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Abstract
We develop a theory for distributed branch points and investigate their role in deter-
mining the shape and influencing the mechanics of thin hyperbolic objects. We show
that branch points are the natural topological defects in hyperbolic sheets, they carry
a topological index which gives them a degree of robustness, and they can influ-
ence the overall morphology of a hyperbolic surface without concentrating energy.
We develop a discrete differential geometric approach to study the deformations of
hyperbolic objects with distributed branch points. We present evidence that the max-
imum curvature of surfaces with geodesic radius R containing branch points grow
sub-exponentially, O(ec

√
R) in contrast to the exponential growth O(ec′R) for sur-

faces without branch points. We argue that, to optimize norms of the curvature, i.e.,
the bending energy, distributed branch points are energetically preferred in sufficiently
large pseudospherical surfaces. Further, they are distributed so that they lead to fractal-
like recursive buckling patterns.
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1 Introduction

Leaves, flowers, fins, wings and sails are examples of the ubiquity of thin sheets in
natural and engineered structures. These objects often display intricate rippling and
buckling patterns around their edges. Figure 1 displays some of the complex shapes of
leaves and flowers that result from such hierarchical, “multiple-scale” buckling. In the
physics literature, a relation between these buckling patterns and the growth of a leaf
at its margins was first identified by Nechaev and Voituriez (2001) (see also Sharon
et al. 2002, 2004, 2007; Liang and Mahadevan 2011; Sharon and Sahaf 2018). This
phenomenon is not restricted to living organisms, where it might be explained as a
genetic trait selected for by evolution; it is seen in torn plastic sheets (Sharon et al.
2007). Also, a wavy pattern can be induced in a naturally flat leaf; Sharon et al. show
that application of the growth hormone auxin to the edge of an eggplant leaf, which is
naturally flat, induces growth at the margin, ultimately causing buckling out-of-plane
(Sharon et al. 2004).

Qualitatively similar patterns are observed in torn plastic (Sharon et al. 2002, 2007)
and temperature-sensitive hydrogels (Klein et al. 2007; Kim et al. 2012a). These
patterns, and their bifurcations, have been studied intensively over the last 20 years
(Sharon et al. 2002; Marder 2003; Marder et al. 2003; Audoly and Boudaoud 2003;
Klein et al. 2007; Efrati et al. 2009; Klein et al. 2011; Gemmer and Venkataramani
2013). The changes to the internal structure during the growth of a leaf, or through
the stretching of a plastic sheet at a tear, result in surfaces whose intrinsic geometries,
i.e., Riemannian metrics, are no longer “compatible” with a flat shape; significant
external forces compressing the elastic sheet would need to be imposed for the surface
to lay flat. The analogy between the localized stretching near the edge of a torn plastic
sheet and the preferential growth of leaves along to their edge motivates the need for
a purely mechanical explanation for the observed self-similar, fractal-like buckling
patterns (Marder et al. 2003; Audoly and Boudaoud 2003; Sharon et al. 2007; Liang
and Mahadevan 2009; Efrati et al. 2013; Gemmer et al. 2016).

Fig. 1 a A leaf with regular undulations (photo by TS). b An Iris with 3 generations of undulations (photo
by SV). c Curly mustard leaves with multiple generations of buckling (photo by J Watkins, U. Arizona)
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Hydrogels have emerged as a useful system for exploring thin sheets with complex
geometries in a controllable and reproducible manner (Klein et al. 2007; Efrati et al.
2007; Kim et al. 2012a). Experimental techniques can prescribe a desired Riemannian
metric in a hydrogel sheet that is initially flat, but acquires the programmed metric
upon “activation” (Klein et al. 2007; Kim et al. 2012a, b). A variety of environmental
stimuli, such as light or temperature changes can activate the programmed metric.
A gel sheet that swells more near the center leads to an ultimately spherical shape.
Alternatively, if the differential swelling is larger near the margins and reproduces the
effect seen in leaves, producing a wavy surface (Klein et al. 2007; Efrati et al. 2007;
Huang et al. 2018). Hydrogels which undergo such controlled shape transitions, due
to a switch in the metric, have a variety of potential applications in medical devices,
micro- and nanoscale robotics and flexible electronics.

Another “experimental” system, less quantitative, but beautifully pairing art and
mathematics is “hyperbolic crochet” (Henderson and Taimina 2001; Meyer 2013;
Wertheim and Wertheim 2015). Through crochet, artists and mathematicians have
rendered embeddings of (subsets of) the hyperbolic planeH2 inR3.Hyperbolic crochet
is constructed by increasing the perimeter exponentially with the radius. Sprawling
hyperbolic crochet provides striking resemblance to sea creatures and plant life and has
been exhibited through “The Crochet Coral Reef project” (Wertheim and Wertheim
2015). In “Floraform,” a project inspired by the differential growth in plant structures
and the ruffles of lettuce sea slugs, the authors simulate growth of a thin surface using
techniques from differential geometry and physics, to uncover novel design principles
and also to create art (Louis-Rosenberg 2014).

There is remarkable unity of form in leaves and hyperbolic hydrogels (Huang et al.
2018), in corals and crochet (Wertheim and Wertheim 2015), in sea slugs, and in
jewelry made using simulated differential growth (Louis-Rosenberg 2014). Why is
this so? This is the fundamental question we seek to address in this paper—Why do
systems, with completely different physics, some directed by complex evolutionary
processes and others generated by simple mathematical rules, end up with similar
fractal-like buckling patterns?

A commonly held explanation is that hyperbolic surfaces, i.e., objects whose
perimeter grows exponentially with the radius, develop complex buckling patterns
because there are no smooth ways to embed them in R

3 without stretching (Hender-
son and Taimina 2001). Putative evidence for this picture includes scaling laws that
imply a dependence of the buckling wavelength on the thickness of the sheet (Audoly
and Boudaoud 2003; Klein et al. 2011; Bella and Kohn 2014a; Vetter et al. 2013)
suggesting a competition between localized stretching energy and regularization from
bending energy.However, these scaling laws arise from (sometimes implicit) boundary
or “forcing” conditions. There are no proofs (yet) that these scaling laws also apply to
free sheets. Theorems on nonexistence (Hilbert 1901; Holmgren 1902) and singulari-
ties (Amsler 1955; Efimov 1964) for isometric immersions of complete surfaces with
negative curvature are sometimes invoked in this context. This argument, however,
is a misunderstanding of the results in Hilbert (1901), Efimov (1964) which apply
to complete surfaces that are necessarily unbounded. Any finite piece of a smooth
hyperbolic surface can always be smoothly and isometrically embedded in R

3 (Han
and Hong 2006).
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As we argue in this paper, the answer is somewhat more subtle, and it is tied to
the regularity of the allowed configurations of a hyperbolic sheet in R3. In particular,
we demonstrate that the class of C1,1 isometric immersions (no stretching, uniformly
bounded curvatures that are not necessarily continuous) are “flexible,” while C2 (con-
tinuous curvatures) isometric immersions are “rigid.” “Singular” C1,1 isometries can
have substantially smaller elastic energy than “smooth” C2 isometries, which seems,
on the surface, completely counterintuitive. Further, the organizing principle for min-
imizing the energy of C1,1 isometries is approximate “local” balance between the
principal curvatures (Gemmer et al. 2016), and this naturally leads to fractal-like
buckling patterns, as we illustrate in this work. The key to the flexibility of C1,1

immersions is a novel topological defect in pseudospherical surfaces—branch points
(Kirchheim 2001; Gemmer and Venkataramani 2011) that are the principal objects of
interest in this work.

After a review of non-Euclidean elasticity in Sect. 2, we present our main results
in Sects. 3, 4 and 5. We conclude with a short discussion of our results and their
implications in Sect. 6. We believe this work will be of interest to readers with diverse
backgrounds, so we summarize our key results here to give readers an overview of the
entire paper in broadly accessible language. This introduction is necessarily informal,
and we refer the readers to the discussion in the body of the paper for the precise
mathematical statements.

We define branch points in Definition 3.6. At “regular points,” a surface negative
Gauss curvature is saddle-shaped and has 4 “sectors,” two above and two below the
tangent plane. In contrast, at a branch point, the surface has 2m > 4 sectors. We con-
struct pseudospherical immersions containing branch points by assembling multiple
sectors together—Proposition 3.10. Given 2m ≥ 4 smooth curves γi , originating at
a point p, tangent to a common plane through p, and with alternating torsions ±1,
there is a branched pseudospherical surface, with bounded principal curvatures, that
contains (sufficiently small segments of) the curves γi .

Our next main result is that branched points are topological defects since they
carry a topological charge that cannot be smoothed away. A key preliminary step is
Definition 3.18 that identifies the appropriate quantity which measures the topological
charge.
Theorem 3.22. If a pseudospherical surface S can be approximated in W 2,2

loc , i.e., the
local difference in curvatures as measured by the elastic bending energy can be made
as small as desired, through surfaces with bounded curvature and no branch points,
then the surface S itself cannot have branch points.

In Sect. 3.4, we outline a procedure we call surgery, that allows us to add additional
branch points to surfaces (see Lemma 3.24). We then generalize the classical sine-
Gordon equation for smooth pseudospherical surfaces, ∂uvϕ = sin ϕ, to surfaces with
branch points.
Theorem3.27.With an appropriate definition ofϕ(u, v), the angle between the asymp-
totic directions as a function of the asymptotic coordinates, we have

∮
∂�

1

2
(∂vϕdv − ∂uϕdu) =

∫∫
�

sin(ϕ)dudv − π
∑
pi∈�

(mi − 2),
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where� is any domain bounded by asymptotic curves and the correction is the π times
the sum of the topological charges, of all the branch points contained in �.

In Sect. 4.1, we introduce a new class of discrete nets that represent the extrinsic
geometry of pseudospherical surfaces (i.e., the second fundamental form) in intrinsic
coordinates, and allow for branch points. This is useful in applications to the elastic-
ity of thin sheets, since they naturally discretize the class of low-energy (isometric)
deformations of a pseudospherical surfaces. Using this discretization, we formulate
Algorithm 4.1, a greedy algorithm for finding (heuristically) the distribution of branch
points that optimizes the elastic energy, i.e., solving the min–max problem of finding
argminr ess supx∈�|H(x)| over immersions r : � → R

3 with branch points where
H(x) is the mean curvature at r(x).

In Sect. 5, we present a “physics-style” back of the envelope calculation that allows
us to estimate the energy and the number of wrinkles of nearly energy optimal immer-
sions of disks with constant negative curvature, while allowing for branch points. Our
arguments reveal the role of the branch points in significantly decreasing the elastic
energy, from log inf E ∼ R for smooth immersions to log inf E ∼ √

R for branched
immersions of a disk of radius R, cf. Eqs. (5.1) and (5.2). We compare our estimates
with numerical simulations.

2 Non-Euclidean Elasticity

We model our elastic bodies as hyperelastic materials, so that the observed configu-
rations are minimizers of an elastic energy functional. The functional quantifies the
elastic energy due to strains in a particular deformed configuration of the body relative
to the intrinsic (non-Euclidean) geometry which can be represented as a Riemannian
manifold (B,G). This suggests a candidate for the resulting three-dimensional elastic
energy

I[ỹ] =
∫
B
‖∂i ỹ · ∂ j ỹ − Gi j‖2 dV , (2.1)

with ỹ : B → R
3 representing the deformation (Audoly and Boudaoud 2002; Marder

et al. 2003; Efrati et al. 2009). ThoughEq. (2.1) is arguably a prototypicalmodel elastic
energy, this functional is not appropriate from variational perspective (Lewicka and
Pakzad 2011) because of the possibility of fine-scale, orientation-reversing “folded
structures.” An appropriate elastic energy is defined using a polar decomposition of
the deformation gradient ∇ ỹ to measure its deviation from an “energy well” F(x) =
{R A(x) : R ∈ SO(3)}, where A = √

G is the symmetric, positive definite root of the
Riemannian metric G (Lewicka and Pakzad 2011). F(x) contains all the orientation
preserving isometric linear maps, from the tangent space TxB to R

3 and this defines
the elastic energy

I [ỹ] =
∫
B
dist2 (∇ ỹ(x),F(x)) dx . (2.2)

The fully three-dimensional variational problem for (2.2) is analytically intractable
motivating the development of reduced models for shells, plates and rods (Love 1892;
Timoshenko 1959). For plates,
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B = � ×
(
−h

2
,

h

2

)
, Gi j =

⎛
⎝g11 g12 0

g21 g22 0
0 0 1

⎞
⎠ ,

the Föppl–vonKármán approximation (Ciarlet 1980) is one such asymptotic reduction
of the full three-dimensional system to a two-dimensional system on the center surface
� in the limit of vanishing thickness h → 0. Here and henceforth, g will represent
the 2d metric on �. For a sheet of thickness h, scaling the in- and out-of-plane dis-
placements to be O(

√
h) and O(h), respectively, gives an energy functional, called

the FvK energy in the physics literature:

Eh = h Estretching + h3 Ebending. (2.3)

The resulting variational formulation, also known as the Föppl–von Kármán (FvK)
equations, are coupled PDEs representing the equilibrium conditions associated with
the reduced energy and have been used extensively to model thin elastic sheets. Efrati
et al. extended the FvK theory to non-Euclidean plates, i.e., cases where the reference
metric g is not the Euclidean metric (Efrati et al. 2009). Using the formalism in (Efrati
et al. 2009), the energy of a non-Euclidean plate with elastic modulus Y , Poisson’s
ratio ν = 0 and setting y = ỹ|� is

Eh = Y h

2

∫
�

‖dy · dy − g‖2dA + Y h3

24

∫
�

(4H2 − 2K )dA. (2.4)

The first integral measures the stretching energy, quantifying the deviation of the
induced metric from an assumed reference metric. The second integral, also known as
the Willmore functional, describes the energy due to bending. H = κ1+κ2

2 is the mean
curvature and K = κ1κ2 is the Gauss curvature, where κ1 and κ2 are the principal
curvatures of the immersion y : � → R

3. In this work, K = −1 and we expect
Eh ∼ h3 if y is an isometry.

The energy functional (2.3) obtains from making an ansatz “lifting” an immersion
y : � → R

3 of the center surface to a deformation ỹh : B → R
3 given by the

Kirchhoff–Love extension that maps fibers orthogonal to the center surface � in B
to fibers orthogonal to the image y(�) in R

3 (isometrically for ν = 0). In contrast,
rigorous derivations of the h → 0 limit energy for plates are ansatz-free and are
obtained through �–convergence (Friesecke et al. 2002, 2006). In the �–convergence
approach, one assumes that, for a sequence of mappings ỹh : �×[− h

2 , h
2 ] → R

3, the
elastic energy satisfies a uniform bound h−α I [ỹh] ≤ C , where I [·] is the “bulk” elastic
energy defined in (2.2). With no further assumptions, one shows that a subsequence
of the immersions ỹh (appropriately rescaled) converges (in an appropriate sense).
One then defines a space of limit configurations and a limit energy Ē , so that for any
allowed limit configuration ȳ, one can recover a sequence of configurations ỹh such
that ỹh → ȳ, h−α I [ỹh] → Ē[ȳ]. The limiting space and the limit energy can depend
on α, and in general, one obtains a hierarchy of limiting elastic energy functionals,
distinguished by the scaling of the energy with h (Friesecke et al. 2006; Lewicka et al.
2014).
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Fig. 2 Minding’s bobbin with smooth asymptotic curves and cuspidal singular edges. The normal Nω is
also shown along an asymptotic curve

In our work, we are in the scaling regime I [ỹh] ≤ Ch3, and the corresponding
limit theory is called the Kirchhoff plate theory in the literature on rigorous dimension
reduction for slender elastic objects (Friesecke et al. 2006; Schmidt 2007b; Lewicka
and Pakzad 2011). The scaled energy h−3 I converges

24h−3

Y
I [y] �−→ E2[y] =

{∫
(κ2

1 + κ2
2 ) dA if y ∈ W 2,2, dy · dy ≡ g,

+∞ otherwise,
(2.5)

to the isometry restrictedWillmore energy, for various problems in incompatible elas-
ticity of thin objects (Schmidt 2007a, b; Lewicka and Pakzad 2011; Kupferman and
Solomon2014;Bhattacharya et al. 2016). In thiswork,wewill also consider an alterna-
tive bending energy, the isometry restricted max curvature E∞[y] = max�(|κ1|, |κ2|)
for y ∈ W 2,∞, dy · dy ≡ g and +∞ otherwise. For all bounded domains, the limit
(Willmore) energy E2 is bounded by (the square of) the E∞, so finding configurations
with E∞ finite is sufficient for showing the existence of finite Willmore energy isome-
tries.We also note that κ1κ2 = −1 a.e. forC1,1 surfaces with K = −1. Consequently,

2|H(x)| = |κ1(x) + κ2(x)| ≤ max(|κ1(x)|, |κ2(x)|) ≤ 2|H(x)| + 1

so that, for surfaces of constant curvature, the max curvature energy E∞ is essentially
the same as the max mean curvature maxx∈� |H(x)|.

A significant obstruction to finding these configurations is the singular edge; see
Example 3.4 and Fig. 2. The singular edge is an example of a cuspidal edge singularity,
and is a generic feature of isometric immersions ofH2 intoR3 (Amsler 1955; Ishikawa
andMachida 2006). One of the principal curvatures diverges at the singular edge so the
W 2,∞ energy is locally unbounded. As we show elsewhere, the Willmore energy also
diverges in any neighborhood of a point on the singular edge. Our principal concern
in this work will therefore be the question of how to evade or stave off the occurrence
of a singular edge.

The question of isometric embeddings and immersions of a Riemannian 2-manifold
(�, g) as a surface in R

3 has a long history, reviewed in Han and Hong (2006,
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Chaps. 2 & 3, §4.2). We are specifically interested in the case of pseudospherical
surfaces, i.e., when g has constant negative curvature (Stoker 1989, Chap. 4). In 1901,
Hilbert showed that there exists no geodesically complete, analytic immersion into
R
3 of a metric with constant negative curvature (Hilbert 1901). This result was later

extended by Efimov to C2 isometric immersions into R3 for any metric with negative
curvature bounded away from zero (Efimov 1962; Milnor 1972):

Theorem (Efimov) No surface with negative Gauss curvature bounded away from
zero K ≤ −δ < 0 can be C2 immersed in Euclidean 3-space so as to be complete in
the induced Riemannian metric.

