.

The fourth vertex wi, of the “normalized” rhombus diagonally across from the vertex
wo at the origin can be determined by a straightforward computation after setting
dpp (w12, w1) = dpp (w12, w2) = 2tanh (%) 12 is then obtained by applying the
inverse mapping f (., o). Putting everything together, we have

wj = f(,—%) i=0,1,2

wi + wy
wp = —————,
1+ [wiws]
C12 = f(wiz, %o)- (4.10)

It is now straightforward to construct (branched) Chebyshev nets in H? that inherit
their topology from a given asymptotic complex. More formally, a discrete hyperbolic
Chebyshev net is a quadgraph in H? with an assignment of u and v labels to the
edges such that each face (quad) has two u and two v edges which alternate, and
satisfying (4.10) on each quad, where ¢y and ¢ are one set of non-adjacent vertices,
and ¢1, & are the vertices on the other diagonal. A branch point is any interior vertex
with degree 2m > 6. From the Chebyshev net in H?, we can immediately construct
the corresponding K -surface (discretized surface) in R3 by requiring that each star
(the edges incident on a vertex r; ;) be planar with lengths and angles given by the
Chebyshev net at the vertex ¢ g, i.e., the mapping between the Poincaré disk and R3 is
a discrete conformal map at each vertex. This mapping between the Poincaré disk and
R3 is the desired Lagrangian to Eulerian map. Although differing in details, the idea
of conformally mapping the hyperbolic plane into R? has been used to investigate the
wavy edges of leaves (Nechaev and Polovnikov 2017; Nechaev and Voituriez 2001),
and for energetic and geometric approaches to studying buckling in hyperbolic elastic
surfaces (Nechaev and Polovnikov 2015).

As an illustration of our approach, we construct a discrete hyperbolic Chebyshev
net corresponding to an Amsler surface with an angle ¢ = /2 between the straight
asymptotic lines where they intersect. Since these asymptotic lines are also geodesics
in R3, the same is true for the corresponding curves in the Poincaré disk. We pick
the origin z = 0 to correspond to this point of intersection. If the rhombi have a side
length A it follows that the “Amsler-type” boundary data on the Poincaré disk are given

by ¢ 0 = tanh (%) , Co.x = i tanh (%) We then solve for ¢; x with j # 0,k # 0
using (4.10). The (discretized) angle between the asymptotic lines at node j, k is given
by

@)k = arg(wrwy), (4.11)
where the w; are determined by (4.10) with {o = & &, &1 = &(j+ 1)k $2 = & (k+1)-
The results are displayed in Fig. 11. Figure 11a shows the hyperbolic Chebyshev

net ¢; x where each node is colored by the angle ¢; x up to the contour ¢ = 7 cor-
responding to the singular edge. The dashed curves are the boundaries of geodesic
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A) (B)

Fig. 11 Examples of a piece of an Amsler surface represented in a asymptotic coordinates (u, v) and b in
the Poincaré disk z, up to the singular edge, colored by the angle ¢ and contoured by geodesic radius with
labels
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Fig. 12 Amsler surface with g9 = 5

disks, labeled by radius. It is clear that the Amsler surface with angle 7 /2 allows
us to smoothly embed a geodesic disks of radius 1 into R? but not a disk of radius
1.5 (Gemmer and Venkataramani 2011). Figure 11b displays the same information in
terms of the discrete indices j, k which are proxies for the asymptotic coordinates u
and v. Since the geodesic distance to the origin is easily computed in the Poincaré disk
by (4.8), we have an efficient method to determine geodesic radii on pseudospheri-
cal surfaces without explictly integrating the arclength (Gemmer and Venkataramani
2011) or solving an eikonal equation on the surface. Figure 12 shows the correspond-
ing K-surface in R3, a discretization of the Amsler surface with angle 7 between
the generators. Multiple singular edges are discernible by their characteristic cuspidal
form (cf. Fig. 2).