Alternatively, Nash (1954) and Kuiper (1955) showed that, for a general metric g,
there exists a C1 isometric immersion, indeed even an embedding:

Theorem (Nash–Kuiper) Let (M, g) be an m-dimensional Riemannian manifold and
f : M → R

n a short immersion (resp. embedding), where n ≥ m + 1. Given an
ε > 0, there exists an isometric immersion (resp. embedding) fε of class C1 satisfying

g(v,w) = 〈d fε(v), d fε(w)〉, (2.6)

which is uniformly ε-close to f in the Euclidean norm on R
n:

‖ f (x) − fε(x)‖ < ε for all x ∈ M. (2.7)

The juxtaposition of these two results provides a strong motivation to explore iso-
metric immersions with regularities between C1 and C2. There is a substantial body
of work investigating the existence of isometric immersions of surfaces into R

3 with
Hölder regularity in the class C1,α (Borisov 1959, 2004; Conti et al. 2012; De Lellis
et al. 2018;DeLellis and Inauen 2020), with proofs of flexibility forα < 1/5 and rigid-
ity for α > 2/3. Our interest is in isometric immersions with W 2,2 Sobolev regularity
(Pakzad 2004), motivated by the need to define a meaningful bending (i.e., Willmore)
energy for the immersion, as is clear from the reduced energy (2.5). Provided that
the space of W 2,2-isometric immersions is non-empty, containing potentially many
immersions, we use the elastic energy as a selection process: The observed surface is
the isometric immersion which minimizes the bending energy.

Remark 2.1 Bella and Kohn prove that wrinkles do arise through a competition
between stretching and bending energies, for h > 0, with additional “forcing” condi-
tions that restrict the class of allowed deformations (Bella and Kohn 2014a, Thm. 1).
In this circumstance, the W 2,2 energy of minimizers does not stay bounded as h → 0,
i.e., the limiting isometries are not W 2,2.

We consider a different scenario in this work, namely free sheets with no imposed
forces or boundary conditions. To analyze equilibrium states, we have to impose
boundary conditions that are appropriate for isometric immersions of free sheets,
namely zero net forces and moments (Guven et al. 2019). In this work, we take a
variational perspective for the problem of minimizing (2.5), or the simpler problem
of minimizing E∞ = κmax. Our candidate states are therefore “test functions” for the
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energy, and unlike equilibria, they need neither satisfy the appropriate Euler–Lagrange
equations nor the corresponding boundary conditions.

3 Pseudospherical Surfaces with Branch Points

The preceding discussion highlights the role of the regularity of isometries. Beyond
the existence/nonexistence of isometries, it is crucial whether a candidate isometry is
in W 2,2. This motivates the following problem: (�, g) is a Riemannian 2-manifold.

Find y : � → R
3 such that y ∈ W 2,2

loc (�,R3), dy · dy = g a.e. (3.1)

If y : � → R
3 is C1, the Gauss normal map is given by N = ∂1y × ∂2y

‖∂1y × ∂2y‖ with

∂i = ∂

∂xi
for (arbitrary) coordinates (x1, x2) on �. If y and g are C2, it follows

that N is C1 and Gauss’ Theorema Egregium implies that (3.1) is equivalent to the
Monge–Ampere exterior differential system (EDS) (Ivey and Landsberg 2003, §6.4):

N · dy = 0, N∗(d�) = κ dA, κ ≡ κ[g] is determined by g, (3.2)

where d� is the area form on the sphere S2 and κ is the Gauss curvature.
Classical results in differential geometry imply that smooth solutions of (3.2) with

κ < 0 are hyperbolic surfaces and locally saddle-shaped. In contrast, the curlymustard
leaf in Fig. 1c is “frilly,” i.e., buckled on multiple scales with a wavelength that refines
(“sub-wrinkles”) near the edge (Sharon et al. 2004). This “looks” very unlike smooth
saddles (cf. Fig. 4a).

If � ⊂ R
2 is a bounded domain with a smooth boundary, and g is a smooth metric

on�with negative curvature, g can be extended to a smoothmetric ḡ onR2 withGauss
curvature κ[ḡ] < 0 decaying (as rapidly as desired) at infinity. The existence of iso-
metric immersions intoR3, of smoothmetrics with decaying negative curvature (Hong
1993), therefore implies that bounded smooth hyperbolic surfaces can be smoothly
and isometrically embedded in R

3. A smooth (C2 is sufficient) hyperbolic surface
cannot refine its buckling pattern and is thus “non-frilly,” as we show in Sect. 3.2.
Why do we see frilly shapes in natural surfaces, as in Fig. 1c, rather than a smooth
saddle (see Fig. 4a)?

We have addressed aspects of this puzzle in recent work (Gemmer and Venkatara-
mani 2011, 2012, 2013; Gemmer et al. 2016; Acharya and Venkataramani 2020) and
find that frilly surfaces, somewhat counterintuitively, can have smaller bending energy
than the smooth saddle, despite being (seemingly) rougher. It is true thatC2 hyperbolic
surfaces are saddle-like near every point. A key result in this work is the identifica-
tion of a topological invariant, the winding number (ramification index) of the normal
map at a branch point, that distinguishes sub-wrinkled surfaces from saddles locally
(see Lemma 3.19 and Fig. 4). With branch points, the surfaces are only C1,1, like the
monkey saddle in Fig. 4c, but the gain the additional flexibility to refine their buckling
pattern and thus lower their energy (Gemmer et al. 2016). This flexibility is not avail-
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able to smooth saddles and constitutes a key property of surfaces with branch points
(Gemmer et al. 2016).

The additional flexibility for C1,1 immersions of hyperbolic surfaces has been
explored since the 1960s. Rozendorn discussed the branched hyperbolic paraboloid
as an important example of a C1,1 hyperbolic surface (Rozendorn 1992) and con-
structed C1,1 immersions of geodesically complete, uniformly negatively curved
(K ≤ −δ < 0) surfaces that are smooth except at finitely many points (Rozendorn
1962a, 1966, 1992). In contrast to Rozendorn’s construction (Rozendorn 1962a), with
a focus on minimizing the “singular set” of C1,1 points and leaving the metric “free,”
the constructions in Gemmer et al. (2016), Gemmer andVenkataramani (2011) exactly
preserve a prescribed metric, but need “larger” sets of singular C1,1 points. The goals
for this approach include enlarging the domain that can be immersed isometrically
into R3 or optimizing the bending energy over isometries. In this work, we follow the
latter approach and seek C1,1 isometric immersions of a prescribed metric, namely
one with constant negative curvature K = −1.

Definition 3.1 (Hyperbolic plane) The hyperbolic plane H
2 is the maximally sym-

metric, simply connected, 2-manifold with constant negative curvature −1. An
explicit model for this space is the Poincaré disk x2 + y2 < 1 with the metric

g = 4(dx2 + dy2)

(1− (x2 + y2))2
.

3.1 Pseudospherical Surfaces

Here and henceforth, we will use the adjective pseudospherical to mean “pertaining
to subsets of the hyperbolic plane.” We will build branched C1,1 pseudospherical
surfaces in R

3 by patching together C2 immersions of subsets of H2, such that the
pieces join with continuous tangent planes. To this end, we collect and also extend a
few properties of C2 pseudospherical surfaces [see (Eisenhart 1909, Chaps. V & VI)
(Rogers and Schief 2002, §1.1 & §1.2) and (Dorfmeister and Sterling 2016)].

(A) Every C2 immersion with K = −1 admits a pair of asymptotic coordinates
(u, v) (locally) so that parametrized surface (u, v) �→ r(u, v) satisfies ru ×rv �=
0, N · ruu = N · rvv = 0 where N = ± ru × rv/‖ru × rv‖ (Hartman andWintner
1951). The sign choice in the definition of N is immaterial if ‖ru × rv‖ never
vanishes.

(B) By the Beltrami–Enneper theorem (Eisenhart 1909, Chap. V), the unit speed
asymptotic curves r(·, v0) and r(u0, ·) have constant torsions±1.We choose the
u and v coordinates so that the corresponding asymptotic curves have torsions
-1 and +1, respectively. Since ru ⊥ N and rv ⊥ N , (ru, N × ru, N ) is an
orthonormal Frenet frame for the u-asymptotic lines r(·, v0) and (rv, N ×rv, N )

is a frame for the v-asymptotic lines. The Frenet–Serret formulae (Eisenhart
1909, Chap. V) read

∂u

⎛
⎝ ru

N × ru

N

⎞
⎠ =

⎛
⎝ 0 κu 0
−κu 0 −1
0 1 0

⎞
⎠

⎛
⎝ ru

N × ru

N

⎞
⎠ ,
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∂v

⎛
⎝ rv

N × rv

N

⎞
⎠ =

⎛
⎝ 0 κv 0
−κv 0 1
0 −1 0

⎞
⎠

⎛
⎝ rv

N × rv

N

⎞
⎠ . (3.3)

κu and κv are the geodesic curvatures of the u and v asymptotic lines.
(C) The Frenet–Serret equations yield Nu = N ×ru so (ru, Nu, N ) is a right-handed

orthonormal frame. Similarly, (rv,−Nv, N ) is a right-handed orthonormal
frame. This gives the Lelieuvre formulae (Rogers and Schief 2002, §1.6)

ru(u, v) = Nu(u, v) × N (u, v),

rv(u, v) = −Nv(u, v) × N (u, v). (3.4)

(D) The Lelieuvre equations are consistent if and only if ∂v(ru) = ∂u(rv) which is
equivalent to the condition that the normal field (u, v) �→ N (u, v) is Lorentz
harmonic

N × Nuv = 0. (3.5)

It immediately follows that ruv = Nu × Nv .
(E) Note that Eqs. (3.4) and (3.5) and the signs of the torsions in (3.3) are invariant

under three separate symmetries: N → −N , u → −u or v → −v. Also, the
transformations u → −u, v → −v or N → −N , respectively, reverse the sign
of the geodesic curvature κu , reverse the sign of κv and reverse the signs of both
κu and κv in (3.3).

(F) Note that −u (resp. −v) is as much a valid asymptotic coordinate as is u (resp.
v). This is not an issue with global (smooth) asymptotic coordinates, but will be
an issue for the branched surfaces that are our principal objects of interest.
We will define N so that it is continuous in situations where the underlying
surface is C1, independent of the specific asymptotic parametrization. Let ω be
an orientation (a non-vanishing 2 form) on this surface. If the surface is a graph
(x1, x2, w(x1, x2)), a canonical choice is ω = dx1 ∧ dx2. We define the normal
N so that the orientation ω on the surface is consistent with the cross product in
the ambient space R3, i.e., ω(X , Y ) = β(X × Y ) · N for all vector fields X , Y
tangential to the surface and a strictly positive function β. This is equivalent to
defining

N ≡ Nω = sign(ω(ru, rv))
ru × rv

‖ru × rv‖ = σ
ru × rv

‖ru × rv‖ , (3.6)

where we have defined σ ≡ sign(ω(ru, rv)) to keep the notation compact. It is
easy to see that this definition of N is insensitive to “flips” u → −u or v →−v

in the asymptotic parametrization. A related issue is addressed in the definition
of the normal Nfront for a pseudospherical front in Ref. Dorfmeister and Sterling
(2016), where the consideration was the potential vanishing of ‖ru × rv‖.

(G) If we define the angle between the asymptotic directions by cosϕ = ru · rv , this
definition is not invariant under the flips u →−u or v →−v. We therefore pick
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an “invariant” definition for the angle between the asymptotic directions by

cos(ϕ) = σru · rv = −σ Nu · Nv,

sin(ϕ) = σ(ru × rv) · N

= ‖ru × rv‖
ruv = Nu × Nv = −σ sin ϕN . (3.7)

For this definition, sin ϕ ≥ 0 so 0 ≤ ϕ ≤ π . r is an immersion only if ru and
rv are linearly independent, so this precludes ϕ from attaining the values 0 or
π on a smooth pseudospherical surface. Initially, we work on open sets where
ω(ru, rv) does not change sign and ‖ru × rv‖ is non-vanishing.

(H) In terms of this angleϕ and the normal N = Nω, the first and second fundamental
forms of the pseudospherical surface are given by

g = dr · dr = du2 + 2σ cosϕ dudv + dv2

h = d Nω · dr = −2σ sin ϕ dudv. (3.8)

(I) Nu = N × ru and Nv = −N × rv are in the plane perpendicular to N that is
spanned by ru, rv . Indeed Nu is obtained by rotating ru by π/2 and Nv is rv

rotated by −π/2. Differentiating, and using (3.7), we get

Nuv = Nv × ru = −(N × rv) × ru

= N (ru · rv) − rv(ru · N ) = σ cosϕN = −(Nu · Nv)N . (3.9)

(J) To extract all the compatibility conditions encoded in (3.3), we also need the
derivatives of the Frenet frame for the u-lines with respect to v and vice versa.
Recognizing that N × ru = Nu and combining the results in the previous items,
we have

∂v

⎛
⎝ ru

N × ru

N

⎞
⎠ = σ

⎛
⎝ 0 0 − sin ϕ

0 0 cosϕ

sin ϕ − cosϕ 0

⎞
⎠

⎛
⎝ ru

N × ru

N

⎞
⎠ .

Writing these equations abstractly as ∂u Fu = AFu, ∂v Fu = B Fu , where Fu

denotes the frame (ru, Nu, N ), compatibility ∂v(∂u Fu) = ∂u(∂v Fu) is equivalent
to the zero-curvature condition ∂v A − ∂u B + [A, B] = 0 (Rogers and Schief
2002, §1.2). Computing the matrix entries for this system, and the corresponding
system for the frame Fv , we get

κu = −∂uϕ, κv = ∂vϕ,

−∂v(κ
u) = ∂u(κv) = ϕuv = σ sin ϕ, (3.10)

the Sine-Gordon equation for ϕ and relations between the geodesic curvatures
κu, κv of the asymptotic curves and the derivatives of ϕ. In obtaining this equa-
tion, we have assumed that σ is a constant, so this only applies to open sets where
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ω(ru, rv) does not change sign. In Sect. 3.5, we generalize the sine-Gordon equa-
tion to situations where σ can change sign (see Theorem 3.27).

We are now in position to define the basic building block of a branched pseudo-
spherical surface. We will follow the discussion in Dorfmeister and Sterling (2016):

Definition 3.2 A function (u, v) �→ f (u, v) ∈ R
n is C1M if each component is C1,

and has continuous mixed partial derivatives fuv = fvu on the domain of f .

Note that C1M functions are not necessarily C2 and neither fuu nor fvv needs to exist.
Also, a smooth reparametrization (u, v) = g(r , s) of a C1M function f can yield a
function h(r , z) = f ◦ g(r , s) that is not C1M (Dorfmeister and Sterling 2016).

Definition 3.3 Let D ⊆ R
2 be equipped with global coordinates (u, v). A C1M map-

ping N : D → S2 is weakly (Lorentz) harmonic if

(1) Nu · Nu > 0 and Nv · Nv > 0 on D.
(2) N is Moutard, i.e., there is a continuous function ν : D → R such that Nuv =

Nvu = νN (Bobenko and Suris 2008, Thm. 1.12).

Weakly harmonic mappings D → S2 allows us to generalize the class of smooth
pseudospherical surfaces (Dorfmeister and Sterling 2016). In particular, if D is simply
connected and N : D → S2 is weakly harmonic, then there is a corresponding
pseudospherical front, or PS-front for short (Dorfmeister and Sterling 2016), i.e., a
C1M solution r : D → R

3 to the Lelieuvre equations (3.4), that is weakly regular, i.e.,
ru · ru > 0, rv · rv > 0. PS-fronts allow for the possibility of singularities, i.e., sets
where r is not an immersion, and classical examples include the pseudosphere [see
(Dorfmeister and Sterling 2016, §6)], and Minding’s bobbin, as we discuss further in
Ex. 3.4.

There is a necessary and sufficient condition for ruling out such singularities—r is
an immersion at every point where N is an immersion, i.e., Nu ×Nv �= 0 (Dorfmeister
and Sterling 2016).

Example 3.4 A Minding’s bobbin, depicted in Fig. 2, is a surface of revolution given
in cylindrical polar coordinates (ρ, θ, z) by ρ(s) = κ−1 cosh(s), z(0) = 0, z′(s)2 +
ρ′(s)2 = 1, where s is the arclength along a meridian and κ is the curvature of
the “throat” of the bobbin, the equatorial circle s = 0. The induced metric is g =
ds2+ρ2dθ2 and the corresponding Gauss curvature is K = −ρ′′(s)/ρ(s) = −1. The
maximal extension of a Minding’s bobbin has a singular edge at a finite distance from
the equator, since it cannot be extended smoothly beyond s = ±L, L = arcsinh(κ)

where ρ′(s) = ±1, z′(s) = 0. Minding’s bobbin has the topology of a cylinder
S1 × (−L, L) and its universal cover is a “strip” R × (−L, L). The diameter of any
geodesic disk than can be smoothly and isometrically embedded in the universal cover
is therefore bounded by 2 arcsinh(κ) (Gemmer and Venkataramani 2011).

In order to get a diameter 2R, it follows that the max curvature E∞ > κ > sinh(R).
Note that, this bound obtains from the throat, and not, as one might have imag-
ined, from the region near the singular edge. The longitudinal curvature is given by
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d
ds arcsin ρ′(s) = cosh(s)√

κ2−sinh2(s)
, and it diverges as the distance to the singular edge to

the power− 1
2 (Gemmer et al. 2016). In particular, the Willmore energy also diverges,

logarithmically, on any neighborhood of a point on the singular edge. For bobbins that
can “contain” a disk with radius R, we have,

inf E∞ ≥ inf
κ≥sinh(R)

max
(
κ, cosh(R)(κ2 − sinh2(R))−1/2

)
, (3.11)

and optimization requires a “global” balance between the “azimuthal” principal cur-
vature at the throat and the “longitudinal” principal curvature near the edge.

Reflecting a pseudospherical surface of revolution about a plane through antipodal
meridians preserves the arc lengthparameter s �→ s, inverts the torsion sou-asymptotic
curves map to v-asymptotic curves and vice versa, and also inverts angular derivatives
∂θ �→ −∂θ . It therefore follows that the vector ∂s ‖ (∂u + ∂v) and ∂θ ‖ (∂u − ∂v).
Indeed, more is true. The fact that the angular separation in θ between two u- (or v-)
asymptotic curves is the same at any “height” z(s) (equivalently independent of the
arc-length coordinate s) implies that θ ∝ u − v for any pseudospherical surface of
revolution. Consequently, we can choose u, v such that ru · ru = rv · rv = 1, s =
s(u + v), θ = αu − αv for some constant α.

With these “normalizations” for the asymptotic coordinates u and v, Minding’s
bobbin can be expressed as s = s(u + v) in terms of elliptic functions (Gray 1998,
§21) (Gemmer and Venkataramani 2011). Rather than recapitulate the exact solutions,
our goal here is to illustrate various features of PS-fronts using Minding’s bobbin as
an example.

∂θ = 1
2α (∂u − ∂v) is the Killing vector generating the azimuthal symmetry. For

scalar quantities q ∈ {s, ϕ, σ }, invariance under this symmetry implies q = q(u + v).
Comparing the metric g = ds2 + κ−2 cosh2(s)dθ2 with the expression in asymptotic
coordinates

g = du2 + 2σ cosϕ dudv + dv2

=
{
cos2 ϕ

2 (du + dv)2 + sin2 ϕ
2 (du − dv)2 σ = +1,

sin2 ϕ
2 (du + dv)2 + cos2 ϕ

2 (du − dv)2 σ = −1,

we get, after setting ξ = u + v,

ds

dξ
= 1+ σ

2
cos

ϕ

2
+ 1− σ

2
sin

ϕ

2
α

κ
cosh(s(ξ)) = 1+ σ

2
sin

ϕ

2
+ 1− σ

2
cos

ϕ

2
. (3.12)

We can determine the constant α by imposing the requirement that, at the singular
edge, whether approached from a region with σ = 1 or from a region with σ = −1,
we should get α

κ
cosh(s(ξ)) → 1. This suggests setting α = κ√

κ2+1
in (3.12) will

yield a pseudospherical surface of revolution with a profile ρ(s) = κ−1 cosh(s). This
is indeed true as we now prove:
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Lemma Let κ > 0, σ ∈ {−1, 1} be given, and let s(ξ) be a solution to the ODE

(
ds

dξ

)2

+ 1

κ2 + 1
cosh2(s) = 1. (3.13)

Then, on domains where s′(u + v) �= 0,

ϕ(u, v) = (1+ σ) arcsin

(
cosh(s(u + v))√

κ2 + 1

)
+ (1− σ) arccos

(
cosh(s(u + v))√

κ2 + 1

)

(3.14)

solves the sine-Gordon equation ∂uvϕ = σ sin ϕ.

Proof It is straightforward to verify that any solution of (3.13) followed by a definition
of ϕ through (3.14) will give s(ξ), ϕ that satisfy (3.12). These solutions are smooth
whenever σ is smooth, i.e., constant. Multiplying the two equations in (3.12) yields

d

dξ

[
sinh(s(ξ))√

κ2 + 1

]
= cosh(s(ξ))√

κ2 + 1

(
ds

dξ

)
= 1

2
sin ϕ.

Differentiating the second equation in (3.12) assuming σ is locally constant and divid-
ing by s′(ξ) �= 0 from the first equation gives

sinh(s(ξ))√
κ2 + 1

=
1+σ
2 cos ϕ

2 − 1−σ
2 sin ϕ

2
1+σ
2 cos ϕ

2 + 1−σ
2 sin ϕ

2

(
ϕ′(ξ)

2

)
= σ

ϕ′(ξ)

2
∵ σ ∈ {−1, 1}.

Combining these two equations, we get ∂uvϕ = ϕ′′(u + v) = σ sin ϕ. ��
Note that (3.13) is the statement of conservation for an energy for a unit mass particle
moving in a potential V (s) = 1

2(κ2+1)
cosh2(s) if we interpret ξ = u + v as time. The

corresponding orbits are bounded periodic functions s = s(ξ) and the turning points
where s′ = 0 are when s = ±L as expected. This mechanical analogy shows that, at
the turning points, s′(ξ) = 0 and s′′(ξ) = −V ′(s) �= 0, and further, the solutions s =
s(u+v) are “global,” i.e., exist for all (u, v) ∈ R

2. Since ds2 = d(κ−1 cosh(s))2+dz2,
it follows from (3.13) that

(
dz

dξ

)2

=
(
1− sinh2(s)

κ2

)(
ds

dξ

)2

= (κ2 − sinh2(s))2

κ2(κ2 + 1)
. (3.15)

The right-hand side vanishes quadratically in (L2 − s2), so it follows that z′(ξc) =
z′′(ξc) = 0 at the turning points ξc where s(ξc) = ±L and we can pick the square root
so that z′(ξ) ≥ 0 for all ξ . Near a turning point, we therefore get

ρ(ξ) = ρc − c1(ξ − ξc)
2 + O((ξ − ξc)

3), z(ξ) = zc + c2(ξ − ξc)
3 + O((ξ − ξc)

4),
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where ρc = ρ(ξc) = κ−1
√

κ2 + 1, zc = z(ξc) and c1, c2 > 0. The mapping

(u, v) �→ r(u, v)

=
(

ρ(u + v) cos

(
κ(u − v)√

κ2 + 1

)
, ρ(u + v) sin

(
κ(u − v)√

κ2 + 1

)
, z(u + v)

)

(3.16)

is not an immersionon the circles givenbyu+v = ξc and exhibits cuspidal singularities
at these points, as we illustrate in Fig. 2. Nonetheless, the asymptotic curves u �→
r(u, v0) are smooth and satisfy ru · ru = 1, and likewise for the curves v �→ r(u0, v).

Defining the normal N = ru × rv

‖ru × rv‖ yields, with a positive constant of proportion-

ality,

N (u, v) ∝ s′(u + v)

(
−dz

ds
cos

(
κ(u − v)√

κ2 + 1

)
,

−dz

ds
sin

(
κ(u − v)√

κ2 + 1

)
,
sinh(s(u + v))

κ

)
.

Since dz
ds = 0 at the turning points, this definition of the normal flips between

N = ±e3 at every turning point and is thus discontinuous. In contrast, the definition

Nω = σ
ru × rv

‖ru × rv‖ , σ = sgn(s′(u + v)) yields a continuous (even C1M ) definition of

the normal.
Using (3.13) with (3.15) and recognizing that dz

ds = σ
∣∣ dz
ds

∣∣, we obtain
Nz = κ−1 sinh(s(u + v)), σ = sgn(s′(u + v)), θ = κ(κ2 + 1)−1/2(u − v)

Nω =
(
−σ

√
1− N 2

z cos θ,−σ

√
1− N 2

z sin θ, Nz

)
. (3.17)

Nω, in conjunctionwith the PS-front r in (3.16), satisfies theLelieuvre equations (3.4).

Definition 3.5 An Amsler sector is a PS-front r : [0,∞) × [0,∞) → R
3 such that

the bounding u- and v-asymptotic curves r(·, 0) and r(0, ·) are geodesics in R
3. A

pseudo-Amsler sector is a PS-front r : [0, u0) × [0, v0) → R
3 such that the one of

the bounding u- and v-asymptotic curves either r(·, 0) or r(0, ·) is geodesic in R3.

Amsler andpseudo-Amsler sectorswill play a fundamental role in thiswork.Amsler
sectors can be constructed by solving the sine-Gordon equation ϕuv = sin ϕ on the
first quadrant u ≥ 0, v ≥ 0 with boundary data ϕ(u, 0) = ϕ(0, v) = φ0 (Amsler
1955). These solutions admit a self-similar reduction of the form ϕ(u, v) = ϕ(z),
with z = 2

√
uv. This self-similar ansatz gives ∂uv = 1

z ∂z + ∂2

∂z2
and the sine-Gordon

equation reduces to

ϕ′′(z) + ϕ′(z)
z

− sin ϕ(z) = 0, (3.18)
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known as Painlevé III in trigonometric form (Bobenko and Eitner 2000, Chap. 2).
The preimage of z = 0 is the set {(u, v) : u = 0 or v = 0}, and hence, we see
immediately that ϕ(u, v) is a constant along the axes, and there is an (unbounded)
open neighborhood of the axes on which the PS-front is actually an immersion since ϕ

is close to φ0 and away from 0 and π . This is in stark contrast with Minding’s bobbin
where every u-asymptotic curve hits the cuspidal singular edge at a finite value of the
parameter u and likewise for v-asymptotic curves.

For an Amsler sector, along the asymptotic curves given by u = 0, we have κu =
∂uφ = 0 by (3.10), and it follows from Eq. (3.3) that ∂uru = 0 showing that this curve
is geodesic inR3. A similar argument applies to the asymptotic curve given by v = 0.

3.2 Assembling a Pseudospherical Surface with Branch Points

As a first illustration of the procedure to construct C1,1 pseudospherical immersion,
we construct a monkey saddle with constant negative curvature, K = −1. Fix an even
integer 2m ≥ 4. The number 2m determines the number of asymptotic rays extending
from the origin and the resulting topological structure of the asymptotic coordinate
system.

Definition 3.6 (m-star) Given angles αi ∈ (0, π), i ∈ {1 . . . 2m} satisfying ∑
i αi =

2π and lengths li > 0, i = 1, 2, . . . , 2m, set β0 = 0, βi = βi−1 + αi for i =
1, 2, . . . 2m, and define the unit vectors si = cos(βi )e1+ sin(βi )e2. Define the sectors
Si ⊂ R

2 by

Si = {c si−1 + dsi |0 ≤ c < li−1, 0 ≤ d < li }, i = 1, 2, . . . , 2m. (3.19)

An m-star T is a topological space with the set T = T ({αi }, {li }) = ⋃2m
i=1 Si con-

structed as above and equipped with the subspace topology given by the inclusion
T ⊂ R

2.

We define coordinates (ξi , ηi ) so that x = ξi si + ηi si+1 for ηi ≥ 0 and x = ξi si −
ηi si−1 forηi < 0.This gives a bi-Lipschitzmapping (ξi , ηi ) : (0, li )×(−li−1, li+1) →
(Si−1

⋃
Si )

0 ⊂ R
2, that is, in general, not smooth on any open set that intersects

{ηi = 0}.
Remark 3.7 In order for all the coordinates (ξi , ηi ) to be smooth,weneed si+1 = −si−1
for all i , and this forces m = 2, α1 + α2 = π, α1 = α3, α2 = α4.

The coordinate patches for (ξi , ηi ) and (ξi+1, ηi+1) overlap on the interior of Si , and
the transition functions between the coordinates, given by ηi+1 = −ξi and ξi+1 = ηi ,
are Lipschitz (even smooth). On the sector Si , we can compute the coordinate (ξi , ηi )

by

(ξi , ηi ) = 1

s∗i+1 · si
(s∗i+1 · x,−s∗i · x),

where the “dual” vectors are given by s∗j = e3 × s j . Note that s∗i+1 · si = sin(βi+1 −
βi ) = sin(αi ) > 0, and these formulae extend the coordinates ξi , ηi to the closure Si
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as Lipschitz functions. The origin x = 0 is given by (ξi , ηi ) = (0, 0). We define the
asymptotic coordinates (ui , vi ) by

(ui , vi ) =
{

(ξi , ηi ) if i is even

(ηi , ξi ) if i is odd.
(3.20)

The quantities (ui , vi ) are only defined on the sector Si . Also, for i even (respectively,
i odd), 0 ≤ ui = ui+1 < li and vi = vi+1 = 0 (resp. ui = ui+1 = 0 and
0 ≤ vi = vi+1 < li ) on Si ∩ Si+1. We will fix the sector Si in the rest of this argument
and henceforth drop the subscripts i on ui and vi . Given a point z ∈ R

3, a direction
n ∈ S2 and unit vectors eu and ev that are pependicular to n, we define the boundary
conditions for an Amsler sector by

N (u, 0) = cos(u)n + sin(u)n× eu

N (0, v) = cos(v)n − sin(v)n × ev

r(u, 0) = z+ u eu, r(v, 0) = z+ v ev. (3.21)

It is straightforward to verify that the definitions in (3.21) are solutions of (3.3). It
follows that we can solve theMoutard equation (3.9), aGoursat problem for the normal
N (u, v) [see (Bobenko and Suris 2008, Thm 1.12) for the details], to obtain smooth
solutions in the interior of the sector Si that extend continuously to the boundary, and
on the segment u = 0 (respectively, v = 0), N (0, v) (resp. N (u, 0)) agrees with the
definition in (3.21).

We specialize by setting z = 0,n = e3, eu = si , ev = si−1 if i is even and eu = si−1
and ev = si if i is odd. Note that, for points that are in multiple sectors, i.e., points on
the sector boundaries, either u or v is zero, N and r are defined consistently, i.e., they
are same independent of which sector is taken in the definition. In particular, the point
u = v = 0, which belongs to all sectors, has ri (0, 0) = z = 0, Ni (0, 0) = n = e3 for
all i .

In the interior of the sector Si , the normal field Ni which solves the Moutard
equation (3.9) is weakly harmonic and thus determines a PS-front ri : Si → R

3

through the Lelieuvre equations (3.4). Since lim(u,v)→(0,0) Nu ×Nv = ±s∗i−1 · si �= 0,
it follows that there exists ci > 0 such that Nu ×Nv does not vanish on the rectangular
domain Ji ≡ {0 < ui < ci , 0 < vi < di } ⊂ Si . ri extends continuously to J̄i and we
have constructed a PS-front ri ∈ C∞(Ji )∩C( J̄i ) such that ri (0, 0) = 0 and the normal
to the immersion is given by our choices for N above, i.e., for points in Si

⋂
S j , N

is well defined since the two potential definitions of the normal, Ni and N j , agree.
We can, after shrinking ci , di if needed, patch these solutions to obtain an m-saddle,
i.e., a piecewise smooth PS-front r : T → R

3 where T = ⋃
i Ji is an m-star and

r(x) = ri (x) on Ji .
This procedure is illustrated in Fig. 3 with 2m = 6, αk = π/3, k = 1, 2, . . . , 6.

Since the resulting immersion is continuous and piecewise smooth, and has a contin-
uous and piecewise smooth normal field, it follows that the normal field is (globally)
Lipschitz, and the immersion is C1,1. The immersion restricted to each sector is an
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(A) (B) (C)

(D) (E) (F)

Fig. 3 Construction of a K = −1 3-saddle (“monkey saddle”) of geodesic radius 1. Each colored sector
is smooth, and the gluing procedure maintains continuity of the normal field, shown by the arrows (Color
figure online)

example of an Amsler sector as in Definition 3.5, an object that will play a key role in
our constructions below.

Remark 3.8 Wewill, for the most part, drop the subscript i that indicates the domain of
definition Si , and refer to u and v simply as asymptotic coordinates. This has potential
to cause confusion since u and v are not coordinates in the differential geometric
sense and do not define a one-to-one map on any open set that intersects a boundary
between sectors. This is mitigated somewhat since we usually work only of a single
sector at a time, and on the intersection Si

⋂
S j between two sectors, u and v have

to agree. Indeed, this condition along with the requirement that r(u, v) and N (u, v)

be well defined on the intersections of sectors Si
⋂

S j , independent of whether (u, v)

refer to the coordinates on Si or on S j , allows up to patch sectors together to obtain a
continuous functions on the m-star

⋃2m
i=1 Si .

We generalize the construction of patchingAmsler sectors (Gemmer andVenkatara-
mani 2011) by relaxing the requirements imposed in (3.21).

Definition 3.9 An m-saddle is a C1,1 mapping r : T ({αi }, {li }) → R
3 from an m-

star to R
3 such that the restriction ri = r |Si is a PS-front, i.e., ri (ui , vi ) and the

corresponding normal Ni (ui , vi ) are C1M in the coordinates (ui , vi ), the normal is
weakly regular and is Lorentz harmonic. m is the order of saddleness at the point
ui = vi = 0

We now define an algorithm for constructing m-saddles through assembly.

Proposition 3.10 (Assembly) Let 2m ≥ 4 be an even number and let L < ∞. Assume
that we are given smooth functions κi : [0, L) → R and angles αi ∈ (0, π), for

123



   13 Page 20 of 60 Journal of Nonlinear Science            (2021) 31:13 

i = 1, 2, . . . , 2m, satisfying
∑2m

i=1 αi = 2π . There exist li ∈ (0, L), i = 1, 2, . . . , 2m,
sufficiently small, 2m arc-length parametrized Frenet frames Fi : [0, li ) → M3×3 and
an m-saddle r : T ({αi }, {li }) → R

3 satisfying

(1) r(0, 0) = 0 and N (0, 0) = e3,
(2) For i even (resp. i odd) Fi satisfies the first (resp. second) equation in (3.3) with

κu = κi (resp. κv = κi ) and the initial conditions ru(0) = si (resp. rv(0) = si )
and N (0) = e3,

where βi = ∑i
j=1 α j , si = cos(βi )e1 + sin(βi )e2 and T is an m-star as in Defini-

tion 3.6.

Proof The proof is by explicit construction. The existence and uniqueness for the
Frenet frames follow from standard results for ODEs. The prescribed data therefore
determine the normal field N at the boundaries of the sectors Si where T = ⋃2m

i=1 Si ,
and we can solve (3.9) for Ni (u, v) in the interiors of the sectors Si . This normal field
is weakly harmonic on each sector so we can construct the corresponding immersions
using the Lelieuvre formulae. The solutions on the sectors Si can be patched on the
intersections Si ∩ Si+1 since both patches agree with the curve t �→ r(tsi ), 0 ≤ t < li
on this intersection, and the normals agree aswell with the solution for the Frenet frame
Fi . On the sector Si , lim(u,v)→(0,0) ‖Nu × Nv‖ = |s∗i−1 · si | > 0 so there is a m-star
containing the origin, given by {li } sufficiently small, such that patching the sectors
gives a piecewise smooth, globally Lipschitz normal field N and a C1,1 immersion
r : T → R

3. ��
It follows from Definition 3.9 that the order of saddleness m p at any point p is the

number of times any sufficiently small deleted neighborhoodof p crosses fromone side
of (say “below”) the tangent plane at p to the other side (“above”) (Rozendorn 1962b).
m p thus measures the number of “undulations” at p. Them p−2 “excess” undulations,
in comparison with a regular saddle, persist to the boundary. This mechanism allows
hyperbolic surfaces to refine the bucklingwavelength, isometrically, near the boundary
(Gemmer et al. 2016).