The last notion we need to introduce is that of a reversal. We know that, in general, a
pseudospherical parametrization r (u, v) does not correspond to an immersed surface,
and the failure of (local) injectivity is associated with the locus where 9, x d,r = 0.
The notion of reversal captures this idea in a discrete setting. Let @ be an orientation
on H2. If ¢ 7.k 18 a regular point, it is incident on 4 quads given by ;4 p k+4, Where
p.q € {—1,0, 1}. We say that there is a reversal at {; j if
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(A)

Fig. 13 Introduction of branch points into the Poincaré disk via the surgical process. In a, we see a smooth
immersion, the singular edge inhibiting the ability to immerse a large portion of HZ; ba cropped version
and finally ¢ the glued ¢! Poincaré disk. Overlapping “sheets” of the immersion appear significantly
darker and provide a signature for the singular edge

[1 o0 @upk =80 FClarg —Cja) 0. (412)

pe{=1L1}qge{=11}

This condition is invariant under Mobius transformations and also under reversal of
the orientation w — —w being a product of 4 terms. The import of this condition is
that, at a reversal one of the quads that are incident on ¢; x is flipped relative to the
other three, so the Chebyshev net is folding over itself. The Amsler surface in Fig. 12
corresponds to three reversals of the associated hyperbolic Chebyshev net.

Figure 13a shows the discrete hyperbolic Chebyshev net for the Amsler surface with
angle 7 /2 “extended” beyond the singular edge, where the Chebyshev net ¢  appears
to fold back upon itself, as expected. This is evident in Fig. 13a. The rhombi in the
Chebyshev net are colored with an opacity of eighty percent. As a result, overlapping
“sheets” of the immersion appear significantly darker. Since our procedure gives a
(discrete) isometry from the hyperbolic Chebyshev net to the corresponding K -surface
in R3, a reversal in the hyperbolic Chebyshev net indicates that 8, = ¢ 1k — Cjk
and §,¢ = ¢j x+1 — ¢jx have passed through collinearity. This corresponds to the
angle ¢ between the asymptotic curves becoming O or 77, indicating the occurrence of
a singular edge.

In Fig. 14, we show the steps for the particular example of starting with an Amsler
surface with angle v /2 and building a (branched) immersion to R = 3, aradius beyond
the initial singular edge. To stave off the singular edge, we first pick a threshold angle
¢* < m. For the illustration in Fig. 14, we take ¢* = 37 /4. We then excise the region
u > u*,v > v*, where u*, v* are determined by the intersection of the geodesic
circle with radius R = 3 with the contour ¢(u, v) = ¢*. Note that, at this point
pw*, v*) < ¢* < and R < 0.5, so the cut is significantly inside the singular edge
of the initial Amsler surface.

We now perform surgery to replace the removed sector by 3 new sectors. This needs
the introduction of two more asymptotic curves, indicated in Fig. 14c, along which
we are free to prescribe data. We prescribe these data in the Poincaré disk by picking
equally spaced point on the two geodesics through the point ¢y = ¢ (u™*, v*) obtained
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v
Cr u
(A) Asymptotic complex at stage n (B) Determining the cut location
v
u
v
\
u

(C) Asymptotic complex at stage n + 1 (D) Filling the cut and n — n + 1.

Fig. 14 Illustration of Algorithm 4.1. Desired R = 3. a The initial asymptotic curves on which we prescribe
Amsler data (equally spaced points on geodesics) b Filling in the discrete hyperbolic Chebyshev net and
identifying the first cut location (u*, v*). ¢ Introducing new asymptotic curves from the branch point on
which we again prescribe Amsler data. d General sector having non-constant ¢ (non-Amsler data) along the
v-axis. In b, d, the figures are colored by the value of ¢ with black-dashed contours representing geodesic
radius, increments of 0.5. The solid green lines represent the edges of the L-cut, and their intersection the
location of the branch point, (u*, v*) (Color figure online)

by trisecting the angle left behind by the sector that is removed. In more detail, if
w1 and wy are the “edges” of the excised sector, moved to the origin by a Mobius
transformation (see (4.10)), we define

o1 = arg(wawy)/3, ¢ = arg(wiwi)/3. (4.13)
Then, the appropriate geodesics are given by undoing the Mobius transformation,

tok=f (e""’1 tanh (%) ,{0) , o= f (e"‘/)2 tanh <%) , ;0> , (4.14)
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/
N | O

Fig. 15 Process of constructing a discrete isometric immersion recursively by surgery. These figures illus-
trate the generation an K -surface in R3 from a discrete Chebyshev net in the Poincaré disk

where A is the side length of the rhombi in the Chebyshev net. We can determine
¢j k in the interiors of the three new sectors using (4.10). We can do this in each of
the 4 sectors (quadrants) that constitute the initial Amsler surface and the resulting
Chebyshev net in the Poincare disk is illustrated in Fig. 13c. The result is a discrete
Chebyshev net with 4 vertices of degree 6, one in each quadrant, corresponding to the
branch points. We thus have implemented surgery, as introduced in Sect. 3.4, directly
in the Poincaré disk.