For the point p, which is common to all the sectors Sk in Prop. 3.10, the order
of saddleness m p = m, corresponding to half the number of sectors at p. Since the
asymptotic directions at p are defined by the intersection between the surface and the
tangent plane at p [cf.Dupin Indicatrix (Stoker 1989, §4.12)], this relation between the
number of asymptotic directions at p and m p holds more generally. This is illustrated
in Figs. 4a, c. Every point in Fig. 4a has m = 2. In Fig. 4c, most points have m = 2
but there is one point with m = 3.

3.3 The Topology of the Normal Map and Obstructions to Smoothing

Our primary interest in this work is to immerse a geodesic disk � ≡ BR ⊂ H
2

of radius R and constant curvature K = −1 into R
3 isometrically with essentially

bounded principal curvatures. The local structure of this mapping near any point
p ∈ � will be modeled by our construction of m-saddles and m-stars. This motivates
the following definition.
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Fig. 4 (Local) winding number of the normal field about a point p for two surfaces: a a smooth pseu-
dospherical saddle and c A C1,1 pseudospherical monkey saddle. b, d Projections of the corresponding
normal fields. p denotes the center of the disks. m p = 2, Jp = −1 for the saddle and m p = 3, Jp = −2
for the monkey saddle

Definition 3.11 A branched pseudospherical immersion of a subset � of the hyper-
bolic plane is a globallyC1,1 and piecewiseC2 isometric immersionψ : � → R

3 such
that every p ∈ � has a neighborhood Op, a homeomorphism τp : Op → Tp, where
Tp is a m p-star, and an associated m p-saddle rp : Tp → R

3 such thatψ |Op = rp ◦τp.

In this work, we will consider branched pseudospherical immersions ψ : � → R
3

where m p = 2 except for finitely many points p1, p2, . . . , pk ∈ �, the branch
points of ψ . Note that our definition of branch points/immersions is local. For global
considerations, we will use notions from the theory of cell complexes, and refer the
reader to Hatcher (2002, Chap. 0) and Kaczynski et al. (2004, §2.1) for background
material. We begin by stating the definition of a quadraph.

Definition 3.12 (Quadgraph, cf. Def. 2, Huhnen-Venedey and Rörig 2014) A quad-
graph is a strongly regular polytopal cell decomposition of a surface, such that all
faces are quadrilaterals (quads).

A cell decomposition of a surface given by vertices {Vi }, edges {E j } and faces {Fk}
is strongly regular if (i) the edges and vertices of each face are pairwise distinct and
(ii) the intersection of two faces is either empty, a single vertex or the closure of
an edge. For our purposes, the quadgraph is required to admit preferred “asymptotic
coordinates.”

Definition 3.13 (Asymptotic complex) An asymptotic complex A is a quadgraph such
that (i) each face Fk is equipped with a bijection ψk : Fk → Rk where Rk = [0, uk]×
[0, vk] is a rectangle, (ii) the collection of edges is partitioned into a family of u-edges
Eu and a family of v edges Ev such that adjacent edges on every face come from
alternating families, and (iii) if a (closed) u edge Eu

j = Fk ∩ Fl , then uk = ul and
the attaching map is given by (u, va) ∈ Eu

j ⊂ Fk �→ (u, vb) ∈ Fl or (u, va) ∈ Eu
j ⊂

Fk �→ (uk − u, vb) ∈ Fl where va ∈ {0, vk}, vb ∈ {0, vl}. Mutatis mutandis a similar
condition holds for the v-edges.

Lemma 3.14 Let A be an asymptotic complex. Then A is checkerboard colorable,
i.e., we can assign labels “red” and “black” to the faces in F such that any pair of
neighboring faces get different labels. Also, every interior vertex (a vertex not in ∂ A)
has even degree.
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(A) (B)

Fig. 5 Examples of checkerboard-colorable, simply connected asymptotic complexes that are embedded in
the plane

Proof From out definition, there is a globally consistent assignment of the edges, i.e.,
elements of X1, to u- and v-edges that alternate going around any vertex. This implies
that every cycle in the dual graph, which crosses equal numbers of u and v edges
in X1 is even, and thus, the dual graph is bipartite (Asratian et al. 1998, Chap. 2).
In particular, the complex A is checkerboard colorable, and every interior vertex has
even degree, since the faces incident on an interior vertex constitute a cycle in the
dual graph, the link of the vertex. These features are illustrated by the examples in
Fig. 5. The two grids are equivalent as graphs, although the grid in Fig. 5a is naturally
interpreted as the quadgraph for the surface obtained by assembly in Sect. 3.2, while
the grid in Fig. 5b is perhaps naturally interpreted as the result of surgery by excising
a quadrant and replacing by 3 sectors, as in Sect. 3.4. ��
Remark 3.15 The bijection ψk : Fk → [0, uk] × [0, vk] in Definition 3.13 gives
asymptotic coordinates on the face Fk ⊆ A. We will henceforth assume that A is
simply connected and can be embedded intoR2. The second condition actually follows
from the first so every simply connected asymptotic complex is homeomorphic to the
disk (Huhnen-Venedey and Rörig 2014, Rmk. 7).

Definition 3.16 (Branched PS-front/Asymptotic quadrilateral) A branched PS-front
is a mapping r : A → R

3 on an asymptotic complex A such that the restriction
rk = r |Fk

is continuous on the face Fk and a C1M PS-front on the interior F0
k . An

asymptotic quadrilateral is the image r(Fk) of a face in a branched PS-front.

An asymptotic quadrilateral is thus a “rectangular” domain, bounded by 2 pairs of
intersecting u and v asymptotic curves, on which we can define global asymptotic
coordinates.

Definition 3.17 (Sector) Let ψ : � → R
3 be a branched isometry. A sector (at p)

is a closed set K ⊂ �, such that there is a injection τ : K → [0, u0) × [0, v0),
τ ∈ C(K )∩C2(K 0), and a PS-front r : (0, u0)× (0, v0)×R

3 satisfyingψ |K = r ◦τ .
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Further τ(p) = (0, 0) and K contains the segments γu = τ−1([0, u0) × {0}) and
γv = τ−1({0} × [0, v0)).

Informally, a sector at p is a set bounded on “two sides” by a u- and a v-asymptotic
curve through p, and contains no other asymptotic curves through p. Let p ∈ � ⊂ H

and let ψ : � → R
3 be a branched isometry. The sum of the m p angles of the sectors

at p (in the surface) is 2π . The images of these sectors under the Gauss normal map
N , however, can wind around the normal N (p) multiple times, as depicted in Fig. 4d.
This motivates

Definition 3.18 Let V ⊆ � be an open set, p ∈ V and U = V \ {p} denote a
deleted neighborhood of p. Let N : � → S2 be a continuous map with the property
that N (U ) ⊆ S2 \ {±N (p)}, where −N (p) is the antipodal point to N (p). The
ramification index of the normal map at p, denoted by Jp, is defined as the degree of
the (composite) map

S1 γ−→ U
N−→ S2 \ {±N (p)} π−→ S1,

where γ is a simple closed curve inU , x⊥ = x−〈N (p), x〉N (p) andπ(x) = x⊥/‖x⊥‖
is the canonical retraction π : S2 \ {±N (p)} → S1 (“retracting to the equator”).

For surfaces with negative extrinsic curvature, Jp < 0 everywhere since the normal
winds clockwise for a counterclockwise circuit around p. If Jp = −1, the normal map
is a local homeomorphism. However, if Jp < −1, then N (V ) is a branched (“multiple-
sheeted”) covering of a neighborhood of N (p), which is therefore a branch point for
the inverse of the Gauss normal map. This justifies calling p a branch point if |Jp| > 1,
and is in keeping with standard usage (Kirchheim 2001; Gemmer and Venkataramani
2013; Gemmer et al. 2016).

Every immersion can be (locally) expressed as a graph (x1, x2, w(x1, x2)) where
(x1, x2) are coordinates in the tangent plane at p, andw(x1, x2) is the normal displace-
ment from this plane. In these coordinates, π ◦ N = ∇w/‖∇w‖, so we can compute
the ramification index Jp as the degree of the map S1 → S1 given by

{(x1, x2) | x21 + x22 = 1} �→ ∇w(εx1, εx2)

‖∇w(εx1, εx2)‖ ,

for any sufficiently small ε. This computation of Jp is illustrated in Fig. 4.
The winding number Jp and the order of saddleness m p are related as follows

Lemma 3.19 Let y : � → R
3 be a C1,1 pseudospherical immersion, and let p be a

point in �. Then Jp = 1−m p where Jp is the local degree of the Gauss normal map
N : � → S2 at p, and m p is the order of saddleness of the immersion y at p.

Proof We remark that the quantities m p and Jp are well defined for C1,1 immersion
(and even for immersions with lower regularity), since N : � → S2 is continuous
(even Lipschitz) (Hartman andNirenberg 1959). The equality Jp = (1−m p) is known
from the theory ofweakly regular saddle surfaces [see (Rozendorn 1966, Lemma 1.2)].
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We will have further use for the intuition behind this result so we give a short, self-
contained argument that holds for branched C1,1 surfaces. Our argument is based on
the Lelieuvre equations (3.4).

By invariance under Euclidean motions, we can, WLOG, assume that y(p) =
0, N (p) = e3. A saddle of order m is defined by angles 0 = β0 < β1 < · · · < β2m =
2π such that the tangent vectors, at p, to the u and v asymptotic curves are given by
si = cos(βi )e1 + sin(βi )e2 (cf. Eq. (3.19)).

From (3.4), we have, Nu = N × ru, Nv = −N × rv , so the asymptotic curves lift
to S2 by the normal map N into curves whose tangents at N (p) = e3 are given by
ti = cos(θi )e1 + sin(θi )e2 where θi = βi + π

2 mod 2π if i is even and θi = βi −
π
2 mod 2π if i is odd. We can determine the values of θi by imposing the requirement
0 < θi − θi+1 < π , which is necessary to ensure that Nu × Nv = −ru × rv . Since
0 < βi+1 − βi < π , it follows that θi+2 − θi = βi+2 − βi − 2π . Adding up the
differences in the θi , we thus get

2m∑
i=1

[θi − θi−1] =
m∑

k=1

[θ2k − θ2k−2] = β2m − β0 − 2mπ = 2(1− m)π,

thus proving the claim that Jp = 1− m p. ��
Figure 4 shows an illustration of this result. It seems natural that there is no “nice”

way to approach the monkey saddle (Fig. 4c) through normal saddle surfaces (Fig. 4a),
since we cannot go from a winding number of 1 to a winding number of 2 continu-
ously. This is indeed the case as we show in Theorem 3.22. This theorem encapsulates
the principal motivation for an investigation of pseudospherical surfaces with branch
points, namely that surfaceswith branch points are distinct from smooth surfaces pseu-
dospherical surfaces because they carry a topological index that cannot be smoothed
away. Our approach is based on the ideas of Brezis and Nirenberg for the degree of
BMO mappings (Brezis and Nirenberg 1995, 1996) with quantitative estimates from
the theory of quasi-isometric mappings (John 1968, 1969).

Definition 3.18 for Jp is through computing the index on a circle with sufficiently
small radius ε. We now show that the radius ε is only limited by the max curvature
so that, for any minimizing sequence for E∞ consisting of C2 immersions, we have
uniform control on the size of the circles that we may use to compute the “local”
degree of the normal map.

Lemma 3.20 For all kmax < ∞ there exist η = η(kmax) > 0 such that for all
0 < δ < η and for all C2 pseudospherical immersion y : B3δ → R

3 with
max(|κ1(x)|, |κ2(x)|) ≤ kmax for all x ∈ B2δ , we have

(1) The normal map N : B2δ → S2 is one to one.
(2) For all x in the “collar” B2δ \ Bδ , we have ‖N (x)− N0‖ ≥ c(kmax)δ, where N0

is the image of the center of the geodesic ball B2δ .

Proof For a C2 immersion y : B3δ → R
3, there are global asymptotic coordinates

u, v on B2δ and an angle field ϕ : B2δ → (0, π) such that the metric is given by
g = du2 + 2σ cos(ϕ)dudv + dv2 (Hartman and Wintner 1951) (see also (3.8)), and
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the pull back of the metric on the sphere by the normal map gives G = du2 + dv2 −
2σ cos(ϕ)dudv. The larger principal curvature is given by max(tan ϕ

2 , cot ϕ
2 ) so the

hypothesis gives the restriction 2 tan−1 1
kmax

≤ ϕ ≤ π − 2 tan−1 1
kmax

. We note here
that κ1(x)κ2(x) = −1 so, necessarily, kmax ≥ 1.

For any tangent vector w ∈ span( ∂
∂u , ∂

∂v
), we have

k−2
max ≤

1− | cosϕ|
1+ | cosϕ| ≤

√
G(w,w)

g(w,w)
≤ 1+ | cosϕ|

1− | cosϕ| ≤ k2max. (3.22)

Setting η = π
6 k−1

max, it is straightforward to see that the length of a spherical arc
between N0 and N (x) is less than π

2 . Consequently, N (x) · N0 > 0 for all x ∈ B3δ
and the image of B3δ under the normal map is contained within a hemisphere.

We can identify B3δ with a subset of the unit disk through the Poincaré disk
embedding (Anderson 2005, Chap. 4) (see also Sect. 4.1). Pre- and post-composing
the normal map N with complex conjugation and projection ⊥: S2 → R

2 into

the orthogonal complement of N0, we obtain the map N
⊥ : B3δ → R

2 given by
(x + iy) �→ N (x − iy) − 〈N (x − iy), N0〉N0.

We collect a few properties of the map N
⊥
:

(1) The image of this map is contained in the unit disk.
(2) This map is C1 since N is C1 and the other maps are smooth.

(3) N
⊥
preserves orientation since complex conjugation and N are both orientation

reversing, while ⊥ preserves orientation.
(4) It follows from the smoothness of complex conjugation, the smoothness of the

Poincaré disk identification of the unit disk x2+ y2 < 1with the hyperbolic plane,
the smoothness of the orthogonal projection from the (open) hemisphere to the
unit disk, the compactness of B2δ , and from (3.22) that an analogous relation is

true for the mapping N
⊥
, i.e., the (local) distortion of lengths by the mapping N

⊥

is bounded away from 0 and∞ on the ball B2δ . The constants giving these bounds
only depend on η and the constants in (3.22), so they only depend on kmax.

It follows that N
⊥ : B2δ → R

2 is a regular quasi-isometry (John 1968) (i.e., a
bounded length distortion (BLD) local homeomorphism (Martio and Väisälä 1988,
§4)). Our conclusions are a direct restatement of the Thm. III in John 1968 [see also
(Martio and Väisälä 1988, Lemma 4.3)]. ��

In the preceding proof, we used the following result, first proved in John (1968,
Thm. III). We present an equivalent statement using the notation inMartio and Väisälä
(1988).

Definition (BLD mapping, Def. 2.1, Martio and Väisälä 1988) Let L > 1. A Lipschitz
mapping f : G ⊆ R

n → R
n is said to be of L-bounded length distortion, abbreviated

L-BLD, if, for a.e. x ∈ G, (i) |h|/L ≤ | f ′(x)h| ≤ L|h| for all h ∈ R
n , and (ii)

det(D f (x)) > 0.
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Theorem (Thm. III, John 1968) If f : G ⊆ R
n → R

n is an L-BLD immersion
and if Br (x) ⊆ G, then ‖ f (w) − f (z)‖/L ≤ ‖w − z‖ ≤ L‖ f (w) − f (z)‖ for all
w, z ∈ Br/L2(x).

The following lemma weakens the hypotheses in the previous lemma, by (i) allow-
ing for branched, i.e., globally C1,1 and piecewise C2 immersions, and (ii) removing
the uniform bound kmax for the max curvature. The conclusions are also correspond-
ingly weaker.

Lemma 3.21 Let � ⊂ H
2 denote a (proper) open subset of the hyperbolic plane and

let y : � → R
3 be a branched pseudospherical immersion. For every point p ∈ �,

there exist δ > 0 and d0 > 0 such that:

(1) The normal map N : B2δ(p) → S2 satisfies N (x) �= N (p) for any x in the
punctured ball B2δ(p) \ {p}.

(2) For all x in the “collar” B2δ(p) \ Bδ(p), we have ‖N (x) − N (p)‖ ≥ d0.

Proof If y is a C2 immersion, the normal map N : � → S2 is an immersion at p and
thus injective in a neighborhood of p, implying the existence of an appropriate δ > 0
such that for all x ∈ B3δ(p) \ {p} we have N (x) �= N (p). Since B2δ(p) \ Bδ(p) is a
compact subset of B3δ(p) \ {p} and N is continuous, the conclusions follow.

If y is a branched immersion, the normalmap is not injective on any neighborhood of
a branch point p since p is a ramification point for theGauss normalmap N : � → S2.
However, if Si ⊂ � is one sector at the branch point p, we can extend the asymptotic
curves bounding Si smoothly so that the extensions satisfy Eq. (3.3). As in Prop. 3.10,
we can now construct a C2 immersion ỹi on a neighborhood of p, one that agrees with
y on the sector Si . Thus there is a δi > 0 such that N (x) �= N (p) on Si

⋂
B3δi (p).

Setting δ = min(δ0, δ1, . . . , δ2m p−1) gives a δ > 0 with the required property. ��
Theorem 3.22 Let � denote an open, simply connected, domain in the hyperbolic
plane and y : � → R

3 be a C1,1 immersion, possibly with branch points. Assume
that there exists a sequence of C2 pseudospherical immersions yn : � → R

3 such
that

(1) yn → y in W 2,2
loc .

(2) E∞[yn] ≤ kmax for all n.

Then m p[y] = 2 for every point in �.

Proof p ∈ � is an arbitrary point. In what follows, let ε > 0 be sufficiently
small so that B3ε(p) ⊆ � and ε < min(η(kmax), δ(p)) for η(kmax) as given by
Lemma 3.20, and δ(p), as given by Lemma 3.21. Also, there is a corresponding
ρ0(p) = min(c(kmax)ε, d0(p)) > 0, such that x ∈ B2ε(p) \ Bε(p) implies that
‖N (x)− N (p)‖ ≥ ρ0(p) and ‖Nn(x)− Nn(p)‖ ≥ ρ0(p) for all n, where N and Nn

are the normal maps for the immersions y and yn , respectively.
ε > 0 now gives uniform control on the size of the geodesic ball Bε(p) whose

boundary can be used to compute the local winding number Jn(p) and the limiting
winding number Jp, as in Definition 3.18, at (a potential branch point) p.
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For the C2 immersions yn , Nn is locally one to one (Hartman and Nirenberg 1959)
and J (n)

p , the local degree of the normal map Nn at Nn(p) is −1 (from the reversal
of orientation). W 2,2

loc convergence yn → y implies W 1,2 convergence of the normal
maps on compact sets (here B2ε(p)). Convergence of the normals in W 1,2(B2ε(p))

implies convergence in BMO (Evans 1998, §5.8.1), as well as in L1(B2ε(p)). Our
maps Nn thus satisfy the hypotheses required for the stability of degree under BMO
convergence (Brezis and Nirenberg 1996, Property 2, §II.2). This implies Jp = −1
for the immersion y. Lemma 3.19 now implies that m p = 2. ��

According to Theorem 3.22, the monkey saddle in Fig. 4c, which has a point p
with Jp = −2, cannot be approximated, in W 2,2

loc , by sequences of C2 pseudospherical
immersions with uniformly bounded principal curvatures E∞(yn) ≤ kmax < ∞. This
is a local statement, so the relevant issue is not that the principal curvatures are getting
large away from the branch point p. Indeed, since W 2,∞

loc convergence implies W 2,2
loc

convergence, it follows that any sequence of smooth pseudospherical immersions
that converges to the monkey saddle in W 2,2

loc necessarily has blowup of the principal
curvatures on arbitrarily small neighborhoods of the branch point p and therefore does
not converge in W 2,∞

loc . In physical terms, the index m p (or equivalently Jp) makes
branch points topological defects, and they cannot be “smoothed out” while keeping
the principal curvatures uniformly bounded.

Theorem 3.22 allows/suggests the possibility that the infimum of max curvature
E∞ for C1,1 branched isometries can be strictly smaller than the infimum over C2 or
smoother isometries, since we cannot approximate isometries with a non-empty set of
branch points {pi | J (pi ) ≥ 2}, in W 2,2

loc , or a fortiori in W 2,∞
loc , by smooth isometries

with locally uniformly bounded curvatures. Such an energy gap between these two
regularity classes is certainly unexpected, since branched isometries can indeed be
approximated by smooth mappings. Also, this behavior is in striking contrast to the
case of flat (Pakzad 2004; Hornung 2011) and elliptic surfaces (Hornung and Velčić
2018), where W 2,2 isometries (respectively, C1,1 isometries) can be approximated in
W 2,2

loc (resp. W 2,∞
loc ) by smooth isometries.

Wepresent numerical evidence to support the existence of an energy gap for surfaces
with constant negative curvature (see Fig. 17a), and argue that rather than beingmerely
a mathematical curiosity, this energy gap is key to explaining the observed ubiquity
of undulating morphologies for hyperbolic sheets in nature, despite the existence of
smoother isometries (Gemmer et al. 2016). The existence of an energy gap for the
max curvature and Willmore functionals restricted to isometries is an example of
the Lavrentiev phenomenon (Lavrentieff 1926; Ball and Mizel 1985; Cesari 1983,
§18.5), and this has important consequences for numerically minimization of energy
functionals (Ball and Knowles 1987). We discuss these issues further in Sect. 6.

Remark 3.23 Theorem 3.22 does not imply that y, a W 2,2
loc limit of C2 pseudospheri-

cal immersions is necessarily C2, although the local degree of y is −1 everywhere.
Indeed, the construction from Eq. 3.19 with m = 2 (4 sectors) but with α1 + α2 �= π

and α2 + α3 �= π gives a piecewise smooth, non-C2 surface in any neighborhood of
p since the u and the v asymptotic curves through p (respectively, γu and γv) are not
differentiable at p. However, γu and γv can be uniformly approximated by smooth
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solutions of Eq. (3.3) obtained by smoothing the (distributional) geodesic curvature(s)
κu (respectively, κv) of γu (resp. γv) giving a pair of intersecting “initial curves.” Solv-
ing the Lelieuvre equations yields smooth pseudospherical surfaces that converge to a
C1,1 immersion with J = −1 everywhere. This argument also gives approximations
by smooth isometries for theC1M pseudospherical surfaces investigated by Dorfmeis-
ter and Sterling (2016), which have J = −1 everywhere, in contrast to the branched
pseudospherical surfaces considered in this work.

3.4 Introducing a New Branch Point: Surgery

Here, we outline another specific example of a branched surface, illustrating an
approach that we call surgery, in contrast to the approach of assembly in the ear-
lier section. In the process of surgery, we introduce a branch point into a “preexisting”
PS-front.

Lemma 3.24 (Surgery) Let �0 = [0, umax] × [0, vmax] and let r0 : �0 → R
3

be a C1M PS-front. Given (u∗, v∗) in the interior of �0 and ũ, ṽ > 0, let �∗ =
[0, umax] × [0, vmax] \ [u∗, umax] × [v∗, vmax],�1 = [0, umax − u∗] × [0, ṽ],�2 =
[0, ũ] × [0, ṽ],�3 = [0, ũ] × [0, vmax − v∗]. There exist PS-fronts ri : �i → R

3 and
attaching maps χ j such that we can glue together �∗ with �i , i = 1, 2, 3 and the
PS-front r0|�∗ with the PS-fronts ri , i = 1, 2, 3 to obtain a branched PS-front with a
branch point at (u∗, v∗) ∈ �∗.

Proof We set z1 = r0(u∗, v∗),n1 = N0(u∗, v∗), tu = ∂ur0(u∗, v∗) and tv =
∂vr0(u∗, v∗). We define the asymptotic complex A using the attaching maps

χ1 : (u, 0) ∈ �1 �→ (u∗ + u, v∗) ∈ �∗, χ2 : (u, 0) ∈ �3 �→ (u, 0) ∈ �2

χ3 : (0, v) ∈ �3 �→ (u∗, v∗ + v) ∈ �∗, χ4 : (0, v) ∈ �1 �→ (0, v) ∈ �3. (3.23)

We construct PS-fronts r1, r2 and r3 on the rectangles �1 = [0, umax − u∗] ×
[0, ṽ],�2 = [0, ũ] × [0, ṽ] and �3 = [0, ũ] × [0, vmax − v∗], respectively, which
are then assembled with the PS-front r0 on �∗ as in Sect. 3.2. The procedure for
gluing the patches is outlined in Fig. 6, and the corresponding gluing procedure for
the immersions, ri is illustrated in Fig. 7.

We will take r2 to be an Amsler patch on �2 with boundary conditions given
by (3.21) with data inherited from r0 by attaching at (u∗, v∗). Specifically, we set

z = z1, n = n1, e(1)
u = 2tv + tu

‖2tv + tu‖ , e(1)
v = 2tu + tv

‖2tu + tv‖ , (3.24)

as an approximation to trisecting the angle between the asymptotic curves at the branch
point. Solving (3.9) and (3.4) gives N2 and the corresponding PS-front r2.

To build the Gauss map, N1 : �1 → S2, again, we need only prescribe normal data
along the axes: u ≥ 0 and v ≥ 0, where the coordinates (u, v) are now “local” to �1.
We get data along v = 0 by copying it from the normal field N0 using the attaching
map χ1:

123



Journal of Nonlinear Science            (2021) 31:13 Page 29 of 60    13 

(A) (B) (C)

Fig. 6 Surgery for asymptotic coordinate patches in �. a �, b �∗ and c �∗⋃�1. The normal field along
the u-line in �1 is obtained by copying the corresponding data from the immersion of �∗

Fig. 7 Introducing a branch point into a smooth pseudospherical surface away from the origin. The resulting
sectors have curved edges

N1(u, 0) = N0(χ1(u, 0)) for u ∈ [0, umax − u∗]. (3.25)

The data for N1 along u = 0 come from the PS-front r2:

N1(0, v) = N2(χ4(0, v)) = cos(v)n1 − sin(v)n1 × e(1)
v for v ∈ [0, ṽ]. (3.26)

We can now obtain a weakly harmonic normal field N1 by solving the Moutard equa-
tion (3.9) on the rectangle �1 and then integrating the Lelieuvre equations to obtain
the PS-front r1. A similar procedure yields N3 and r3.

By construction, N0 = N1◦χ1 ⇒ r0 = r1◦χi on�∗∩�1, and similar relations hold
on all the edges where asymptotic quadrilaterals intersect. We can therefore assemble
the PS-fronts r0, r1, r2 and r3 to obtain a branched PS-front ψ : A → R

3 that agrees
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Fig. 8 Recursively performing surgery on an initially smooth surface

with r0 on �∗, and on a sub-domain such where Nu × Nv does not vanish, to obtain a
C1,1 isometric immersion with K = −1. The topological structure of the asymptotic
lines corresponds to a monkey saddle (2m = 6) at the branch point (u∗, v∗)—there
are six asymptotic rays extending from the branch point. ��

It is clear how we can repeat this procedure recursively by picking branch point,
cutting out one sector from this branch point, and replacing it with 3 new sectors. We
call this procedure surgery to contrast it with the procedure in Sect. 3.2, which we
refer to as assembly. Surfaces with a second generation of branch points are shown in
Fig. 8.

3.5 The Sine–Gordon Equation for Surfaces with Branch Points

Let f : � → R
3 be a smooth pseudospherical immersion, so that the asymptotic

curves and the angle function ϕ(u, v) are differentiable. We can define a one form
α = 1

2 (ϕvdv − ϕudu) and an area 2-from β = √
det(gi j ) du ∧ dv where g = du2 +

2σ cosϕ dudv + dv2 and the sign of the square root is picked so that the orientation
induced by β agrees with the orientation induced by ω or equivalently, by Nω (see
Eq. (3.8)). It is now straightforward to check that β = σ sin ϕ du ∧ dv. On a domain
where σ does not change sign, the sine-Gordon equation (3.10) is equivalent to dα −
β = 0. Integrating over an asymptotic quadrilateral R = {u0 ≤ u ≤ u1, v0 ≤ v ≤ v1},
we obtain the Hazzidakis formula

�Rϕ ≡ ϕ(u0, v0) − ϕ(u0, v1) + ϕ(u1, v1) − ϕ(u1, v0) = A(R), (3.27)

where�Rϕ = ∑
(−1)�i ϕi , i indexes the vertices in the quadrilateral, �i is the modulo

2 length of any path from the vertex (u0, v0) to the vertex labeled i , and A is the area
of (the immersion of) the quadrilateral. In order that R be immersed into R3, we must
have 0 < ϕ(u, v) < π on R, which gives A(R) < 2π for any immersed asymptotic
quadrilateral. The Hazzidakis formula (3.27) holds even in circumstances where ϕ is
not differentiable. ForC1M PS-fronts,ϕ only needs to beC0 but this formula still holds
and the sine-Gordon equation can be interpreted in a distributional sense (Dorfmeister
and Sterling 2016).
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Definition 3.25 (Hamburger polygons) A Hamburger polygon γ is a piecewise C1

Jordan curve that bounds a domain, γ = ∂�, and consists of arcs that are either u or
v asymptotic curves (Hamburger 1924; Weinstein 1996, §3.3).

Equation (3.27) naturally extends to Hamburger polygons contained in domains
where the immersion r is C2. Integrating the sine-Gordon equation dα−β = 0 on �,
we get

��ϕ ≡
∑

i

(−1)�i ϕi =
∮

γ

α =
∫

�

β = A(�), (3.28)

where i indexes the vertices in the Hamburger polygon and �i is 0 mod 2 at every
initial vertex for an arc from the u-family (also a terminal vertex for a v-arc) and
�i = 1 mod 2 at every terminal vertex of a u-arc (resp. initial vertex of a v-arc), with
respect to the orientation on γ that is induced by ω.

Asymptotic quadrilaterals (Definition 3.16) and m-stars (Definition 3.6) are
bounded by asymptotic curves, so they are examples of Hamburger polygons. How-
ever, Eq. 3.28 is only guaranteed to apply to C2 asymptotic quadrilaterals, agreeing
with the Hazzidakis formula (3.27). Every m-star with m > 2 contains a branch point,
where the immersion is not smooth, so further work is needed to deduce the analog of
Eq. 3.28 for m-stars, or more generally for C1,1 branched pseudospherical surfaces.
For C1M surfaces, with a continuous ϕ, we see that �� ≡ �(�) → 0 as A(�) → 0,
so there is no concentration for the quantity �� = ∮

∂�
α on sets of vanishing area.

For branched surfaces, ϕ is not always continuous and ϕ necessarily has jumps
across the asymptotic curves that are incident on a branch point. This might potentially
result in concentration of� on these “singular” objects.We can determine the potential
concentrations of� on branch points, and along the asymptotic curves that are incident
on branch points, by using appropriate Hamburger polygons as illustrated in Fig. 9.

Lemma 3.26 (Concentration at branch points)Let Ti be an m-star that is obtained from
2mi asymptotic quadrilaterals incident on a point pi . Then �Ti = A(Ti )−(mi −2)π .

Proof From Definition 3.6 of an m-star, we see that ∂Ti is a 2mi sided Hamburger
polygon, as shown in Fig. 9a. For the ε-thin “rectangle” Rε shown in Fig. 9a, we
have �Rε = ϕ(r+ε )− ϕ(r−ε )+ ϕ(q−ε )− ϕ(q+ε ). Let us first assume that this rectangle
straddles a u-curve incident on pi . In this case, we can estimate ϕ(r+ε ) − ϕ(q+ε ) =∫

∂uϕ+du + O(ε) noting that the integral is taken entirely inside a sector at pi , so
there are no discontinuities along the integration path. Similarly, ϕ(r−ε ) − ϕ(q−ε ) =∫

∂uϕ−du + O(ε). Although ϕ+ and ϕ−, the limits of the angle ϕ in approaching
the boundary S+ ∩ S− from either side are different, their derivatives ∂uϕ± = −κu

have to match, since they are both equal to the geodesic curvature of a u-curve that
is common to both sectors (see Eq. (3.10)). Consequently, �Rε = O(ε). A similar
argument also applies to v-curves incident on pi . Thus, there is no concentration of
� along the asymptotic curves that are incident on branch points.

We now consider the concentration of � on the branch point pi with order of
saddleness mi enclosed by a ε-small, mi -star Tε, comprising of asymptotic rhombi
R0, R1, . . . , R2m p−1 as shown in Fig. 9a. As discussed in Prop. 3.10, the local structure
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Fig. 9 a The Hamburger polygon Tε allows us to compute the concentration of � at the central branch
points and the rectangle Rε = [q−ε r−ε r+ε q+ε ] determines the concentration on an asymptotic curve incident
on the branch point. b Blowing up the polygon Tε . The angle ϕ is nearly constant on each sector. ϕ = α2i
on the even sectors and ϕ = π − α2i+1 on the odd sectors, where α j is the angle between the asymptotic
curves bounding the j thsector

is given by alternating sets of mi u-curves and mi v-curves that are incident at p with
well-defined tangent directions. Let α j , j = 0, 1, 2, . . . , 2m p − 1 denote the angle of
the rhombus R j at pi with respect to the orientation ω induced by the normal N (pi ).

This is consistent with the definitions in Sect. 3.2. Clearly
∑2mi−1

j=0 α j = 2π . From
Eq. (3.7), we see that the angles between the asymptotic directions at pi are given by
comparing the sense of the rotation from ru to rv , chosen to be directed away from p,
with the orientation induced by ω:

ϕ j =
{

α j if ru to rv is counterclockwise
π − α j otherwise.

(3.29)

On each rhombus R j , the surface restricts to a C2 (even smooth) PS-front, so it
follows that ϕ is continuous. In particular, at the vertex q j , diagonally across from p
in R j , we have ϕ(q j ) = ϕ j + O(ε). We can now compute,

�Tε =
∑

j

(−1)iϕ j + O(ε) = −(m p − 2)π + O(ε). (3.30)

Combining these results, with the contributions of the quadrilaterals that comprise the
complement of the ε-thin rectangles and the ε-small mi -star Tε , that are given by the
Hazzidakis formula (3.27), we get �Ti = A(Ti ) − (mi − 2)π . ��

Note that the same argument also applies at points p with m p = 2. This lemma
shows that branchpoints do indeed concentrate�. This concentration, equal to−(m p−
2)π at a point p, has a definite sign, and is zero at points where the surface is locally a
2-saddle, as we would expect. It is straightforward to “globalize” the arguments from
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above to get a generalization of the (integrated form) of the sine-Gordon equation that
is valid even for C1,1 branched pseudospherical immersions. We record this in the
following theorem:

Theorem 3.27 Let r : (�, g) → R
3 be a branched pseudospherical immersion, with

finitely many isolated branch points pi , i = 1, 2, . . . , k. Let � ⊂ � be a domain with
compact closure in � whose boundary γ = ∂� is a Hamburger polygon with vertices
q0, q1, . . . , q2 j−1 and q0 is an initial vertex for a u-arc with respect to an orientation
ω on �. Then, we have

�� ≡
2 j−1∑
n=0

(−1)nϕ(qn) = A(�) −
∑
pi∈�

(mi − 2)π, (3.31)

whereϕ, the angle between the asymptotic curves, is defined byσ = sign(ω(∂ur , ∂vr)),

ϕ ∈ (0, π), sin ϕ = ‖∂ur × ∂vr‖, cosϕ = σ∂ur · ∂vr .

Proof The domain� decomposes into a union of finitelymanym-stars, each enclosing
a branch point, and a collection of finitely many asymptotic quadrilaterals. Therefore,
� = ⋃N

j=1 �J where each � j is a Hamburger polygon. Since ω will induce opposite
orientations on a edge that is in � j

⋂
� j ′ with j �= j ′, it is easy to see that �� =∑M

j=1 �� j . The theorem now follows from the additivity of the area A, the Hazzidakis
formula (3.27) and the “concentration at branch points” Lemma 3.26. ��
Remark 3.28 The principal curvatures of a pseudospherical immersion are given by
κ1 = tan ϕ

2 , κ2 = − cot ϕ
2 so κ1κ2 = −1. The Willmore energy is given by a density

κ2
1+κ2

2 , and the W 2,∞ energy is given by supx∈� max(|κ1(x)|, |κ2(x)|). In either case,
optimizing the energy demands that we keep ϕ ≈ π

2 everywhere.
If ϕ were identically equal to π

2 , the left-hand side of (3.31) is zero since there are
equal number of positive and negative contributions from (−1)nϕ(qn). The right-hand
side, however, is a difference between two positive quantities, the continuously varying
quantity A(�) and a discrete quantity

∑
pi∈�(mi − 2)π . It is therefore impossible to

have ϕ ≡ π
2 everywhere. This underscores the need to distribute branch points on

� so there is “quasi-local” cancellation between the area form and the branch point
contributions, i.e., energy optimal branched pseudospherical immersions will arise
from attempting to place, on average, 1 branch point with m = 3 in every Hamburger
polygon � with area A(�) = π . Each such branch point adds an extra undulation to
the surface that persists from the branch point out to the boundary.