Remark 4.11 (Ramification) Unlike for DDG based on spherical Chebyshev nets (4.2),
where we need condition (4.7) to guarantee that the resulting K -surface is unramified,
DDG based on (4.10) gives a discrete conformal map between the net in the Poincare
disk and the resulting K -surface, so any hyperbolic Chebyshev net where the angles
add up to 27 at interior nodes, and to less than 27 at boundary nodes will give a
K -surface with no ramification (cf. Wissler 1972). In particular, our algorithm 4.1
guarantees this. Of course, the normal map is ramified at branch points.

Figure 14d shows one of the resulting sectors in the 2nd generation, i.e., the asymp-
totic curves defining the boundaries of the sector are incident on the branch point
(u*, v*) from the first cut. Note that the singular edge again intersects the geodesic
circle R = 3 so we have to repeat the entire procedure to obtain the second-generation
branch points and third-generation sectors. Note also that the new branch point is at
R =~ 1.5, and thus, the first- and second-generation sectors, taken together, are closer to
covering the desired domain R < 3, and do so while maintaining ¢ < ¢* everywhere.

This surgery procedure can be repeated recursively to construct branched isometric
immersions of arbitrarily large disks. We list the steps involved in Algorithm 4.1. This
is a “greedy” algorithm for constructing branched immersions since it is based on
picking the cut locations using information local to a particular sector, and attempts
to maximize the size of the sector in the current generation, rather than pick the cut
location in a more globally optimal fashion. By construction, the algorithm generates
distributed branch points in a recursive and self-similar manner, We discuss this further
in Sect. 5.1, where we estimate the number of recursion steps needed before the
algorithm terminates when applied to a Pseudospherical disk with (geodesic) radius
R. Figure 15 illustrates the final step in Algorithm 4.1, showing discrete surfaces
constructed from mapping the thombi in hyperbolic Chebyshev nets to skew rhombi
in R3.
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Algorithm 4.1 A greedy algorithm for building large branched surfaces recursively.

1: Parameters: R < radius of disk to be embedded, M < 2m > 4 number of initial
sectors, ¢* € (m/m, ) < cutoff angle, A <« discretization size, N + [2R/A].

2: Initialize: List of Sectors = {Q1,Qa,...,Q}, Each sector ©,, = 0.

3: forne{1,2,...,M} do

4 (T e D/mganh (%) (o ™/ tanh (K2) for jk =0,1,2,...,N.

5 Determine C”k recursively for 1 < j,k < n from (4.10).

6: Discard (" 1f both C” Lk and CJ »_1 are outside the geodesic disk of radius R.

7: Qn « {¢}), all .k < < N not discarded}.

8 Dctcrmlnc ¢, using (4.11) at nodes where ¢\, ; and (%) | are in Q.

9: end for

10: repeat

11: Identify a sector €2, containing points with opz > 0r

120 e max{j | pox < 6° Vo € Dl < i}

13: E* < max{k| ;o < ¢* V(¢ € Uy, 0 <k}

14: Qn = Q\{Ty [ 7> 5"k >k}

15: Sectors < Sectors | J{Qar+1, Qnrr2, Qnrys}-

16: (M“ Cor M+2 0 < j,k < N are determined using (4.13) and (4.14).

17: CM+1 e C]\/H—l - C]M+27 <M+3 s C]-,éH F<M+2.

18: for pe{l,2 3} do

19: Determine ( k P yecursively using (4.10).

20: Discard ¢; M"Lp if both ¢ Nfﬁ; and C%H{ are outside the geodesic disk of radius R.
21: Qargp {CAHP all 4,k < N not discarded}.

22: Determine goj_’k *P using (4.11) at nodes where (ﬁﬁ; and C%f{ are in Qp74p.

23: end for

24: M «— M + 3.

25: until no sector contains points with ;. > ¢*.

26: @ < quadgraph given by the hyperbolic Chebyshev net | J,, i

27: Construct an K-surface r : @ — R? using the side-lengths and angles given by J, Gl

We will present a full analysis of Algorithm 4.1 elsewhere. We note that every branch
point p; has a non-empty open neighborhood, the interior of €2, | Qi+1 U Qi+2
| Qi43, given by the parent sector p, and the 3 sectors at p;. Compactness of the
closed geodesic disk implies we only have finitely many branch points if we can show
that the sectors cover the disk.