4 Discrete Differential Geometry for Branched Pseudospherical
Surfaces

Our goal is to construct discrete analogs of the geometric notions in Sect. 3. As in
Prop. 3.10, branched surfaces are realized by patching asymptotic rectangles, with the
combinatorics given by the underlying asymptotic complex. Following this approach,
we will build discrete PS-fronts by appropriate gluing of discrete K -surfaces (see
Definition 4.1).
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Asymptotic rectangles are discretized by rectangular subsets of εZ2 for sufficiently
small ε > 0. Indeed, there is a natural inclusion λk : Mk := {0, ε, 2ε, . . . , ikε} ×
{ε, 2ε, . . . , jkε} ⊂ εZ2 → Fk given by inverting the bijection ψk : Fk → [0, uk] ×
[0, vk] (see Definition 3.13. WLOG we can assume uk, vk are multiples of ε using
small perturbations if necessary). The sets {(iε, j0ε)| 0 ≤ i ≤ ik} and {(i0ε, jε)| 0 ≤
j ≤ jk} are the “discrete” u and v asymptotic curves.
Rectangular subsets of εZ2 have a natural quadgraph structure given by the faces

[iε, (i +1)ε]×[ jε, ( j +1)ε] and the natural attaching maps induced by inclusion into
R
2. This structure, along with the attaching maps defining the asymptotic complex A,

inherited through the mappings λk : Mk → Fk , define a quadgraph Qε , which will
be the setting for our numerical constructions of (discrete) branched PS-fronts and
pseudospherical surfaces.

As with the “continuous” construction in Sect. 3, we will first construct a discrete
Lorentz-harmonic normal field N ε : Qε → S2, and then determine the corresponding
discrete immersion r ε : Qε → R

3 using an appropriate discretization of the Lelieuvre
equations (3.4).

Within each face of the asymptotic complex, generating a PS-front reduces to
solving (3.9). As we discussed above, the discretization of a face uses square grids,
i.e., subsets of Z2, so we denote an arbitrary node by (i, j). We use the following
notation, which is standard in DDG (Bobenko and Suris 2008, Chap. 2), to denote the
discretization of a function f on an elementary quad:

fi, j = f0, fi+1, j = f1, fi, j+1 = f2, and fi+1, j+1 = f12. (4.1)

Definition 4.1 (Discrete K-surface) A map r : J ⊆ Z
2 → R

3 is called a discrete
K -surface if and only if there exists a discrete map N : J → S2 such that, on every
quad,

r1 = r0 + N1 × N0, r2 = r0 − N2 × N0, (4.2)

Equation (4.2) are the discrete Lelieuvre equations (cf. Eq. (3.4)) and go back to the
work of Sauer (1950) and Wunderlich (1951). The discrete Lelieuvre equations are
natural discretizations of the Lelieuvre (differential) equations (3.4). They guarantee
that ri±1, j −ri, j and ri, j±1−ri, j are orthogonal to Ni, j , i.e., the vertex stars are planar
for any solution of (4.2).

Definition 4.1 only requires us to distinguish u-edges (corresponding to r1 − r0)
and v-edges (giving r2− r0) and therefore generalize naturally to discrete K -surfaces
defined on asymptotic complexes, through the requirement that (4.2) hold on each
quad with the following labeling of vertices: Give one of the 4 vertices the index 0.
Label the neighbor of 0 along a u-edge by 1 and the neighbor along a v-edge by 2.
Finally label the diagonally opposite vertex 12. On each quad we have two possible
definitions of r12, either from the path 0 → 1 → 12 or the path 0 → 2 → 12.
Compatibility requires that
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N1×N0 − N12×N1 − (−N2 × N0 + N12 × N2) = (N1 + N2) × (N0 + N12) = 0

(4.3)

Directly discretizing the (continuous) compatibility condition Eq. (3.5) yields

Nuv × N = 0 �→ 0 = (N12 + N0 − (N1 + N2)) × (N0 + N1 + N2 + N12)

4

= 2

4
(N0 × N1 − N1 × N12 + N12 × N2 − N2 × N0)

= 1

2
(N0 + N12) × (N1 + N2) . (4.4)

This is the same as Eq. (4.3). This discretization therefore has the remarkable property
that the discretization of the (continuous) compatibility condition for the Lelieuvre
formulae is exactly the same as the discrete compatibility of the discrete Lelieuvre
formulae, rather than, as one might plausibly imagine, a numerical approximation that
recovers the exact result in the limit the discretization sizeh goes to zero. This particular
discretization exemplifies a key idea in discrete differential geometry (DDG). Rather
than servingmerely as numerical discretizations of the “true” (continuous) differential
geometry, DDG is a complete theory in its own right (Bobenko and Suris 2008, p. xiv).

We now give short, self-contained proofs of standard results from DDG for K -
surfaces r : Z2 → R

3 [see the text (Bobenko and Suris 2008) for further details].
We first exhibit solutions for the discrete Goursat problem of specifying N (i, 0) and
N (0, j) and solving for N (i, j), on a single quad. On an elementary quad, assume
that N12 is unknown, while values for N0, N1 and N2 are known. Then (4.4) requires

N12 = ν(N1 + N2) − N0,

for some ν ∈ R, as is the case for a Moutard net (Bobenko and Suris 2008, §2.3). The
condition that N12 is a unit vector gives a quadratic equation for ν:

〈N12, N12〉 = ν2〈N1 + N2, N1 + N2〉 − 2ν〈N1 + N2, N0〉 + 〈N0, N0〉
= ν2‖N1 + N2‖2 − 2ν〈N1 + N2, N0〉 + 1,

which reduces to

0 = ν
(
ν‖N1 + N2‖2 − 2〈N1 + N2, N0〉

)
.

This implies that ν = 0 and N12 = −N0 or ν = 2 〈N1+N2,N0〉〈N1+N2,N1+N2〉 and

N12 =
[
(N1 + N2)(N1 + N2)

T

〈N1 + N2, N1 + N2〉 − I

]
N0. (4.5)

The former being the antipodal point, and the latter being the desired solution. This is
the Householder reflection of N0 through the plane generated by N1 and N2. Though
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Fig. 10 a A single quadrilateral in the induced Chebyshev net on S2. Given the normal vectors at three
vertices, the normal at the fourth vertex is determined. bGoursat-type discretized problem on the asymptotic
quadrilateral,�. The nodes filled with grey represent provided boundary data, and open nodes are iteratively
solved for via the system (4.4)

we solved for N12 = Ni+1, j+1 above, this approach can be used to solve for the fourth
normal vector provided the normal at the three other corners is given (see Fig. 10a).

Lemma 4.2 If ‖N0 − N1‖ = ‖N0 − N2‖, and N12 is determined by Householder
reflection as in (4.5), it follows that N0N1N12N2 is a spherical rhombus.

Proof Since the angle δ between N0 and N1 is the same as the angle between N0 and
N2, 〈N0, N1〉 = 〈N0, N2〉 = cos δ and we have

0 = 〈N12 − N0, N12 + N0〉 = ν(〈N12, N1 + N2〉 − 2 cos δ)

0 = ν〈N1 + N2, N1 − N2〉 = ν〈N12, N1 − N2〉
�⇒ cos δ = 〈N12, N1〉 = 〈N12, N2〉, (4.6)

proving that N0N1N12N2 is a spherical rhombus ��
Recursively applying (4.5) we can solve for the normal field on an asymptotic

quadrilateral if it is specified on two of its boundaries, as illustrated in Fig. 10b. In
addition, this procedure also determines the normal field on the other two boundaries.
Since the u and v asymptotic curves have constant torsions (see (3.3)) we can discretize
these boundaries so that 〈Ni,0, Ni+1,0〉 = 〈N0, j , N0, j+1〉 = cos δ. By (4.6), we get
〈Ni, j , Ni+1, j 〉 = 〈Ni, j , Ni, j+1〉 = cos δ and ‖ri+1, j −ri, j‖ = ‖ri, j+1−ri, j‖ = sin δ

for all i, j , so the discrete surface ri j is a discrete Chebyshev net in R
3 and the

corresponding normal field Ni j is a discrete Chebyshev net in S2 as illustrated in
Fig. 10a. For our purposes, we need to generalize the ideas from above to consider
mappings r : Q → R

3 and N : Q → S2, where Q is a general asymptotic complex,
and not restricted to be a subset of Z2. This motivates

Definition 4.3 (Spherical Chebyshev net) A spherical Chebyshev net is a branched
embedding N : Q → S2 of an asymptotic complex Q ⊂ R

2 into the sphere that (i)
maps every quad onto a spherical rhombus, (ii) reverses orientation and (iii) satisfies

{∑
p∈Fk

αk = 2π(1− m p) p in the interior has degree 2m p,∑
p∈Fk

αk ∈ ((1− dp)π,min((3− dp)π, 0)) p on the boundary has degree dp,
(4.7)
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where the sums are over all the faces Fk incident on p, and αk is the (negative) angle
at p for the image N (Fk).

Condition (4.7) enforces the hypothesis in Lemma 3.19 at interior vertices and allows
for “closing” an edge (respectively, corner) vertexwithdp odd (resp. even), i.e.,making
it an interior vertex by adding 2 (resp. 3) sectors with angles in (−π, 0).

Lemma 4.4 Let Qε be an asymptotic complex (a simply connected, checkerboard
colorable quadgraph). For any spherical Chebyshev net N : Qε → S2, the discrete
Lelieuvre equations (4.2) are compatible, and generate generalized K -surface(s) r :
Qε → R

3.

Proof We have, 〈N0−N12, N0+N1+N2+N12〉 = |N0|2−|N12|2+〈N0, N1+N2〉−
〈N12, N1 + N2〉 = 0 so N0 + N12 and N1 + N2 are both perpendicular to N0 − N12.
A similar calculation shows that N0 + N12 and N1 + N2 are also perpendicular to
N1 − N2.

Finally, 〈N0 − N12, N1 − N2〉 = cos δ − cos δ − cos δ + cos δ = 0 so N1 − N2
and N0 − N12 are not parallel since neither is zero. This implies that N0 + N12
and N1 + N2 are parallel and thus satisfy the compatibility condition (4.3). We can
therefore “integrate” the discrete Lelieuvre equations along any path in Qε , starting
from a designated “origin” o. Since Qε is simply connected, we can find a path from o
to every other vertex, and summing (4.2) over the path gives a consistent definition of
r : Qε → R

3. This gives a 3 parameter family of generalized K -surfaces determined
by the initial (arbitrary) choice of r(o) ∈ R

3.
In general, this mapping can be ramified (Wissler 1972), but imposing condi-

tion (4.7) ensures that r is not multi-sheeted, in contrast to N . In particular this
condition forces

∑
αk = 2π Jp = 2π(1− m p) at all interior vertices, giving consis-

tency with Lemma 3.19. ��
The problem of constructing discrete PS-fronts therefore reduces to the problem of

constructing spherical Chebyshev nets on asymptotic complexes. To adapt the assem-
bly and surgery procedures defined for continuous surfaces to the discrete setting, we
define

Definition 4.5 (A corner vertex) A vertex q in an asymptotic complex Qε is a corner
vertex if a u-edge as well as a v-edge incident on q are contained in the boundary ∂ Qε .

Definition 4.6 (Boundary segments) A boundary segment is a curve γ = E1∪E2 · · ·∪
Em ⊂ ∂ Qε , where the edges overlap, Ei ∩ Ei+1 �= ∅, and are all either u or v edges.

Lemma 4.7 A boundary segment γ is incident on a corner vertex q ∈ Qε if and
only if q ∈ ∂γ . Conversely, every corner vertex q determines two maximal boundary
segments, γu consisting of u-edges and γv consisting of v-edges.

Proof Since Qε is simply connected and embeddable in R
2 (see Remark 3.15), it

follows that ∂ Qε is a Jordan curve consisting of u and v segments. Definition 4.5
implies that q is on one u and one v edge contained in the boundary, a Jordan curve, so
q is not on any other edge contained in the boundary. The lemma immediately follows.

��
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Lemma 4.8 (Discrete assembly) Let 2m ≥ 4 be even and γi , i = 1, 2, . . . 2m be
mappings γi : {0, 1, . . . , li } → S2 such that (i) γi (0) = (0, 0, 1) for all i , (ii) αi =
∠γi−1(1)γ (0)γi (1) ∈ (−π, 0) and

∑2m
i=1 αi = 2π(1− m) (here γ0 = γ2m), and (iii)

〈γi (k), γi (k + 1)〉 = cos δ for all admissible i, k. These data uniquely determine a
maximal asymptotic complex Q, a spherical Chebyshev net N : Q → S2 and an
unramified K -surface r : Q → R

3.

Proof Let Ji = {0, 1, . . . , li−1} × {0, 1, . . . , li }, i = 1, 2, . . . , 2m be 2m rectangular
domains. We will set l0 = l2m, J0 = J2m . Defining the attaching maps χi : (k, 0) ∈
Ji �→ (li−1, k) ∈ Ji−1, we obtain a (discrete) asymptotic complex Q. On each of the
sets Ji , we define Ni (k, 0) = γi−1(k), Ni (0, l) = γi (l) and extend Ni to the rectangle
Ji using (4.5). By construction, the definitions agree along the overlaps, so we can
use the attaching maps to obtain a spherical Chebyshev net N : Q → S2. Taking
the edges γi with i even as the u-edges and i odd as the v edges, we can consistently
extended the definition of u and v edges on every rectangle Ji . The result now follows
from Lemma 4.4. ��

Lemma 4.9 (Discrete surgery) Let Q be an asymptotic complex and N : Q → S2 be a
spherical Chebyshev net (in particular, all vertices satisfy (4.7)). Given l1, l2 ∈ N and
q, a corner vertex for Q we can define an asymptotic complex Q′ ⊃ Q by attaching 3
rectangular domains Ji , i = 1, 2, 3 to Q and extending the spherical Chebyshev net
N to N ′ : Q′ → S2 such that q /∈ ∂ Q′ and the associated K -surface is unramified,
i.e., single-sheeted.

Proof We set γ0 = γu and γ3 = γv where γu and γv are the boundary u and v

boundary segments incident on q whose existence is given by Lemma 4.7. q sat-
isfies (4.7) and this defines δ ∈ (0, 3π). Since q is a corner vertex, dp ≥ 2 is
even. Let α = −π + δ/3 ∈ (−π, 0). Determine γ1(1) by ∠γ0(1)N (q)γ1(1) = α

and γ2(1) by ∠γ1(1)N (q)γ2(1) = α. Now we set γi (k) = N (q) cos(kδ) +
γi (1)−cos δN (q)

sin δ
sin(kδ), k = 1, 2, . . . , li corresponding to equally spaced points on

geodesics on the sphere. An argument identical to the proof of Lemma 4.8 gives the
desired result.

Note that, by adding three spherical sectors with angle α at the boundary point q,
we ensure that (4.7) is satisfied at q, and of course, we have not introduced further
branch points, or modified the solution at existing branch points away from q. ��

Remark 4.10 We henceforth consider the discrete mappings N : Qε → S2, r : Qε →
R
3 as our objects of interest. It is also possible to treat them as discrete approxima-

tions of the continuous mappings considered in Sect. 3. With finitely many, isolated,
branch points the passage to the continuous limit upon refinement of the quadmesh
Qε follows from a straightforward application of standard arguments that are outlined
in Bobenko and Suris (2008, §5.5), applied to one asymptotic rectangle at a time. As a
“fully discrete” alternative, we can also build approximations to the branched surface
using hyperboloid surface patches since our quadmeshes are checkerboard colorable
(Huhnen-Venedey and Rörig 2014).
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4.1 DDG on the Poincaré Disk

Thus far, we have constructed branched pseudospherical surfaces as K -surfaces, i.e.,
mappings r : Qε → R

3 from asymptotic coordinates into R
3. However, the primary

object of interest in elasticity is the deformation y : � → R
3, the mapping from

the Lagrangian (material) domain � to the Eulerian (lab) frame R
3. To construct

this mapping, we need also to compute the transformation ζ : Qε → � that allows
us to identify the material location corresponding to a point with given asymptotic
coordinates so that y = r ◦ ζ−1. To this end, we start with a coordinatization of �.

Since our interest is in pseudospherical surfaces, we have � ⊂ H
2, and we can

identifyH2 with the Poincaré disk (D, g) given byD = {z | |z| < 1}, the unit disk, and
g = 4dzdz̄

1− |z|2 (Anderson 2005, Chap. 4). z is our Lagrangian or reference coordinate,

since it labels material points independently of their particular locations in R
3, i.e.,

independent of the deformation y : � → R
3. We record a few standard facts about

the Poincaré disk model for H2:

(A) The distance between two points z1, z2 ∈ D is given by

dH2(z1, z2) = arccosh

(
1+ 2

|z1 − z2|2
(1− |z1|2)(1− |z2|2)

)
.

In particular, if one of the points is the origin, this expression reduces to

dH2(0, z) = 2 arctanh(|z|). (4.8)

(B) The orientation preserving isometries of H2 are given by (a subgroup of) the
Möbius transformations

f (z; z0, θ) = eiθ z + z0
1+ zz̄0

, (4.9)

where |z0| < 1, θ ∈ [0, 2π). For our purposes, it suffices to take θ = 0 and we
shall henceforth drop this variable and use f (z; z0) = z+z0

1+zz̄0
. It is straightforward

to check that f ′(0; z0) = 1 − |z0|2 is real and positive, and f −1(w; z0) =
f (w;−z0) = w−z0

1−wz̄0
.

(C) Equally spaced points on the geodesics through z = 0, are given by γβ(n) =
eiβ tanh

( n�
2

)
, where � is the separation between successive points on the

geodesic. Likewise, geodesics through a point z0 are given by zn = f (γβ(n); z0).

As we argued above, constructing the appropriate DDG for K = −1 surfaces is
equivalent to constructing discrete Chebyshev nets, i.e., rhombic quadrilaterals in the
appropriate space. Constructing such rhombi on S2, as in (4.5), gives us DDG for
the Gauss normal map. As we now show, the same idea also applies to the problem
of finding the (discrete) mapping ζ : Qε → � ⊂ H

2. Given ζ0, ζ1 and ζ2 with
dH2(ζ0, ζ1) = dH2(ζ0, ζ2) = 2 tanh

(
�
2

)
, we can apply the isometry f (.,−ζ0) to these

points and obtain
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w j = f (ζ j ,−ζ0), w0 = 0, w1 = �

2
eiβ1 , w2 = �

2
eiβ2 .

The fourth vertex w12 of the “normalized” rhombus diagonally across from the vertex
w0 at the origin can be determined by a straightforward computation after setting
dH2(w12, w1) = dH2(w12, w2) = 2 tanh

(
�
2

)
. ζ12 is then obtained by applying the

inverse mapping f (., ζ0). Putting everything together, we have

w j = f (ζ j ,−ζ0) i = 0, 1, 2

w12 = w1 + w2

1+ |w1w2| ,
ζ12 = f (w12, ζ0). (4.10)

It is now straightforward to construct (branched) Chebyshev nets inH2 that inherit
their topology from a given asymptotic complex. More formally, a discrete hyperbolic
Chebyshev net is a quadgraph in H

2 with an assignment of u and v labels to the
edges such that each face (quad) has two u and two v edges which alternate, and
satisfying (4.10) on each quad, where ζ0 and ζ12 are one set of non-adjacent vertices,
and ζ1, ζ2 are the vertices on the other diagonal. A branch point is any interior vertex
with degree 2m ≥ 6. From the Chebyshev net in H

2, we can immediately construct
the corresponding K -surface (discretized surface) in R

3 by requiring that each star
(the edges incident on a vertex r j,k) be planar with lengths and angles given by the
Chebyshev net at the vertex ζ j,k , i.e., the mapping between the Poincaré disk andR3 is
a discrete conformal map at each vertex. This mapping between the Poincaré disk and
R
3 is the desired Lagrangian to Eulerian map. Although differing in details, the idea

of conformally mapping the hyperbolic plane into R3 has been used to investigate the
wavy edges of leaves (Nechaev and Polovnikov 2017; Nechaev and Voituriez 2001),
and for energetic and geometric approaches to studying buckling in hyperbolic elastic
surfaces (Nechaev and Polovnikov 2015).

As an illustration of our approach, we construct a discrete hyperbolic Chebyshev
net corresponding to an Amsler surface with an angle ϕ = π/2 between the straight
asymptotic lines where they intersect. Since these asymptotic lines are also geodesics
in R

3, the same is true for the corresponding curves in the Poincaré disk. We pick
the origin z = 0 to correspond to this point of intersection. If the rhombi have a side
length� it follows that the “Amsler-type” boundary data on the Poincaré disk are given

by ζ j,0 = tanh
(

j�
2

)
, ζ0,k = i tanh

( k�
2

)
. We then solve for ζ j,k with j �= 0, k �= 0

using (4.10). The (discretized) angle between the asymptotic lines at node j, k is given
by

ϕ j,k = arg(w2w
∗
1), (4.11)

where the w j are determined by (4.10) with ζ0 = ζ j,k, ζ1 = ζ( j+1),k, ζ2 = ζ j,(k+1).
The results are displayed in Fig. 11. Figure 11a shows the hyperbolic Chebyshev

net ζ j,k where each node is colored by the angle ϕ j,k up to the contour ϕ = π cor-
responding to the singular edge. The dashed curves are the boundaries of geodesic
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(A) (B)

Fig. 11 Examples of a piece of an Amsler surface represented in a asymptotic coordinates (u, v) and b in
the Poincaré disk z, up to the singular edge, colored by the angle φ and contoured by geodesic radius with
labels

Fig. 12 Amsler surface with ϕ0 = π
2

disks, labeled by radius. It is clear that the Amsler surface with angle π/2 allows
us to smoothly embed a geodesic disks of radius 1 into R

3 but not a disk of radius
1.5 (Gemmer and Venkataramani 2011). Figure 11b displays the same information in
terms of the discrete indices j, k which are proxies for the asymptotic coordinates u
and v. Since the geodesic distance to the origin is easily computed in the Poincaré disk
by (4.8), we have an efficient method to determine geodesic radii on pseudospheri-
cal surfaces without explictly integrating the arclength (Gemmer and Venkataramani
2011) or solving an eikonal equation on the surface. Figure 12 shows the correspond-
ing K -surface in R

3, a discretization of the Amsler surface with angle π
2 between

the generators. Multiple singular edges are discernible by their characteristic cuspidal
form (cf. Fig. 2).

The last notion we need to introduce is that of a reversal.We know that, in general, a
pseudospherical parametrization r(u, v) does not correspond to an immersed surface,
and the failure of (local) injectivity is associated with the locus where ∂ur × ∂vr = 0.
The notion of reversal captures this idea in a discrete setting. Let ω be an orientation
on H

2. If ζ j,k is a regular point, it is incident on 4 quads given by ζ j+p,k+q , where
p, q ∈ {−1, 0, 1}. We say that there is a reversal at ζ j,k if
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(A) (B) (C)

Fig. 13 Introduction of branch points into the Poincaré disk via the surgical process. In a, we see a smooth
immersion, the singular edge inhibiting the ability to immerse a large portion of H2; b a cropped version
and finally c the glued C1,1 Poincaré disk. Overlapping “sheets” of the immersion appear significantly
darker and provide a signature for the singular edge

∏
p∈{−1,1},q∈{−1,1}

ω( f (ζ j+p,k,−ζ j,k), f (ζ j,k+q ,−ζ j,k)) ≤ 0. (4.12)

This condition is invariant under Möbius transformations and also under reversal of
the orientation ω → −ω being a product of 4 terms. The import of this condition is
that, at a reversal one of the quads that are incident on ζ j,k is flipped relative to the
other three, so the Chebyshev net is folding over itself. The Amsler surface in Fig. 12
corresponds to three reversals of the associated hyperbolic Chebyshev net.

Figure 13a shows the discrete hyperbolic Chebyshev net for theAmsler surfacewith
angle π/2 “extended” beyond the singular edge, where the Chebyshev net ζ j,k appears
to fold back upon itself, as expected. This is evident in Fig. 13a. The rhombi in the
Chebyshev net are colored with an opacity of eighty percent. As a result, overlapping
“sheets” of the immersion appear significantly darker. Since our procedure gives a
(discrete) isometry from the hyperbolic Chebyshev net to the corresponding K -surface
in R

3, a reversal in the hyperbolic Chebyshev net indicates that δuζ ≡ ζ j+1,k − ζ j,k

and δvζ ≡ ζ j,k+1 − ζ j,k have passed through collinearity. This corresponds to the
angle ϕ between the asymptotic curves becoming 0 or π , indicating the occurrence of
a singular edge.

In Fig. 14, we show the steps for the particular example of starting with an Amsler
surfacewith angleπ/2 and building a (branched) immersion to R = 3, a radius beyond
the initial singular edge. To stave off the singular edge, we first pick a threshold angle
φ∗ < π . For the illustration in Fig. 14, we take φ∗ = 3π/4. We then excise the region
u ≥ u∗, v ≥ v∗, where u∗, v∗ are determined by the intersection of the geodesic
circle with radius R = 3 with the contour ϕ(u, v) = φ∗. Note that, at this point
ϕ(u∗, v∗) < φ∗ < π and R < 0.5, so the cut is significantly inside the singular edge
of the initial Amsler surface.

We now perform surgery to replace the removed sector by 3 new sectors. This needs
the introduction of two more asymptotic curves, indicated in Fig. 14c, along which
we are free to prescribe data. We prescribe these data in the Poincaré disk by picking
equally spaced point on the two geodesics through the point ζ0 = ζ(u∗, v∗) obtained
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(A) (B)

(D)(C)

Fig. 14 Illustration of Algorithm 4.1. Desired R = 3. a The initial asymptotic curves on which we prescribe
Amsler data (equally spaced points on geodesics) b Filling in the discrete hyperbolic Chebyshev net and
identifying the first cut location (u∗, v∗). c Introducing new asymptotic curves from the branch point on
which we again prescribe Amsler data. dGeneral sector having non-constant ϕ (non-Amsler data) along the
v-axis. In b, d, the figures are colored by the value of ϕ with black-dashed contours representing geodesic
radius, increments of 0.5. The solid green lines represent the edges of the L-cut, and their intersection the
location of the branch point, (u∗, v∗) (Color figure online)

by trisecting the angle left behind by the sector that is removed. In more detail, if
w1 and w2 are the “edges” of the excised sector, moved to the origin by a Möbius
transformation (see (4.10)), we define

ϕ1 = arg(w2w
2
1)/3, ϕ2 = arg(w2

2w1)/3. (4.13)

Then, the appropriate geodesics are given by undoing the Möbius transformation,

ζ0,k = f

(
eiϕ1 tanh

(
k�

2

)
, ζ0

)
, ζ j,0 = f

(
eiϕ2 tanh

(
j�

2

)
, ζ0

)
, (4.14)
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Fig. 15 Process of constructing a discrete isometric immersion recursively by surgery. These figures illus-
trate the generation an K -surface in R

3 from a discrete Chebyshev net in the Poincaré disk

where � is the side length of the rhombi in the Chebyshev net. We can determine
ζ j,k in the interiors of the three new sectors using (4.10). We can do this in each of
the 4 sectors (quadrants) that constitute the initial Amsler surface and the resulting
Chebyshev net in the Poincare disk is illustrated in Fig. 13c. The result is a discrete
Chebyshev net with 4 vertices of degree 6, one in each quadrant, corresponding to the
branch points. We thus have implemented surgery, as introduced in Sect. 3.4, directly
in the Poincaré disk.

Remark 4.11 (Ramification) Unlike for DDGbased on spherical Chebyshev nets (4.2),
where we need condition (4.7) to guarantee that the resulting K -surface is unramified,
DDG based on (4.10) gives a discrete conformal map between the net in the Poincare
disk and the resulting K -surface, so any hyperbolic Chebyshev net where the angles
add up to 2π at interior nodes, and to less than 2π at boundary nodes will give a
K -surface with no ramification (cf. Wissler 1972). In particular, our algorithm 4.1
guarantees this. Of course, the normal map is ramified at branch points.

Figure 14d shows one of the resulting sectors in the 2nd generation, i.e., the asymp-
totic curves defining the boundaries of the sector are incident on the branch point
(u∗, v∗) from the first cut. Note that the singular edge again intersects the geodesic
circle R = 3 so we have to repeat the entire procedure to obtain the second-generation
branch points and third-generation sectors. Note also that the new branch point is at
R ≈ 1.5, and thus, the first- and second-generation sectors, taken together, are closer to
covering the desired domain R ≤ 3, and do so while maintaining ϕ ≤ φ∗ everywhere.

This surgery procedure can be repeated recursively to construct branched isometric
immersions of arbitrarily large disks. We list the steps involved in Algorithm 4.1. This
is a “greedy” algorithm for constructing branched immersions since it is based on
picking the cut locations using information local to a particular sector, and attempts
to maximize the size of the sector in the current generation, rather than pick the cut
location in a more globally optimal fashion. By construction, the algorithm generates
distributed branch points in a recursive and self-similarmanner,We discuss this further
in Sect. 5.1, where we estimate the number of recursion steps needed before the
algorithm terminates when applied to a Pseudospherical disk with (geodesic) radius
R. Figure 15 illustrates the final step in Algorithm 4.1, showing discrete surfaces
constructed from mapping the rhombi in hyperbolic Chebyshev nets to skew rhombi
in R3.
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Wewill present a full analysis ofAlgorithm4.1 elsewhere.Wenote that every branch
point pi has a non-empty open neighborhood, the interior of �n

⋃
�i+1

⋃
�i+2⋃

�i+3, given by the parent sector pn and the 3 sectors at pi . Compactness of the
closed geodesic disk implies we only have finitely many branch points if we can show
that the sectors cover the disk.

We can do this, andmore, by exploiting a “dual” view point of the algorithm starting
from the alternative, “non-recursive,” construction for isometric immersions of disks
into R

3. This immersion is achieved through patching sufficiently narrow Amsler
sectors, whose singular edges are further away from the origin than the radius R,
meeting at a single branch point of sufficiently high index at the origin (Gemmer and
Venkataramani 2011, 2013) (see also Sect. 3.2 and Fig. 3). The comparison between
the twomethods is shown in Fig. 16. The figures show the discrete Chebyshev net inH2

corresponding to the recursive and single branch point isometries of disks of radii 2, 3
and 4, respectively. The quads in the Chebyshev nets are colored by the κmax, the larger
principal curvature. The figures suggest that the energies of both types of embeddings
grow with R, the radius of the disk, but the energy of recursive embeddings grows
slowly compared to the energy of single branch point “periodic Amsler” embeddings.
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Fig. 16 A comparison of isometric immersions of H2 via recursively constructed branched surfaces (left)
and by a single branch point at the origin with a large index (right) as represented in the Poincaré disk. The
figures show immersions with geodesic radii R = 2, 3 and 4 represented by the dashed line. The surfaces
are colored by the max of the absolute principal curvatures: darker representing higher energy

For the single branch point at the origin, the order of saddleness can be estimated
m0 ∼ CeR for an O(1) constant C . Algorithm 4.1 has a dual interpretation as follows:

(1) Start with a single branch point at the origin with m′ = 3gm where m is as defined
in the algorithm and g is determined by 3g−1m < m0 ≤ 3gm. g is the expected
number of “generations” of branch points (see also “cut depth” in Sect. 5.1).
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(2) In the first step, retain a branch point with index m at the origin and move 2m
daughter branch points, each with degree 3g outward in their respective sectors,
until the maximum angle ϕ over points in (each of) the “growing” sectors at 0
equals the cutoff angleφ∗.More precisely, this is equivalent to finding the locations
j∗, k∗ in each of the 2m initial sectors (Steps 12 and 13 in the algorithm) and this
determines the locations of the branch points of the first generation.

(3) Recursively, at the kth stage, move 2 · 3k−1 ·m daughter branch points, each with
degree 3g−k , outward until the max angle ϕ in the sectors at the branch points in
the (k − 1)th generation equals φ∗.

(4) At every stage, the union of the sectors cover the entire disk.
(5) This process is “monotonic,” for φ∗ ≤ π/2, because we have the following com-

parison principle. Let J = [0, u0]×[0, v0]. Letϕi , i = 1, 2 denote solutions of the
sine-Gordon equation ∂uvϕi (u, v) = sin ϕi (u, v) satisfying 0 < ϕi (u, v) < π/2
on J . If φ1(u, 0) ≤ φ2(u, 0) for 0 ≤ u ≤ u0 and φ1(0, v) ≤ φ2(0, v) for
0 ≤ v ≤ v0, then it follows that φ1 ≤ φ2 on J .

(6) This monotonicity implies that, for m ≥ 6, φ∗ ≤ π/2, the result of the greedy
algorithm is obtained by starting with the appropriate periodic Amsler surface on
the disk of radius R and moving branch points outwards, a process that increases
ϕ. We can discard a branch point and all of its sectors if it ever reaches the
boundary of the disk, and no new branch points ever enter the disk. Formalizing
this argument proves that Algorithm 4.1 terminates, and further, obtains an a priori
bound on the number of sectors M ≤ 2 · 3g · m < 6m0 and the minimum angle
ϕ ≥ 3−g π

m so E∞ < C3gm < C ′eR for some constant C ′.

Numerically, we find that Algorithm 4.1 terminates, even for φ∗ > π/2.

5 Distributed Branch Points and Curvature Energy

We now investigate the energies of the various classes of pseudospherical immersions.
The principal curvatures are determined by the angle ϕ(u, v) between the asymptotic
directions as κ1 = ± tan ϕ

2 , κ2 = ∓ cot ϕ
2 . Consequently, the bending energy (both

W 2,∞ and W 2,2) diverge if the singular edge ϕ = 0 or ϕ = π encroaches the domain
� ⊂ H

2. Our goal therefore is to construct immersions of � such that the angle ϕ

between the asymptotic lines satisfies 0 < δ ≤ ϕ ≤ π − δ < π , where δ = δ(�) > 0,
and gives a quantitative measure of how “non-singular” we can make an isometric
immersion � ⊂ H

2 → R
3. δ is related to the max curvature energy by E∞ = cot(δ).

Earlier analyses suggest that the energy optimal C2 pseudospherical immersions
of a geodesic disks are given by subsets of the universal cover of Minding’s bobbin
(Gemmer and Venkataramani 2011) (see also Example 3.4, Eq. (3.11)) giving

log inf
r∈C2

E∞[r ] ∼ R (5.1)

where by a ∼ b, we are conjecturing the existence of a constant 1 < C < ∞ such
that C−1b ≤ a ≤ Cb for all R. Alternative low-energy immersions of disks are in
the form of C1,1 periodic Amsler surfaces (Gemmer and Venkataramani 2011, 2013)
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which introduce a single branch point at the origin. Even with the introduction of this
branch point, there are still “large” sets, in particular, disks with radius R/2 which are
free of branch points and where the immersion is smooth (or can be approximated by
smooth isometries as discussed in Remark 3.23), so Eq. (5.1) implies that, even for
these periodic Amsler surfaces, log E∞ ∼ R.

Our construction (Algorithm 4.1) introduces distributed branch points, which
appear “as needed.” In this case, as we argue below, we stave off the singular edge
and obtain

log inf
r∈C1,1

E∞[r ] ∼ √
R (5.2)

achieving an improvement in the scaling of the logarithm of elastic (bending) energy.
The separation between the energy scales of the smooth and branched isometries is
therefore enormous for large R. The number of generations of branch points, which
we also call the cut depth, grows linearly with R.