We can do this, and more, by exploiting a “dual” view point of the algorithm starting
from the alternative, “non-recursive,” construction for isometric immersions of disks
into R3. This immersion is achieved through patching sufficiently narrow Amsler
sectors, whose singular edges are further away from the origin than the radius R,
meeting at a single branch point of sufficiently high index at the origin (Gemmer and
Venkataramani 2011, 2013) (see also Sect. 3.2 and Fig. 3). The comparison between
the two methods is shown in Fig. 16. The figures show the discrete Chebyshev net in [H?
corresponding to the recursive and single branch point isometries of disks of radii 2, 3
and 4, respectively. The quads in the Chebyshev nets are colored by the xmax, the larger
principal curvature. The figures suggest that the energies of both types of embeddings
grow with R, the radius of the disk, but the energy of recursive embeddings grows
slowly compared to the energy of single branch point “periodic Amsler” embeddings.
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Fig. 16 A comparison of isometric immersions of H? via recursively constructed branched surfaces (left)
and by a single branch point at the origin with a large index (right) as represented in the Poincaré disk. The
figures show immersions with geodesic radii R = 2, 3 and 4 represented by the dashed line. The surfaces
are colored by the max of the absolute principal curvatures: darker representing higher energy

For the single branch point at the origin, the order of saddleness can be estimated
mo ~ Ce® foran O(1) constant C. Algorithm 4.1 has a dual interpretation as follows:

(1) Start with a single branch point at the origin with m’ = 38m where m is as defined
in the algorithm and g is determined by 3¢~'m < mo < 3%m. g is the expected
number of “generations” of branch points (see also “cut depth” in Sect. 5.1).
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(2) In the first step, retain a branch point with index m at the origin and move 2m
daughter branch points, each with degree 38 outward in their respective sectors,
until the maximum angle ¢ over points in (each of) the “growing” sectors at 0
equals the cutoff angle ¢*. More precisely, this is equivalent to finding the locations
J*, k* in each of the 2m initial sectors (Steps 12 and 13 in the algorithm) and this
determines the locations of the branch points of the first generation.

(3) Recursively, at the kth stage, move 2 - 3*~! . daughter branch points, each with
degree 387X, outward until the max angle ¢ in the sectors at the branch points in
the (k — 1)th generation equals ¢*.

(4) Atevery stage, the union of the sectors cover the entire disk.

(5) This process is “monotonic,” for ¢* < /2, because we have the following com-
parison principle. Let J = [0, ug] X [0, vo]. Letg;, i = 1, 2 denote solutions of the
sine-Gordon equation d,,@; (4, v) = sin ¢; (u, v) satisfying 0 < ¢; (4, v) < /2
on J. If ¢1(u,0) < ¢o(u,0) for 0 < u < ug and ¢1(0,v) < ¢ (0, v) for
0 < v < vg, then it follows that ¢; < ¢, on J.

(6) This monotonicity implies that, for m > 6, ¢* < 7/2, the result of the greedy
algorithm is obtained by starting with the appropriate periodic Amsler surface on
the disk of radius R and moving branch points outwards, a process that increases
¢. We can discard a branch point and all of its sectors if it ever reaches the
boundary of the disk, and no new branch points ever enter the disk. Formalizing
this argument proves that Algorithm 4.1 terminates, and further, obtains an a priori
bound on the number of sectors M < 2 - 38 - m < 6mg and the minimum angle
© =378 5080 < C38m < C’e® for some constant C’.

Numerically, we find that Algorithm 4.1 terminates, even for ¢* > 7 /2.

5 Distributed Branch Points and Curvature Energy

We now investigate the energies of the various classes of pseudospherical immersions.
The principal curvatures are determined by the angle ¢ (u, v) between the asymptotic
directions as k1 = *tan %, Kk = Fcot %. Consequently, the bending energy (both
W2 and W?2) diverge if the singular edge ¢ = 0 or ¢ = 7 encroaches the domain
Q C H2. Our goal therefore is to construct immersions of € such that the angle ¢
between the asymptotic lines satisfies0 < § < ¢ < 7w —3§ < 7, where § = §(R2) > 0,
and gives a quantitative measure of how “non-singular” we can make an isometric
immersion  C H2 — R3. § is related to the max curvature energy by Ex = cot(8).
Earlier analyses suggest that the energy optimal C? pseudospherical immersions
of a geodesic disks are given by subsets of the universal cover of Minding’s bobbin
(Gemmer and Venkataramani 2011) (see also Example 3.4, Eq. (3.11)) giving

log inf Exo[r] ~ R 5.1
reC?

where by a ~ b, we are conjecturing the existence of a constant 1 < C < oo such
that C~'b < a < Cb for all R. Alternative low-energy immersions of disks are in
the form of C1:! periodic Amsler surfaces (Gemmer and Venkataramani 2011, 2013)
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which introduce a single branch point at the origin. Even with the introduction of this
branch point, there are still “large” sets, in particular, disks with radius R /2 which are
free of branch points and where the immersion is smooth (or can be approximated by
smooth isometries as discussed in Remark 3.23), so Eq. (5.1) implies that, even for
these periodic Amsler surfaces, log Eoo ~ R.

Our construction (Algorithm 4.1) introduces distributed branch points, which
appear “as needed.” In this case, as we argue below, we stave off the singular edge
and obtain

log inf Exlr]l~ R (5.2)
recll

achieving an improvement in the scaling of the logarithm of elastic (bending) energy.
The separation between the energy scales of the smooth and branched isometries is
therefore enormous for large R. The number of generations of branch points, which
we also call the cut depth, grows linearly with R.

While we do not have rigorous proofs for these claims yet, we give arguments
that illustrate the intuition behind these relations in Sect. 5.1. We also have numerical
evidence for the energy and cut depth scaling obtained from Algorithm 4.1 applied to
disks of radius up to 10. Figure 17a shows the analytically derived energy scaling for
Minding’s bobbin, conjectured as the minimizer of the elastic energy over the class
of all C? isometric immersions, as in (5.1). Periodic Amsler surfaces exhibit a simi-
lar exp(R) scaling, though with an improved constant (Gemmer and Venkataramani
2011). The energetic benefits of introducing distributed branch points is clear, with
an apparent energy scaling exp(c+/R). The cut depth scales linearly with R as shown
in Fig. 17b. Figure 17c shows an immersed pseudospherical surfaces with distributed
branch points, a mathematical “hyperbolic crochet” with R = 3. A movie showing
this surface from multiple viewpoints is available in the supplementary material.

5.1 Recursion on Amsler-Type Surfaces

We have implemented Algorithm 4.1 on disks of radii R < 10 and for various choices
of the initial angle ¢¢ and the cutoff angle ¢*. Figure 18a shows the branch points in a
disk of radius 4 with g9 = 7, ¢* = 37”. The solid lines indicate the parent—daughter
relations among the branch points. The branch points form a tree since every branch
point has a unique parent. We observe that every branch point (other than the origin)
has 3 or fewer daughters, and the leaves of the tree are at different depths. The “Amsler
nodes” along the diagonal are (typically) farther apart than the “pseudo-Amsler” off-
diagonal nodes.

A schematic of the recursion procedure is illustrated in Fig. 18b. The origin u =
v = 0 corresponds to a branch point in the nth generation. Let ¢ = ¢(u, v) denote the
angle between the asymptotic directions on the corresponding sector and we define
¢n = ¢(0,0). An input to the recursion process is the given threshold ¢* < 7. If the
locus of points where ¢(u, v) = ¢* (denoted by z = z* in Fig. 18b) intersects the
boundary of the domain €2, then we need to introduce an n + 1th-generation branch
point. The location (u};, v¥) of this branch point is determined by the requirement that
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Fig. 17 a E energy for three types of immersions: Minding’s bobbins (C?-catenoid, thick-dashed), C1:!
periodic Amsler surfaces (solid) and C L1 pranched surfaces (dashed-diamond). b The maximum recursion
depth n as a function of the geodesic radius R. ¢ A numerically generated “hyperbolic crochet” obtained
using Algorithm 4.1 on a disk of radius R = 3

on the L-shaped region [0, umax] x [0, v T1UIO, u;] x [0, vmax] the angle satisfies
¢(u, v) < ¢* guaranteeing that this region is bounded away from the singular edge.
The angle ¢, for the next generation is given by ¢, 1 = %(p(uj, v}). To analyze
the recursion process and obtain scaling laws for the maximum curvature, we need to
understand the relation between ¢, and ¢,+1. Indeed, ¢ is monotone in both u and
v as it satisfies the ¢, = sin¢ > 0. The only mechanism that decreases ¢ is the
trisection at a branch point. Since the principal curvatures are given by = tan % and

Fcot £, it follows that

_ ‘pn,k ¢*
Eoo = r;le;{x (cot > , tan > (5.3)

where ¢, i is the angle at the kth branch point in the nth generation.
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Fig. 18 a Poincaré disk representation of 4 generations of distributed branch points in a disk of radius
R = 4. b Annotated illustration of an L-shaped cut in going from the nth to the n + 1th generation

If the asymptotic curves u = 0 and v = 0 bounding a sector are geodesics, i.e.,
for Amsler sectors, we can analyze the relation between ¢, and ¢, in more detail.
In this case, ¢(u, v) is a self-similar solution ¢ = @(2./uv) given by Eq. (3.18). We
then have