While we do not have rigorous proofs for these claims yet, we give arguments
that illustrate the intuition behind these relations in Sect. 5.1. We also have numerical
evidence for the energy and cut depth scaling obtained from Algorithm 4.1 applied to
disks of radius up to 10. Figure 17a shows the analytically derived energy scaling for
Minding’s bobbin, conjectured as the minimizer of the elastic energy over the class
of all C2 isometric immersions, as in (5.1). Periodic Amsler surfaces exhibit a simi-
lar exp(R) scaling, though with an improved constant (Gemmer and Venkataramani
2011). The energetic benefits of introducing distributed branch points is clear, with
an apparent energy scaling exp(c

√
R). The cut depth scales linearly with R as shown

in Fig. 17b. Figure 17c shows an immersed pseudospherical surfaces with distributed
branch points, a mathematical “hyperbolic crochet” with R = 3. A movie showing
this surface from multiple viewpoints is available in the supplementary material.

5.1 Recursion on Amsler-Type Surfaces

We have implemented Algorithm 4.1 on disks of radii R ≤ 10 and for various choices
of the initial angle φ0 and the cutoff angle φ∗. Figure 18a shows the branch points in a
disk of radius 4 with φ0 = π

2 , φ∗ = 3π
4 . The solid lines indicate the parent–daughter

relations among the branch points. The branch points form a tree since every branch
point has a unique parent. We observe that every branch point (other than the origin)
has 3 or fewer daughters, and the leaves of the tree are at different depths. The “Amsler
nodes” along the diagonal are (typically) farther apart than the “pseudo-Amsler” off-
diagonal nodes.

A schematic of the recursion procedure is illustrated in Fig. 18b. The origin u =
v = 0 corresponds to a branch point in the nth generation. Let ϕ = ϕ(u, v) denote the
angle between the asymptotic directions on the corresponding sector and we define
φn = ϕ(0, 0). An input to the recursion process is the given threshold φ∗ < π . If the
locus of points where ϕ(u, v) = φ∗ (denoted by z = z∗ in Fig. 18b) intersects the
boundary of the domain �, then we need to introduce an n + 1th-generation branch
point. The location (u∗n, v∗n) of this branch point is determined by the requirement that
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(A) (B)

(C)

Fig. 17 a E∞ energy for three types of immersions: Minding’s bobbins (C2-catenoid, thick-dashed), C1,1

periodic Amsler surfaces (solid) and C1,1 branched surfaces (dashed-diamond). b The maximum recursion
depth n as a function of the geodesic radius R. c A numerically generated “hyperbolic crochet” obtained
using Algorithm 4.1 on a disk of radius R = 3

on the L-shaped region [0, umax] × [0, v∗n ]
⋃[0, u∗n] × [0, vmax] the angle satisfies

ϕ(u, v) ≤ φ∗ guaranteeing that this region is bounded away from the singular edge.
The angle φn+1 for the next generation is given by φn+1 = 1

3ϕ(u∗n, v∗n). To analyze
the recursion process and obtain scaling laws for the maximum curvature, we need to
understand the relation between φn and φn+1. Indeed, ϕ is monotone in both u and
v as it satisfies the ϕuv = sin φ > 0. The only mechanism that decreases ϕ is the
trisection at a branch point. Since the principal curvatures are given by ± tan ϕ

2 and
∓ cot ϕ

2 , it follows that

E∞ = max
n,k

(
cot

φn,k

2
, tan

φ∗

2

)
(5.3)

where φn,k is the angle at the kth branch point in the nth generation.
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(A) (B)

Fig. 18 a Poincaré disk representation of 4 generations of distributed branch points in a disk of radius
R = 4. b Annotated illustration of an L-shaped cut in going from the nth to the n + 1th generation

If the asymptotic curves u = 0 and v = 0 bounding a sector are geodesics, i.e.,
for Amsler sectors, we can analyze the relation between φn+1 and φn in more detail.
In this case, ϕ(u, v) is a self-similar solution ϕ = ϕ(2

√
uv) given by Eq. (3.18). We

then have

Lemma 5.1 Let ϕ be the solution of (3.18) with ϕ(0) = φn > 0 and let
umax, vmax, φ

∗ < π be given. We also identify ϕ(u, v) = ϕ(2
√

uv) as the corre-
sponding solution of the sine-Gordon equation on the rectangle [0, umax] × [0, vmax].
There exist u∗n, v∗n > 0 such that

(1) ϕ(u, v) ≤ φ∗ for all (u, v) ∈ �∗ := [0, umax] × [0, v∗n ]
⋃[0, u∗n] × [0, vmax].

(2) ϕ(u∗, v∗) ≥ φn I0 (C(φ∗)ζn) where I0 is the modified Bessel function of the first
kind, 0 < C(φ∗) < 1 is a constant that only depends on φ∗, and

ζn = 1

2
√

umaxvmax

(
I−1
0

(
φ∗

φn

))2

.

Proof We can rewrite (3.18) as the equivalent integral equation

ϕ(z) = φn +
∫ z

0

∫ w

0
sin(ϕ(ξ))ξ dξ

dw

w
. (5.4)

ϕ is thereforemonotone increasing on an initial interval [0, z∗]where z∗ is the smallest
solution of ϕ(z) = φ∗. For 0 < φn ≤ ϕ ≤ φ∗, we have the elementary inequalities

C2ϕ ≤ sin ϕ ≤ ϕ, where C = C(φ∗) = √
sin φ∗/φ∗ < 1. (5.5)
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Using these inequalities in conjunction with the integral equation (5.4) and the closed
form solution u = φn I0(Cz) for the linear differential equation ϕ′′ + z−1ϕ′ =
C2ϕ, ϕ(0) = φn, ϕ′(0) = 0 (Abramowitz and Stegun 1992, §9.6), we obtain the
bounds

I0(C(φ∗)z) ≤ ϕ(z)

φn
≤ I0(z) (5.6)

for all 0 ≤ z ≤ z∗. Setting u∗n = 1
4vmax

(
I−1
0

(
φ∗
φn

))2
, v∗n = 1

4umax

(
I−1
0

(
φ∗
φn

))2
and

recognizing that ϕ(u∗n, v∗n) ≥ φn I0(2C(φ∗)
√

u∗nv∗n) the result follows. ��
Remark 5.2 From the preceding lemma, we get the recursion for an Amsler sector

φn+1 ≥ φn

3
I0

(
C(φ∗)

2
√

umaxvmax

(
I−1
0

(
φ∗

φn

))2
)
≥ φn

3
I0

(
C(φ∗)
2R

(
I−1
0

(
φ∗

φn

))2
)

,

where the second inequality obtains from umax ≤ R, vmax ≤ R. We thus get a rela-
tion with explicit dependences on the parameters in the recursion, R and φ∗. Since
φn+1/φn ≥ 1 for sufficiently small φn , it is also easy to see that, there is a constant
C ′(φ∗), independent of R, such that φmin := φ∗/I0(C ′(φ∗)

√
R) has the property that

φn ≥ φmin for all n if φ0 ≥ φmin. Note also that we are free to pick a particular value
of φ∗ (or even values from any compact set in (0, π)) and drop all the dependences
on φ∗.

The preceding analysis holds for Amsler sectors but most of the sectors generated
by Algorithm 4.1 are not Amsler sectors. Rather, they are pseudo-Amsler sectors and
only one boundary is a geodesic. Consequently, we cannot assume that the quantitative
relation fromLemma5.1will hold for these pseudo-Amsler sectors aswell. The lessons
we draw are qualitative—that the analysis for Amsler sectors helps identify “good”
sets of variables, i.e., the appropriate combinations of R, φn, φn+1 that might satisfy
“universal” relations.

For a general (not necessarily Amsler) sector, we define the quantity

α2
n = 1

4sn

(
I−1
0

(
φ∗

φn

))2

, (5.7)

where sn is the distance from the branch point to the boundary of the domain. The
intuition for this choice is that s2n ≥ umaxvmax and ζn is like 2α2

n . The argument is
Remark 5.2 will apply to all sectors if we can prove an inequality φn+1

φn
≥ f (2Cα2

n)

where C > 0 is independent of R, and f ≥ 1 for sufficiently large values of its
argument.

We apply Algorithm 4.1 to disks of various sizes and we record αn (as defined
in (5.7)) and the ratio φn+1

φn
, relating the opening angles of the daughter sectors to the

angle of the parent sector, at each cut (u∗, v∗). Figure 19 shows the scatter plots of
φn+1
φn

versus α2
n for various choices of R, φ0 and φ∗. On each of these plots, we have
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Fig. 19 Scatter plots of
φn+1
φn

versus α2n for branched immersions generated by Algorithm 4.1. We plot

f1(α) = 1
3 I0(2α2) and the supporting quadratic f2(α) ≈ 0.73α2. The parameters for the individual plots

are: a R = 8, φ0 = π
6 , φ∗ = 4π

5 , b R = 8, φ0 = π
2 , φ∗ = 3π

4 , and c R = 10, φ0 = π
4 , φ∗ = 4π

5

also drawn the curves f1(α) = 1
3 I0(2α2) and its supporting quadratic f2(α) = (

α
α∗

)2
where α∗ =

(
supw≥0 w√

f1(w)

)
. The data suggest the following observations:

(1) The plots are essentially the same if there are sufficiently many branch points,
independent of π

6 ≤ φ0 < φ∗ ≤ 4π
5 and R ≥ 6.

(2) The points are clustered in two families. The Amsler nodes satisfy φn+1
φn

≥
1
3 I0(2α2

n), i.e., the best possible bound from Lemma 5.1, given by C(φ∗) = 1.
The pseudo-Amsler nodes do not satisfy this bound. They seem to satisfy a weaker

bound given by φn+1
φn

≥ max
(
1
3 ,

(
infw>0

I0(2w2)

3w2

)
α2

n

)
= max

(
1
3 ,

(
α
α∗

)2).
Assuming that the inequalities suggested by the numerical results indeed hold for

all R, the same argument as in Remark 5.2 gives a conservative estimate of φmin by
setting

(α∗)2 ≡ 1

4R

[
I−1
0

(
φ∗

φmin

)]2
�⇒ φmin = φ∗

I0(2α∗
√

R)
∼ exp(−α∗

√
2R),

since, from sn < R, we are guaranteed that φn+1/φn ≥ (αn/α∗)2 ≥ 1 if φn is ever
as small as φmin. Equation (5.2), our energy bound for isometries with branch points,
now follows from combining φn,k ≥ φmin for all branch points with Eq. (5.3).

From the bound (5.2) for E∞ and the estimate in (5.1) for C2 patches devoid of
branch points, it follows that we cannot have a region of size about

√
R that is free of

branch points. The area of a disk with radius R scales like exp(R), while the “largest”
size of regions free of branch points can only be exp(

√
R). Consequently, we get

that the number of branch points scales like exp(R −√
R). Since each parent has (at

most) 3 daughter branch points in Algorithm 4.1, the number of branch points grows
(roughly) exponentially with the number of generations, and it follows that the cut
depth scales like
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n ∼ max(R −√
R, 0),

corresponding to a function “nearly” linear function whose slope increases slowly,
precisely as we observe in Fig. 17b.

6 Discussion

Branch points are novel topological defects in C1,1 hyperbolic surfaces that allow
significant shape changes, while they do not concentrate stretching energy. They are
unique in this aspect, since most other defects in condensed matter systems do con-
centrate energy.

In our view, these are some of the key results from this work –

(1) In Definition 3.13, we introduce the notion of an asymptotic complex that encodes
the combinatorics of the asymptotic network and characterizes the non-trivial
topology induced by the ramification of the corresponding Gauss normal map.

(2) We define a topological index for branch points and prove it is “robust” (Theo-
rem 3.22).

(3) We prove a generalization of the sine-Gordon equation for surfaces with branch
points in Theorem 3.27. This result illustrates why optimizing the bending energy
among isometric immersions of pseudospherical surfaces naturally leads to dis-
tributed branch points (see Remark 3.28).

(4) In Sect. 4.1, we introduce a new discrete net for the basic object of interest in
elasticity, the deformation map from the Lagrangian to the Eulerian frame for
pseudospherical surfaces. Our method does encode the asymptotic complex and
the topology of branch points and therefore distinguishes C1,1 immersions from
C2 immersions, in contrast to finite difference/FEM methods which are “branch
point agnostic.”

(5) We formulate an algorithm, Algorithm 4.1, to generate pseudospherical surfaces
with distributed branch points and (relatively) slower growth in the maximum
curvature with the size of the domain, than for C2 immersions.

(6) We numerically find an energy gap between branched and smooth pseudospherical
surfaces that leads to recursive/self-similar, fractal-like patterns in the distribu-
tion of branch points, and partially answers our motivating question—why do we
observe “universal” buckling patterns in hyperbolic surfaces?

We now expand on item 6, which is the central motivating question for this work.
Bounded subsets of smooth hyperbolic manifolds can always be embedded smoothly
and isometrically in R

3. There is thus no need for these sheets to stretch, and their
morphology results from a “global” competition between the two principal curvatures
(Gemmer et al. 2016) (see also Example 3.4). This is in contrast to other multi-scale
phenomena in thin sheets (Müller 2017) which are manifestly driven by a competition
between stretching and bending energies (Amar and Pomeau 1997; Lobkovsky et al.
1995; Venkataramani 2003; Bella and Kohn 2014a; Olbermann 2016) or more gener-
ally, energies of different physical origins (Davidovitch et al. 2011; Chopin et al. 2014;
Bella and Kohn 2014b; Davidovitch et al. 2019; Tobasco 2019). We argue that branch
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point arise from the dependence of the max curvature/bending energy on the regularity
class of the immersion y : BR → R

3. The results in Sect. 3 and algorithm in Sect. 4
are steps toward a quantitative expression of this idea. Our numerical results and (a
non-rigorous) scaling argument suggest, for a disk of radius R and Gauss curvature
K = −1 immersed in R3, the optimal max curvature E∞ = κmax grows as

log inf
y:BR→R3

κmax ∼
{

R C2 or smoother isometries,√
R C1,1 branched isometries.

(6.1)

The evidence for this conjecture is presented in Fig. 17a.
If true, conjecture (6.1) would explain why, for sufficiently large disks, isome-

tries with distributed branch points are preferred. The related argument for cut depth
indicates how the branch points will be distributed, and “explains” the observed self-
similar buckling patterns in thin hyperbolic objects. The energy gap in (6.1) would
constitute an entirely new class of examples of the Lavrentiev phenomenon in non-
linear elasticity (Foss et al. 2003; Ball and Mizel 1985). The Lavrentiev phenomenon
is known to be an obstacle for numerical minimization of the energy functional since
discrete approximations often converge to a smooth pseudominimizer rather than the
true singular minimizer (Ball and Knowles 1987). It is thus of considerable interest to
investigate the convergence properties of ourDDG-basedmethods, that discretizeC1,1

isometries, and compare the results with existing FEM and finite difference methods
for shells and plates.
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Appendix: Asymptotics of Painlevé III

We can get more accurate estimates than implied by the bounds in (5.6). For ϕ # 1,
the Painlevé III equation (3.18) and the associated boundary conditions reduce to

ϕ′′(z)+ ϕ′(z)
z

− ϕ(z) = 0, ϕ(0) = ϕ0, ϕ′(0) = 0.

The solution is given by ϕ(z) = ϕ0 I0(z), where I0 is the modified Bessel function
of the first kind (Abramowitz and Stegun 1992, §9.6). From the small and large z
asymptotics of I0 (Abramowitz and Stegun 1992, §9.7), we get
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ϕinner(z) = ϕ0

(
1+ z2

4
+ O

(
z4
))

, for z # 1,

ϕouter(z) = ϕ0
ez

√
2π z

(
1+ 1

8z
+ O

(
1

z2

))
, forz $ 1.

For the regime z $ 1, ϕ ≈ π , we have the weakly damped pendulum equation:

ϕ′′(z) − sin ϕ(z) = −ϕ′(z)
z

≈ 0, (A.1)

with asymptotic solutions of the form

ϕpend(z) ≈ π − A sin(z∗ − z), (A.2)

for a slowly varying amplitude A that changes over many cycles of the pendulum. We
are only interested in the first crossing φ(z∗) = π , so we can assume that A is constant
and determine A by matching the large z asymptotics of the Bessel solution with the
pendulum solution. From the Bessel solution, we derive initial data for the pendulum
equation, fixing the energy level for this conservative system:

(ϕpend(0), ϕ
′
pend(0)) ≈

(
ϕ0ez

√
2π z

,
ϕ0ez

√
2π z

)
= (δ, δ), (A.3)

where we match at such a point z that z $ 1, δ # 1. The energy of the pendulum
solution is given by

E = ϕ′2

2
+ cosϕ ≈ 1+ δ4

24
, (A.4)

as cosϕ is the potential and δ # 1. Substituting the data into the energy, we find

1+ δ4

24
≈ 1

2

(
A′ sin(z∗ − z) + A cos(z∗ − z)

)2 + cosϕ,

≈ 1

2

(
A′ sin(z∗ − z) + A cos(z∗ − z)

)2 − 1+ (π − ϕ)2

2
,

≈ 1

2

(
A′ sin(z∗ − z) + A cos(z∗ − z)

)2 − 1+ 1

2
A2 sin2(z∗ − z),

≈ −1
1

2

[
A′2 sin2(z∗ − z) − 2A′A sin(z∗ − z) cos(z∗ − z)+ A2

]
,

which in the case of slowing varying A simplifies to

A ≈ 2

√
1+ δ4

48
.
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Fig. 20 Asymptotics using the
Pendulum and Bessel
approximations in the ϕ0 → 0
limit compared to the numerical
solution of the Painlevé equation
for ϕ0 = π

100 . Our interest is in
approximating the exact solution
well on an interval [0, z∗] where
z = z∗ ≈ 9 is the first instance
where ϕ(z) = π , depicted by the
dashed horizontal line in the
figure

We are now equipped with a complete asymptotic description of the solutions to
Painlevé III for an initial angle ϕ0. The description is divided into three regimes: z # 1
and ϕ0 � ϕ # π , z $ 1 and ϕ0 # ϕ � π , and finally z $ 1 and ϕ ≈ π :

ϕ(z) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ0

(
1+ z2

4

)
, z # 1 and ϕ0 � ϕ # π

ϕ0
ez√
2π z

(
1+ 1

8z

)
, z $ 1 and ϕ0 # ϕ � π

π − 2
√
1+ e4z

192π2z2
sin(z∗ − z), ϕ ≈ π, z � z∗ ≈ − log(ϕ0).

(A.5)

A numerical validation of these asymptotic relations is illustrated in Fig. 20 (we
consider ϕ0 = π

100 ). Using the expressions in (A.5) instead of the bounds (5.6) gives
the optimal constant C(φ∗) = 1 in Lemma 5.1.
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