Lemma5.1 Let ¢ be the solution of (3.18) with ¢(0) = ¢, > 0 and let
Umaxs VUmax, @* < 7 be given. We also identify ¢(u,v) = @(2/uv) as the corre-
sponding solution of the sine-Gordon equation on the rectangle [0, umax] X [0, Vmax]-

There exist u,, v > 0 such that

(1) o(u,v) < ¢*f0r all (u,v) € Q* := [0, umax] x [0, U;,k] U[O’ u:] x [0, Vmax]-
(2) ™, v*) > ¢ply (C(P™)L,) where Iy is the modified Bessel function of the first
kind, 0 < C(¢*) < 1 is a constant that only depends on ¢*, and

1 *\\
s (0 (2)"
2.\/UmaxVmax On
Proof We can rewrite (3.18) as the equivalent integral equation
T rw o dw
0@ =+ [ [ sintoeneae 2. (5.4

@ is therefore monotone increasing on an initial interval [0, z*] where z* is the smallest
solution of ¢(z) = ¢*. For 0 < ¢, < ¢ < ¢*, we have the elementary inequalities

C?p <sing < ¢, where C = C(¢*) = \/sin¢p*/p* < 1. 5.5
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Using these inequalities in conjunction with the integral equation (5.4) and the closed
form solution u = ¢,Ip(Cz) for the linear differential equation ¢” + z ¢/ =
C 2<p, ©(0) = ¢y, ¢’ (0) = 0 (Abramowitz and Stegun 1992, §9.6), we obtain the

bounds

(€62 < 29 < 1) (5.6)

n

: L (-1 (")) i —1 (¢*\\?
forall 0 < z < z*. Setting uy = 75— (Io (¢—)) Up = g (IO <¢—>) and
recognizing that ¢ (u, vy¥) > ¢, Io(2C(¢*),/ujv}) the result follows. O

Remark 5.2 From the preceding lemma, we get the recursion for an Amsler sector

b C¢") ¢" o, (C@D ¢
o= IO(zm(’ <¢>>) 310( o (' <¢’))>

where the second inequality obtains from umax < R, vmax < R. We thus get a rela-
tion with explicit dependences on the parameters in the recursion, R and ¢*. Since
Gnt1/¢n > 1 for sufficiently small ¢y, it is also easy to see that, there is a constant
C’'(¢*), independent of R, such that ¢ppin = ¢*/Io(C’(¢*)~/R) has the property that
®n > ¢min for all n if ¢g > @min. Note also that we are free to pick a particular value
of ¢* (or even values from any compact set in (0, 7)) and drop all the dependences
on ¢*.

The preceding analysis holds for Amsler sectors but most of the sectors generated
by Algorithm 4.1 are not Amsler sectors. Rather, they are pseudo-Amsler sectors and
only one boundary is a geodesic. Consequently, we cannot assume that the quantitative
relation from Lemma 5.1 will hold for these pseudo-Amsler sectors as well. The lessons
we draw are qualitative—that the analysis for Amsler sectors helps identify “good”
sets of variables, i.e., the appropriate combinations of R, ¢,,, ¢,,+1 that might satisfy
“universal” relations.

For a general (not necessarily Amsler) sector, we define the quantity

(9
“n = s, (1" (m)) ’ o7

where s, is the distance from the branch point to the boundary of the domain. The
intuition for this choice is that s > UmaxVUmax and g, is like 2a The argument is
Remark 5.2 will apply to all sectors if we can prove an inequality ¢;’P+1 > f (2Coz2)
where C > 0 is independent of R, and f > 1 for sufficiently large values of its
argument.

We apply Algorithm 4.1 to disks of various sizes and we record o, (as defined
in (5.7)) and the ratio ‘p;;“ relating the opening angles of the daughter sectors to the
angle of the parent sector, at each cut (u*, v*). Figure 19 shows the scatter plots of
¢(’1’)“ versus oe for various choices of R, ¢g and ¢*. On each of these plots, we have
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Fig. 19 Scatter plots of (%::1 Versus a% for branched immersions generated by Algorithm 4.1. We plot

fila) = %10 (2a?) and the supporting quadratic f,(«) ~ 0.730:2. The parameters for the individual plots
areeaR=8,¢p =%, 9" = 4T”,bR:S,(ﬁ() =5.¢"= 3T’T,anch: 10,0 = F.¢* = 4?”

also drawn the curves fi(«) = %10(2052) and its supporting quadratic f>(«) = (;‘—*)2

where o™ = (supw >0 —«/W) The data suggest the following observations:

(1) The plots are essentially the same if there are sufficiently many branch points,
independent of £ < ¢p < ¢* < 4?” and R > 6.

(2) The points are clustered in two families. The Amsler nodes satisfy ‘P(’;)“ >

%10 (20{,21), i.e., the best possible bound from Lemma 5.1, given by C(¢*) = 1.
The pseudo-Amsler nodes do not satisfy this bound. They seem to satisfy a weaker

2
bound given by '/’;):‘ > max (%, (infw>o %) a%) = max (%, (O‘Z‘—*)z)

Assuming that the inequalities suggested by the numerical results indeed hold for
all R, the same argument as in Remark 5.2 gives a conservative estimate of ¢, by
setting

1 * 2 *
@) == [10—1 ( ¢"’, )} = ¢min = m ~ exp(~a*V2R),

since, from s, < R, we are guaranteed that ¢, 11/¢, > (an /oz*)2 > 1if ¢, is ever
as small as ¢piy. Equation (5.2), our energy bound for isometries with branch points,
now follows from combining ¢, x > ¢min for all branch points with Eq. (5.3).

From the bound (5.2) for £ and the estimate in (5.1) for C2 patches devoid of
branch points, it follows that we cannot have a region of size about +/R that is free of
branch points. The area of a disk with radius R scales like exp(R), while the “largest”
size of regions free of branch points can only be exp(«/ﬁ). Consequently, we get
that the number of branch points scales like exp(R — +/R). Since each parent has (at
most) 3 daughter branch points in Algorithm 4.1, the number of branch points grows
(roughly) exponentially with the number of generations, and it follows that the cut
depth scales like
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n ~ max(R — VR, 0),

corresponding to a function “nearly” linear function whose slope increases slowly,
precisely as we observe in Fig. 17b.

6 Discussion

Branch points are novel topological defects in C'-! hyperbolic surfaces that allow
significant shape changes, while they do not concentrate stretching energy. They are
unique in this aspect, since most other defects in condensed matter systems do con-
centrate energy.

In our view, these are some of the key results from this work —

(1) In Definition 3.13, we introduce the notion of an asymptotic complex that encodes
the combinatorics of the asymptotic network and characterizes the non-trivial
topology induced by the ramification of the corresponding Gauss normal map.

(2) We define a topological index for branch points and prove it is “robust” (Theo-
rem 3.22).

(3) We prove a generalization of the sine-Gordon equation for surfaces with branch
points in Theorem 3.27. This result illustrates why optimizing the bending energy
among isometric immersions of pseudospherical surfaces naturally leads to dis-
tributed branch points (see Remark 3.28).

(4) In Sect. 4.1, we introduce a new discrete net for the basic object of interest in
elasticity, the deformation map from the Lagrangian to the Eulerian frame for
pseudospherical surfaces. Our method does encode the asymptotic complex and
the topology of branch points and therefore distinguishes C''! immersions from
C? immersions, in contrast to finite difference/FEM methods which are “branch
point agnostic.”

(5) We formulate an algorithm, Algorithm 4.1, to generate pseudospherical surfaces
with distributed branch points and (relatively) slower growth in the maximum
curvature with the size of the domain, than for C? immersions.

(6) We numerically find an energy gap between branched and smooth pseudospherical
surfaces that leads to recursive/self-similar, fractal-like patterns in the distribu-
tion of branch points, and partially answers our motivating question—why do we
observe “universal” buckling patterns in hyperbolic surfaces?

We now expand on item 6, which is the central motivating question for this work.
Bounded subsets of smooth hyperbolic manifolds can always be embedded smoothly
and isometrically in R3. There is thus no need for these sheets to stretch, and their
morphology results from a “global” competition between the two principal curvatures
(Gemmer et al. 2016) (see also Example 3.4). This is in contrast to other multi-scale
phenomena in thin sheets (Miiller 2017) which are manifestly driven by a competition
between stretching and bending energies (Amar and Pomeau 1997; Lobkovsky et al.
1995; Venkataramani 2003; Bella and Kohn 2014a; Olbermann 2016) or more gener-
ally, energies of different physical origins (Davidovitch et al. 2011; Chopin et al. 2014,
Bella and Kohn 2014b; Davidovitch et al. 2019; Tobasco 2019). We argue that branch
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point arise from the dependence of the max curvature/bending energy on the regularity
class of the immersion y : Bg — R3. The results in Sect. 3 and algorithm in Sect. 4
are steps toward a quantitative expression of this idea. Our numerical results and (a
non-rigorous) scaling argument suggest, for a disk of radius R and Gauss curvature
K = —1 immersed in R3, the optimal max curvature Es, = Kpqx ZIOWS as

. R C? or smoother isometries,
log inf Kkpax ~

y:Bp—R3 VR CU! branched isometries. @1
The evidence for this conjecture is presented in Fig. 17a.

If true, conjecture (6.1) would explain why, for sufficiently large disks, isome-
tries with distributed branch points are preferred. The related argument for cut depth
indicates how the branch points will be distributed, and “explains” the observed self-
similar buckling patterns in thin hyperbolic objects. The energy gap in (6.1) would
constitute an entirely new class of examples of the Lavrentiev phenomenon in non-
linear elasticity (Foss et al. 2003; Ball and Mizel 1985). The Lavrentiev phenomenon
is known to be an obstacle for numerical minimization of the energy functional since
discrete approximations often converge to a smooth pseudominimizer rather than the
true singular minimizer (Ball and Knowles 1987). It is thus of considerable interest to
investigate the convergence properties of our DDG-based methods, that discretize C1-!
isometries, and compare the results with existing FEM and finite difference methods
for shells and plates.
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Appendix: Asymptotics of Painlevé Il

We can get more accurate estimates than implied by the bounds in (5.6). For ¢ < 1,
the Painlevé III equation (3.18) and the associated boundary conditions reduce to

¢'(2)

¢"(2) + —9(2) =0, @0) =g, ¢'(0) =0.

The solution is given by ¢(z) = ¢olo(z), where Iy is the modified Bessel function
of the first kind (Abramowitz and Stegun 1992, §9.6). From the small and large z
asymptotics of Iy (Abramowitz and Stegun 1992, §9.7), we get
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2
Z
@inner (2) = @o <1 + Z + 0 (24)> , forz <« 1,

et 1 1
D=¢p——|1+—+0\|-)), forz > 1.
Pouter(2) §0om ( 8z <Z2>>

For the regime z > 1, ¢ & 7, we have the weakly damped pendulum equation:

/
. Z
0@ —sing(a) =~ ~ 0, (A.1)
with asymptotic solutions of the form
@pend(2) ~ 7w — Asin(z* — 2), (A.2)

for a slowly varying amplitude A that changes over many cycles of the pendulum. We
are only interested in the first crossing ¢ (z*) = 7, so we can assume that A is constant
and determine A by matching the large z asymptotics of the Bessel solution with the
pendulum solution. From the Bessel solution, we derive initial data for the pendulum
equation, fixing the energy level for this conservative system:

/ poe*  goe’
end (0), 0)) ~ ,—— | = (6, d), A3

where we match at such a point z that z 3> 1,8 < 1. The energy of the pendulum
solution is given by

¢/2 84
E:7+cos¢%1+ﬁ, (A.4)

as cos ¢ is the potential and § < 1. Substituting the data into the energy, we find

54

1+ ~

T (A’ sin(z* — z) + A cos(z* — z))2 + cos @,

(r —9)?

2 9

L% x _ \\2 l 2 20 %
(A sin(z z) + Acos(z z)) 1+ 2A sin“(z 2),

IS

(A’ sin(z* — z) + A cos(z* — z))2 -1+

&

| =N = N =

&

1
—15 [A/z sin?(z* — z) — 2A’Asin(z* — z) cos(z* — 2) + A2] ,

which in the case of slowing varying A simplifies to

34
Ax2,)1+ —.
+48

@ Springer



13 Page 56 of 60 Journal of Nonlinear Science (2021) 31:13

Fig.20 Asymptotics using the 64
Pendulum and Bessel Bessel’s
approximations in the g9 — 0 Pendulum
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We are now equipped with a complete asymptotic description of the solutions to
Painlevé 111 for an initial angle ¢g. The description is divided into three regimes: z < 1
and g S K 7, z> land g9 K ¢ < 7w, and finally z > 1 and ¢ ~ 7:

2
w(1+%). < landgy S¢ <7

()~ 900\;;71 (1 +8—lz) z>» landgpy <o S (A.5)
7 =214 Geossin(e* —2), g & 7.2 S 2F A —log(go).

A numerical validation of these asymptotic relations is illustrated in Fig. 20 (we
consider ¢g = I”W). Using the expressions in (A.5) instead of the bounds (5.6) gives
the optimal constant C(¢*) = 1 in Lemma 5.1.
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